General Solution of Trusses

(A Solution by Maitrix Method)

Takeo MivaIrr® and Osamu KOBAYASHI®*

1.  Introduction

Theories of analysis of trusses by matrix methods have been developed and
applied by many authors. The present method is one of displacement methods,
in which the relation between joint displacements of a member and its member
force is determined by a geometrical equation of deformation and then the
unknown quantities, that is, joint displacements are determined by the joint
method of truss analysis. This method can judge whether the structure is
stable or not and can solve all the cases whether the structure may be statically
determinate or not, plane or space, simple or compound or complex type, and
under various loading conditions, that is, joint loads, heat loads and so on. So
this method can be said to be a general one in truss analysis.

First the equations of this theory will be derived and then typical numerical
examples of plane and space trusses under various loading conditions will be

explained in this report.

2. Development of the Method

This method can be applied to both plane and space trusses and here for
concise explanation, we’ll develop about plane trusses. We assume the position
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Fig. 1. A Member of a Truss.
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of each joint 7, 7 of an arbitrary member i-j in a truss to be (x, ¥), (x; ¥;)
respectively (Fig. 1). The x-y axes are located as shown in the figure. Assume
the member length to be /;;, then
Bij=(x; — x)* + (y; — 3% 1)

Differentiating this, we have

2 dlys = 2(x; — x)dx; — dx;) + 2(y; — yNdy; — dyp, (2)
or

dli; = (x; — xdx; — dx)/l;; + (y; — y)dy; — dy)/li; (3)

Here expressing the displacement in the x direction # for dx and in the y dire-
ction v for dy, we obtain

dly; = (x; — x)u; — u)/l; + (¥; — y)w; — v/l (4)

We again assume the sectional area and Young’s modulus of the member to
be A;; and E;;, respectively, then from Hooke’s law, the relation between
member force F,;; and member deformation d/;; becomes

dlyj = Fili;/ A E:;. (5)
From Eqgs. (4) and (5),
Fi; = A E;/LAx — ey — ul/lii+ (v, — y)v; — )03 (6)
There are as many numbers of F,;’s as that of members in the whole
structure and we express this group of Fs by the column matrix {F}.
Similarly there are as many numbers of joint displacements as the double of the

number of joints and we express these, using column matrix, {#}. The relation
between {F7} and {u#} is expressed in matrix notation,

{F}=[SI{ul, ™)

in which[S]is determined by Eq. (6) and of the order of rows equal to the

number of the members and of columns equal to the double number of the

joints. External joint force at each joint, including reactions at supports, is

resolved into P;,:x component in the i-th joint, and P;y: y component in the

i-th joint. These external joint forces are grouped into column matrix {P7}.
The equilibrium equations at the i-th joint by the joint method are

Pi.r:“EFijCOS[)ij’ (8)
J

Piy = — ZFt] Sin 0,] (9)
7

These equations are expressed in matrix notation
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{P}=[ANF} ' (10)
Substituting Ea. (7) into Eq. (10), we have
1P} =[A{F}=[AISHu} = [K{u}, (11)

where [K] =[A|S].

Joint displacements {u«} are partitioned into {#,} and {u;}, where {u.} are
unknown joint displacements and {#;} are known joint displacements, that is,
constraints. Correspondingly external joint force {P?} is grouped into {P,} and
{P;}, where {P,} are known joint forces and {P;} unknown reactions at the
supports. Cohsequently the elements of [ K] matrix are interchanged so as to
be consistent with the original matrix equations. Then Eq. (11) are rewritten

as follows :
P K, K s\ u
Sl Daaad ) J , 9
) = ek ()
from which
{P.} = [K..J{w.} + [K.s H{us}, (13)
{Ps} = [Ks J{ot. T + [ K {us] (14)
From Eq. (13) we obtain
{o.} = LK. PG — LK us ). (15)

In inverting [K,,, if the structure is unstable, [K,,.] will be singular and
[K.. '] cannot be obtained, from which we can know whether the structure is
stable or not.  Substituting {«.} in Eq. (15) into Eq. (14) we have unknown
reactions {P;}.

3. Fabrication Errors and Temperature Change

When some of the members undergo temperature change Jf ’s or fabrication
errors dl;;’s, Eq. (5) is rewritten as follows :

dli: = Fijlij/AGE;; + agpdtel;; + oy, (5
Fi; = E A;/Lijdl; — adtsl; — ol).
The second and third terms on the right hand side of above equation are
summed into 4;; and
Fi; = E ;A dl /L — 45EGAG/

Substituting Eq. (4) into the equation above, we have
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Fij = EgAi/L ey — xi)uy — w) /Uiy + (v; — y)(w; — vd/lis}
— 4iE A/ ")
Expressing Eq. (6') in matrix notation, we have
[F}=[SHu}— {5 (7)
Substituting Eq. (7) into equilibrium equation {P} =[AWF}, we have
P =[ANSHu} — {4} = [ALSH{u} — LA 4}
= [KHu} - [AJ{4}, (117)

{P}+ LAY} = [KH{u}.

{#} can be determined by this equation in the same way as before. After
determined, {#} is substituted into Eq. (7) and member forces {F} can be
determined.

4. TIllustrative Examples

To show how the method is applied to actual trusses, four numerical
examples will be illustrated here.
4.1 A Plane Truss
A plane truss shown in Fig. 2 undergoes following loading conditions.
1) a 1 kip load at joint 2 2) a 1 kip load at joint 4
3) a 1 kip load at joint 3
4) a fabrication error in member 2-5 of 1/8 in. too long
5) a settlement of the roller support at joint 6 of 1/4 in.

1—~ 2015 w30 ——fee—— 15 —J

H

Fig. 2. Plane Truss
Numbers in brackets = sectional area (in°)
£ = 30000 ksi

(a) Construction of | S matrix
The basic equation, from which the equation {I'} = {SHu} is derived, is
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shown here again, that is, Eq. (6):
Fij= AGE /i {(x — ) — )/l + (y; — ylv; — v/}
If we put A;E;/l; into ki, (x; — x)/1;; into 4;; and (y; — y:)/l;; into py;, Eq.
(6) becomes
Fij= kifdijlu; — w) + pijlo; — v)}

Applying this equation to all the members in the truss, we have [S] matrix
as shown in Table 1. The numerical values of Table 1 are calculated and shown
in Table 2.

Table 1. [S7] matrix

12 vy Uy Ve Uy vy 2y vy l oy 1 Vs ; Uy ‘ Vg
Frol— kiodyol—Rysprys)  Risdisl Rispue 0 0 0 0 0 0 0 0
Figi— Ryylyy —Rigpng 0 0 Rughig Risgug 0 0 0 0 0 0
Floy 0 0 | feaglagl— Ragptes]  Raghosl  hespres 0 0 0 0 0 0
Flog 0 0 | — Royhag—hosproy 0 0 Raylog  Ragptog 0 0 0 0
Fog 0 0 |~ kaglos|— kog prag) 0 0 0 0 Rog2usl  Ruspres 0 0
Fys 0 0 0 0 |— kgslsy “‘/334/!34 Fys sy ka«sﬂm 0 0 0 0
Fysl 0 0 0 0 |— kys g — ks a5 0 0 kyslss)  Ryspras 0 0
Fy 0 0 0 0 0 0 = Rysdug *km[lu, Rasdag /345/145 0 0
Fy 0 0 Y 0 0 0 i — kg las — Rggran 0 0 kugdisl  Risprse
s 0 0 0 0 0 0 0 0 = kogagel—Rsoprse]  Roolsel  Rssptos
Table 2. Numerical values of [S7] matrix (kip/in)
1y E vy oy Va y Uy y vy s A g Ug
Fi21—240 |—320 240 320 4] 0 0 0 0 0 0 0
Fyy|—833.3 0 0 0 833. 3 0 0 0 0 0 0 0
Foy 0 0 0 250 0 |—250 0 0 0 0 0 0
Foy 0 0 |—833.3 0 0 0 833.3 0 0 0 0 0
Foy 0 0 |—240 320 0 0 0 0 240 1-320 0 0
Fyy 0 4] 0 0 |—240 |—320 240 320 0 0 0 0
Fy 0 0 0 0 |—833.3 0 0 0 833. 3 0 0 0
Fys 0 0 0 0 0 0 0 250 0 |-—-250 0 0
Fy 0 0 0 0 0 0 1—240 320 0 0 240 |—320
Fy 0 0 0 0 0 0 0 0 0 0 0 0

(b) Construction of [ 4] matrix
[A] matrix is constructed by making equilibrium equations in » and y

directions at each joint. Force diagram at each joint is shown in Fig. 3. For
example, from the equilibrium condition at joint 1 (see: Fig. 4), we have



14 T. Mivairt and O. KOBAYASHI No. 27

Pay P,

Z"Fu Pu 4 P4y
Pu F
Fre l\FZS Fz‘/l,\Fts ‘ / 12
Fa FauiFus 1o
P i ol
P
F P 4 4x
3 o
! *o Fy °
Fap ¥ F /l\
Fr F s 5 L3
1 / I/ R \T \: Py Fy F, Fu
Fis P,Fu3fFy . Fus5AF 5 6 .
T goAmEe # Pu FudfFe P Fu I Po Fig. 4. Force
P Py P Pay Diagram at 1 Fig. 5. Force
Fig. 3. Force Diagram at Each Joint Diagram at 4

P, = Fio{— cos ) + Fig(— cos by3),
Py = Fip(— sin fy,) + Fis(— sin 0y3).

And again from the equilibrium equation at joint 4 (see Fig.5), we have
Py = Fo cos oy + Fgqcos gy + Fug(— cosby) + Fig(— cos Os),
Py, = Fyysin Oy + Fyysin Oy + Fis(— sin Oy5) + Fyg(— sin Oy).

From the equilibrium equations for all joints, we can make [ A7] matrix, which
is shown in Table 3.

Table 3, [A] matrix

Fo | Fy | Fu | Fu | Pu | Pu | Fu | Fu | Fu | Fu
P, ~ Az — A1 0 0 0 0 0 0 0
Piy | —pue — 13 0 0 0 0 0 0 0 0
Py A2 ] — gy — 224 — Az 0 0 0 0 0
Py 2 0 — pag - 2y — 25 0 0 0 0
Py, 0 Jis Js 0 0 | —2y | —dg 0 0 0
Psy 0 3 23 0 0 — f3s — i35 0 0 0
Py, 0 0 0 Asg 0 A4 0 — g5 — A 0
Py 0 0 0 24 0 M3 0 — a5 — g 0
Py, 0 0 0 0 Aas 0 A3 s 0 — A5
Py 0 0 0 0 25 0 135 s 0 — 56
P 0 0 0 0 0 0 0 0 A 256
Py 0 0 0 0 0 0 0 0 Mg 56

[A7] matrix can be constructed more systematically from another point of
view : from the equilibrium condition, [A] matrix was constructed rowwise in
the preceeding way. Now a member force F;; is associated with the equilibrium
equations of joint i and 7. In Fig. 6, F;; has such component as
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Fig_ 6. Member i-7

— cosd;;F;; in P,, direction
— sin 4,;F;; in P,y direction
cos 0;;F;; in P;, direction

sin 0;;F;; in P;, direction

For example, the column of F;; in [A] matrix has four non-zéro elements,

that is, —cos#;;, —sin0;;, cosd;; and siné,; in P, P,, P;. and P;, rows,

respectively.

a computer.

This latter method is more convenient in making [ A] matrix in

The numerical values of [A] matrix are shown in Table 4.

Table 4. Numerical values of [A7] matrix

Fyg Fy3 | Fy 1 Fyy ) Fyy Fay Fyg % Fy Fy Fyg
P, | =06 =10 0 0 0 0 0 0 0 0
Py -0.8 0 0 0 0 0 0 0 0 0
Py, 0.6 0 0 —-1.0 —0.6 0 0 0 0 0
Pay 0.8 0 1.0 0 0.8 0 0 0 0 0
Py, Q 1.0 0 0 0 —0.6 —1.0 0 0 0
Py g 0 —~1.0 0 0 —0.8 0 0 0 0
Py 0 0 0 1.0 0 0.6 0 0 —0.6 0
Py 0 0 0 0 0 0.8 0 1.0 0.8 0
Ps. 0 0 0 ] 0.6 0 1.0 0 0 —~1.0
Py 0 0 0 0 —-0.8 0 0 -1.0 0 0
P Q 0 0 0 g 0 0 0 0.6 1.0
Pgy 0 0 0 0 0 0 0 0 —0.8 0
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(¢) Construction of [ K] matrix

After constructing [S7] and [A] matrcies, [K ] matrix is obtained by matrix
multiplication of [A] and [[S]. The result of matrix multiplication is shown in
Table 5.

Table 5. [K] matrix (kip/in)

% l 'R ‘ Uy Vg 1 Uy } U3 ‘ U, 1 Uy ‘ Uy t Vs Ug Vg
Py, 977.3 192 |—144 |—192 |—833.3 O 0 0 0 0 0 0
Py 192 | 256 |—192 |~256 0 0 0 0 0 0 0 0
Py |—144 |—192 | 1121.3, 0 0 0 |—833.3 0 [—144 | 192 0 0
Pyy|—192 |—256 0 | 762 0 |—250 0 0 | 192 |-256 0 0
P;,|—833.3 0 0 0 |1810.6] 192 |—144 |-192 |—833.3 0 0 0
Py 0 0 0 {—250 | 192 | 506 |—192 |—256 0 0 0 0
Py 0 0 |—833.3 0 |—144 |—192 |1121.31 O 0 0 |—144 | 192
P,y 0 0 0 0 |—192 |—256 0 | 762 0 |—250 192 |—256
Py, 0 0 |—144 | 192 |—833.3] 0 0 0 {1810.6/~192 |—833.3] 0
Py 0 0| 192 |-256 0 0 0 |[—250 |{—192 | 506 0 0
P, 0 0 0 0 0 0 |—-144 | 192 |-833.3 0 | 977.3—192
Py 0 0 0 0 0 0 192 |—256 0 0 |—192 256

In this example #;, v;, v; and v of joint displacements are constrained, so
unknown joint displacements {#,} and known joint displacements {u#s;} are as
follows :

Uy
Uy
Us )
{u} ="\, {uﬁ}:jvl‘,
Uy Vs
Vs Vg
Us
U

while known external joint forces {P,} and unknown reactions at the supports
{P;s} are

(Py,

Py

P, Plx1
py=Tw =t

P Py,

Py PGy

Py.

PGJ:
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Table 6, K,,, K.s, Kz, and Kps matricies
K, K.z
Us v ®y U3 Uy Uy Us Ug % vy U5 Vg
P..| 1121.3 0 0 0 [—833.3 0 |—144 0 |—~144 |-192 192 0
P,y 0 762 0 |—250 0 0 192 0 |—192 |—256 |—256 0
Py, 0 0 |1810.6/ 192 |—~144 |—192 |-—-833.3 0 |—833.3 Q 0 Q0
Psy 0 |-250 192 506 [—192 |-256 0 0 0 0 0 0
P, |—833.3 0 |—144 [-192 | 1121.3 0 0 |—144 0 0 0 192
Py 0 0 [—192 |—256 4] 762 4} 192 4] 0 |—~250 |-~256
Ps1—144 192 [—833.3 0 0 0 | 1810.6/—833. 3] 0 0 |—192 0
Pz 0 0 0 0 [—144 192 |—833.3 977.3 0 0 0 |—192
Kge Kgp
Uy Vs Uy vy Uy Uy u; g u, Uy Vs vg
P.1—144 |-192 |—833. 3 0 0 0 0 0 977.3] 192 0 0
Pyy|—192 1—256 0 0 0 0 0 0 192 256 0 0
Pyl 192 |—256 0 1] 0 |—250 |-—192 0 0 0 506 0
Py 0 0 0 0 192 |—256 0 |—192 0 0 0 256
Table 7. {P.} matrix (kip) Table 8, {uz} matrix (in) Table 9. {4}
|Lci|rcz[Les[Lecalres Lct|rezLes|Les LC5|  for LC4 (in)
. o S B S AL o e 0
Py, 0 0 0 0 1A 0 0 0 0 0 } 4 0
13
Pyl =1 | 0| 0] 0o o | o ol of oo || 4 0
Pl 01 0 of ol ol | 4 Py 0
Pyl 0| of=1]| o] of & O O 0p 0}0 l o
| ‘ Aos 0. 125
Py, 0 0 0 0 0 | wg 0 0 0 0 [-0.25 A 0
Pyl 0 -1 o0 0 0 ‘ A“ o
Pl 0 0 ol o 0 435 0
Pl 0 0 0 0 0 "5
¢ dsg 0
Ase 0

(K] matrix is partitioned into [K,. ], [K.s]), [Ks. ] and [Kss], which are shown
in Table 6.
(d) Calculation of {u} and {F}
{P.}, {us} and {4} are shown in Tables 7, 8 and 9 for the loading conditions
given above. Using these data, we can obtain {#} and {F} from the following

equations :

{u) = (Ko IR} — [Kas Husd),

{F} =[S){u} — {43

(16)
a7
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Table 10. Joint displacements (10-2 in)
LC1 LC2 LC3 LC4 LC5 ‘
U » v % v u v I v u v i
Joint1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
Joint2{ 0.066 —1.984 —0.066| —0.568 —0.732 —1.454—56.12 | 58.17 | 54.02 | 2.403]
Joint 3]  0.446] —1.454] 0,142 —1.375| 0.461 —3.978| —3.706] 18.47 | —9.889] —6,352;
Joint 4 —0, 045 —0.568 —0.170| —1.928 —1.088 —1.374/—39.77 | 6.757| 75.77 {—79.14 |
Joint5| 0.772| 0.0 0.466] 0.0 0.591 0.0 || 1.520, 0.0 |—17.81| 0.0 |
Joint 6] 0.763 0.0 0.751 0.0 0.614 0.0 | —5.891 0.0 [—37.58 |—250.0 |
Table 11. Member forces (kip)
| Lcl LC2 LC3 LC4 LC5
Fyp ~0.619 ~0.198 —0.641 5.147 13.73
Frg 0.371 0.119 0. 385 —3.088 —8.241
Fag —0.133 0. 202 0.631 9.924 2.189
Foy —0.092 —0.086 —0.296 13.62 18.12
Fus —0.465 -~0. 054 ~0.148 —17.55 —16.47
Fuy 0.166 —0.252 0. 461 ~12.41 —2.736
Fis 0.272 —0.270 0. 108 4.355 —6.599
Fy —0.142 —0.482 —0.344 1.689 —19.79
Fug 0.012 —0.396 —0.032 10. 29 27.47
Fug | —0.007 0.237 0.019 —6.176 —16. 48
i

The results are shown in Tables 10 and 11.
4.2 A Plane Truss
A 1000 1b. load is applied to a plane truss at joint 5 as shown in Fig.7. We

assume the sectional area A to be 1 in% and Young’s modulus £ to be 30(10)®

T s

T ——P =10001b

Vauui

NZ

6 4§ 6
Fig. 7.

Plane Truss
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for all the member in the truss.
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In the -same way as 4.2 we obtain [S]

matrix, [A7] matrix, [ K] matrix and [K,,] matrix, which are shown.in Tables

12, 13, 14 and 15. Since in this case #;, v;, #s and v, are constrained, {u.}, {u#s},

Table 12 [S] matrix (kip/ft)

y A Uy Vs uy V3 Uy A 25 s g Vg
Fio| —588.2—2352.9] 888.2] 2352.9] 0O 0 o] o 0 ol -0 o
Fig|—1800 |~2400 0 o | 1800 | 2400 0 0 0 ‘ol o 0
Fyul 0] " 0 |-3600 | 4800 | 3600 |—4s00 0 0 0 0 0 0
Fos 0 0 |—3230.7 1846.1 0O 0 | 3230.7-1846.1 o0 0 0 0
F 0 0 0 0 |-3230.3-1845.9 0 0 | 3230.3 1845.9 0 0
Fy 0 0 0 0 0 0 |~3600 |—4800 | 3600 | 4800 | o 0
Fu 0 0 0 0 0 0 |~1800 | 2400 | 0 0 |1800 |-2400
Fg 0 0 0 0 0 0 0 0 | —588.20 2352.9] 588.2—2352.9
Table 13 [A] matrix
F12 FIS F33 ,F‘.M F‘:iﬁ F45. ‘F4G F‘:’)G
P.| —0.242] —o0.6 0 0 0 0 0 0
Py | —0.970| —0.8 0 0 0 0. 0 0
P, 0,242 0 —0.6 —0.868 0 0 0 0
Pay 0,970 0 0.8 0. 496 0 0 0 0
Py 0 0.6 0.6 0 -0, 868 0 0 0
Py 0 0.8 —0.8 0 —0. 496 0 0 0
P, 0 0 0 0.868 0 0.6 —0.6 0
Py 0 0 0 —0, 496 0 —0.8 0.8 0
P, 0 0 0 0 0. 868 0.6 0 —0. 242
Pyy 0 0 0 0 - 0,496 0.8 0 0. 970
Per 0 0 0 0 0 0 0.6 0.242
Pyy 0 0 0 0 0 0 ~0.8 —0,970
Table 14. [ K7} matrix
I vy u, kS Uy v o, vy o, v s Ug
P, 1222.6 2010.6) —142.6 —570.6—1080 |—1440 0 0 0 0 0 0
P,y 2010.6 42026 —570.6—2282. 61440 |—1920 0 0 0 0 0 0
P, ~142.6) —570.6 5107.7—3912.2/—2160.0| 2880 |—2805.0f 1602.9 0 0 0 0
P,y —570.6)—2282. 639122 7038.6] 2880 |-3840 | 1602.9] —915.3 0 0 0 0
P,J-1080 |-1440 |-2160.0 2880 | €04a.7] 1627 0O 0 |-2804.7—1602.7  © 0
Poyl-1440 |~1920 | 2880 |-3840 | 162.7] 6675.8 0O 0 |-1602.7 —915.8  © 0
P 0 0 |-2805.0| 1602.90 0 0 | 6045.0| —162.9/~2160 |-2880 |—1080 | 1440
Py 0 0 | 16029 —915.9 0 0 | —162.9 6675.9—2880 |—3840 | 1440 [—1920
P 0O 0 0 0 |—2804.7~1602.7|—2160 |-2880 | 5107.4 3012.0 —142.6 570.6
Pl 0 0 0 0 |-1602.7| —915.8-2880 |-3840 | 3912.0, 7038.5 570.6/~2282.6
Pl 0 0 0 0 0 0 |-1080 | 1440 | —142.6 570.6 1222.6/—2010.6
Pol 0 0 0 0 0 0 | 1440 |-1920 | 570.6~2282.6-2010.6 4202.6
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Table 15, [K,.] matrix
3 v, U vy %y vy s vs
Py 5107.7 | —3912.2 | —2160.0 2880 —2805.0 1602.9 1] 0
P,y | —3912.2 7038. 6 2880 —3840 1602.9 —915.9 0 0
Py, | —2160.0 2880 6044, 7 162, 7 0 0 —2804,7 | —1602.7
Pyy 2880 —3840 162.7 6675. 8 0 0 —1602,7 —~915.8
P,, | —2805.0 1602. 9 0 0 6045, 0 —162,9 | —2160 —2880
Py 1602.9 —915.9 0 0 —162.9 6675.9 | —2880 - 3840
Py, 0 0 —2804,7 | —1602.7 | —2160 —2880 5107.4 3912.0
Py 0 0 —1602.7 —915.8 | —2880 — 3840 39120 7038.5
{P,} and {P;} become as follows:

Uy

Uy

Ug j ul}

v v

{ua} = 8 1 {uﬂ} = Ly y

Uy Ug

N Vg

Us

Us

P2.r

PZ.)’

Paz (Plz

P P

{PI=("%), {Ps}=(""

Py, IP%

P4y PG)’

P.’).z

Psy/

From these equations we have joint displacement {#} and member force {F}

(Tables 16, 17).

Table 16. Joint displacement {z} ( x 107*ft)

"

v

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

0

4. 880

7.707

6. 907
10.32

0
—2.041
—0.897

3.552

0.664

Table 17.

{F} matrix (kip)

3

member

member force

S o B WO DD DD e
I

U O W W

—193.2
1171.8
468, 7
—~377.9
1133.7
~156. 2
—~390. 6
—450.9
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Fig. 8. Space truss

4.3 A Simple Space Truss

A simple space truss shown in Fig. 8 is composed of panels 1234 and 1256
and attached to the vertical wall. The panel 1234 is in a horizontal plane.
Loading conditions are as follows:

1) a load P =1 kip is applied to joint 1.

2) the temperature of whole structure rises 50°F uniformly.
We assume Young’s modulus E to be 30(10) psi. and thermal expansion coeffi-
cient a to be 6. 5(10)"%(in/in)/°F and sectional areas all to be 1 %

For a space truss, we use the extended equation instead of Eq. (6) in
obtaining [S7] matrix, that is,

Fiy= A E /L (x; — x) ey — u)/l; + (¥j — y)v; — v)/L;

+ (2, — 2 Y(w; — w,)/L;;3} (18)
where z; and z; are the positions of joints i, j in the z-coordinate and w; and
w; are the displacements in the z direction.

Similarly in obtaining [A7] matrix, the equilibrium equations in three dire-

ctions must be considered. The direction cosines of member i-j are assumed to
be Xijr Hiis D,‘j then

Pi.r = Z_ZijFiv'
J

Py = — 23 p;F 5
7

P, =~ 23v;Fy;
J

Applying these equations to all the members of this truss, thus [S] and [A]
matricies are obtained, which are shown in Tables 18 and 19 and their nume-
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Table 18, [S] matrix
A v, i wy t % Uy Wy Uy vy wy
Fuo | —huds | —hape ke kahe| Rims| ke 0 0 0
Fig | —kulyg | —kuaps| —kivis 0 0 0" kudi | Rispns Fygvig
Fy, —kiady | —Rupat — Ry 0 0 0 0 0 0
Fyg —kisdsy | —hRisps | —Risvis 0 0 0 0 0 0
Foy 0 0 0 —kogdos | —kagpes | —Rogvos 0 0 0
Fu 0 0 0 | —hudos | —Rusprss | — e 0 0 0
Fag 0 0 0 | —keglss | —hospras | —kagiu 0 0 0
Uy Uy Wy u;, Us wy vu[; Vg We
Fy 0 0 0 0 0 0 0 0 0
Fig 0 0 0 0 0 0 0 0 0
Fy budia | kg R 0 0 0 0 0 0
Fis 0 0 0 Bishs | ks | Fisvis 0 0 0
Fo Fosdos | hospma | Reavas 0 0 0 0 0 0.
Foy 0 0 0 kgsAos ks pras kagvas 0 0 0
Fag 0 0 0 0 0 kaglog kogttze kagvog
Table 19. [A] matrix
Fo Fu Fus Fys 1 Fas | Fus l Fuy
P, — A2 — 13 — s — A5 0 4]
Ply ey ot it ayaie — ts 0
P, —ue —vig —v — Vs 0 ]
Py, P 0 0 0 — 2o — e — 254
Py 2 0 0 0 — ft2q — M35 — pzg
Py, vye 0 0 0 — vz — Vg — Vag
Py, 0 X 0 0 0 0 0
Py 0’ s 0 0 0 0 0
Py 0 vig 0 0 0 0 0
Py, 0 0 14 0 A24 0 0
P,y 0 0 14 0 22N 0 0
P, 0 0 Vig 0 Vo 0 0
Py, 0 0 0 s 0 as 0
Psy 0 0 0 His 0 125 0
P, 4] 0 0 Vig 0 Vs 0
Py 0 0 0 0 0 0 Jog
Pgy 0 0 0 0 0 0 P
Py, 0 0 0 0 0 0 vag
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Table 20. Numerical values of [[S] matrix (x10° Ib/in)

I vy wy s i vo S we u; vy W
Fy 0 | —-625 | o0 0 | 62| 0 0 0 0
Fyy 8,333 . 0 0 0 0 0 —8.333 0 0
Fuy 3.0 —4.0 0 0 0 0 0 0 0
Fe | 8.0 0 | -40 | o 0 0 0 0 0
Foy 0 0 0 8,333 0 0 0 0 0
Fy | 0 0 0 1.829| 2.439| —2.439| 0 0 0
Fup 0 0 0 3.0 0 —4.0 0 0 0

Uy Uy Wy U 123 Wy g ' Ug { Wy a
Fu 0 0 0 0 0 0 0 0 0
Fag | 0 0 0 0 0 0 0. 0 0
Fiy, —-3.0 4.0 0 . 0 0 0 0 0 0
Fy 0 0 0 ~3.0 0 4,0 0 0 0
Fg4 -8, 333 0 0 0 0 ] 0 0 4]
Fog 0 0 0 —1.829 2.439 2.439 0 0 0
Fyg 0 0 0 0 0 0 —-3.0 0 4.0

‘Table 21. Numerical values of [A] matrix

AT Fyy Fiy Fyg Koy Fos ‘ Fy
Py 0 1 0.6 0.6 0 0 0
Py —1 0 —0.8 0 0 0 0
Py, 0 0 0 ~0.8 0 0 0
Py, 1 0 0 0 1 0. 4685 0.6
Psy 0 0 0 0 0 0.6246 0
Py, 0 0 0 0 0 —0. 6246 —0.8
Psz 0 -1 0 0 0 0 0
Pyy 0 0 0 0 0 0 0
Py 0 0 0 0 0 0 0
Py 0 0 -0.6 0 -1 0 0
Py 0 0 0.8 0 0 0 0
Py, 0 0 0 0 0 0 o
Py, 0 0 0 —0.6 0 —0.4685 0
Psy 0 0 0 0 0 —0. 6246 0
P, 0 0 0 0.8 0 0. 6246 0
Pz 0 0 0 0 0 0 -~0.6
Py 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0.8
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Table 22. [K] matrix (x10° 1b/in)

Uy v wy s 22 Wy U3 V3 728
Py 11.933] —2.4 —2.4 0 0 0 —8.333 0 0
Py | —2.4 9.45 0 0 ~6.25 0 0 0 0
P —2.4 0 3.2 0 0 0 0 0 0
Py, 0 0 0 10. 99 1.142] —3.542 0 0 0
Py 0 —6.25 0 1.142{  7.773, —1.523 0 0 0
Py, 0 0 0 —3.542| —1.523 4.723 0 0 0
Py, | —8.333 0 0 0 0 0 8.333 O 0
Pgy 0 0 0 0 0 0 0 0 0
Py, 0 0 0 0 0 0 0 0 0
P, -—18 2.4 0 —8.333 0 0 0 0 0
Py 2.4 -3.2 0 0 0 0 0 0 0
Py, 0 0 0 0 0 0 0 0 0
Py, -—-1.8 0 2.4 ~0.857] —1.142 1. 142 0 0 0
Py 0 0 0 ~1.142, —1.523 1.523 0 0 0
P, 2.4 0 —3.2 1. 142 1.523) —1.523 0 0 0
P, 0 0 0 -1.8 0 2.4 0 0 0
Py 0 0 0 0 0 0 0 0 0
Pg, 0 0 0 2.4 0 -3.2 0 0 0

Uy Uy Wy s 2 Wy Ug Vg We
P, -8 2.4 0 ~1.8 0 2.4 0 0 0
Py 2.4 -3.2 0 0 0 0 0 0 0
Py, 0 0 0 2.4 0 —3.2 0 0 0
Pz | —8.333 0 0 —0.857| —1.142 1.142] —1.8 0 2.4
Py 0 0 0 —1.142] —1.523 1.523 0 0 0
Py, 0 0 0 1. 142 1.528) -1.523 2.4 0 —3.2
Py, 0 0 0 0 0 0 0 0 0
Py 0 0 0 0 0 0 0 0 0
Py, 0 0 0 0 0 0 0 0 0
P, 10,133 —2.4 0 0 0 0 0 0 0
Py —2.4 3.2 0 0 0 0 0 0 0
P, 0 0 0 0 0 0 0 0 0
Py, 0 0 0 2.657 1.142] —3.542 0 0 0
Psy 0 0 0 1. 142 1.523] —1.523 0 0 0
P, 0 0 0 —3.542 —1.523 4.723 0 0 0
P, 0 0 0 0 0 0 1.8 0 —2.4
Py 0 0 0 0 0 0 0 0 0
Py, 0 0 0 0 0 0 —2.4 0 3.2
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rical values are shown in Tables 20 and 21.
(K] matrix is then obtained by [A][S], the result of which is shown in
Table 22.

For loading condition 1, {Pa}, {us}, {43} are
Usg 0
vy 0
Ws 0 /0
Py, 0 Uy 0 1 0
Ply 0 Uy 0 J 0
I
(Py=(Prl=t by =" 0L =0,
Py, 0 Us 0 I 0
ng 0 Vs 0 s 0
P2z w5 O E\\ O
Ug 0
Vg 0
We 0
and for loading condition 2,
dis 0. 0156
(P[0 dyg 0.0117
;il'y ) 0 dyy AE 0.0195
)
(Py={"= 00 (=0}, {d)= s =" (00105,
!Ph ! 0 Aoy 0. 0117
Pay LO Ay 0. 0249
Pae/ 10 Uy 0. 0195,

Using these data and from Egs. (16) and (17), we have {#} and {F?} as shown
in Tables 23 and 24.

Table 23. Joint displacements (x107* in) Table 24, Member forces (Ib)
T
\ LC1 LC2 Memban| LC1 | LC2

Joint “ | v | w “ b v 1—2 | —44.73 1033.9
Joint 1 8.597) 5.050( 37.70 | 126.3 {—116.7 |—149.0 1—3 716. 4 775. 4
Joint 2 0 4.334] 1.398 117.0 55.83]—188.3 1 —4 55.92/—1292. 4
Joint 3 0 0 0 0 0 0 1—5 |—1250 0

Joint 4 0 0 0 0 0 0 2 — 4 0 0

Joint 5 0 0 0 0 0 0 2—5 71.61—1655. 0
Joint 6 0 0 0 0 0 0 2—6 ~—55.92| 1292.4
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4.4 A Space Truss of Square Pyra- ./

mid' Type S
The statically indeterminate

ball-jointed space truss shown in'

Fig. 9 has the form of square pyra-
mid with dimensions ¢ = 10 ft. and
h =16 ft., joints 2, 4,6, 8 being mid
points of the edges 3, 5,7, 9, respe-
ctively. A horizontal force P = 10
kips, acting parallel to 3-5, is applied
at joint 1 as shown. Bar'4~8 has a
length error equal to — 0.01 ft.,
that is, the bar is too short. All the

bars have the same cross sectional area A = 4 in®. and the modulus of elasticity

E = 30(10) psi.

The procedure of analysis is quite the same as that of 4. 2. Applying Eq. (18)
to all the member of this truss, we have [S] matrix and again applying Eq.
(19), we have [A] matrix, from which [K] matrix is obtained. {P,3, {us}, {43}

are in this case

P,
Py,
P,.
P
Puy

o
<O

{Pu}: P4y ;= ’ {uﬁ}':L

\

sz
Pgy
PBZ/

o
n
OO O OO OO OO O o o0

Substituting these data into Egs. (16) and (17), we have {#} and {F}, which

are shown in Tables 25 and 26.

Ug
Ug
W,y
Us
vs
Wy

Uy |

U7
Wy
Ug
Yy

Wy /

KOBAYASHI

(= eleleoloR-Neeolsl el =i

Fig. 9. Square pyramid
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|
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Table 25. Joint displacements (x 102 in) - Table 26, Member forces (x10° lb)
" - w Fis 14. 40 E Fis | —14.40
Joint 1 | 5358, 0O ~1082 | Ifi’“‘ ”1,4':;;)0 j i oo | 129
Joint 2 | —2.469 | —2.469 0.757 F‘”" 5 ! F‘*‘*‘ 18- %E_’
JOiDtA 3 O O 0 F1~s 3. 090 F(,_c 14 IO
- —8. . —25.7
Joint 4 | —3.116 | 4454 | —3.743 o 8. 224 A 2.7 2
Joint 5 0 0 0 F‘“ —i ?: FM —l‘j‘ ?Z
Joint 6 3. 808 3.808 | —0.079 F‘” 2 ;3 F“ 1%‘ ‘”(
Toint 7 0 0 0 Fg_s —14.; ” - 3,090
Joint 8 £.454 | —3.116 | —2.070 | 4.5 |
Joint 9 0 0 0

4.5 Three Story Tower

A three story space truss of tower type
is shown in Fig. 10, to which a horizontal
force P =1 ton is applied at joint 1 as shown
in the figure. \
 This truss has as many as 16 joints and
39 bars, but the procedure of analysis is the
same as those of 4.3 and 4.4. In this example
just a joint load is applied, so we use follo-
wing equations : k

{u)=[K.""{P.},
£} = [SHul

{u} and {F} obtained are shown in Tables
27 and 28.

Fig. 10. Tower
Table 27. Joint displacements (10-'mm)

u v ] w ‘ u I v | w
Joint 1 0 0 0 Joint 9 0 0 0
Joint 2 4, 284 (. 047 0.710 || Joint 10 2.219 1. 951 ~1. 195
Joint 3 10. 59 -1, 197 0.978 || Joint 11 6. 225 3. 100 —1.879
Joint 4 17.99 ~3. 160 0.758 || Joint 12 | 11.04 3 159 —2.099
Joint 5 0 0 0 Joint 13 | 0 0 0
Joint 6 1. 951 —0.291 1.195 | Joint 14 3.598 2.195 —1. 662
Joint 7 5.981 —1.417 1.879 | Joint 15 | 9. 880 3.321 —2.883
Joint 8 10. 82 -3, 160 2.099 || Joint 16 | 17.25 | 3. 159 —3.615
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Table 28. Member forces (ton)

Fie 0.745 Fy ., —0.231 Foy —0.397 Flo_1s —0.256
Fiois 1.017 Fy oy —0.035 Fo_ro 0. 281 Fiyoie —0.231
Fog 0. 282 Fy_is —0.744 Fis 0.231 Fiu 0. 362
Fag 0.397 Fyyg 1.087 Fr_so ~0. 362 Fys | —0.231
Fy g —0. 256 Fyq 0.327 Fooy 0. 256 Fiaois 0.327
Foto —0. 035 Fyg 0 Fy_yy —0.326 Fis 16 0
Fyyy -0.719 Fys -0.327 Fy y 0.231 Figoiy —1.745
Foys 1. 052 Fy_s6 ~0. 769 Fy_10 —1.254 Fiygs —1.282
I —0.231 Fy 1. 255 Fio-11 —0.718 Fioie | —0.769
| Fss 0.362 Fys 0.718 Flioois 0.397

5. A Problem about Stability
In general for a space truss to be stable, it is necessary that the constra-

ints at the supports in at least six or more ]

directions exist.
The truss shown in Fig. 11 has only five

constraints under the loading condition given.
From mathematical point of view, [K,,] ma-

trix is singular for an unstable structure like

8
|
| ;
.4
. - .
this and [K,.”'] cannot be obtained and hence L
7.5 f e 5 75

joint displacements cannot be found, from

which we can know the structure is unstable.

In fact in numerical calculation, joint di-
splacements were obtained, but their order of
magnitude were 104~10° times as large as the ’ 20
dimensions of the structure and we could verify
this structure unstable.

6. Conclusion Fig. 11.

For the purpose of truss analysis, many
kinds of matrix methods have been introduced and our method is one of them.
Here we used {F}=[SHu}: the relation between member forces and joint
displacements, and we are sure that using this geometrical condition enabled us
to derive this theory so briefly. Applying the equilibrium conditions of joint
method to this, we have joint displacements {u#}, member forces {F7} and
reactions at the supports {P;} successively. As illustrated in the examples,
various conditions can be taken into account In each equation and treated
systematically. A computation program based on this theory was made by
authors and all numerical calculations in the examples above were done by
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using this program.

1)
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Appendix
(1) List of Symbols

A = cross sectional area
[A] = statics matrix

E = Young’s modulus

F = member force
{F} = column of member forces
[K] = stiffness matrix

== partitioned stiffness matricies

! = member length
{P} = column of external joint loads
{P.} = column of external joint loads at the free joints
{P;} = reactions at the supports
[S7 = member stiffness matrix
{u} = column of joint displacements
{#,} = column of unknown joint displacements
{us} = column of known joint displacements
= joint displacement in x direction
== joint displacement in y direction

= column matrix

u
v
w = joint displacement in z direction’
3
] = matrix
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(II) Computer Program

A computer program of truss analysis based on this theory will be shown
here. - First, notations used in this program and then flow chart and program
written in ALGOL will be shown.

(I-1) Notations

N e Total number of joints
mo e Total number of members
NCT  eeee Total number of prescribed joint displacements
Fo Total number of free joint displacements ‘
A Total number of joint displacements = 3*N = F + NCT
C[i]  weeens Joint number and its component of prescribed joint displacement
B e Joint numbers with which i-th member is associated
D[1,i7  weeeee One of B[i]
D[2,i7 e The other of B[i]
ko e AE/I (used for other notations later)
E Young’s modulus
L LI e Member length and its reciprocal
$1, §2, §3 eener Direction cosines )
H . A matrix
. } (only non-zero elements are stored)

S e S matrix
K ... K,, matrix
KI e A part of K matrix
KAB ... K,; matrix
IE e IE =1, problem with initial strain, heat load etc

IE = 0, problem without initial strain, heat load etc
i1, i2, 13 +eeeer x, y, 2 coordinates of one joint of i-th member
71, 72, 73 -eeee- x, ¥, Z coordinates of the other joint of i-th member
PA P, matrix
1777 2O #, matrix
ub e us; matrix
U e “— {u“}

Us

jd1l e Number corresponding to ¥ component at the j-th joint

(Total number of loading conditions done with after some
repeated loops, later)

jdaz e Number corresponding to y component at the j-th joint
jd3 e Number corresponding to z component at the j-th joint
del — -oees 4 matrix

FO F matrix
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(II-2) Flow Chart

(START)

Read input data : / Read P. and u,97

Number of members

Number of joints etc

Loop i = 1~m ]

Read the size of

a member

Make a part of

A and S matrix

—
__)l Loop i = 1~N ]

|

Make the elements of

K matrix by 3 rows

Write the elements of
Print u

K matrix on M. T,
F=8-u

{Loop i=1~N J

Get back the elements

o
Print F /

o= @

Yes

of K matrix from M. T.

Assemblage of Kae and

Ko matrix

STOP

:

Inversion of Kea

matrix
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(II-8) Program (Space Truss Analysis)
begin integer n, m, NCT, F, NLC, N;
Readinteger(N); Readinteger(m); Readinteger(NLC); Readinteger(NCT);
n:=N*3; F:=n—-NCT;
begin procedure INVERT(M, A);
value M ; array A; integer M;
begin integer ¢, j, k; real pivot, temp;
for #: =1 step 1 until M do
begin pivot : = 1.0/A[%, £];
for j: =1 step 1 until M do A[k, j: =Alk j]* pivot;
for i: =1 step 1 until M do
begin temp : = A[4, £7;
if 152k and temp == 0.0 then
for j: =1 step 1 until M do
Ali, j1: = Al, j1— Alk, j1* temp;
Ali, k] : = — pivot™ temp
end ¢;
Alk, k] : = pivot
end &
end INVERT ;

integer 4, 7, L, q, 7, k, v, w, J, jd1, jd2, jd3, IE;

real AR, L, LI, s1, s2, s3, i1, 12, i3, j1, 72, j3, ko, E;

array KI[1:3, 1:n]), H[1:3, 1:m], S[1:m, 1:3], K[1:F, 1:F7,
KAB[1:F, 1: NCT7, FO, del[1:m], PA[1:F7, ua[1:F], ub[1: NCT,
Ull:#];

integer array B[1:m], D[1:2, 1:m], C[1:NCTT];

for i: =1 step 1 until NCT do

begin Readinteger(C[i70); Cli]: = (fix(C[i1/100) — 1)*3 + C[i] — fix(C[£]/100)*100

end; Readreal(£);

for i: =1 step 1 until m do

begin Readinteger(B[{]); Readreal(AR); Readreal(i1l); Readreal(:2);
Readreal(i3); Readreal(j1); Readreal(j2); Readreal(j3); L: =sqrt((j1 —i1)12
4 (J2 — 22+ (J3—i8)12); LI+ =1.0/L; ko: = AR*E*LI; sl : = (j1 — il)*LI;
$21 = (§j2 —i2*LI; s3: = (3 —i3)*LI; D[1, i]: = fix(B{1]/100); D[2, i]: = B[]
— D[1, i1%¥100; H[1,i]: = —sl; H[2 i]: = —s2; H[3, i]:= —s3; S 1]
D= —s1*ko; S[i, 2]: = — s2%k0; S[i, 3]: = — s3%o;
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end; REWIND(2);

for i: =1 step 1 until N do
begin for j: =1 step 1 until N do
begin jd3: = j*3; jd2 : = jd3 — 1; jdi: = jd2 — 1;
for w: =1 step 1 until 3 do
begin KI[w, jd17]: = KI[w, jd2): = KI[w, jd3]: = 0.0 end;
for v: =1 step 1 until m do
begin if i = j and (D[1, v] =1 or D[2, v]=1) then
for w: =1 step 1 until 3 do
begin Ki[w, jd3]: = KI[w, jd3) + H{w, v]*S[v, 3];
KITw, jd2]: = KI[w, jd2] + H[w, v]*S[v, 2];
Kilw, jd17: = KITw, 3d17] + H{w, v]*S[v, 1]
end else if D[1,v]=1 and D[2, v =7 or D[1, v]=j and D[2, v] =1 then
for w: =1 step 1 until 3 do
begin Kl[w, jd3]: = KI{w, jd3] — H{w, v}*S[v, 3];
KITw, jd27]: = KI[w, jd27 — H[w, v]*S[v, 2];
KITw, jd17]: = KI[w, jd1} — H{w, v]*S{v, 1]
end
end
end; PUTARRAY(2, KI)
end;

REWIND(2); w: = 0;
for i: =1 step 1 until N do
begin GETARRAY(2, KI);
for £: =1 step 1 until 3 do
begin v: =3% —~3+k%; for /: =1 step 1 until NCT do if C[ /] = v then go
to ENDl, w:=w-+1; r:=0;
for j: =1 step 1 until » do
begin for ¢ : = 1 step 1 until NCT do if C{¢g] = j then
begin KAB[w, Ng] :=KITk, j1; go to END2 end;
ri=r41; Klw, v1: = KI[k, 71;

END2:end;
END1:end
end ;

INVERT(F, K);
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3dl: =0;

CALC : CRLF(8); Space(20); Printstring (LOADING CONDITION’); jdl: = jd1
-+1; Printx(jdl, 1); CRLF(3); Space(10); Printstring(‘DISPLACEMENTS’);
CRLF; Readarray(PA); Readarray(ub);

Readinteger(/E); if IE = 1 then
begin for i: =1 step 1 until m do
begin Readreal(del(7]); if del[s]=%0.0 then
begin Readreal(AR); Readreal(il); Readreal(i2); Readreal(i3); Readreal(s1);
Readreal(j2) ; Readreal(j3); L: = sqrt({(j1 — i1)12 + (52 — i2)12 + (43 — i3)12);
delli]: = del[i]/L*AR*E
end
end; 7: = 0;
for i: =1 step 1 until N do
for £: =1 step 1 until 3 do
begin /: = (@ — 1)*3 + k;
for J: =1 step 1 until NCT do if C[J]} =1 then go to END3; ko: =10.0;
for j: =1 step 1 until m do if D[1, j] =i then ko: = ko + H[k, j1*del{ j]
else if D[2, j]=1 then ko: = ko — H[k, j)*del[j];
ri:=vr+1; PA[r]: = PA[»]-+ ko;
END3 : end
end else for i: =1 step 1 until m do del[i]: =0.0;

for i: =1 step 1 until F do

begin k0: = 0.0; for j: =1 step 1 until NCT do ko: = ko -+ KAB[4, j1*ublj];
PA[iT: = PA[i] — ko

end ;

for i: =1 step 1 until F do
begin ko: = 0.0;
for j: =1 step 1 until ¥ do ko: = ko + K[i, 117*PA[j]; uali]: = ko
end; g: =0;
for i: =1 step 1 until »n do
begin for /: = 1 step 1 until NCT do if i = C[J] then
begin Uli}: =ub[J]; go to END4 end;
q:=q+1; Uli]: =ualq];
END4: end;
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for i: =1 step 1 until n do
begin if fix((i — 1)/3) — ({ — 1)/3 = 0.0 then
begin Printstring (‘JOINT’); Printx(entier(( — 1)/3) + 1, 2);
Space(b); Printstring(‘X="); Printreal(U[{], 7)
end else if fix((f — 2)/3) — (i — 2)/3 = 0.0 then
begin Space(5); Printstring(‘Y ="); Printreal(U[{], 7); end else
begin Space(5); Printstring(‘Z ="); Printreal(U[i{], 7); CRLF end
end;

CRLF(4); Space(10); Printstring(‘FORCES’); CRLF;

for i: =1 step 1 until m do

bhegin FO[i]:=0.0;
for j: =1 step 1 until 6 do
FO[il: = FO[i]+ (if 7> 3 then —S[{, 7 — 3]*U[D[2, i3 — 6 + 7]

else S[¢, 71*ULD[L, i1*3 -3+ 7] ;

Printstring (MEMBER’) ; Printinteger(D[1, i7); Printstring(‘—");
Printx(D[2, i], 2); Printreal(FO[i] —del[7], 7); CRLF

end ;

if jd1 2 NLC then go to CALC

end

end ;

[o5

[#4]



