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The formulation of orbital susceptibility in the system containing the
impurities is studied taking account of the interference between two Green
functions. The formulation is very similar to the drdinary Boltzmann-Bloch
type theory of electrical conductivity on the basis of two-time Green function.
The sum rulé for conductivity due to the Edwards’ approximation is not satisfied.

§1.  Introduction

The impurity effect on the orbital diamagnetic susceptibility of free electrons
has been discussed by several workers. Peierls!) has shown that the effect of
impurities on the diamagnetic susceptibility is neglected under the condition
#jr < kT, where ¢ denotes the mean free time of the free electron. Kohn and
Luming® have carried out the calculation for the susceptibility of a simple
model of a dilute alloy and have obtained the result that the susceptibility is
the same as that of a free electron gas assuming the perturbation to be suffi-
ciently weak. ,

Recently, Ando® has calculated the orbital susceptibility of dilute alloys
and has proved that the contribution of impurities to the susceptibility can be
neglected under the condition A/c <5, where 7 is a characteristic energy of
the order of the Fermi energy. They have calculated the susceptibility by
the use of Nakajima’s formula® and Matsubara and Toyozawa’s technique® for
impurity band conduction, and have estimated it in the lowest order approxi-
mation. In this estimate, they have retained only the terms with a d-singular-
ity® in the term 1/(E — H) and have neglected the interference between two
Green functions in respect of the random average of impurity sites, where H
represents the total Hamiltonian of the system. Furthermore, it has Dbeen
concluded that the effect of interference between two ‘Green functions does
not contribute to the result obtained by the lowest order \approx‘imat;ion ex-
cepting for the change of the expression of a damping constant of electronic
states.
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In the succeeding section, after the two-time Green function method for
the evaluation of electrical conductivity”, a calculation of the diamagnetic
susceptibility is given to take into account of the interference between two
Green functions. This formulation is similar to that of the ordinary Boltzmann-
Bloch type theory for the conductivity. In. §3 the evaluation of susceptibility
is made. The section 4 will be offered to the calculation of the electrical con-
ductivity by the use of Edwards’ approximation for the product of two Green
functions®, however, a sum rule for the conductivity® is not satisfied so far

as the Edwards’ approximation is assumed.

§2. Formulation of the problem

We consider an assembly of electrons containing the impurities, whose
electrons can be represented by the one-electron model. According to Nakajima®,
the orbital diamagnetic susceptibility has been written as
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and the spatial Fourier transform of current density operator ii(r, t), in the
representation of the second quantization,
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where a*r and ax stand for the creation and annihilation operators of a free
electron, respectively, whose eigenstates are denoted by a wave vector k as
the basis of one electron state. Furthermore, <f> means the expectation

value of £ for the canonical ensernbie, that is,
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Let us consider the non-uniform system whose volume £, is unity. The total
Hamiltonian of the field-free system

H= aarax+ 20 plq) V(@)a*k—qx (4)
k k q

where & is the free electron energy with wave vector k,
= > exp(igry),
1
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and ¢ denotes the site of an impurity and V{(r) the interaction between an
impurity and an electron.
By making use of the Buckingham’s identityl® for non-uniform system

Soa, —q') + Sulg, —q') = —%<n(q — >

where #(q) being the Fourier transform of the charge density operator, and of
the relation of equation (2), one may easily leads to the expression of Sy(q,
—q') as

3 1 :
Sia, —q) = 5, <nlg —aV> = S 3ISulg, ~q). )

In order to rewrite (5), it is convenient to introduce the Green function defined
by ‘

Gk, k'; E) = Im < 0] ax 80> (e >4 0) (6)
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where |0> represents the vacuum state in which no electron exists and Im
means the imaginary part, and to diagonalize the total Hamiltonian H by a
unitary transformation®. Let q¢' = q, (5) now reduces to

260, —a) = gy <> — (L) I (k~Sa)- (6 + 2q)
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with f(E) the Fermi distribution function.

In order to proceed to the calculation taking account of the interference
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between two Green functions in respect of .the.random average.-of impurity
sites, we utilize the approximation method obtained by Edwards®. The two-
particle Green function <<G(k', k — q; EYG(k, k' + q; E') >, has been written as

C<GW, k—GEGE, K + ¢ E) >, = i oGk EGE + g E')
+ 1 2GS EYGUE + ¢ BNV P<G + ¢, k—qE)
p
X Gk, K +q+ ¢ EN>, (8)
where

o Ik B
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# denotes the total number of impurities, I'(k, E) a damping constant of
electronic state and <(------ >, means an average over the sites of random im-
purities between two Green functions. Since we need Siy(g, —q) in the limit
q >0 as will be shown later, we may consider the value of ¢ quite small for

the time, and so, we can do a replacement of some terms in the integrands

. 1 1
of (7). Let 0 being the wave vector <k _-———2—q> and <k’ + Eq), 4" between (k e

1 1 i 1 1 .
~2—q) and (q’ 4+ Eq), and 0" between(k’ + Eq) and <q’ 4 —2—q>, we can write

the scalar product (k —%q)«(k’ +—;— ) as
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where we have made use of the consideration that the predominant terms in
the second term on the right-hand side of (7) are the terms which have the
wave vector k' nearly equal to 9. By averaging over the azimuthal coordinate
(o' — @"), the second term containing an azimuthal coordinate in (9) vanishes
owing to the symmetry of the system. Using the approximation mentioned
above, we may get the equation for two-partile Green function corresponding
to the Boltzmann-Bloch equation” from (8).

Multiplying (8) by (k ——%q‘)-(k/ + %q) and summing over 'k and k', we
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find the following equation
1 | ! 1 ' Al | .
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It seems to us that a certain constant vector ks being of the order of the
Fermi momentum exists”), so that the summation term over k and ¢’ in the
second term on the right-hand side of (10) is approximately given by

7. [AYEA VTt 3.1 . __,l la' - __]:_
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where cos 0k pk’ is a constant independent of ¢'. Then, the solution of (10) can

be written down at once
1
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where

g, E, E ;( ‘) Gk — q; E)G(k; E)

and

ra, E, E") = > n| V{r — k)| ® cos Ok p1r GRS E)GUK' + q; E').
&

§3. Evaluation of the orbital susceptibility
A damping constant [ (k, E)in G°(k; E) can be replaced by I" (kr, ) under
the conditions | E — er| < (#%/2m) (2ksk, — k%) and le, — 7| <(h*/2m) (2ksk, — k%)
with ks being the wave number of the Fermi level and k, the inverse of the
range of force due to impurity®. Let G: (g, E, E" be I(g, E, E"/{1— 7aq, E,E"},



22 B ' Y. KaTo No. 26

then we expand G:{g, E, E') as series in ¢. By substituting (12) into (7), the
term from the constant term in respect of ¢ in Gs(g, E, E') vanishes with the
first term on the right-hand side of (7), and the linear term of ¢ disappears
because of symmetry. The term containing ¢" (# >3) on the right-hand side
of (7) does not contribute to the orbital susceptibility, as it has been shown by
(1), for the reason of limit ¢ — 0.

The problem now is to find the quadratic terms of ¢ on right-hand side of
(12), let G2® be the coefficient of these terms,
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(13)
where

P(k) = n} Vikr — k) }2cos Ok s .

The summation over & can be replaced by integration per unit volume, namely
Z—)AS depr'/2(A = (22%)1(2m/h?)%2). By the similar calculation has been made
b 0

by Ando®, G2 reduces to
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L=F—®rrar

and
2" = @2 — PAresl/2),

where we have made usei of the constant value of P in respect of its argument.
Then, we reach the final formula for orbital susceptibility, i.e.,
24 , AE") — A(E)
Yo A G,
r="5 SdESdE e T (15)
where up denotes the Bohr magneton. In the limit P -»0, namely in the case
of no impurities, y reduces to ’

A
X0 = —?uaz /2 = e (16)

with N the number of electrons in the unit volume of the system. It is not so
easy to find the order estimation for impurity effect owing to the slight intricacy
of formula (14), however, it seems that the orbital susceptibility of electrons
with a small consentration of impurities is quite equal to that of the free
electrons so far as both I and T are negligibly small compared with ef, as it
has already been shown by Ando®.

§4. Sum rule for electrical conductivity

Let us, now, consider the sum rule for electrical conductivity, then we do
the calculation of the conductivity using the Edwards’ formula (8). Taking the
direction of ¢ as the z-axis, we expand <G'. k- q;E)Gk, k' + q; E')>, as
series in ¢,, namely,

<G, k— G EGE k' + g E)V>, = 314 "¢(k, ks k, k5 E, E')  (17)

n=0

and also

Gk + q; E) = D q."G, k'; E) (18)

n=0

with putting G°%k; E) as G(k; E). Inserting these equations into (8), we obtain
the equations in respect of ¢° ¢, q% ¢°® and so on. Since the formula of con-
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ductivity is given from the equation of zero-th order in respect of ¢, using the
similar approximation to the second section and defining ¢(E, E') by

o(E, E') = SIS kek'gk, ¥; ¥, k E, EY), (19)
%R
we have to find the expression of o(E, E'). Then, ¢(E, E') becomes

A:szco%k; E)Gy(k; E')

o(E, E') = 7 e
1o S B E
‘” Ansfl/2§ 0(’ )0(, )
where
' aherl/2 s
I = wnef S | V(k;(l -— cos 6))|2 cos fd(cos 8).

In effect, we may replace the summation over k by integral, as we have made
the same procedure in the previous section, and we then have

| om ;I \Y2(E32 4+ E'S2{I(" — [")}/2
T L 21
@(E,E) Afzz (1’—.1"> E_EVt el — 1) (21)
Finally, we reach the conductiyity proportional to -
FEY—AE) ;
SdESdE e B o(E, E), (22)

that is, the electrical conductivity is proportional to {/'/(I' — ['}}/2 which is
of the order of unity. It seems to us that the sum rule® for the electrical
conductivity obtained by using the Edwards’ approximation does not satisfied.
Therefore, the approximation represented by the so-called “ladder diagrams”
seems to have been a good approximation for conductivity, however, it implies
the existence of a problem in the Edwards’ approximation.
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