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   The formulation of orbital suscePti'bility in the 'system contalning the

imPurities is studied taking account of the interference between two Green

functions. The formu!ation is very similar to the drdinary Boltzmann-B!och

type theoiry df electrical:conductivity on the basis of two-time Green function.

The sum fule'for condUctiVity due to the Edwards' approximation is not satisfied.

                         '                                                                   tt                      t . t tt. ../t:. t. t t t..1
                            g.1. Introq,uction

   The impurity effect on the'orbit-ai diamagnetic susceptibility of free electrons

has been discussed by several workers. ,Peierlsi),has shown that the effect of

impurities on the diamagnetic susceptibility is neglected under the condition

hlr <kT, where T denotes the. mean free time of the free eiectron. Kohn and

Luming2) have carried out the calculation for the susceptibility of a simple

model of a dilute alloy and have obtained the result that the susceptibility is

the same as that of a £ree electron gas assuming the perturbation to be suth-

ciently weak. ' .
   Recently, Ando3) has calculated the orbital susceptibility o'£ dilute alloys

and has proved that the contribution of impurities to the susceptibility can be

neglected under the condition h!r < rp, where n is a characteristic energy of

the order of the Fermi energy. They have calculated the susceptibility by

the use of Nakajima's formuia4) and Matsubara and Toyozawa's technique5) for

impurity band conduction, and have estimated it in the Iowest order approxi-

mation. In this estimate, they have retained only the terms with a 6-singular-

ity6) in the term 1!(E-H) and have neglected the interference between two

Greep funct.ions in respect of the random average of impurity sites, where H

fepresents' the totai Harniltonian of the sy'stem. Furthermore, it has tieeh

concluded that the effect of interference between two 'Green functions do6is

not contribute to the result obthined by the }owest order 'approximation e'xL

cepting for the change of the expression of a damping constant of electron'ic

states.
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    IR the succeeding section, after the two-time Green function method for

the evaluation of electrical qonductivity7), a calculation of.the diamagnetic

susceptibility is given to take into account of the interference between two

Green functions. This formulation is similar to that of the ordinary Boltzmann-

Bloch type theory for the conductivity. In･ g3 the evaluation of susceptibility

is made. The section 4 wili be offered to the calculation of the electrical con-

ductivity by the use of Edwards' approximation for the product of two Green

functions8), however, a sum rule for the conductivity9) is not satisfied so far

,as the Edwards' approximation is assumed.

                               '            . g2. Forrnulation of the problem .

              t tt tt tt    We consider an assembly of electrons containing the imp.urities, whose

electrons can be represented by the one-electron model. According tg Nakajima4),

the orbitai diamagnetic susceptibility has been written as

                                 1 S2<q, - q)
                           Z.T-E7,im q2 -'. , <1)
                                                                 '
                     '                           'Here, S2(q, - q) is obtained by thel relations

                                '                       '                     '                           tt
              S"p(q, - ij'> == !",d2 <]',(q, - ih2)1'.(- q', O),>

                                                 '                                                   '
                             . qr"q'. '                         ww- So(q, -q')6,.+S2<q, -q') 'un･ q,, , . (2>.

                                          1
                      pt,v= {X, Y, Z} P =: feT'

                  i(r, t) - 2 i<q, t) exp (-iqr)

                           a
                                    '                         'and the spa$ial Fourier tranSform of current density operator i(r, t), in the

representation of the second quantization,

                  i(q,'oi = -e.le-:l](k - t;q)a"k-qak' ' '1･ (3)

                                   '                                     '                                       '       '                'where a'k and ak stand for the creation and annihilation operqtors of a free

electron, respectively, whose eigenstates are denoted by a wave vector k as

the basis of one electron state. Furtherrnore, <.9> means the expectation

value of 9 for the canonical ensemble, that is,

                              Tr{9 exp (- PH)}
                       <9> =. Tr{exp(-PrE()} '
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Let us corisider th'e non-uniform system whose volume .O.g is unity. The total

Hamiltonian of the field-free system '' ' ･
                             '   '

                 H== IZ] eka'kak+ Z]£ p(q) V<q>a"k-aak <4)
                      k kq
where Ek is the free electron energy with vCTave vector k,

             t/t            '
                          p(q> = £exp(iqri),
                                 i

                       V(q) = !..., e5P,(- iqr)li(r)dr

andidenotes the site of an impurity and V<r) the interaction between an

impurity and an electron.
                                                                       '
    By making use of the Buckingham's identityiO) for non-uniform system

          '                                         e                  So(q, -q') + S2<q, -q') == iii<n(q - g' >>

where n(q) being the Fourier transform of the charge density operator, and of

the relation ef equation(2), one may e4sily leads to the expressiofi of S2(q,

-gt) aS

                                    '                                              '             s,(q, -q') =: -23.e <n(q -q')> - S)il]s,t,t(q, -q'). (s)

In order to rewrite (5), it is convenient to introduce the Green function, defined

by

                                      1･             G<k, k';E) == Im <O akE ww i, --Ha'k O> <E --> -F O> (6>

where IO> represents the vacuum state in which no electron exists and Im

means the imaginary part, and to diagonalize the total Hamiltonian H by a

unitary transformation5). Let q' =:q, (5) now reduces to

                 '       s,(q, -q) = 8.e <n(o)> -g( .e.h )2:i]pu, SdE!dEt(le-gq)･(k･ + g,)

               .IC<Er) - .f<E)

              × E nv E, G(k', k- q; E)G<k, k' +q; E') , (7>

                                                                 '
with f(E) the Fermi distribution function.. '' ' .
    In order to proceed to the calculation taking account of the interference
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betweeB two Green functions in respect of,,the,random avecage,.-+of impurity

sites, we utilize the approximation rnethod obtained･by Edwards8). The twQ.-

particle Green function <G(k', k-q; E)G(k, k' + g; E')>. has been written as

                                 tt tt                                  '    <G(k', k - q; E)G(k, k' + q; E') >. = ik,k･+.GO(k'; E)GO(k' + q; E')

    +nXGe(k'; E)GO(k' + q; E')i V<q')12 <G(k' + q', k - a; ･E) .

       a'
                                  , x G(k, k' +q+ q'; E')>. <8)

where

                    Go(k, E) -LL (E - ,l!l)lkill l7),(k, Ej ･

7a''denotes' the total fiumber of impurities, r(k, E) a damping constant of

electronic state and <･･････>. means an average over the sites'6f random im-

purities between two Green functions. Since we need S2(q, -a>' in the limit

q-->O as will be shown later, we may consider the value of q quite small for

the time, and so, we can do a replacement 6f some terms in the integrands

of <7). Let o being the wave vector (fe --l.l;-q) and (k' ,+ -Sq), o' between (k -r,

tq) and (q''+ gq), ana o'" 6etween(k' + gq) and(q' + Siq), 'We can 'write'

the scalar product (k -gg)e(k' -y gq) as

                       '1     (k -Sq)･(k' + gq) =- k -iq, k' + gq,coso

                                  11   f ;(k --;-q).(g' + -ll-a) cos e" + k 7-l}-ql k' ÷ -li-a sin 0' sin 0" cos (g' - g")

                                                                (9)

where we have made use-of the consideration that the predominant terms in

the second term on the right-hand side of (7) are the terms which have the

wave vector k' nearly equal eo q'. B.y averaging over the azimuthal coordinate

(g' ir g"), the second term containing an azimuthal coordinate in <9).vanishes

owing to the symmetry of the system. Using the approximation mentioned

above, we may get the equation for two-partile Green function corresponding

to the Boltzmann-Bloch equation7) from (8).

.. , IVIulEi.plyi"g <8),by (k.TS-q).(k' -t/-ll-a) and surnming over /.F 4nd k', we
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find the following equation

                                          t t tt ttt                                                       /t            '
   :ll] ;il,l (k rw -llmq) ' (k' + -l;-q) <G(k'･ k - q; E)G(k, k' + g; E' )>. ' . ,' / . /

                                                           '       "= ]Ii](k --ll-q)2Go(k-q; E)Ge(k,;Et) .''･･ ,' ,,.･ .･., . .

                                                 2         ', + ]ll,]Go (kr; E)GO (k' + q; E') XK :il,) nl V(g' - k') l cos 0" ', ,'

  , .. × (k --ll-q)･(q' + -l;-q) <G(q',k- q; E)G<k, g' + G; Ei')>.･ (io)

  ttIt seems to us that a certain constant vectoy kf being of the order of the

Fermi momentum exists7), so that the summation term over k and q'  in the

second term on the right-hand side of <10) is approximately given by

        '   ' nlv(k'f-k')I2cose-kfk, ]>,](k--l-q).(q'-" lltl-q) ''

                       x <G(q', k-q; E)G<k, d+q; E')>. (11)

 where cosekfk, is a constant independent of q'. Then, the solution of (10) caR

 be written down at once

      ;li) ;il,](k --l;g)'(k' + -ll-q)<G(k', k - q; E)G<k, k' + g; E')>.

                   . , . - J(q, E, E') , ･. , a2)
                                   rw 'r II ･r(q, E, E')

                                               '                               '
            I(a, E, E') = ]!il] (k --ll-q)2 G"(k - g; E>Go(k; E')

 and
                                                     tt
      r<q, E, E') === llE ]nl Y(umkf- k')l 2 cos 0kfb･ GO(k'; E>GO<k' + g; E').

                k'

                g3. Evaluation of the orbital susceptibility

     A damping constant l' (k, E) in GO <k; E> can be replaced by l" (kf, Ef) under

  the conditions lE- Efi S(h2/2m) (2leffep - kp2) ancl lEk - sfl f{:(h2/2m) <2kffep - lep2)

  with kf being the wave number of the Fermi levei and kp the inverse of the

  range of force due to impurity3). Let G2 (q, E, E') be I(q, E, E')/{1 - r<q, E, E')},
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then we expand GL)(q, E, E') as series in q. By substituting (12) into <7), the

term from the constant term in respect of q in G2(q, E, E') vanishes with the

first term on the. right-hand side of (7>, and the iinear･term of q disappears

because of symmetry. The term containing q" (n;}i3) on the right-hand side

of (7) does not contribute to the orbital susceptibility, as it has. been shown by

(1), for the reason of limit q->O.

   The problern now is tQ find the quadratic terms of q on right-hand side of

(12), let G2(2) be the ceeMcient of these terms, ･

          ¥(-il-Ge(kE)Ge<kEr) um gEhe{GiSe3(iiiE) Ge(kEt) + gE,2G2GoOiiig,i{!)Ge(kEt)]

    G2(2) ,., .
                 1 - Z]P(k,)GO(kSE)GO(k,Ef>

          ' h,
         '           tt
¥skGo<kE>Go(kE').;, p(kt) Go (ktE) (+:-,,, 62Ggtilig',E') 6GO(k,Et)

  6Et
}

         + (1 - ;ii, P( kt>Go<k,E)Go(k,E, )l2

                                                                (l3)

where

                     p(k> == nl v(k-f- k) 2cose}rh.

Tlte summation over k can be repiaced by integration per unit volume, namely

:!il]->ASoOOdEhEki12(A = (2x2)rmi(2m/h2)e/2>. By the sirnilar calculation has been made

by Ando3), G2(2) reduces to

                                    t.
                                          '             f<El/2 + Et y2)+ IllOl<E, - ExE312 m Et3/2)L )

                         -F -34-i-<Esi2 + E's/2){3(Et -E)2 - 4r}2L2 j

G2(2) = Arc

        f

        i

 + P<Arc)2

              (Et - E)2 + 442

                                            x,
2r(Er - E)(E'

cz g, g,IS'r'tEV'2,;-Ei!il,'.,,, . .t3,2,2L2 j

{(Et - E)2 + 4ri2}2
<14>
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with'

                         L= r
                              (Et - E)2 -i- 4r2

and

                         21T,2 = r(2r - PAffefl12),

where we have made use of the constant value of P in respect of its argument.

    Then, we reach the final formula for orbital susceptibility, i.e.,

                    z= 2.pt,2BSdEidE' '1(< tlii')m- E4 Erm>G2(2) (is)

where ptB denotes the Bohr magneton. In the limit P-->O, namely in the case

of no impurities, x reduces to

                                           ,rv?ttB2                              A
                        Xe == --{i'IUB2 of1/2 =": - 2qlun,um (16)

with N the number of electrons in the unit volume of the system. It is not so

easy to find the order estimation for iinpurity effect owing to the slight intricacy

of formula <14), however, it seems that the orbital susceptibility of electrons

with a small censentration of impurities is quite equal to that of the free

electrons so far as both r and leT are negiigibly small compared with of, as it

has already been shown by Ando3).

                 S4. Sum rule for electrical conductivity

   Let us, now, consider the sum rule for electrical conductivity, then we do

the calculation of the conductivity using the Edwards' formula (8). Taking the

direction of q as the z-axis, we expand <G(k', k - q; E)G (k, k' + q; E')>, as

series in q., namely,

                                                    '                                         co        <G(k', k- q; E)G(k, k' + q; E'>>.= :Z] q."gh(fe', le; fe, k'; E, E') (17)

                                        nt=e

and also

                                   oo                     Ge(k'+q; E> = Xq."G.O(k'; E) (18)
                                   n=e

with putting GO(k;E) as GeO(k;E). Inserting these equations into (8), we obtain

the equations in respect of qe, q, q2, q3 and so on. Since the formula of con-
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ductivity is given from the equation of zero-th order in respect of q, using the

similar approximation to the second section and defining g(E, E') by

                                     '                              t ttttt tt
                 g(E, E'>- Z]Z]k･k'gb<k, fe'; k', le; E, E'), G9)
                           k h'
                                                                     ./ .tt
we have to find the expressioR of g(E, E'). Then, g(E,E') becomes

                                                 '         ttt   '' g(E, k,> .,.l'･. iil.l,k2GoO(k; E)GoO<k; E') '. ,. ' . ,, <2o>

                      .i ma A.qfii2 llili]Goe(h; E)Goo<k; Et)

                             tt                             '                                            '
where

                  t ttt tt tttl ttt tt                                           '               r, .. !n:l:ii2s 1 y<E;(i - cos o)M 2 cos od(cos e).

In effect, we may replace the summation over k by integral, as we have made

the same procedure in the previous section, and we then have

. /t 1.                 tt
  '-..' . gSE.iii..b)lff.i. ZM, (,.!'7,)i/2(ellif2ve+..III,;3/.'){,r,..(S.-mif")iE'l/2. .,,,,

            '
                             '' Finally, we reach the conductivity propor,tional to . .

   ' sdEsdEt l- -(t-i-1)t.[.ltJIF<.-,.:ll--)-,(E, Er), <22>

that is, the electr2cal conductivity is proportional to {l]/<1'" - r'>}i/2 which is

of .the order of unity. It seems to us that the sum rule9) for the electrical

conductivity obtained by using the Edwards' approximation does not satisfied.

Theyefore, the approximation represented by the so-called "ladder diagrams"

seems to have been a good approximation for conductivity, however, it implies

the existence of a problem in the Edwards' approxirnatioR.
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