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                            1. I"troduction

   Structural arches have a multitude of application in practice; hence, the

analysis of arches has received the attention of a great number ef investigators.

The purpose of this paper is to present the operational procedure for coplanar

arches by supposing that these consist of a series of small straight segments,

or finite elements, each of which is governed by the ordinary longitudinal and

fiexurai behaviors (Fig. 1). It is mentioned, therefore, that the present paper

demonstrates the finite-element procedure in one dimeBsion, and the procedure

is ideally suited for such a general analysis scheme, as any arch configulation

may be easily approximated as a seyies of simple skapes.

   The loading conditions may be entirely arbitrary. Also, the curvature aRd

the thickness of the arch may vary along its arc length.

   It is well recognized that the recursive procedure in general is most efflcient

to digital computers, so that the present analysis requires only a little amount

of labor in both programing and computer time.
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                                                                1>are expressed respectively for the extensional and flexural behaviors as

                             u=Ll ,oJ M, (1)
and

                          w==Ll p p2 p3] N, (2)

in which p= x/L, x == the current abscissa, L =the span length, zt = the axial

dispiacement, zv == the lateral defiection, and M and N are assemblages of inte-

gration constants. Then the behavior of the topological unit may be represented

by superposition of Eqs. 1 and 2.

   The complete state vector of a member is a sixth-order column matrix,

consisting of the longitudinal displacement, the lateral defiection, the flexural

slope, the axial force, the shearing force, and the fiexural moment. Then the

state vectors at any point p are given by the equations2)

                             W(p) == R(p)X, (3)
and

                          W'(p)=R(p)[X+K], (4)

in which W(p) and W'(p) hold for the normal and conjugate domains respec-

tively. Here R(p> is the complete abscissa matrix of size 6-by-6, X is the sixth-

order eigenmatrix which is the assemblage of integration constants, and K is

the load-matrix which is compatible with any external loads.3)

   It should be noticed herein that the right sides of Eqs. 3 and 4 exhibit the

complete classification of data, and then attention can be focused at attacking

tlte eigenmatrix X only.

            3. Cennectioit Conditions and Recurrence Formula

   The connection conditions are the compatibility and equiliblium at the

common point of any two adjacent segments (r - 1) and (r>. This point is defined

at point R == 1 of member (r - 1) and also at point p=:O of member (r), so that

we have the following equation:

                        ge(ipr--i)W'r-i(1) == P(dir)Wr(O), (5)

in which P(ip) denotes the projection matrix or briefly the "projector."

   Eq. 5 then will yield the desired recurrence formula, with Eqs. 3 and 4,

                           Xr=LrXr-i+trKr-b (6)
providing
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Lr =: [P<f5r)Rr(O)]-iP(f5r-･i)Rr-･i(1)･ (7)

Here the it. matrix is the shift operator or briefly the

X.-i matrix can be shifted from span (r - 1) to the

is the desired recurrence formula, with which all the

2, 3, ..., n), can be expressed in terms of the first

recurrent aplication of Eq. 6 then gives

"shiftor " with which the
      '
adjaceRt span (r). Eq. 6

eigenmatrices, X.'s (r=

 eigenmatrix, Xi. The

Xr = QrXl + LRjr-i{K}r-i, (8)

in which

Qr=`' LrQr"i, (9a)

LR]r-i == LRI R2 ''' Rr-ljrml"= LtrLR] r-2 LrJ, (9b)

{K}r-1 :== {Ki K2 ''' Kr-･1}･ (9c)

Note that the integrated shiftor Q. is always a 6-by-6 square matrix, the

inLtegrated feeder LRj.-i is a 6-by-6(r - 1) rectangular matrix, and the partial

assemblage of load-matrices {K}.-i is a 6(r - 1)-by-1 column matrix.

4. Beundary CendltioRs

   The boundary conditions at

by the followiRg equations:

   1. for the left end of the

both

arch

extreme ends of the arch are expressed

tsXi = O, (10)

2. for the right end of the arch

E'X. + B'Kn = O, (11)

in which B and B' are the boundary matrlces.

                         5. Final EquatioR

   Eq. 8 incticates that all the elgenmatrices have been expressed in terms of

the single eigenmatrix Xi, so that the last step to the solution is only to deter-

mine this current eigenrnatrix Xi. To do this, it will be sufficient to refer to

the boundary equations, Eqs. 10 and 11.

   Eq. 8 (r == n) is substituted into Eq. 11, and then
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                     B'QnXi+LB'LR]n-i B']{K}n :O. (12)

Eqs. 10 and 12 are put into one equtaion, from which Xi can be found to be

                   Xi =: rm[BtBQ.]-i[BtLRJ9,-., Bt]{K]'n' (13)

which is the desired fiRal equation. Eq. 13 takes the form

                             Xi=LGj{X}n, (14>

of which the tGj matrix is of the size 6-by-6n and the {K]-. matrix is of the

size 6n-by-1. The former, Lej, depends on only the geometry and material

properties of the arch, and hence it is called tke "geometry matrix." The latter,

{K]･., is 'the assemblage of all the load-matrices.

                        6. Numerical Examples

   Some numerical exampies of the preceding arch analysis will be given.

Here the geometry and material properties of the arch are taken to be as

follows :

                                Table l.

E (t/m2) J(m4)

21 000 000. 0 i O. O05
           I/

A (mL')

O. 04

L (m)

l
a

36. 0

h(m)

3. 0 l

in which E == Young's modulus, f == the moment of iRertia of the cross section,

A == the cross-sectional area, L =the span length of tke arch, aRd h =the rise

of the arch; all the constants being measured with the ton-meter unit. In the

following examples, each result gives the complete state vector for the axial

and lateral behaviors of the arch. The values o£ the state vector componenLts

are for convenience tal<eR to be the mean values of the end values of two

adjacent rectilinear finite elements.

   (a) Example 1.-Fig. 2

   As the arch is divided into finer elements, the results obtained will tend

to the rigorous solution. Table 2 shows the numerical results of the fiexural

defiection and the moment, zv and M, at the loaded point (2) for the 4, 8, 16,

32, and 64 divided finite element arch, which shows a rapid converg, ence to

the rigorous solution. It will be seen that the 16 or 32 finite element arch will
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suMce the practical purpose. The values corresponding to the infinitely great

number finite element arch are due to the rigorous solution computed by the

known theory (cf. Additional Note).

Table 2.

×h tv × le4(m}
4I 3. 928

M(t-m)

2. 001

s I 3. g67 I 2. 137

l

i

at

l
t

{2)

(3/,

<4)

16      3. 975

32      3. 976

64

oo

2.171

2. 179

3. g77 I 2. ls2

2.182 l,

Fig. 2. Cireular Arch

Ends Clamped.
with

(5> "-

Both

3. 977

   Table 2 shows

finite element arch.

the state vector for each point (Fig. 2) at the 64 divided

Table 3. State Vecter fer Each Peint (Fig. 2).

-...       u× 10` (m)
      ttt
(1)

(2)

(3)

(4)

(5)

zv × le4 (m)

o. o
i
l
i

o. o

i axlo,
.l .

O.132 3. 977

l. 072

o. o

F(V l
a

-1. 552

s (t)

O. 488

O. 252

o. o

-1. 284

o. e

 o.2i6 'I'

-O. 485 i

O. 370

-1.393

-1. 352

l O. 60s
.l . .- O. 367

I  -O. 154
O. 040

o. o

-1. 359
[
I

i
'

O. 071

･[･

I -1. 331 O. 286

M(t)

-2. 295

 2. 182

-O. 241

-O. 621

1. 052

l
l
E
E
l
I
:
i

   <b) Example 2.-Table 4

   As the second example, four types of arches are evaluated, and the numeri-

cal results are given in table 4. Each of the state vector cornponents has two

numerical values; the upper case referring to the 32 finite element arch, while

tke lower one to the 64 finite element arch. It is seen that these two values

closely approximate each other, aRd hence they are practically accurate.
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Table 4. Four Types of Arehes.

ixe. 25

l
l No.
L

Types

E
E

l
l

I

1

l

I
I

I
E
E

<1>

   lt  ･
(2) (3)

Circular arch with

ends clamped

both

2

I
E

I
I
E

         lt･

      (2> (3)

   x(1)

Circular arch with

ends hinged

both

(1)

(2)

(3)

(1)

3

         lt

     (2) (3)

   (1)

Parabolic arch with

ends clamped

both

(2)

(3)

(1)

(2)

u×104
 (rrl)

o. o

o.o

-O. 238

-O. 238

 o.e

o.o

o.o

o.o

-O. 255

-O. 256

w×104
 (m) e×lo4

o. o

o. o

1. e47

1.e47

4. 601

4. 600

o. o

o. o

O.373

O.373

o.o

o.o

O.O l-e.129
     l

o.o

O.881

O. 880

     iO.O i 4.702

-O. 130

O. 413

O. 413

o.o

F
(t)

-2. 466

-2. 465

-2. 481

-2. 481

-2. 432

-2. 432

-2. 315

-2. 312

-2. 324

-2. 323

s
(t) I

1

 M
(t-m)

-o. 2go l O. 392

l

l
l
i

-O. 303

e.og3

O.093

 6. SOo

-O. 500

l O. 396 I

---------･-･--- /i-o. 63o I

-O.626 l
      ,.I

 O. 500
-e. soo

-O. 240

2. 095

2. 099

o.o

o.o 4. 704

o.o
l

o.o

e.o

e.o

-O. 252 o. o

4

l
t

        (3)      (2)
  -.<1)

Parabolic arch with

ends hinged

x

both

     AO. 120 1- O. 664
     l

O. 120

-2. 273
i O.500
i-o. seo

-e. 661

1

[ 2.ls2

l
I
I
E
I
i

I
E
E

o.o
i

l-2. 271

o.o

o.o

-2. 465

l
I-2. 464
I

ww g1 5,88 l 2. is6

-O. 239

-O. 240

o.o
(3) l

   l e.o

(1)

o.o

o.o

- e. 27i l o. 3sg

      :

-O. 282 O.363

     ]l. 078 1 O. 371
     i
1. 078

F

4. 520

4. 520

O.371

o.o

o.o

-2. 478 I' o. og4 i- o. 6e6

(2)

(3)

o.o

o.o

- o. 2s4 l o. g22

      l

-O. 255

o.o

e.o

O. 921

4. 606

4. 607

-2. 478 l o.og4
i

-2. 429

-2. 429

-o. 12e
I"2. 326
i

 e.soo
-e. soo
 o.se6
-O. 500

-e. 226

-O. 603

2. e72

2.075

o.o

l-e.236t e.o

E

E

-O. 121

O. 408

O. 409

o.e

o.e

-2. 323

-2. 334

- 2. 332

-2. 283

-2. 281

O.118 -O. 636

e. 118 -O. 633

 O. 500
-e. soo

2. 152

ww

glg88l 2.is6

   (c) Example 3.-Table

   When the span length

and 9 meters respectively,

res.ults in the, values given

5

of the arch is 36 meters and the

tke horizontal reaction, H, at the

in Table 5.

arch rise is 3, 6,

left bounding end
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Table 5. Herizontal Reaction (32 Finite Element Arch, Flg. 3).

'

I
Applied point

of load P= 1(t)

Horizontal reaction H(t)

 h == 3m

     1
h/L == -
     12

1
1
/

i
 h -rm 6m

     1
h/L -- -
     6

{
:
l

 h == gm
     1
h/L == ':i

(1)            O. 867                         Oe 41tl

(2)            1.606                         e.785

(3)

(4)

2. 100

2. 273

i
l

1.045

1. 138

e. 242

O.489

O. 673

e.74o

Fig. 3. Circular Arck witk Betlt Ends Clamped.

   (d) Exaraple 4. -Table 6

   Table 6 shows the generalized force of the arch at three points iRdicated in

the figures in the table, the left being the uniform cross-sectional parabolic

arch with O. 9 meter constant depth, while the right the variable cross-sectioRal

parabolic arch with 1.2 meters depth at both extreme ends and O.6 meter

depth at the crown with liRear change of depth. The values of the stresses

(L T, a) are cornpttted by the formula

                          F S Ma                      f="I4, T"=I21, a==7'li, (15>

in which f xu the Rormal stress due to the resukant axial force, T == tlte average

shearing stress, a == the extreme fiber stress due to flexure, and a ==- the depth

of the cross section. The width of both arches is O.6 meter, the span length

is 36 meters, the rise is 4.5 meters, and Young's modulus is 2100000 ton per

sq meter.
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 Table 6.

and B. TANIMO'PO

Parabolic Arches.

No. 25

l

E
F

l

I
'
I
ll
i

i

E
l
l

    (1}

Uniformly

arch with

(2)

(3}

l
t

cross-sectional paraboHc

both ends clamped

              lt

        ･ (3)
         (2}
                      e      {1)

Variable cross-sectional parabolic

arclt with both ends clamped

I
E
l
/

i

Generalized force

I.....

wwti.).

 (2)

 F(t>

-1. 836

-1. 865

(3)l -1. 798

s <O l
l
M(t-m)

Y
I

F<t)

-O. 334

O. 049

O. 892 -1. 877

-O. 676
E

i
 O.500
-O. 500

I
i 1. 802

-1. 909

-1. 843

s(t)
i
'

i
'
M(t-m)

i
i

-O. 353

O. 038

1.026

I

l

i
t

 O.500
-o. soe

-O. 695

1.732

(1)

Stresses

I f(t/rn2)

i
'

(2)

-3. 400

-3. 454

nvttttt .

(3)I -3.33o

T (t/ m".)

-O. 619

O.091

 o. 926''

:..P.･926.

a {t/m2)

11. 012

-8. 346

22. 247

f (t/mn･ )

-2. 607

-3. 535

-5. 119

r <t/m2)

-O. 490

O.070

 1.38g

--
 1. 389

a (t/m2>

7.125

-8. 580

48.111

                        7. Further Developments

   The present investigation can be extended to any structural systems involv-

ing arch members. The arck box frame resting on an elastic foundation (Fig.

4) and the continuous arch portal frame (Fig. 5) have been analyzed.

(3)

(2>

'YKx "･1..lxN,7v>

Fig. 4. Arck Box

   (1}

Frame

(4)

ZAts

on

.tl> / '..x,. iKl> bft./

Elastic Foundation.
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  ltt･

Fig. 5
.

(1･1 .1,

s

(･r2)

Continuous

   i

Arch

![M-l･Tli

  Xx   Yl

   :

   II

fl

Portal

  lf..f

Frame.

ffll

                          8. Additional Nete

   The circular arch is governed by the equations4)

                          F-E.A--･(ddqU---w), <i6>

                        M=,-.tt,,J(,di℃.V..i..g.e.), <i7)

in which R=:the radius of the arch, and ip=:the angular parameter of the

arch. These two equations give the general solution

     [h`]==[g (i .SZS,X"¢ luc B,,,di,,CeS¢dr',,.eop,,./rlSij}1"2.,,.,,,]x} (is)

in which

                                AR2-I
                            P = A"R2 -r7･ (19>

   Hence, the complete state vector becomes

                             W(¢> -= R(¢)X (20)
The eigenmatrix x is then found by the equation5)

                          x-. an[S,]-i[8,]., ,,,,

iR which, as before, B and B' denote boundary matrices at both ends of the

arch, and K represeBts the load-matrix.



IO H. HAMANo and B. TANIMoTo No. 25
                              9. Conclusions '
    This paper presents the operational finite element method, which is applicable

to the analysis of structural arches. It permits recurrence avoiding large-size

simultaneous equations. Effects of temperature changes, movements of supports,

and any distributions of applied loads can be treated by the method presented.
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                          Appendix. -Notation

   The following symbols are used in this paper:

A =cross-sectional area;
a =depth of the cross section; Eq. 15;
B, B' =boundary conditions at extreme left and right eRds respectively;

             Eqs. 10 and 11;

EJ == flexural rigidity;

F =axial force;
f :normal stress due to the resultant axial force; Eq. 15;

LGj L' geometry rriatrix; Eq. 14;

ff == horizontal reaction; Ex. 3;
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=: rise of the arch'
               '
-ig load-matrix; Eq. 4;

== load-matrix assemblage; Eq. 12;

== span length of the arch;

=:shiftor; Eq. 7;

== bending moment;

=2-by-1 eigenmatrix; Eq. I;

= 4-by-1 eigenmatrix; Eq. 2;

== lateral concentrated load'
                       '
== projector; Eq. 5;

=integrated shiftor; Eq. 9a;

= radius of the circular arch; Eq. 16;

=abscissa matrix; Eq. 3;

=: integrated feeder; Eq. 9b;

== shearing force;

=axial displacement; Eq. 1;

== state vector for normal and conjugate domain respectively;

  3 and 4;

=-L lateral deflection; Eq. 2;

=:6-by-1 eigenmatrix; Eq. 3;

= current abscissa;

== (AR2 - I>/<AR2 + f);

=: flexural slope;

== x/L, dimensionless current abscissa; Eqs. 1 and 2;

==: extreme fiber stress due to flexure; Eq. 15;

== average shearing stress; Eq. 15;

== local intersection angle between two consecutive straight

  elernents; Eq. 5;

=:angular parameter of the circular arch; Eqs. 16 and 17;

= row vector; and

== column vector.

11

Eqs.

finite


