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Synepsis. A gravitating long beam supported simply at both ends is analyzed by the
polynomial method, The results obtained indicate that the replacement of the body
force or the gravitation by the surface traction in the elementary theory of bending is
sufficiently legitimate, except for the deflection in case of short span.

A beam in constructional engineering has always its own weight, and the
usual elementary theory of bending assumes this body force to be replaced by
suvface tvaction. This article will reveal the legitimacy of this replacement,
except for the deflection. As for the deflection, the usual elementary theory
of bending gives a considerably low estimation for the beam of short span,
as is the case in the beam subjected to a uniformly distributed load. In fact,
the present calculation was made by being stimulated by the known procedure
of the beam of uniformly distributed load »»®®,

1

,i. 1
0 # 2h

: |

i +

Fig. 1

Various cases of the beam of simple support and of cantilever type seem
to have been treated, but all external forces to be applied to the beam are
restricted to the surface traction only, and no attention, so far as I am aware,
has been directed to the case of body force.

The beam is here supposed to be supported simply at both ends;its span
being 2/, its height 24, and its width, in the direction perpendicular to the
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plane of this sheet, unity, as shown in Fig. 1. The origin of coordiates is
situated at the centroid of the beam and the axis of x is directed rightwards,
and the axis of y downwards.

Boundary conditions with which we shall be concerned are taken for
convenience to be as follows:

1) The top and bottom surfaces of the bheam are free from traction,
which are expressed
(%9)y=sn =0, (3 dymah == 0 corevermreeneienins (1)

2) Both terminal surfaces x==:=/ of the beam satisfy the conditions
h — ] —~ h —
S_h(xy)x:izdy = ¥ 2lhp, g_h(xx%:a:ldy =0, SJ;Cxx)x: =1 ydy = 0,-(2)

¢ being the density of the beam. The second and the third equations in
(2) imply that there are no resultant force and no resultant couple on the
terminal planes x = /.
The Airy’s stress—function suitable for the present boundary-value problem
will be found to be
1 (%3 = a(x2y3 - *};ys> +cxty +dy?,
where a, ¢, and d are constants to be determined.
Stresses can then be calculated by the operations
—~ a?x 62X

= Py Ty =0 o= — 0%
xx = 3}2 0y, yy - axg Py, xy - axay

Here the gravitation is directed downwards or to the positive direction of the
axis of y (Fig. 1), and the unit of stress is measured by the gravitational
one which is commonly adopted in practical engineering. We then have by
substitution

%z = 2a(3x%y —29%) + (6d — )y, ]
3}3} = 2ay*+ (2c—p)y, [ ............................. (3)

J/C} = —b6axy® —2cx.

The boundary conditions (1) require the equations

—3ah? —¢ =, ah3+ch:‘—’zl:‘,
from which we find
—_—P -3
=" e=gt

It can be seen that the first and the second equations in (2) are satisfied by
these values. Then the remaining step is to determine ¢ by the third equation
in (2). This gives

= )
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In virtue of these values, equations (3) become
- 30 < o 2 3) 3 <l2 2)
xx = — 20 %y — Lo — 2 Yoy,
o\*Y T g Y )\ T 5 )0

Y :——-WL 3 . ‘Oy
yy zhzy a 57

. _<_~30 2 a2
xy = 2‘;;2<h yHx.

Noting that 2k%3 is equal to the moment of inertia I of the rectangular cross—
sectional area of unit width (Fig.1), the above equations may take the forms

ow = PR ey 200V

B = G =y 2 () Eﬁ’ }

T PR e e 4
yy = 5=y, (4)

Xy = — ”}?(hz — ¥,
which is the require stress distribution in the gravitating beam.

When the beam with no body force is subjected to a uniformly distributed
load, say ¢, per unit of length of the beam, on its top surface, the stress
distribution in the beam is®

= 4y q(y_r

rx =gy x>y+l<3 5 ) }

375, - —"qu"< Sl_yaw By §h3>’ b (5)
9?;) == —qu(/ez——y?)x. J

It can be seen that aandxff in (4) and (5) above are entirely of the same
form. Since 2ph is equal to the weight of the slice of the beam of unit length,
we may regard the solution (4) as if the weight 2p% were a uniformly distrib-
uted load applied on the top surface of the heam.

The first term in the right-hand side of xx in equations (4) represents the
stress given by the usual elementary theory of bending, and its second term
gives the necessary correction. This corrrection does not depend on x, and is
small in comparison with the maximum bending stress, when the span of the
beam is large in comparison with its depth. For such beams the elementary
theory of bending gives a sufficiently accurate value for the stress xx. This
equation may be written in the form :

% = QI@([? )Y (Lo g), oreeveereeneeeiee ! e, 6)

where
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which amounts to only 3.02 even when I/h =3.0. It should be noticed, how-
ever, that the elementary theory of bending affords a little low estimation
for the bending stress.

The shearing stress @ in (4) is of parabolic distribution for any vertical
cross section and increases with %, which is the same as in the elementary
theory. The normal stress 3/1} is constant along the length of the beam, since
it does not depend on x, and its distribution is also of parabolic one.

We shall find displacements corresponding to the stress system (4). We
now have

v ou _ 2(L+o)>

Substituting (4) into the first two equations and integrating with respect to x
and y respectively, we first have

u =8 ay( =2k 2y(% — ) — Gy — 30 ]+ £, |

{
— PN 2 . e Y (YR e
R e e O e (s VLSRRl
where fi(y) and fox) are arbitrary functions. These functions will be deter-
mined in the following.

ou o
a} E<x't Uyy),

01)
dy

On the middle plane of the beam, the horizontal displacement # must
vanish by symmetry, from which

(U)x=0=10= f1(¥).
Substituting (9) into the third equation of (8), we have

(=) (B S+ 2o,

or, on integrating,

s =ty =R (s g e

in which § denotes

0=~ _y
y=0

and this will be evaluated soon (equation (11)).

Thus the displacements become

U = ‘—E]/}[xy<[2 3_>+2xy<%f_%z,>__%_xy<hz —,yg)], ]
=G0 - p (%)) J ----- (10)
e (oS

If in the first equation we put y =90, we then have u =0. This indicates
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that the neutral surface of the heam is perfectly coincides with the center
line, whereas in the case of surface traction (equations (5)) there occurs a
slight discrepancy between them. From the expression for v in (10) we find
the equation for the deflection curve, viz.

(D)y=o = — %%[lzgz — f; T (%_ - 5(5”)952]12] B P (11)

Assuming that the deflection is zero at the ends x = =1 of the center line,
we obtain

5 . 00N’ 1204 5aNE*Y
9 12151[1 T < 5% >l2 ] (12)
- 5 — 20N .
o1 0 IZEI[I +°‘Jj:
where _
e 1204 BaNRE
a=p (g + %) 148

In equation (12), the factor before the brackets is the deflection which is
derived by the elementary theory, assuming as if the body force were a
surface traction. The second term in the brackets represents the correction,
which is usually called the effect of shearing stress.

The corresponding correction for the case of a uniformly distributed load is

¢ = 152<§ + g)lh;’ .......................................... (14)

and this holds also for any case of continuously varying intensity of load,
which has been given by Th. v. Kdrman. ¢, of (13) is obviously a little great-
er than ¢ of (14).

By differentiating equation (11) for the deflection curve twice with respect
to x, we find the equation for the curvature:

(ggg)y:o N zlf%?[lzgﬁf + (fé,;_ 5g>h2] ....................... (15)

It is seen here that the curvature is not exactly proportional to 2ph(Z— x*)/2
which is the bending moment derived by the elementary analysis. The ad-
ditional term in the brackets represents the necessary correction to the usual
elementary formula. In this connection equation (15) may be written in the

form
v\ _2ph P—x*
(G),e = U7 E5 5+ e,
where
4 | 5o
_2(5+%)

&g =

S

The maximum bending moment occurs at x = 0, in which case
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(e)x—0 = 2(?} +5~60><f;,>2, ................................... (16)

whose numerical values are given in Table 1.

Table 1. Correction for bending moment

(es)x=0 by eq. (16)
1k (
A EEEY)

3.0 0.240 | 0.224
4.0 0.135 i 0.126
5.0 0.086 | 0. 081

|
6.0 0. 060 ] 0. 056
7.0 0.044 | 0. 041

In conclusion it can be stated that, for a gravitating beam of short span,
there is an insignificant effect on the stress distribution calculated by the
elementary theory of bending, while there is a certain amount of effect on
the deflection or the bending moment, as given in Table 1.
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