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   Synopsls. A gravitating long beam supperted simply at both ends is analyzed by the

polynomial method. The results obtained indicate that the replacement of the body
force or the gravitation by the surface traction in the elementary theory of bending is

sufficiently legitimate, except for the deflection in case of short span.

   A beam in constructiona! engineering has always its own weight, and the
usual elementary theory of bending assumes this body force to be replacea by

suf7face traction. This articie will reveal the legkimacy of tkis replacement,

except for the deflection. As for the deflection, the usual elementary theory

of bending gives a considerably low estimation for the bearn of short span,

as is the case in the beam subjected to a uniformly distributed load. In fact,

the present calculation was made by being stimulated by the known procedure
of the beam of uniformly distributed loadi)･a)･3).
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                              Pig. 1

   Various cases of the beam of simple $upport and of caBti!ever type seem

to have been treated, but all external forces to be applied to the beam are
restricted to the surface traction only, and no attention, so far as I am aware,

has been directed to the case of body force.

   The beam is here supposed to be supported simply at both ends; its span
being 21, its height 2h, and its width, in the direction perpendicu!ar to the
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plane of this sheet, unity, as shown in Fig. 1. The origin of coordiates is
situated at the centroid of the beam and the axis of x is directed rightwards,

aRd the axis of y downwards.

    Boundary conditions with which we shall be concerned are taken for
convenience to be as follows:

    1) The top and bottom surfaces of the beam are free from traction,
which are expressed

                 An                (xy),=..k :== O, (yy)y.,.h == O. ････････････-･･･････････(1)

    2) Both terminal surfaces x=i:ifLl of the beam satisfy the conditions

  Sh-,(xAy)x.±idy -:i21hp, Shm,(ff.)x.=±idyt=iO, Shmu,(xn.)x..deiydy :e,･･･(2)

pbeing the density of the beam. The second and the third equations in
(2) imply that there are no resultant force and no resultant couple on the

terminal planes x= ±l.

    The Airy's stress-function suitable for the present boundary-value problem

will be found to be

                x (x, y) == a(x2pt3 - -g-y5) L" cx2y + dy3,

where a, c, and d are constants to be determined.

    Stresses can then be calculated by the operations

           xAx-=aaEyz,-py, fy=gi':z,-py, xAy==-t-ai///-.

Here the gravitation is directed downwards or to the positive direction of the

axis of y (Fig. 1), and the unit of stress is measured by the gravitational

one which is commonly adopted in practical engineering. We then have by
substitution

                A                xx ee 2a(3x2y -- 2y3) + (6d ---- p)y,                -)
                ;-,y-r'lag.3.+"2-'l,.p)y･ i (3)

   The boundary conditioRs (1) reqttire the equations

                -3ah2 -c === o, ah3+ch == e2h-,

from which we find

                a == --- I#Plh2, c =i -t9--p.

It can be seen that the first and the second equations in (2) are satisfied by

these values. Then the remaining step is to determine d by the third equation

in (2). This gives

                           d == --4P- (#', + t-4s)･
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In virtue of these values, equations (3) become

              .". - -- shp.,(x2y -- g. y3) + .g c-/-..- - .g. .),y,

                          '
              YAY - -th,y3 -y P,Y.,

              XAy =st - :---Ph--2 (h2 - y2)x.

Noting that 2h313 is equal to the moment of inertia I of the yectangular cross-

sectional area of unit width (Fig. 1), the above equations may take the forms

               ."rm.'..,.t.i.h-(i2･-x2)y--i-2-P)h-(Y3'r-t-s--!)y･ ) '

               fy == g-Ih(h2-yL)y, i･''''''''''''''''''''''''(4)

               x'My" ==-PIh.(h2-y2)x, 3

which is the require stress distribution in the gravitating beam.

    When the beam with no body force is subjec#ed to a uniformly distribttted

load, say q, per unit of length of the beam, on its top surface, the stress
distribution in the beam is a)

               xAx == 2ql(l2-x2)y+g(Y3. :' th hs"r)y, l

                yAy - -2qi( 3i y3-h2y+Zh3), i･･････-･･････････+･･･(5)

                fi --' -i (h2 -- y2)x. ]

    It can be seeB that x'MxN andxrsy in (4) and (5) above are entirely of the same

form. Since 2Rh is equal to the weighe of the slice of the beam of unitlength,

we may regard the solution (4) as if the weight 2ph were a uniformly distrib-

uted load applied on the top surface of the beam.
                                       A    The first term in the right-hand side of xx in equations (4) represents the

stress given by the usual elementary theory of bending, and its second term

gives the necessary correction. This corrrection does not depend on x, and is

small in comparison with the maximum bending stress, when the span of the

beam is Iarge in comparisoR with its depth. For such beams the elementary
                                                           Atheory of bending gives a sufficiently accurate value for the stress xx. This

equation may be writteR in the form

                x'Ax = e2h(l2-x2)y (1+si), ･･･････+･･+･･････････-+'+''''':''-'''''''''''C6)

                ei-:-･i,(-h,-)2i-(S,)i",,-),3, (7)
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which amounts to only 3.0% even when lfh == 3.0. It should be noticed,how-
ever, that the elementary theory ot bending affords a little low estimation

for the bending stress. '
   The shearing stress x""y in <4) is of parabolic distribution for any vertical

cross section and increases with x, which is the same as ln the elementary
                         Atheory. The normal stress yy is constant along the length of the beam, since

it does not depend on x, and its distribution is also of parabolic one.

    We shall find displacements corresponding to the stress sy$tem (4). We

now have
     g-.". .., il,5..(.r.'h .- .y'my"'), .,a-,v ,., tt.(sJIy) pm ..rH.'s), 3.: + g..Iu -ww･ 2ma(iuzE+u zuizl .Ay. -･･(s)

Substituting (4) into the first two equations and integrating with respect to x

and y respectively, we first have

     i`:kR,.I:,YE,ilz,liirml".&";,(i31iZh/f,3./S,i･(lil//;,,,Yji],,".'1(ast･･････(g)

wkere fi(y) and f2(x) are arbitrary functions. These functions will be deter-

mined in the following.

   On the middle plane of the bearp, the horizontal displacement u must
vanish by symmetry, from which

                         (U)X-O = O =" fi(Y)･

Substituting (9) into the third equation of (8), we have

            hh [. (l2 - 4.;.2") h}- (.g. . + ug...).h2] + t2d.!.lrrX.I2 - o,

or, on lntegratlng,
                                  '
            fh(x) - -20i7h [(-"'2-pu--2 - S. + (.4s.- + tt, ).2h2] + 6,

in which b denotes

                           O" "-r" (V)x--O;

                                 y=-;O
and this will be evaluated soon (equation (il)).

   Thus the displacements becorne

         u == iozi7k [xy(l2 - t.":) + 2.y(-y3e -.- t.s2.) - -a3rm-.y (le2 - y2)],                                                            1

         .... kh tg. (h2- ttL"-.) y2 mu .{(IL, -x2) g'l +(tt'L - -hs2)y2 }] t.....ao)

                - setih [C'3x2 ww r2 {- (.g..+5,a- ).2h2] + 6. J

If in the first equation we putN ==O,, we then have u==e. This indicates
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that the neutral surface of the beam is. perfectly coincides with the center
line, whereas in the case of surface tracti6n (equations (5))there occurs a

slight discrepancy between ehem. From the expression for v in (IO) we find
the equation for the deflection curve, viz.

             (v)y=o r= -fut((-?//I --- S-+(-4s-+5･tt)x2h2]+a ･･･････････････････+･(11)

Assuming that the deflection is zero at the ends x== ±l of the center line,
we obtain

                    6 -- ?-S･･-f･!l--/-,-f[i+lt･2(-4,.--i- 5,f!a)ft.,,4in], ･.i･････-･･･.....................(i2)

or ti+---'?--//Eh--//-kl+eL･],

where
                               '
                     e,} - /-,･?- (-g- + 58-)2･-･,･r, . ････+････-･･-･-･････--･･･････.....+.....････(i3)

In equaeion (i2), the factor before the bracl<ets is the deflection whichis

derived by the elexltentary theory, assuming as if the body force were a
surface traction. The second term in the brackets represents the correction,
which is usually called the e.0rect of sheariny stress,

    The corresponding correction for the case of a ttniformly distributed load is

and this hoids aiso for anX "=c"a'ie('g.''i-`-//'),/11ii.6'J,'ll''U.'III'ilg''1･1'IL'A'gl&''ffi!.i',,

which has been given by Th. v. Karrn6n. e2 of (13) is obviously a little great-

er than Ei of (14).

    By differentiaeing equation (ll) for the deflection curve twice with respect

to x, we find the equation for tuhe curvature:

                (dd"llil ),o., =: - ?-flli[-l-･i-i-Ii--IE!2 +(-4s--+ 56a･)h2]. '''''･････････+･････+･4･(ls)

It is seen here that the curvature is not exactly proportional to 2Rh(l2 -x2)!2

which is the bending moment derived by the elementary analysis. The ad-
ditional term in the brackets represents the necessary correction to the usual

elementary formula. in this connection equation (15) may be written in the

form

                    (S'ti'2')y=--o =: -- ?SipL'' lrm":'ill""K"i'( i +e3),

where

                        e,:::"i///'('/li.i.11.eT)<.9T)2.

The maxirnum bending moi'}aent occurs at x=:rO, in which case
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whose numerical

     (s3)A=o m 2(

values are given
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Table 1. Correction for bending moment
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O.126

O. 081
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   In conclusion it can be stated that, for a gravita'ting beam of short span,

there is an insignificant effect on the stress distribution calculated by the

elementary theory of bencling, while there is a certain amount of effect on

the deflection or the bending moment, as given in Table 1.
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