背水計算に関する一考察

草 間 孝 志*

A NOTE ON THE CALCULATION OF THE BACK WATER CURVE

Takashi KUSAMA

(Faculty of Engineering, Shinshu University)

Synopsis: When the back water curve is formed in a prismatic channel, some relations between small changes in the depth at the lower end of the curve and those at any point upstream may be maintained.

The writer, in this paper, tried to obtain the relations between these changes by using several formulae for the back water curve.

要旨

擦状水路に於て背水現象を呈してゐる場合の下流端水位の微小変化と上流任意地点の水位微小変化との関係を考究し、種々の背水公式を用ひた場合のこれらの関係を表はす 式を求めた。

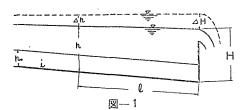
1. 緒 言

例へば本川の水位が何等かの原因により変動した場合,支川の水位もこれに伴ひ変動するものと考えられる。従つて本川の水位変化量と,支川の任意地点に於ける水位変化量との関係が求められ」ば,河水統制上便利であらう。又,実際問題としては,諏訪湖の釜口水門の操作により湖水位に変動を生じた場合,これに伴ふ諸河川の任意地点の水位変動を求めたいと云ふ要求がある。従つて,筆者は種々の背水公式に立脚して以上の水位変動の関係を表はす式を求めんと試みた。

2. 基本式の誘導

療状水路に対する背水公式は、主として背水下流端に於ける水位、上流任意地点に於ける水位、及びその地点迄の距離の函数関係を表示するものである。即ち

^{*} 信州大学助手,工学部土木教室



玆に H:背水下流端に於ける水位。

1. し添け寄せよびかけるかけ

1: 背水距離。

const:流量及び水路の性質等により

定まる常数。

今,定流状態を考えるものとし,且つ底勾配もこゝで考える範囲内では一定なるものとする。然るときHが $H+\Delta H$ になつたときの上流Iなる地点の水位がIからI0+I1になったものとすれば,(1)式と同様に次の様な関係が成立すべきである。

$$\emptyset$$
 ($H+\Delta H$, $h+\Delta h$, l) =const-----(2)

(2)式を Taylor 展開し、第4次以上の高次偏微係数を無視すれば、

$$\theta (H, h, l) + \left(\Delta H \frac{\partial}{\partial H} + \Delta h \frac{\partial}{\partial h} \right) \theta (H, h, l) + \frac{1}{2} \left(\Delta H \frac{\partial}{\partial H} + \Delta h \frac{\partial}{\partial h} \right)^{2} \theta (H, h, l) + \frac{1}{3} \left(\Delta H \frac{\partial}{\partial H} + \Delta h \frac{\partial}{\partial h} \right)^{3} \theta (H, h, l)$$

$$= \text{const.}$$

(1)と(3)より

今,任意地点の水位変化高 4h を背水下流端の水位変化高4Hの函数として表はすものとする。

$$\Delta h = f(\Delta H) \cdots (5)$$

この式の右辺を多項式で表はすものとすれば,

$$\Delta h = a\Delta H + b\Delta H^2 + c\Delta H^3 \cdots (6)$$

(6)を(4)へ代入して得られる方程式は ΔH の全ての値に対して成立つ故、

$$a \frac{\partial \theta}{\partial h} + \frac{\partial \theta}{\partial H} = 0,$$

$$2b \frac{\partial \theta}{\partial h} + a^2 \frac{\partial^2 \theta}{\partial h^2} + 2a \frac{\partial^2 \theta}{\partial h \partial H} + \frac{\partial^2 \theta}{\partial H^2} = 0,$$

$$6c \frac{\partial \theta}{\partial h} + 6ab \frac{\partial^2 \theta}{\partial h^2} + 6b \frac{\partial^2 \theta}{\partial h \partial H} + a^3 \frac{\partial^3 \theta}{\partial h^3} + 3a^2 \frac{\partial^3 \theta}{\partial h^2 \partial H}$$

$$+3a \frac{\partial^3 \theta}{\partial h \partial H^2} + \frac{\partial^3 \theta}{\partial H^3} = 0,$$

3. 個々の背水公式に対する適用

前節に述べた4hと4Hの関係を一般に知られた背水公式について求めてみよう。

i) 広矩形断面

A. Grashof-Bresse 公式

$$v = CV hi, \frac{d}{dx} \left(\frac{v^2}{2g}\right) \rightleftharpoons 0,$$

$$\theta (H, h, l) = il = (H - h) + h_o \left(1 - \frac{h_c^3}{h_o^3}\right) \left[B\left(\frac{h_o}{h}\right) - B\left(\frac{h_o}{H}\right)\right].$$

$$2k = B\left(\frac{h_o}{h}\right) = \frac{1}{6} \ln \frac{h^2 + hh_o + h_o^2}{(h - h_o)^2} + \frac{1}{V3} \arctan \frac{2h + h_o}{\sqrt{3h_o}},$$

 h_o : 等流水深, h_c : 限界水深.

よつて次の式を得る。

これらの諸式を(7)へ代入する事により係数a, b, c, を求める事ができ従って(6) より Δh と ΔH の関係が得られる

B. Schaffernak 公式

$$v = 34h^{\frac{3}{4}} i^{0.5} = Ch^{\frac{3}{4}} i^{0.5}, \quad \frac{d}{dx} \left(\frac{v^2}{2g}\right) = 0,$$

$$\emptyset (H, h, l) = il = h_0 \left[f\left(\frac{H}{h_0}\right) - f\left(\frac{h}{h_0}\right) \right].$$

D. Ehrenberger 公式

$$h_{o} < 2.0_{\text{m}} \cdots r = 3.88, \qquad h_{o} \ge 2.0_{\text{m}} \cdots r = 3.67.$$

$$\therefore \frac{\partial \emptyset}{\partial h} = -\frac{hr}{h^{\prime} - h_{o'}}, \qquad \frac{\partial \emptyset}{\partial H} = \frac{H^{\prime}}{H^{\prime} - h_{o'}},$$

$$\frac{\partial^{2} \emptyset}{\partial h^{2}} = \frac{r h_{o'} h^{\prime} - 1}{(h^{\prime} - h_{o'})^{2}}, \qquad \frac{\partial^{2} \emptyset}{\partial H^{2}} = -\frac{r h_{o'} H^{\prime} - 1}{(H^{\prime} - h_{o'})^{2}},$$

$$\frac{\partial^{3} \emptyset}{\partial h^{3}} = -\frac{r h_{o'} h^{\prime} - 2 \left[(r+1) h^{\prime} + (r-1) h_{o'} \right]}{(h^{\prime} - h_{o'})^{3}},$$

$$\frac{\partial^{3} \emptyset}{\partial H^{3}} = \frac{r h_{o} H^{\prime} - 2 \left[(r+1) H^{\prime} + (r-1) h_{o'} \right]}{(H^{\prime} - h_{o'})^{3}},$$

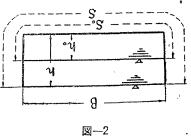
$$\frac{\partial^{2} \emptyset}{\partial h \partial H} = 0, \qquad \frac{\partial^{3} \emptyset}{\partial h^{2} \partial H} = 0, \qquad \frac{\partial^{3} \emptyset}{\partial h \partial H^{2}} = 0.$$

$$\text{ii)} \quad \stackrel{\text{Heff Heff in}}{\text{Heff in}}$$

ii)普通矩形断面

Dupuit-Masoni 公式

$$v = C_{V} Ri$$
, $\frac{d}{dx} \left(\frac{v^{2}}{2g} \right) \rightleftharpoons 0$, $\Phi(H, h, l) = il = (H - h)$ $+ h_{0} \left[f_{d} \left(\frac{H}{h_{0}} \right) - f_{d} \left(\frac{h}{h_{0}} \right) \right]$



数に
$$f_d\left(\frac{h}{h_o}\right) = \frac{1}{2} \frac{1-\beta+2\beta\frac{h_o}{S_o}}{3-2\frac{h_o}{S_o}} \ln\frac{(h-h_o)^2}{h^2+h_oh+h_o^2-2\frac{h_o^3}{S_o}}$$

$$+\frac{1}{3-2\frac{h_o}{S_o}} \cdot \frac{-3\left(1-\beta-4\frac{h_o}{S_o}+2\beta\frac{h_o}{S_o}\right)-8\left(\frac{h_o}{S_o}\right)^2}{\sqrt{3-8\frac{h_o}{S_o}}}$$

$$\times \arctan \frac{2h+h_o}{h_o \sqrt{3-8\frac{h_o}{S_o}}}$$

$$\begin{array}{ll} \exists \ \ \, \beta = \frac{\alpha C^2 i}{g}, & S_o = B + 2h_o, & \alpha = \frac{10}{9}. \\ \\ \therefore \ \, \frac{\partial \emptyset}{\partial h} = -\frac{h^3 - p}{h^3 - qh + r}, & \frac{\partial \emptyset}{\partial H} = \frac{H^3 - p}{H^3 - qH + r}, \\ \\ \frac{\partial^2 \emptyset}{\partial h^2} = \frac{2qh^3 - 3(p+r)h^2 + pq}{(h^3 - qh + r)^2}, & \frac{\partial^2 \emptyset}{\partial H^2} = -\frac{2qH^3 - 3(p+r)H^2 + pq}{(H^3 - qH + r)^2}, \end{array}$$

$$\frac{\partial^{3} \varPhi}{\partial h^{3}} \; = \; - \; \; \frac{2 \left(3qh^{5} - 6 \left(p + r \right) h^{4} + q^{2}h^{3} - 3q \left(r - p \right) h^{2} + 3r \left(p + r \right) h - pq^{2} \right)}{(h^{3} - qh + r)^{3}} \; , \label{eq:delta_phi}$$

$$\frac{\partial^3 \varPhi}{\partial H^3} = \frac{2(3qH^5 - 6(\cancel{p} + r)H^4 + q^2H^3 - 3q(\cancel{r} - \cancel{p})H^2 + 3r(\cancel{p} + r)H - \cancel{p}q^2)}{(H^3 - qH + r)^3}$$

$$\frac{\partial^2 \Phi}{\partial h \partial H} = 0, \qquad \frac{\partial^3 \Phi}{\partial h^2 \partial H} = 0, \qquad \frac{\partial^3 \Phi}{\partial h \partial H^2} = 0.$$

数に
$$p = \beta h_o^3 \left(1 - 2\frac{h_o}{S_o}\right), \quad q = 2\frac{h_o^3}{S_o}, \quad r = 2\frac{h_o^4}{S_o} - h_o^3.$$

iii) 広拋物線形断面

$$v = C_{1} / Ri , \qquad \frac{d}{dx} \left(\frac{v^{2}}{2g} \right) \approx 0 ,$$

$$\theta (H, h, l) = il = h_{0} \left\{ \frac{H - h}{h_{0}} \left(-\frac{h_{c}}{h_{0}} \right)^{4} + \left(1 - \frac{h_{c}^{4}}{h_{0}^{4}} \right) \left[F \left(\frac{H}{h_{0}} \right) - F \left(\frac{h}{h_{0}} \right) \right] \right\} .$$

$$\pm i / \left\{ \frac{h}{h_{0}} \right\} = \frac{h}{h_{0}} - \left(\frac{1}{4} \ln \frac{h + h_{0}}{h - h_{0}} + \frac{1}{2} \arctan \frac{h}{h_{0}} \right) .$$

$$\vdots \frac{\partial \theta}{\partial h} = -\frac{h^{4} - h_{c}^{4}}{h^{4} - h_{0}^{4}} , \qquad \frac{\partial \theta}{\partial H} = \frac{H^{4} - h_{c}^{4}}{H^{4} - h_{0}^{4}} ,$$

$$\frac{\partial^{2} \theta}{\partial h^{2}} = \frac{4h^{3} \left(h_{0}^{4} - h_{c}^{4} \right)}{\left(h^{4} - h_{0}^{4} \right)^{2}} , \qquad \frac{\partial^{2} \theta}{\partial H^{2}} = -\frac{4H^{3} \left(h_{0}^{4} - h_{c}^{4} \right)}{\left(H^{4} - h_{0}^{4} \right)^{2}} ,$$

$$\frac{\partial^{3} \theta}{\partial h^{3}} = -\frac{4h^{2} \left(h_{0}^{4} - h_{c}^{4} \right) \left(5h^{4} + 3h_{0}^{4} \right)}{\left(H^{4} - h_{0}^{4} \right)^{3}} ,$$

$$\frac{\partial^{3} \theta}{\partial h^{3}} = \frac{4H^{2} \left(h_{0}^{4} - h_{c}^{4} \right) \left(5H^{4} + 3h_{0}^{4} \right)}{\left(H^{4} - h_{0}^{4} \right)^{3}} ,$$

$$\frac{\partial^{2} \theta}{\partial h^{3}} = 0 , \qquad \frac{\partial^{3} \theta}{\partial h^{2} \partial H} = 0 , \qquad \frac{\theta^{3} \theta}{\partial h^{3} \partial H^{2}} = 0 .$$

iv) 一般断面

A. 物部公式

$$A = ah^{s}, \qquad S = bh^{k}, \qquad R = \frac{a}{b}h^{s-k}, \qquad v_{0} = CR_{0}m_{i}^{0.5},$$

$$\theta (H, h, l) = \frac{il}{h_{0}} = \theta_{1}\left(\frac{H}{h_{0}}\right) - \theta_{1}\left(\frac{h}{h_{0}}\right) - K\left[\theta_{2}\left(\frac{H}{h_{0}}\right) - \theta_{2}\left(\frac{h}{h_{0}}\right)\right].$$

$$C = \theta_{1}\left(\frac{h}{h_{0}}\right) = \int \frac{y^{r}}{y^{r}-1}dy, \qquad \theta_{2}\left(\frac{h}{h_{0}}\right) = \int \frac{y^{r}(r^{-2s})^{-1}}{y^{r}-1}dy,$$

$$K = \alpha s \frac{v_{0}^{2}}{gh_{0}}, \qquad \alpha = \frac{10}{9}, \qquad r = 2s + 2m(s-k), \qquad y = \frac{h}{h_{0}} > 1.$$

$$\therefore \frac{\partial \theta}{\partial y} = -\frac{y^{r}}{y^{r}-1} + K\frac{y^{(r^{-2s})-1}}{y^{r}-1}, \qquad \frac{\partial \theta}{\partial Y} = \frac{Y^{r}}{Y^{r}-1} - K\frac{Y^{(r^{-2s})-1}}{Y^{r}-1},$$

$$\frac{\partial^{2}\theta}{\partial y^{2}} = \frac{ry^{r-1}}{(y^{r}-1)^{2}} - K\frac{\left((2s+1)y^{r} + (r-2s-1)\right)y^{r-2s-2}}{(y^{r}-1)^{2}},$$

$$\frac{\partial^{2}\theta}{\partial Y^{2}} = -\frac{rY^{r-1}}{(Y^{r}-1)^{2}} + K\frac{\left((2s+1)Y^{r} + (r-2s-1)\right)Y^{r-2s-2}}{(Y^{r}-1)^{2}},$$

$$\frac{\partial^{3}\theta}{\partial y^{3}} = -\frac{y^{r-2}\left((r^{2}+r)y^{r} + (r^{2}-r)\right)}{(y^{r}-1)^{3}}$$

$$+ K\frac{y^{q-2}\left(ry^{r}\left(py^{r} + r + q\right) - (q-1)\left(py^{r} + q\right)\left(y^{r}-1\right)\right)}{(y^{r}-1)^{3}},$$

$$\begin{split} \frac{\partial^3 \theta}{\partial Y^3} &= \frac{Y^{\prime-2} \left[\; (r^2+r) \; Y^{\prime} + (r^2-r) \; \right]}{(Y^{\prime}-1)^3} \\ &- K \frac{Y^{q-2} \left[r Y^{\prime} \left(p Y^{\prime} + r + q \right) - \left(q - 1 \right) \left(p Y^{\prime} + q \right) \left(Y^{\prime} - 1 \right) \right]}{(Y^{\prime}-1)^3}, \\ \frac{\partial^2 \theta}{\partial y \partial Y} &= 0 \; , \qquad \frac{\partial^3 \theta}{\partial y^2 \partial Y} &= 0 \; , \qquad \frac{\partial^3 \theta}{\partial y \partial Y^2} &= 0 \; . \end{split}$$

$$\frac{\partial x}{\partial y} = \frac{h}{h_o}, \qquad Y = \frac{h}{h_o}, \qquad y = 2s + 1, \qquad q = r - 2s - 1, \end{split}$$

B. Poirée 公式

この公式は、水理学的根拠なし。背水曲線は拋物線をもつて表はしている。

$$\begin{split} \vartheta\left(H,h,l\right) &= il = H - h + \frac{i^2 l^2}{4 \left(H - h_o\right)} \,. \\ \therefore & \frac{\partial \vartheta}{\partial h} = -1 \,, & \frac{\partial \vartheta}{\partial H} = 1 \, - \frac{i^2 l^2}{4 \left(H - h_o\right)^2} \,, \\ & \frac{\partial^2 \vartheta}{\partial h^2} = 0 \,, & \frac{\partial^2 \vartheta}{\partial H^2} = \frac{i^2 l^2}{2 \left(H - h_o\right)^3} \,, \\ & \frac{\partial^3 \vartheta}{\partial h^3} = 0 \,, & \frac{\partial^3 \vartheta}{\partial H^3} = - \, \frac{3i^2 l^2}{2 \left(H - h_o\right)^4} \,, \\ & \frac{\partial^2 \vartheta}{\partial h \partial H} = 0 \,, & \frac{\partial^3 \vartheta}{\partial h^2 \partial H} = 0 \,, & \frac{\partial^3 \vartheta}{\partial h \partial H^2} = 0 \,. \end{split}$$

以上堰上背水に対してのみに就いて記したが、低下背水の場合にも同様適用し得る。

4. 計 算 例

今次の様な条件のもとに、前述の諸公式に対するAhの式を求めてみよう。

$$H=10\mathrm{m}, \qquad \qquad h=5\mathrm{m}, \qquad \qquad h_o=2\mathrm{m}, \qquad \qquad h_c=1\mathrm{m},$$

i) 広矩形断面

A. Grashof—Bresse 公式

$$\frac{\partial \theta}{\partial h} = -1.0598, \qquad \frac{\partial \theta}{\partial H} = 1.0071 \qquad \therefore \quad a = 0.9502$$

$$\frac{\partial^2 \theta}{\partial h^2} = 0.03835, \qquad \frac{\partial^2 \theta}{\partial H^2} = -0.002134, \qquad \therefore \quad b = 0.0153$$

$$\frac{\partial^3 \theta}{\partial h^3} = -0.03383, \qquad \frac{\partial^3 \theta}{\partial H^3} = 0.000864, \qquad \therefore \quad c = -0.004$$

$$\Delta h = 0.950 \Delta H + 0.015 \Delta H^2 - 0.004 \Delta H^3$$

B. Schaffernak 公式

$$\frac{\partial \psi}{\partial h} = -1.0422, \qquad \frac{\partial \psi}{\partial H} = 1.0036, \qquad \therefore \quad a = 0.9630$$

$$\frac{\partial^2 \psi}{\partial h^2} = 0.03077, \qquad \frac{\partial^2 \psi}{\partial H^2} = -0.001268, \qquad \therefore \quad b = 0.0131$$

$$\frac{\partial^{3} \phi}{\partial h^{3}} = -0.02949, \qquad \frac{\partial^{3} \phi}{\partial H^{3}} = 0.000570, \qquad \therefore \quad c = -0.004$$

$$\Delta h = 0.963\Delta H + 0.013\Delta H^{2} - 0.004\Delta H^{3}$$

C. Schoklitsch 公式

この式は採用する流速公式に依り多少異なるから、代表的な流速公式を用いた場合について求める。

1) Chéyz type
$$m = 0.5$$
 $R = 0.5$ $\therefore \alpha = 3$
$$\frac{\partial \emptyset}{\partial h} = -1.0684, \qquad \frac{\partial \emptyset}{\partial H} = 1.0081, \qquad \therefore a = 0.9436,$$

$$\frac{\partial^2 \emptyset}{\partial h^2} = 0.04383, \qquad \frac{\partial^2 \emptyset}{\partial H^2} = -0.002438, \qquad \therefore b = 0.0171,$$

$$\frac{\partial^3 \emptyset}{\partial h^3} = -0.03866, \qquad \frac{\partial^3 \emptyset}{\partial H^3} = 0.000990, \qquad \therefore c = -0.004,$$

 $\Delta h = 0.944 \Delta H + 0.017 \Delta H^2 - 0.004 \Delta H^3$

2) Manning type
$$m = \frac{2}{3}$$
, $R = 0.5$, $\therefore \alpha = \frac{10}{3}$, $\frac{\partial \theta}{\partial h} = -1.0495$, $\frac{\partial \theta}{\partial H} = 1.0047$, $\therefore a = 0.9573$, $\frac{\partial^2 \theta}{\partial h^2} = 0.03463$, $\frac{\partial^2 \theta}{\partial H^2} = -0.001574$, $\therefore b = 0.0144$, $\frac{\partial^3 \theta}{\partial h^3} = -0.03230$, $\frac{\partial^3 \theta}{\partial H^3} = 0.000688$, $\therefore c = -0.004$, $\Delta h = 0.957 \Delta H + 0.014 \Delta H^2 - 0.004 \Delta H^3$

3) Forchheimer type m = 0.7, R = 0.5 $\therefore \alpha = 3.4$, $\frac{\partial \Phi}{\partial h} = -1.0464$, $\frac{\partial \Phi}{\partial H} = 1.0042$, $\therefore a = 0.9597$, $\frac{\partial^2 \Phi}{\partial h^2} = 0.03303$, $\frac{\partial^2 \Phi}{\partial H^2} = -0.001440$, $\therefore b = 0.0138$, $\frac{\partial^3 \Phi}{\partial h^3} = -0.03115$, $\frac{\partial^3 \Phi}{\partial H^3} = 0.000628$, $\therefore c = -0.004$

$$\Delta h = 0.960 \, \Delta H + 0.014 \, \Delta H^2 - 0.004 \, \Delta H^3$$

4) Hermanek txpe m=0.75, R=0.5, $\alpha=3.5$ この場合には、Schaffernak 公式のときと全く同じ、即ち

 $\Delta h = 0.963 \, \Delta H + 0.013 \, \Delta H^2 - 0.004 \, \Delta H^3$

D. Ehrenberger 公式

$$h_o=2$$
m なる故, $r=3.67$ として計算する。 $\frac{\partial \theta}{\partial h}=-1.0359, \qquad \frac{\partial \theta}{\partial H}=1.0027, \qquad \therefore \quad a=0.9680,$

$$\frac{\partial^2 \phi}{\partial h^2} = 0.02728, \qquad \frac{\partial^2 \phi}{\partial H^2} = -0.001004, \qquad \therefore \quad b = 0.0119,$$

$$\frac{\partial^3 \phi}{\partial h^3} = -0.02692, \qquad \frac{\partial^3 \phi}{\partial H^3} = 0.000470, \qquad \therefore \quad c = -0.004,$$

 $\Delta h = 0.968 \, \Delta H + 0.012 \, \Delta H^2 - 0.004 \, \Delta H^3$

ii) 普通矩形断面

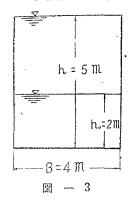
Dupuit-Masoni 公式(水路幅と等流水深との比が2:1の場合)

$$\frac{\partial \theta}{\partial h} = -1.1216, \qquad \frac{\partial \theta}{\partial H} = 1.0241, \qquad \therefore \quad a = 0.9130,$$

$$\frac{\partial^2 \theta}{\partial h^2} = 0.06197, \qquad \frac{\partial^2 \theta}{\partial H^2} = -0.005302, \qquad \therefore \quad b = 0.0207,$$

$$\frac{\partial^3 \theta}{\partial h^3} = -0.04864, \qquad \frac{\partial^3 \theta}{\partial H^3} = 0.000879, \qquad \therefore \quad c = -0.004,$$

 $\Delta h = 0.913 \, \Delta H + 0.021 \, \Delta H^2 - 0.004 \, \Delta H^3$



iii) 広拋物線形断面

Tolkmitt 公式

$$\frac{\partial \Phi}{\partial h} = -1.0246, \qquad \frac{\partial \Phi}{\partial H} = 1.0015, \qquad \therefore \quad a = 0.9774,$$

$$\frac{\partial^2 \Phi}{\partial h^2} = 0.02022, \qquad \frac{\partial^2 \Phi}{\partial H^2} = -0.000602, \qquad \therefore \quad b = 0.0091,$$

$$\frac{\partial^3 \Phi}{\partial h^3} = -0.02107, \qquad \frac{\partial^3 \Phi}{\partial H^3} = 0.000302, \qquad \therefore \quad c = -0.003,$$

$$\Delta h = 0.977 \, \Delta H + 0.009 \, \Delta H^2 - 0.003 \, \Delta H^3$$

iv) 一般断面

A. 物部公式

この式は採用する断面及流速公式に依り異なる故、今三角形断面に して流速公式は Chézy 公式を用ひた場合に対して求めてみる。 三角形断面の場合には s=2.0, k=1.0, Chézy 公式より m=0.5,

叉
$$h_c=1$$
mなる故 $Q^2=3gh_c^5/2$ より $Q=\sqrt{14.7}m^3/{
m sec}$ ∴ $K=0.0347$

但
$$\theta = 30^{\circ}$$
 依つて $r = 5$, $p = 5$, $q = 0$,

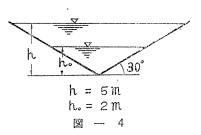
$$y=rac{h}{h_0}=2.5,$$
 $Y=rac{H}{h_0}=5,$ より Δh の式は次の様になる。

$$\frac{\partial \theta}{\partial y} = -1.0100,$$
 $\frac{\partial \theta}{\partial y} = 1.0003,$ $\therefore a = 0.9904,$

$$\frac{\partial^2 \theta}{\partial y^2} = 0.02018, \qquad \frac{\partial^2 \theta}{\partial Y^2} = -0.000309, \qquad \therefore \quad b = 0.00965,$$

$$\frac{\partial^3 \theta}{\partial y^3} = -0.04927, \qquad \frac{\partial^3 \theta}{\partial Y^3} = 0.000371, \qquad c = -0.008,$$

然るに
$$\frac{d\theta}{dh}=\frac{d\theta}{dy}\frac{dy}{dh}$$
, $\frac{dy}{dh}=\frac{1}{h_o}=\frac{1}{2}$ なる故 $\Delta h=0.990\,\Delta H+0.005\Delta H^2-0.002\Delta H^3$



B. Poirée 公式

この公式へ H=10m, h=5m, $h_o=2$ m を代入すれば il=6.20204,

依つて
$$\frac{\partial \phi}{\partial h} = -1$$
, $\frac{\partial \phi}{\partial H} = 0.8497$, $\therefore a = 0.8497$, $\frac{\partial^2 \phi}{\partial h^2} = 0$, $\frac{\partial^2 \phi}{\partial H^2} = -0.03756$, $\therefore b = 0.0188$,

$$\frac{\partial^3 \Phi}{\partial h^3} = 0$$
, $\frac{\partial^3 \Phi}{\partial H^3} = 0.014086$, $\therefore c = -0.002$,

 $\Delta h = 0.850 \, \Delta H + 0.019 \, \Delta H^2 - 0.002 \, \Delta H^3$

以上総括すると

背水公式	∆h~∆H 式	備 考
Grashof-Bresse	$\Delta h = 0.950 \Delta H + 0.015 \Delta H^2 - 0.004 \Delta H^3$	The state of the s
Schaffernak	$\Delta h = 0.963 \Delta H + 0.013 \Delta H^2 - 0.004 \Delta H^3$	
Schoklitsch	$\Delta h = 0.944 \Delta H + 0.017 \Delta H^2 - 0.004 \Delta H^3$	Chèzy流速公式を用ひた 場合
"	$\Delta h = 0.957 \Delta H + 0.014 \Delta H^2 - 0.004 \Delta H^3$	Manning "
· //	$\Delta h = 0.960 \Delta H + 0.014 \Delta H^2 - 0.004 \Delta H^3$	Forchheimer "
"	$\Delta h = 0.963 \Delta H + 0.013 \Delta H^2 - 0.004 \Delta H^3$	Hermanek "
Ehrenberger	$\Delta h = 0.968 \Delta H + 0.012 \Delta H^2 - 0.004 \Delta H^3$	
Dupuit-Masoni	$\Delta h = 0.913 \Delta H + 0.021 \Delta H^2 - 0.004 \Delta H^3$	水路幅と等流水深の比 2: 1の場合
Tolkmitt	$\Delta h = 0.977 \Delta H + 0.009 \Delta H^2 - 0.003 \Delta H^3$	
物部	$\Delta h = 0.990 \Delta H + 0.005 \Delta H^2 - 0.002 \Delta H^3$	三角形断面にして θ =30° Chézy流連公式を用ひた 場合
Poiree	$\Delta h = 0.850 \Delta H + 0.019 \Delta H^2 - 0.002 \Delta H^3$	参 门

但し,H=10m, h=5m $h_0=2$ m $h_c=1$ m

5. 結 言

以上述べた様に(6)及び(7)式より $4h\sim 4H$ の関係式が求まるが,基本式は定流状態で且つ底勾配も一定であると云ふ仮定のもとに誘導したものであるから,不定流の場合には通常の背水公式と同様に別個に考慮しなくてはならない。又底勾配や水路巾が変化する場合には適当に区分して計算する事は背水計算の場合と同様である。又以上の関係式は堰上の場合のみについて求めたのであるが,低下背水に対しても同様の方法で関係式を求める事ができる。計算例では種々の背水公式に対して適用したが大体同様な値を得た。尙係数 a, b, c, の性質も一部明かになつたがこれは 次の機会に譲る事にする。

終りに、本研究は、27年度文部省科学試験研究費による成果の一部で尚、終始御指導 を賜つた谷本教授、吉田講師に対しあわせて謝意を表します。