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Abstract 

The formulae including the in-plane stiffness and bending stiffness coefficients, and coupling 

effect in out-plane were presented for analyzing characterization of wave propagation. Using the 

present formulae, the wave velocities can be calculated in any case of laminated plates including 

non-symmetric lamination. In this study, the characteristics of wave propagation in thin laminated 

plates were investigated in detail. Five modes including symmetric modes and anti-symmetric 

modes were obtained from the proposed formulae. For each mode, the wave velocities of laminated 

plates were investigated in different conditions such as plate thickness, stacking sequence and 

vibrational frequency. 
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1. Introduction 

In recent years, thin plate structures have been widely applied in many fields including aircraft 

and spacecraft external skins and pressure vessels due to weight and energy-saving. However, some 

damages like matrix cracking, delamination, transverse cracking and fiber breakage are required to 

be detected in real-time. The energy released from these damages may give rise to small surface 

displacements and cause transient elastic waves in materials. Thus, the wave propagation is 

necessary to detect damage mechanism and to predict damage life in materials or structures. Wave 

propagation of thin plates usually takes the form of lamb waves [1], and can be divided into three 

types: One type is called symmetric mode because the deformations are symmetric about the 

mid-plane of the plates; the second type is called anti-symmetric mode due to the deformations with 

anti-symmetric about the mid-plane; the third type is called shear horizontal (SH) mode, in which the 

transverse particle vibrations are horizontal to the plane. Lame et al. and Rayleigh et al. [2] have 

reported the propagation characteristics of the waves in a thin plate, which are dependent on the plate 

thickness and boundary conditions in addition to the elastic properties and density of the materials. 

For symmetric laminated plates, the formulae of wave velocity were presented by Tang et al. [3]. 

Yamada et al. have studied the source location of impact [4]. And also, by exciting waves and 

measuring the characterization of these waves propagating in materials, the mechanical properties of 

the materials could be determined [5, 6]. 

In this study, the valuation formulae of wave velocity for arbitrarily-laminated plates were 

derived based on first order shear deformation theory. Using the proposed formulae, the wave 

velocities can be calculated in any case of laminated plates including non-symmetric lamination. 

Moreover, the influences of the propagating direction, the plate thickness and the stacking sequence 

on the wave velocity were investigated in detail. 

 

2. Theoretical approach 

    In this study, coupling stiffness and rotary inertia coefficients [7] are considered to develop the 

evaluation formula of the wave velocity in arbitrarily-laminated plates. Coordinate system of a 

laminated plate is shown in Fig. 1. The x and y axes are in the mid-plane, the z axis is normal to the 

lamina with its origin at the mid-plane, f indicates the direction of the fiber orientation, and h is the 

thickness of the plate. u, v and w are displacement components along the x, y and z directions, 

respectively. According to the first order shear deformation theory of laminated plates, the 

displacements of the laminated plates is defined as 
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where u0 and v0 are the mid-plane displacement components, and ψx and ψy are the rotation 

components along x and y directions, respectively. 
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    The constitutive relations related to the force and moment resultants can be given by 
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where Qx and Qy are the force and moment resultants per unit length along x and y directions, 

respectively. The Aij are the in-plane stiffness coefficients, the Dij are the bending stiffness 

coefficients, and the Bij are the coupling stiffness in-plane considering the bending effects. Aij, Bij and 

Dij are defined as 
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where the Qij are the transverse shear stiffness [8]. The superscript l refers to the layer number of the 

laminated plates. The ki and kj are shear correction factors with 6554

2

5

2

4  kkkk . 

From the derivation of the classical governing equation for in-plane motion and the derivation 

of the equation, the equations of motion are given by 
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where  ρ is the mass density. 

    Considering the directional dependence, the waves propagating in the plane of laminated plates 

have the forms 
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where k is the wave number. m is the direction cosine between the wave propagation and the x axis, 

and n is the direction cosine between the wave propagation and the y axis. ω is the circular frequency, 

and Aαx, Aαy, Ψx, Ψy and W are the amplitudes of the waves. 

Substituting Eq. (6) into Eq. (4), the matrix of coefficients for symmetric and anti-symmetric 

modes is expressed as 
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According to previous research [3, 9], it is known that S-matrix is regarded as the symmetric 

mode, while A-matrix is regarded as the anti-symmetric mode. In this study, these modes are 

involved in one matrix including other elements. Thus, the wave velocity can be calculated more 

exactly in any case of laminates, including non-symmetric laminates. The phase velocity (ω/k) can 

be obtained when the determinant is set equal to zero. 

 

3. Valuation of wave propagation 

    In this study, the characterization of the wave propagation in symmetric laminated plates was 

valuated based on the proposed formula. The wave velocities were calculated with the properties 

shown in Table 1. 

     Figure 2 shows the velocity dispersion curves of a 16-ply unidirectional laminated plate in 

different direction of wave propagation. We assume that the fiber orientation is in the direction of 0
o
. 

It is well known that the velocity of symmetric mode is a constant, while the velocity of 

anti-symmetric mode has different values for changing frequency. S0
’
 and S0 as shown in Fig.2 are 

symmetric modes, while A0, A1 and A2 were anti-symmetric modes. 

    Comparing Fig. 2-a), 2-b) and 2-c), the influence of the propagating direction on the wave 

velocity is investigated. The velocities of S0
’
 mode are 1453 m/s, 1887 m/s and 1453 m/s along the 
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fiber direction, 45
o
 and 90

o
 directions, respectively. The velocities of S0 mode are 4660 m/s, 3555 m/s 

and 2541 m/s, respectively. In these modes, the waves excite particle displacement components 

along not only propagating direction but also perpendicular to propagating direction. Generally, the 

wave of S0
’
 mode is called the quasi-in-plane shear wave, and the wave of S0 mode called 

quasi-extensional wave. The quasi-extensional wave has larger component of its particle 

displacement in the direction of wave propagation [10]. The velocities of A1 and A2 modes occurred 

in the frequencies of over 453 kHz and 457 kHz, respectively. It can be found that the velocities 

decreased sharply with increasing frequency. The A0 mode has the smallest velocity in all of modes. 

Figure 3 shows the velocity curves of A0 mode of a 16-ply unidirectional laminated plate in different 

propagating directions. At the same frequency, the wave velocity is the largest value when the wave 

propagates along the fiber orientation, and it has the smallest value in the direction perpendicular to 

the fiber orientation. However, the velocities of A0 mode increase with increasing frequency and then 

reach a plateau.  

Figure 4 shows the velocity dispersion curves of an 8-ply unidirectional laminated plate in the 

direction perpendicular to fiber. The velocities of S0
’
 and S0 modes are 1453 m/s and 2541 m/s, 

respectively, and are the same as that in a 16-ply unidirectional laminated plate. The velocities of A1 

and A2 modes appear when the frequencies (called the critical frequency) are over 905 kHz and 913 

kHz, respectively. Comparing with the results shown in Fig. 2-c), the critical frequencies in the 8-ply 

unidirectional laminated plate are about twice as large as those in the 16-ply unidirectional laminated 

plate. For A0 mode, the velocity curves of the 8-ply plate with different thicknesses are shown in Fig. 

5. It is clearly observed that the velocity of A0 mode in a thick laminated plate is larger than that in 

the thin one when the frequency is low. However, all of the velocities increase with increasing 

frequency and hold the same value. 

Figure 6 shows the velocity dispersion curves of a quasi-isotropic laminated plate 

([45/-45/0/90]2s) and a cross-ply laminated plate ([0/90]4s). The velocities of S0
’
 and S0 mode are 

1969 m/s and 3510 m/s for [45/-45/0/90]2s, and 1453 m/s and 3753 m/s for [0/90]4s, respectively. It is 

found that the stacking sequence affects the wave propagation of symmetric modes. For the 

frequency larger than 455 kHz, the velocities of A1 and A2 modes for [45/-45/0/90]2s and [0/90]4s are 

close to the same value. The velocity dispersion curves of A0 mode in plates with different stacking 

sequences are shown in Fig. 7. The velocities in the plates of [45/-45/0/90]2s and [0/90]4s are just 

between 0
o
 and 90

o
 directions of unidirectional laminated plates. 

 

4. Conclusions 

According to the first order shear deformation theory, the formulae including the effects of the 

shear deformation and rotary inertia were derived to evaluate the velocity of wave propagation in the 

arbitrarily-laminated plates. Based on the present theoretical analysis, the influences of the plate 

thicknesses and the frequency on the velocities of wave propagation in the symmetric laminated 

plates were investigated. 
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Five modes including symmetric modes (S0
’
 and S0) and anti-symmetric modes (A0, A1 and A2) 

were derived with the present formulae. The dispersion of symmetric modes is independent on the 

frequency of vibration, and the velocities for each mode were hardly affected by the thickness of 

laminated plates. For anti-symmetric modes, the velocities of A0 mode increased with increasing 

frequency, while the velocities of A1 and A2 modes decreased. The frequencies, at which A1 and A2 

modes occurred, were affected by the thickness of laminated plates. Furthermore, the results of the 

laminated plates with different stacking sequences were obtained and the velocity dependence of 

stacking angles was made clear.  

The further study will be done to verify the theoretical results with experiments and to 

investigate the wide range of application to a delamination problem. 
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Table 1 Material properties of GFRP 

E1(GPa) E2(GPa) G33(GPa)  12  (g/cm
3
) 

38.05 10.45 4.03 0.32 1.91 
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Figure 1 Coordinate axes of a laminated plate. 
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Figure 2 Dispersion curves of 16-ply unidirectional laminated plate. 

(a) Wave propagating along fiber orientation. (b) Wave propagating along the direction of 45 degree with 

fiber orientation. (c) Wave propagating perpendicular to fiber orientation. 
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Figure 3 Velocity curves of A0 mode of 16-ply unidirectional laminated plate in different propagating 

directions. 
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Figure 4 Dispersion curves of 8-ply unidirectional laminated plate in the direction perpendicular to fiber. 
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Figure 5 Velocity curves of A0 mode of unidirectional laminated plates in the direction perpendicular to fiber 

with different thicknesses. 
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Figure 6 Influence of stacking sequence on dispersion curves along 0 degree direction of propagation. 

(a) Dispersion curves of [45/-45/0/90]2s laminated plate. (b) Dispersion curves of [0/90]4s laminated plate. 
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Figure 7 Velocity curves of A0 mode of 16-ply laminated plate with different stacking sequences. 
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