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INTRODUCTION

When a thread is wound up on a bobbin in factories, a. mechanism of
traverse motion is usually used in order to wind up regularly, to interrupt
adhering the threads each other, to unwind smoothly etc. In the case of
traverse winding, as we treated in the previous paper®, the configuration of
the thread wound up is expressed by a function of winding velocity, traverse
velocity, distance between the bobbin and the traverse bar etc. But in the
winding mechanism of the lifting machines such as crane or hoist it is
possible to wind up a wire regularly without traverss, and also in the case of
rereeling of a thread in home sewing machine, the traverse motion is not
usually used. When the thread is wound on the bobbin, the thread shows a
tendency to take the most stable place and this property is used efficiently
in these machines.

The condition of the “Non-traverse motion winding” and the most suitable
type of bobbin for it were investigated.

FUNDAMENTAL EQUATION OF THE TRAVERSE MOTION

A cylindrical bobbin is used for simple analysis. In Fig. 1, take coordi-
nate x in the direction of the traverse bar 1 and coordinate & in parallel
to the axis (5) of the bobbin including point 2, where the thread passed
through a thread guide (2) on the traverse bar comes in contact with the
bobbin 3. And the relation between the traverse motion x = i) and the
configulation of the thread wound up on the cylindrical bobbin £=£(f) is

where /: distance between the bobbin and the traverse bar and

v : winding velocity (=ray).
For convenience, let I/v=I/r=c be a constant which has a dimension of time.
Then equation (1) becomes
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It is called “Fundamental equation of traverse motion”.
When the motion of the traverse bar x = x(f) is given analytically, this
equation can be solved. For example, in the case of simple harmonic motion;

X = @8I Wf ceorerevarrrenas e ...........‘....“..................;..........(3)
we get in steady state;
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where 2a : traverse (double amplitude)
b : amplitude of responsed motion.
From equation (8) and (3'), it becomes

a
£ = oo sin{(ut - tan“l(ca))} """"""""""“"""""""(4)
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Therefore, the frequency responses are;
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Fig. 2 Relation between the gain and w/w, with //r as parameter



No. 46 Theoretical Studies on the Traverse and Non- Traverse Motion 3

amplitude ratio (gain) o/a =1/4/1 + (Ca))z}
phase lag ¢ = —tanYcw)

From equation (5) it is easily to see that both amplitude ratio and phase lag
are functions of the winding constant //7 and angular velocity ratio w/amy,
and that amplitude of thread wound up on the bobbin is always smaller. than
that of traverse motion. The relation between the gain and w/w, is shown in
Fig. 2 with //r as parameter. We carried out this experiment, using the
Scotch Yoke mechanism as the traverse, and found that the observed results
almost coincide with the theoretical analysis.

MECHANISM OF NON-TRAVERSE WINDING
Mechanism of non-traverse winding is shown in Fig. 3. If the thread is

assumed to have not any friction, flexual and torsional rigidity, the position
and the configulation of thread wound up on the flanged bobbin without
traverse, depend upon the diameters of bobbin and thread and the position
of thread guide. Consider that the thread of d in diameter is wound through
the fixed thread guide (G), which is at the distance of !/ from the bobhin and
S from a production of flange of the bobbin as shown in Fig.3, and that the
flanged bobbin has a diameter of D and a width of w.
state of winding must not be
larger than a helical angle of
¢, it is impossible to wind up
the thread on the bobbin as

To wind up the thread on
H w
N
\ ,5)\ the closed coil ¢ determined by
closed coil, and the thread does

T

the bobbin regularly as closed
coil, the angle 4; between
flange and thread of the initial
4 500 the diameters of the thread and
the bobbin. When the angle 0,
ig larger than this helical angle

e | g not contact with each other.
e f Therefore, the critical condition
to wind up just as closed coil
Fig. 8 Illustration of non-traverse winding is
d _f
0 N T O N
2D T ] ()

where d : diameter of the thread

: diameter of the bobbin

: distance between a production of the flange and the thread guide
: tangential length from the thread guide to the hobbin

~
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As the thread is wound, winding angle # in Fig. 3 decreases and becomes
negative. But the helical angle on the bobbin is always kept at constant
angle ¢ if the compressive deformation of thread is neglected. The absolute
value of # increases gradually until the thread cannot lie on the bobbin and
climbs on the thread previously wound. And the subsequent thread is wound
up on the first layer to the inverse direction as in Fig. 4. We call this phe-
nomenon “Crossing over” and denote this critical winding angle by ;.

Fig. 4 Phenomenon of “crossing over” A : crossing over

In order to wind up the thread to the other side of the bobbin, the angle
0,, which is the absolute value of the winding angle at the other side of the
bobbin as Fig. 3, must not be larger than #r.. In making the second layer,
though the diameter of the coil increases and the winding angle # becomes
larger than ¢, it is possible to wind up the thread regularly as closed coil in
a certain range of #,. Because it is effected by the under layer with regular
furrows produced by closely contact threads. The relation between ¢, and #,
is usually; 8, <0,

SUITABLE SHAPE OF THE BOBBIN FOR NON-TRAVERSE WINDING

The curve of the thread wound up on the cylindrical bobbin is the helix
which has the helical angle ¢ and is independent of winding angle #. In the
case of the conical bobbin, the helical angle at any point is not constant to
wind up closely since the distance of centers of adjacent threads is constant
at any point. The projection of this curve on the plane perpendicular to the
bobbin axis is a spiral of Arcuimepes as;

A= kO
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where /: distance from the origin

@ : polar angle

k. proportional constant
The value of # on each point is not always coincided with the helical angle
¢. To wind up closely, 0 must not be larger than the helical angle ¢. As the
thread wound previously is pushed by the subsequent threads, the thread
assembly mounted on the bobbin is apt to fall down. This pushing force or
“Side pressure” of the neighbouring threads causes crossing over and the
pressure on the flange. To wind without the side pressure, the winding angle
# should be always equal to the helical angle ¢ and the geodesic curvature
of the thread on the hobbin should be zero. But generally it is impossible
that hoth the two conditions are satisfied at the same time. Take coortlinates
as in Fig. 5, where x: bobbin axis, #: radius of the bobbin, tan ¢: gradient
of the hobbin curve at x and d: diameter of the thread. The shape of
bobbhin, where the winding angle # is always equal to the helical angle ¢,
is expressed as a solution of differential equation.

Integrating this differential equation under the condition; 7=ry at x =0, we
can obtain the shape of the bobbin 7 (x). It was calculated numerically by
means of the Runee~Kurra method (details in appendix 1) and the results
were shown in Fig, 6. This curve is hyperbolic and has the asymptote x=f
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Fig. 6 One of the theoretical bobbin shape
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at the middle of bobbin, The available region of this ideal shape is limited
in the region of small x.

MECHANISM OF CROSSING OVER OF THE THREAD

As the thread is wound until the winding angle # becomes ¢, the
phenomenon “Crossing over” of thread will occur, and the thread forms the
second layer of open coil hefore arriving at the other flange. Since the helical
angle of thread is very small in practical winding, it is assumed, in order
to simplify the theoretical analysis, that a wound thread on the bobbin forms
a torus. Equation of the torus is given in Cartesian coordinates as follows,

¥ = (R, + Ry sin @) cos 0
¥ = (Ry -+ Ry sin ¢) sin ¢
2= Rycos¢p

Fig, 7 Geodesic line (AB) on the torus of the thread

x where the origin (0) of the coordi-
nates is at the center of the torus,
an axis z is in the direction of the
torus axis (bobbin axis) through the
origin, an axis x is perpendicular
to the axis z, # is rotating angle
around the axis z and ¢ is the
rotating angle around the center line
of the torus ring (Fig. 7 and 8).
When the subsequent thread is
wound up to the surface of the torus
of the previously wound thread, the
contact point of the winding thread
on the torus lies on the curve de-
termined by the statical condition.
If there is no inter-thread-friction,
the curve of the contact point will

Fig. 8 Geodesic line (4 B) on the torus
of the thread
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be a geodesic line, because in which state, the tensioned thread on the
torus surface is in the most stable state. When we take the curvilinear
coordinates u, v as u = Ryp v=~F0, the first kind of fundamental quantities
of the differential geometry E, F and G are; E=1, F=0, G=(R,+ R, sin ¢)%,
where R, : radius of the center line of the torus ring,

R, : radius of a cross section of the torus ring.
The equation of geodesic line on a torus surface is generally given as:

or WG
w0
where y is the angle between geodesic line and the curvilinear coordinate .

By substituting equation (8) to equation (9) and assuming y*xtan y, we have

d*p

R1 R2 .
,Zi”é ’____—:___.2 cos © (1 +1_é_; sin w) ......................................... (10)

Integrating equation (10) with the initial condition;

de
p—ad e 55 ) =
=0 and a0 0 at 0

d
’= I';R Sw g013 (11)
. ' L sereseeseemenen
\/WE; 0 \/sm go(l+§—k51~s1n ©)
This equation is solved with the graphical integration and the result is
R
plotted against ¢ with the full line for the case of ——1—8-2—-“—- 0.074 in Fig. 9 and
1
for the case of R2 =0.5 in Fig. 10 respectively.
1
. Ry . . . . . .
Since 7 sin ¢ is negligibly small compared with unity in practical appli-
1
. . . . R, . .
cations, equation (11) is simplified by neglecting of Bsin ¢ and by putting
1
sin p=cos? ¢ (details in appendix 2);
x/Rl S \/1 L (1)
R, ° g S® '

The solution of this equation is plotted against ¢ with the dotted line for the

2 ! . . R . . .
7 =0.074 in Fig. 8 and for the case of “"I"é’z"f‘ =0.5in Fig. 9. It is
1 1

seen that the solution of the equation (11') agrees very good with the solution

case of
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R . Rg
of the equation (11) in the case of -j;\jin:: 0.074, but in the case of B 0.5
1 1
the differnce between the two solutions is comparatively large. Since in

. Ry
practical application, the ratio of 7}” is usually less than the value of . 074,
1

R,
the term ~~R—ﬁ—-sin » may be neglected.
1
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Relation between the rotation angle of the torus (6) and the rotating angle
of the torus ring (p) on the geodesic line,

The angle g between the thread AB and the plane perpendicular to the
torus axis through a contact point on the torus in Fig. 11, is described
against ¢ using the geometrical relations as follows :

sin f=sin yesin ¢

. Ry dp
tan 7 = R, + Rysin goWl
The result is shown in Fig. 12, As the helical angle which is produced by
the wound thread on the bobbin is kept at 0, the relation between B and 4
is given as f= 6+¢. Since in the case of no inter-thread friction, “Crossing
over” occurs at the point ¢=90° on the geodesic line on the torus, we can
calculate the crossing over angle Br. by using the above result. For example,

R
Pr is 20° in the case of Fz—«zo. 074 (Fig. 12).
1
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Fig.11 Geometrical relation between the crossing Fig,12 Relation between ¢ and
over angle 8 and the geodesic line on the torus £ in the case of no friction
AB: geodesic line, CD: line on a constant (calculated)

BE : direction of parallel to the torus’ axis
FG : direction of perpendicular to the torus’ axis

But practically the frictional force acts on the contact region, so the curve
of contact on the torus is given by the equilibrium condition (Fig. 13);

d
T, = 97T o sin -

2R
. ds _ ds
as S o= TR
ds
Tn = T._.R—q

: d
P=T,cos0 = T———Es—cos )

F=T,siné = T%sin&

substituting P, I to the equation pP=F

ds . ds
T—?cos dap= TTSIH )
cosd - sin g
5= 1/p} and —p—= 1/pb‘

so, we have 1/p,« p=1/p,
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where T, : normal force to osculating plane
: tention of the thread
: length along the thread

» curvature of the thread
. geodesic curvature of the thread

! normal curvature of the thread

: normal force to tangent plane
: frictional force acting perpendicular to the thread in
tangent plane
(¢ frictional coeflicient
0 : angle between T and P
So, the curve of thread on the torus does not completely coincide with the

R TSl B e T

geodesic line. It is considerably difficult to analyze this curve, but as — s

On
nearly zero in the case of small region of ¢, the effect of friction is negligi-
ble, and it is expected that the crossing over angle fr must decrease as
frictional coefficient ;2 increases.

EXPERIMENTS AND RESULTS

Four kinds of bobbins were used in this experiment (Fig. 14). Bobbin A
was made of polystyrene being covered with a thin sheet of emery. Bobbin
B:, B; and C were made of mild steel and their shapes and sizes are seen in
Fig. 14. The threads used for this experiment were nylon braids of 4mm

P ) S

Fig. 18 Mechanical equilibrium of the thread on Fig. 14 Bobbins used in this
the torus with effect of friction AB: thread studies
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and 4.5mm and cotton strings of 4mm and 4.5 mm in diameter. Winding
velocities were kept about 10cm/sec in every case and two kinds of winding
ways i.e. Z and S were used.

a) Initial angles of the first and the second lavers (#, and #,)

During this experiment, load of 150g in tention was applied to the thread
constantly. The experimental results, obtained by using nylon braid of 4.5
mm in diameter, show that the variations of observed values of #, and #, to
wind the thread closely were very small and these values were sufficiently
reproducible. They are shown in Table (1). There is some discrepancy be-
tween Z winding and S winding, although the other conditions are quite

iy I

Fig, 15 Effect of the liveliness
a : S winding (b : Z winding
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Table 1 Difirence in 4, and ¢, between S winding and Z winding

Bobhins 0, Windings Mo f
p 103! z 1°15/ 2950
S 2°30¢ 2014/
5 2301 z 1918/ 3080/
t n S 430/ 1048/
z ~0°20/ 5°00/
2 @ ’
B 1°87 S 2°00/ 4°08/
z 1206/ 5948/
C 1°85/

S 2°55! 500!

Critical angle, of which the thread can be wound as closed coil,
O tin the first layer (experimental)
¢ in the second layer {expeumental)
0. : calculated from the condition of the helical angle

equal. It seems that this phenomenon is caused by the liveliness (Z or S twist)
of the thread (Fig. 15).
b) Angle of crossing over ;3

We examined the effect of frictional coefficient of threads for the angle
of crossing over; p. In this experiment, we used a cylindrical bobbin, 50mm
in diameter, and three kinds of threads, one of which was coated with MoS;
powder to modify the frictional coefficient of threads. These details are
denoted in Table (2). Observed values of 8 were within about +59% from
average value of them and they are in Fig. 16 and Fig. 17. It is found that
8 decreses with increment of the frictional coefficient of the thread as theo-

A
h P
20°}
Ho=0,24 200
o
po=0,41
B e [}
4 =0,56 1y
10 w |
f 1 T o : . L L 3
0 100 300 500¢ 0.1 0.2 0.3 01 ws "

Fig, 16 Experimental result between the Fig. 17 Experimental result between the
angle of crossing ovre # and tension angle of crossing over g and frictional
coefficient p
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Table 2 Diameter and frictional coefficient (p) of used thread

threads diameter frictional coefficient ()
cotton 4,0 mm 0.56
cotton coated with MoS; powder 4,0 mm 0. 41
nylon 4,0 mm 0.24

retical result expected: It seems that f is independent of tension applied.
Regarding the unwinding of the thread, the  condition of the crossing over
is also useful.

CONCLUSIONS

a) In non-traverse winding, the relative position of thread guide to the
hobhin is determined by 6, and #,. The angle 6, is determined by the helical
angle of closed coil with some correction due to liveliness but the muximum
angle of ¢, is larger than the helical angle by the effect of the under layer
of the threads. The angle 6, must be determined by experiments since it is
so much influenced by flexual rigidity, torsional rigidity* and. friction as in
the case of f. Generally 0, <0, < B.

It is desirable that the thread guide is far from the bobbin to make 0,
and 6, small and that the coefficient of friction of threads is small.
b) The suitable shape of the hobbin for non-traverse winding is determined
by the conditions of

(1) the helical angle should be equal to ¢ and

(2) the geodesic curvature of the thread should be zero, but both the
conditions are not satisfied at the same time. From the condition (1), it is
found that the shape of the hobbin must be hyperbolic revolution.
¢) In the case of no friction the angle of crossing over is determined by the
equation (11), (11°) and (12) which are obtained by using differential geometry
on the torus surface. If friction acts between threads, geodesic curvature is
not zero and the equation of the thread is more complicated, but the experi-
mental results almost agrees with theoretical conclusion, that is, the angle
of crossing over (8) decreases with increasing of frictional coefficient (x), and
theoretical angle in the case of no friction almost coincides with the angle
extraporated from observed value under in friction.

SUMMARY
The solution of the fundamental equation between the traverse motion
‘ : d.
and the configuration of the thread on the bobbin (fill)l-—é’;—-{—ff:x) was al-

ready reported. In this report, the conditions of the non-traverse winding

* When the thread falls down in the furrow of the thread layer, 'it‘ is observed that the
thread slips down or rolls down with torsions.
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(a suitable type of the bobbin, position of the thread guide, crossing over and
so on) were studied comparing the theoretical analysis with the experimental
results and some fundamental conclusions were obtained.

In order to wind up the thread on the cylindrical bobhin as closed coil
without traverse motion, the initial winding angle must not be larger than
helical angle, but in the second layer, the thread can be wound by the effect
of the first layer even when the initial winding angle is somewhat larger
than it.

This critical angle is effected by friction, rigidity of the thread etc., and
the experimental results show a tendency expected from the theoretical
analysis.

The conditions to avoid the side pressure between nighhonring threads
were considered and the suitable type of the bobbin was analyzed in a region
of small geodesic curvature,

The conditions of crossing over of the thread were derived under the
cases in which friction is neglected and is taken into consideration. The
condition for the thread without friction was solved. The analytical results
almost coincided with the experimental results.

APPENDIX
dil
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2

R
If we neglect ~-wkffsin o, the equation (a) becomes
1

flz([): - —“-@'I"'COS D et e (a’)
dit - 7 Ry

It is solved as follows
2

The equation (c) is the first kind of complete elliptic integral and it can he
solved by using the table of elliptic integral,
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