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Abstract We shall show that an element in the cohomology ring of a defect group of
a block ideal of the group algebra over an algebraically closed filed of prime charac-
teristic belongs to the cohomology ring of the block ideal if and only if it’s embedding
into the Hochschild cohomology ring of the group algebra of the defect group is sta-
ble with respect to the source algebra of the block ideal.

Keywords finite group · block ideal · Brauer correspondence · Hochschild
cohomology · group cohomology · stable elements

Mathematics Subject Classification (2000) 20C20 · 20J06

1 Introduction

Let G be a finite group and let k be an algebraically closed field of prime characteristic
p > 0 dividing the order of G. Linckelmann [5] defined the cohomology ring of a
block ideal of kG.

Let B be a block ideal of kG with a defect group D. Let X be a source module
of B, namely an indecomposable direct summand of B as k[G×Dop]-module having
ΔD as vertex; X has a trivial source. The source module X can be written as X = kGi
with a source idempotent i; let γ be the point containing i. Let (D, bD) be the Sylow
B-subpair such that the Brauer construction X(D) belongs to bD.

Definition 1 Under the notation above, the cohomology ring H∗(G, B; X), which is
also denoted by H∗(G, B; Dγ), is defined to be the subset of the cohomology ring
H∗(D, k) consisting of the elements ζ satisfying the following stability condition:

resQ
gζ = resQ ζ (S)
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for all B-subpair (Q, bQ) � (D, bD) and all element g ∈ NG(Q, bQ).

One of the main theorems in [5] is that every element ζ ∈ H∗(G, B; X) is embed-
ded, via diagonal embedding, into the subring of the Hochschild cohomology ring
HH∗(kD) of the group algebra kD which is stable with respect to ikGi = X∗⊗BX.
Here ikGi is the source algebra of the block B, being viewed as a (kD, kD)-bimodule.
We shall in the next section recall the definition of stable elements in Hochschild
cohomology rings.

If B0 is the principal block of kG, then, P being a Sylow p-subgroup of G, the
block cohomology H∗(G, B0) ⊂ H∗(P, k) coincides with the subset consisting of the
elements ζ satisfying the stability condition:

resP∩ gP
gζ = resP∩ gP ζ

for all g ∈ G; such ζs are said to be G-stable.
The stable elements theorem says that an element ζ ∈ H∗(P, k) is G-stable if and

only if it belongs to the image of the restriction map resP : H∗(G, k) → H∗(P, k).
Namely the block cohomology of the principal block is isomorphic to the usual co-
homology ring H∗(G, k) via restriction map from G to P. An element ζ in H∗(P, k)
is G-stable if and only if its diagonal embedding in HH∗(kP) is kG-stable, where
kG is considered as a (kP, kP)-bimodule. Thus we can say, identifying H∗(G, k) with
the image Im resP, that an element ζ in H∗(P, k) belongs to H∗(G, k) if and only if
its diagonal embedding in HH∗(kP) is kG-stable. Hence, if we expect the block ver-
sion of this fact, then we could say that the theorem by Linckelmann is the ”only
if” part. Our purpose of this note is to show that the ”if” part does hold. We let
δD : H∗(D, k)→ HH∗(kD) denote the diagonal embedding.

Theorem 1 An element ζ ∈ H∗(D, k) belongs to H∗(G, B; X) if and only if the diago-
nal embedding δDζ ∈ HH∗(kD) is ikGi-stable.

Using the theorem above, we shall examine a relationship between cohomology rings
of blocks which are in Brauer correspondence. Let H be a subgroup of G containing
DCG(D); let C be a Brauer correspondent of B in kH with D as a defect group. It
is worthy to investigate whether the cohomology ring of B is contained in that of
C. To analyze this situation we have to take source modules X of B and Y of C in
order that these are in Green correspondence with respect to (G×Dop, ΔD,H×Dop).
Take the Green correspondent L = L(B,C) of C, being viewed as an indecomposable
k[H×Hop]-module, with respect to (G×Hop, ΔD,H×Hop). Then we have

Theorem 2 Under the notation above the cohomology ring H∗(G, B; X) is contained
in H∗(H,C; Y) if and only if H∗(G, B; X) is embedded, by the diagonal embedding,
into the X∗⊗BL⊗CY-stable subring of the Hochschild cohomology ring HH∗(kD) of
the group algebra kD. When the condition does hold, we have the following commu-
tative diagram:

H∗(G, B; X) ��
δD ��

� �

��

HH∗X∗⊗BL⊗C Y (kD) ��
RX �� ��

� �

��

HH∗L⊗C Y (B)
��

RL∗
��

��
RX∗

����

H∗(H,C; Y) ��
δD

�� HH∗Y∗ (kD) ��
RY �� �� HH∗Y (C).��
RY∗

����
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Here, for M a bimodule, the map RM is the normalized transfer map defined by M
restricted to stable subrings of Hochschild cohomology rings. Theorems 1 and 2 will
be proved in Section 2.

Broto, Levi and Oliver [1] shows that there exists a (D,D)-biset S that induces
a linear map tS : H∗(D, k) → H∗(D, k) whose image is just the block cohomology
H∗(G, B; X); the biset S is called a characteristic biset. Taking Theorem 1 into ac-
count, we hope that such a characteristic biset must be taken very closely to the source
algebra ikGi.

The Mackey double coset formula, P being a Sylow p-subgroup, gives rise to

Im resP = Im

⎡⎢⎢⎢⎢⎢⎢⎢⎣t : H∗(P, k)→ H∗(P, k); ζ �→
∑

G=
⋃

PgP

trP resP∩ gP
gζ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

What should be the block cohomology version of this fact? Let

ikGi 	
⊕
DxD

k[DxD]

be a decomposition into the direct sum of indecomposable (kD, kD)-bimodules; de-
fine a linear map as follows:

t : H∗(D, k)→ H∗(D, k); ζ �→
∑
DxD

trD resD∩ xD
xζ.

Then we would like to propose the following conjecture.

Conjecture Under the notation above it would follow that

H∗(G, B; X) = tH∗(D, k).

Notice that the linear map t : H∗(D, k) → H∗(D, k) above is the restriction of the
transfer map tikGi : HH∗(kD)→ HH∗(kD) defined by the (kD, kD)-bimodule ikGi via
diagonal embedding:

H∗(D, k)
δD ��

t
��

�

HH∗(kD)

tikGi

��

H∗(D, k)
δD

�� HH∗(kD).

Remark 1 We see that H∗(G, B; X) ⊆ tH∗(D, k), as we have for ζ ∈ H∗(G, B; X)
that δDt(ζ) = tikGiδDζ = πikGiδDζ and the relative projective element πikGi is in fact a
nonzero scalar.

In Section 3 we shall give a few conditions equivalent to Conjecture and exam-
ples.

Here we fix a symbol; if a module M is isomorphic with a direct summand of a
module N then we write M

∣∣∣ N.
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2 Cohomology rings of block ideals–proofs of Theorems

Before proceeding to the proofs of theorems we state some facts on stable elements
in Hochschild cohomology rings of symmetric algebras.

Let R be a commutative ring and let A and B be symmetric R-algebras.
Let X be an (A, B)-bimodule such that as a left A-module X is finitely generated

and projective and as a right B-module X is finitely generated and projective.

Definition 2 A pair (ζ, θ) ∈ HH∗(A) ⊕ HH∗(B) is called an X-stable pair if the ele-
ments ζ⊗IdX and IdX ⊗ θ in Ext∗A⊗Bop(X, X) coincide; we also say that (ζ, θ) is X-stable.
The element ζ ∈ HH∗(A) is said to be X-stable. The X-stable elements in HH∗(A)
form a subring, which is called the X-stable subring and is denoted by HH∗X(A).

If (ζ, θ) ∈ HH∗(A) ⊕ HH∗(B) is X-stable then (θ, ζ) ∈ HH∗(B) ⊕ HH∗(A) is X∗-
stable, where X∗ is the R-dual of X.

Linckelmann [5, Corollary 3.8] says that if the relatively projective element πX∗ ∈
Z(B) is invertible then an X⊗BX∗-stable element in HH∗(A) is also X-stable. The
following is the converse to this fact, which is merely a restatement of Kawai and
Sasaki [2, Lemma 2.1].

Proposition 3 The following hold.

1. If ζ ∈ HHn(A) is X-stable then the pair (ζ, ζ) ∈ HHn(A) ⊕ HHn(A) is X⊗BX∗-
stable. In particular we have HHn

X(A) ⊂ HHn
X⊗BX∗ (A).

2. Suppose that the relatively projective element πX∗ ∈ Z(B) is invertible. Then
we have HH∗X(A) = HH∗X⊗BX∗(A); if ζ ∈ HH∗(A) is X⊗BX∗-stable then (ζ, ζ) ∈
HHn(A) ⊕ HHn(A) is X⊗BX∗-stable.

Proof of Theorem 1 The ”only if” part is [5, Theorem 5.6 (ii)]. We shall prove the
”if” part. Let ζ ∈ H∗(D, k). We assume that δDζ ∈ HH∗(kD) is stable with respect to
ikGi = X∗⊗BX.

We would like to show that ζ belongs to H∗(G, B; X).
Since the relatively projective element πX ∈ Z(B) is invertible, we see from Propo-

sition 3 that (δDζ, δDζ) ∈ HH∗(kD)⊕HH∗(kD) is ikGi-stable. We see for a direct sum-
mand k[DxD] of ikGi that (δDζ, δDζ) is k[DxD]-stable; Linckelmann [5, Lemma 5.3]
implies that

resD∩ xD
xζ = resD∩ xD ζ.

Now, it is enough to show that the stability condition (S) holds for subpairs
(Q, bQ) belonging to a conjugation family F ⊆ { (Q, bQ) | (Q, bQ) � (D, bD) };
the family F = { (Q, bQ) | (Q, bQ) � (D, bD) is extremal } is a conjugation family. If
(Q, bQ) � (D, bD) is extremal, then QCD(Q) is a defect group of bQ.

Take a B-subpair (Q, bQ) � (D, bD) which is extremal. Let g ∈ NG(Q, bQ). Linck-
elmann [4, Lemma 3.3 (v)] says that the (kQ, kQ)-bimodule k[gQ] is isomorphic to a
direct summand of ikGi as (kQ, kQ)-bimodule.

Choose an indecomposable direct summand k[DxD] of ikGi such that k[gQ] is a
direct summand of k[DxD] as (kQ, kQ)-bimodule:

k[gQ]
∣∣∣ k[DxD].
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The k[Q×Qop]-module k[gQ] has a trivial source with vertex (g,1)ΔQ:

k[gQ] = k[Q×Qop] ⊗k[(g,1)ΔQ] k.

The k[D×Dop]-module k[DxD] has a trivial source with vertex (x,1)Δ
(

x−1
D ∩ D

)
:

k[DxD] = k[D×Dop] ⊗k
[
(x,1)Δ(x−1D∩D)

] k.

Therefore, we have

k[Q×Qop] ⊗k[(g,1)ΔQ] k
∣∣∣∣ k[Q×Qop]k[D×Dop] ⊗k

[
(x,1)Δ(x−1D∩D)

] k.

Mackey decomposition theorem says that there exists an element (a, b) ∈ D×Dop

such that

k[Q×Qop] ⊗k[(g,1)ΔQ] k
∣∣∣∣ k[Q×Qop] ⊗k

[
Q×Qop ∩ (a,b)(x,1)Δ(x−1D∩D)

] k.

By Green’s indecomposablity theorem we may assume that
(g,1)ΔQ = Q×Qop ∩ (a,b)(x,1)Δ(x−1

D ∩ D).

Then we have that

{ (gu, u−1) | u ∈ Q } = { (axv, bv−1) ∈ Q×Qop | v ∈ x−1
D ∩ D }.

Therefore, for an arbitrary element u ∈ Q there exists an element v ∈ x−1
D ∩ D such

that
gu = axv, u−1 = bv−1.

Here the right-hand side of the second equation above is in Qop so that this is in fact
b−1v−1b in Q. Hence we have that

gu = axbu ∀u ∈ Q.

Namely, there exists an element y ∈ CG(Q) such that g = axby. Note that bQ �
x−1

D ∩ D.
Since we are assuming that δDζ ∈ HH∗(kD) is ikGi-stable and the (kD, kD)-

bimodule k[DxD] is isomorphic with a direct summand of ikGi, we see that resD∩ xD ζ =
resD∩ xD

xζ
= xres x−1D∩Dζ. Hence we obtain that

resQ
gζ = gresQ ζ =

axbyresQ ζ

= axbresQ ζ (∵ y ∈ CG(Q))

= axres bQ
bζ = axres bQ ζ (∵ b ∈ D)

= ares xbQ
xζ

= ares xbQ resD∩ xD
xζ (∵ xbQ � D ∩ xD)

= ares xbQ resD∩ xD ζ (∵ the stability condition)
= ares xbQ ζ

= res axbQ
aζ

= res gQ ζ (∵ a ∈ D)
= res Q ζ.

Thus, the stability condition (S) holds. 
�
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To prove Theorem 2 we recall some properties of the (B,C)-bimodule L = L(B,C),
which we investigated in Sasaki [6].

Theorem 4 1. The relatively projective elements πL ∈ Z(B) and πL∗ ∈ Z(C) are
both invertible.

2. We have

L∗⊗BX 	 Y ⊕ O(Y (G×Dop, ΔD,H×Dop)).

3. We have

L⊗kHY 	 X ⊕ Z

and Z is relatively X (G×Dop, ΔD,H×Dop)-projective and every indecomposable
direct summand has a trivial source.

4. If D � H, then L⊗kHY 	 X.
5. The bimodule L is isomorphic with a direct summand of X⊗kDY∗.
6. Take a Sylow C-subpair (D, bD) such that bDY(D) � 0. Then (D, bD) is also a

Sylow B-subpair and bDX(D) � 0. The following is commutative:

H∗(G, B; X) ��
δD �� HH∗X∗(kD) ��

RX �� �� HH∗X(B)��
RX∗

����

HH∗X∗⊗BL⊗C Y (kD)
��

��

��
RX �� �� HH∗L⊗C Y (B) � � ��

��

��

��
RX∗

����
��

RL∗
����

HH∗L(B)
��

RL∗
����

HH∗Y∗⊗C L∗⊗BX(kD)
� �

��

��
RY �� �� HH∗L∗ (C) ∩ HH∗Y (C) � � ��

� �

��

��
RY∗
����

��

RL

����

HH∗L∗ (C)
��

RL

����

H∗(H,C; Y) ��
δD

�� HH∗Y∗ (kD) ��
RY �� �� HH∗Y (C).��
RY∗

����

Proof of Theorem 2 For ζ ∈ H∗(G, B; X) we see that (δDζ, δDζ)∈HH∗(kD)⊕HH∗(kD)
is X∗⊗BX-stable; for η ∈ H∗(H,C; Y) we see that (δDη, δDη) is Y∗⊗CY-stable. Thus, if
H∗(G, B; X) ⊆ H∗(H,C; Y), then we see for ζ ∈ H∗(G, B; X) that (δDζ, δDζ) is X∗⊗BX-
stable and Y∗⊗CY-stable, implying that (δDζ, δDζ) is (X∗⊗BX)⊗kD(Y∗⊗CY)-stable by
[2, Lemma 2.1 (a)]. We see from Theorem 4 (5) that X∗⊗BL⊗CY is a direct summand
of (X∗⊗BX)⊗kD(Y∗⊗CY). Therefore, we see for ζ ∈ H∗(G, B; X) that δDζ ∈ HH∗(kD)
is X∗⊗BL⊗CY-stable.

Suppose conversely that δDH∗(G, B; X) ⊆ HH∗X∗⊗BL⊗C Y (kD). Then the commu-
tative diagram in Theorem 4 implies for ζ ∈ H∗(G, B; X) that δDζ ∈ HH∗(kD)
is Y∗-stable. Thus Theorem 1 implies that ζ ∈ H∗(H,C; Y), namely we have that
H∗(G, B; X) ⊆ H∗(H,C; Y).

When the condition holds, the commutative diagram in Theorem 4 gives rise to
the commutative diagram required. 
�
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3 Transfer map

Lemma 5 The following conditions are equivalent.

1. H∗(G, B; X) = tH∗(D, k).
2. δDtH∗(D, k) ⊆ HH∗ikGi(kD).
3. For an arbitrary element ζ ∈ H∗(D, k) and an arbitrary direct summand k[DxD]

of ikGi the following equation holds:

t(D∩ xD ikGi)(δD ζ) = t(D∩ xD k[xD]⊗kDikGi)(δD ζ).

Proof Suppose that H∗(G, B; X) = tH∗(D, k). Then we see by Linckelmann [5, The-
orem 5.6 (ii)] that

δDtH∗(D, k) = δD(H∗(G, B; X)) ⊂ HH∗ikGi(kD).

Suppose conversely that δD tH∗(D, k) ⊂ HH∗ikGi(kD). Then we see by Theorem 1
that tH∗(D, k) ⊂ H∗(G, B; X). As we have already seen for ζ ∈ H∗(G, B; X) in Remark
1 in Introduction that t(ζ) = πikGi ζ, we have the following commutative diagram:

H∗(G, B; X)
πikGi · ��

� �

�������������
H∗(G, B; X)

H∗(D, k).

t

�������������

Because πikGi is not zero, the horizontal map above is isomorphic, hence it follows
that H∗(G, B; X) = tH∗(D, k).

Next, take an element ζ ∈ H∗(D, k). Then the diagonal embedding δD t(ζ) ∈
HH∗(kD) is ikGi-stable if and only if for an arbitrary direct summand k[DxD] of
ikGi, the element δD t(ζ) ∈ HH∗(kD) is k[DxD]-stable, which is equivalent to

t(D∩ xD kD)(δD t(ζ)) = t(D∩ xD k[xD])(δD t(ζ)).

Moreover, because δD t(ζ) = tikGi(δD ζ), the condition above is equivalent with

t(D∩ xD kD)(tikGi(δD ζ)) = t(D∩ xD k[xD])(tikGi(δD ζ)),

as desired. 
�

In the rest of this note we would like to show some examples: when the defect
group is normal and when the defect group is abelian. The referee pointed out that
in these cases the (kD, kD)-bimodule ikGi is just the module induced by the biset
constructed in Broto, Levi and Oliver [1], which we mentioned in Introduction. We
however would like to give direct descriptions to these facts.

Example 1 If the defect group D is normal in G, then Conjecture holds.
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Proof Since the the defect group D is normal in G, we have that

H∗(G, B; X) = H∗(D, k)NG(D,bD).

The inertia index |NG(D, bD) : DCG(D) | is not divisible by the prime p so that

H∗(D, k)NG(D,bD) = trNG(D,bD)
DCG (D) H∗(D, k).

Because D is normal in G, the (kD, kD)-bimodule ikGi decomposes as follows:

ikGi 	
⊕

gDCG (D)∈NG (D,bD)/DCG (D)

k[Dg].

Therefore we see for ζ ∈ H∗(D, k) that

t(ζ) =
∑

gDCG (D)∈NG (D,bD)/DCG (D)

gζ = trNG(D,bD)
DCG (D) (ζ).

Example 2 Assume that the defect group D is abelian. Then it follows for an arbi-
trary direct summand k[DxD] of ikGi that, as (k[D ∩ xD], kD)-bimodules,

k[xD] ⊗kD ikGi 	 ikGi

so that the condition (3) in Lemma 5 holds.

Proof First of all we note that the (k[xD], kD)-bimodule k[xD]⊗kD ikGi can be written
as x ⊗ ikGi = { x ⊗ ω | ω ∈ ikGi }; the conjugate xD acts on the left in the following
manner:

xa(x ⊗ ω) = x ⊗ aω for a ∈ D, ω ∈ ikGi.

Külshammer, Okuyama and Watanabe [3, Proposition 5] says for an arbitrary
direct summand k[DxD] of ikGi that

x−1
(D ∩ xD, bD∩ xD) � (D, bD).

Since D is abelian, we see that x−1 ∈ NG(D, bD)CG(D ∩ xD); hence there exist an
element z ∈ NG(D, bD) and an element c ∈ CG(D ∩ xD) such that x−1 = zc. Rewriting
z−1 as z and c−1 as c, we see that there exist an element z ∈ NG(D, bD) and an element
c ∈ CG(D ∩ xD) such that

x = cz.

The action of z ∈ NG(D, bD) on i is given by a unit u ∈ U(BD) as follows:

ziz−1 = uiu−1.

Then we have that
xix−1 = cziz−1c−1 = cuiu−1c−1.

We would like to show that the map

cz ⊗ ikGi→ cu ⊗ ikGi;

cz ⊗ a �→ cu ⊗ u−1za (a ∈ ikGi)
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is a (k[D ∩ xD], kD)-isomorphism.
It is enough to show that this map is a k[D∩xD]-homomorphism. We see for d ∈ D∩xD
that

d(cz ⊗ a) = dcz ⊗ a = cz z−1dz ⊗ a = cz ⊗ z−1dza

�→ cu ⊗ u−1z(z−1dza) = cu ⊗ u−1dza

= cu ⊗ du−1za (∵ u ∈ U(BD)).

On the other hand we obtain that

d(cu ⊗ u−1za) = dc ⊗ u−1za

= cdu ⊗ u−1za (∵ c ∈ CG(D ∩ xD))

= cud ⊗ u−1za (∵ u ∈ U(BD))

= cu ⊗ du−1za.

Thus we obtain a (k[D ∩ xD], kD)-isomorphism

x ⊗ ikGi = cz ⊗ ikGi 	 cu ⊗ ikGi 	 ikGi.

We end this note with a remark on principal blocks.

Remark 2 Let P be a Sylow p-subgroup of G and let B0 be the principal block; let
X = kGi0 be a source module. Let M denote the (kG, kP)-bimodule kG; the (kG, kP)-
bimodule X is a direct summand of M. Then we have the following commutative
diagram

H∗(P, k)
δP ��

trG

����

δPH∗(P, k)

tM

��

H∗(G, k)
δG ��

��

resP

����

HH∗M(kG)
��

tM∗
����

� � �� HH∗X(kG)
��

RX∗
����

resP H∗(P, k)
δP

�� HH∗M∗ (kP) � � �� HH∗X(kP).

Namely we see for an element ζ ∈ H∗(P, k) that

δP resP trG ζ = tM∗ tMδPζ

= RX∗ tMδPζ

=
1
πX∗

tX∗ tMδPζ

=
1
πX∗

tX∗kPδPζ

= tX∗kPδP

(
1
πX∗
ζ

)
.



10 Hiroki Sasaki

Thus if we define a linear map

t′ : H∗(P, k)→ H∗(P, k); ζ �→
∑

X∗⊗B0 M	⊕ k[PgP]

trP resP∩ gP
gζ,

then we obtain that
H∗(G, B0; X) = Im t′.

However, needless to say, this is far from our Conjecture.
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