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rium.

Key words Relativistic heavy-ion collisions, nonequilibrium-statistical approach, Rela-

tivistic Diffusion Model

PACS 25.75.-q, 24.60.Ky, 24.10.Jv, 05.40.-a

1



1 Introduction

The investigation of particle production in relativistic heavy-ion collisions at the highest

available energies offers an ideal opportunity to study the gradual approach to statistical

equilibrium in a strongly interacting many-particle system. It has recently been shown by

several groups that analytically soluble non-equilibrium statistical models are suitable to

accurately describe a fairly large amount of phenomena that are observed experimentally.

This allows us to determine how closely the system approaches thermal equilibrium in

the course of particle production during the collision.

In particular, pseudorapidity distributions of primary charged particles have become

available [1] as functions of centrality in d + Au collisions at a nucleon-nucleon center-

of-mass energy of 200 GeV. They complement corresponding data on particle production

for the heavy Au + Au system at various incident energies [2, 3]. Both are investigated

within a nonequilibrium-statistical framework that is based on analytical solutions of a

Relativistic Diffusion Model (RDM).

We investigate these solutions as functions of time for both asymmetric, and symmet-

ric systems in comparison with the data. Whereas the midrapidity source for particle

production comes very close to equilibrium in rapidity space, this is not the case for the

target- and projectile-like sources. They remain far from equilibrium, and produce the

characteristic nonequilibrium shape of the overall rapidity distribution function. This is

particularly evident in case of the asymmetric d + Au system, where the steeper slope in

the deuteron direction is shown to be an immediate consequence of the nonequilibrium

properties. A short account of this work has been given in [4].

The analytical model is outlined in section 2. The time dependence of the solutions in

pseudorapidity space, and the pseudorapidity distributions for produced charged hadrons

as functions of collision centrality are obtained in section 3 for d + Au, and in section 4

for Au + Au. The conclusions are drawn in section 5.
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2 Relativistic Diffusion Model

Nonequilibrium processes such as those observed in the course of particle production

during relativistic heavy-ion collisions have successfully been described in many areas of

physics by Fokker-Planck equations (FPEs) [5, 6]. These were also used in Brownian

motion of macroscopic particles in a heat bath [7, 8, 9], where they allow to model both

the velocity- and the spatial distribution of test particles. Due to the large number

of produced particles in relativistic heavy-ion collisions and the random nature of their

mutual strong interactions [10], such equations are useful in the detailed modelling of

the distribution functions even though there is no heat bath present. However, Lorentz-

invariant kinematical variables have to be introduced. In particular, the rapidity replaces

the velocity to describe the motion parallel to the beam direction, and for the transverse

motion a corresponding transverse rapidity may be introduced.

In this work we concentrate on the ordinary (longitudinal) rapidity. The analysis

will show that thermal equilibrium is not reached in particle production, but one comes

sufficiently close to it to justify the use of the FPE. The present investigation is based on

a linear Fokker-Planck equation for three components Rk(y, t) of the distribution function

for produced charged hadrons in rapidity space [11, 12, 13]

∂

∂t
Rk(y, t) =

1

τy

∂

∂y

[
(y − yeq) ·Rk(y, t)

]
+

∂2

∂2y

[
Dk

y ·Rk(y, t)
]

(1)

with the rapidity y = 0.5·ln((E+p)/(E−p)). The diagonal components Dk
y of the diffusion

tensor contain the microscopic physics in the respective target-like (k=1), projectile-like

(k=2) and central (k=3) regions. They account for the broadening of the distribution

functions through interactions and particle creations. In the present investigation the

off-diagonal terms of the diffusion tensor are assumed to be zero. The rapidity relaxation

time τy determines the speed of the statistical equilibration in y-space.

As time goes to infinity, the mean values of the solutions of Eqs. (1) approach the

equilibrium value yeq. We determine it from energy- and momentum conservation [14, 15]

in the system of target- and projectile-participants and hence, it depends on impact

parameter. This dependence is decisive for a detailed description of the measured charged-

particle distributions in asymmetric systems:
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yeq(b) = 1/2 · ln< mT
1 (b) > exp(ymax)+ < mT

2 (b) > exp(−ymax)

< mT
2 (b) > exp(ymax)+ < mT

1 (b) > exp(−ymax)
(2)

with the beam rapidities yb = ±ymax, the transverse masses < mT
1,2(b) >=√

(m2
1,2(b)+ < pT >2), and masses m1,2(b) of the target- and projectile-like participants

that depend on the impact parameter b. The average numbers of participants < N1,2(b) >

in the incident nuclei are calculated from the geometrical overlap. The results are con-

sistent with the Glauber calculations reported in [1] for d + Au and in [2] for Au + Au

which we use in the further analysis.

The corresponding equilibrium values of the rapidity are zero in symmetric systems.

In the asymmetric d + Au case, they vary from yeq = - 0.169 for peripheral (80-100%) to

yeq = - 0.944 for central (0-20%) collisions. They are negative due to the net longitudinal

momentum of the participants in the laboratory frame, and their absolute magnitudes

decrease with increasing impact parameter since the number of participants decreases for

more peripheral collisions.

The RDM describes the drift of the mean values of the partial distributions towards

yeq. The existence of this drift has clearly been established from the comparison of RDM-

results with net-proton rapidity distributions at various incident energies [13], where it is

directly visible in the available data from the NA 49 and BRAHMS collaborations. For

produced hadrons, the drift of the partial distribution functions is not directly visible in

the data, although its presence is essential for a precise modeling of the results.

Whether the mean values of the distribution functions R1 and R2 actually attain yeq

depends on the interaction time τint (the time the system interacts strongly, or the integra-

tion time of (1)). It can be determined from dynamical models or from parametrizations

of two-particle correlation measurements. For central Au + Au at 200 A GeV, this yields

about τint ' 10fm/c [16], which is too short for R1 and R2 to reach equilibrium. Note,

however, that this does not apply to Req which is born near local equilibrium at short

times (in the present calculation, at t = 0 due to the δ−function intitial conditions), and

then spreads in time through diffusive interactions with other particles at nearly the same

rapidity. Although its variance does not fully attain the thermal limit in the collisions

investigated here, we refer to Req as the local equilibrium distribution since it comes very

close to it.
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Nonlinear effects are not considered here. These account to some extent for the col-

lective expansion of the system in y−space, which is not included a priori in a statistical

treatment. In the linear model, the expansion is treated through effective diffusion coef-

ficients Deff
y that are larger than the theoretical values calculated from the dissipation-

fluctuation theorem that normally relates Dy and τy to each other [18]. One can then

deduce the collective expansion velocities from a comparison between data and theoretical

result.

The FPE can be solved analytically in the linear case with constant Dk
y . For net-

baryon rapidity distributions, the initial conditions are δ-functions at the beam rapidities

yb = ±ymax. However, it has been shown that in addition there exists a central (k=3,

equilibrium) source at RHIC energies which accounts for about 14% of the net-proton

yield in Au + Au collisions at 200 AGeV [13], and is most likely related to deconfinement.

For d + Au, net-proton rapidity distributions are not yet available.

For produced particles, the initial conditions are not uniquely defined. Our previous

experience with the Au + Au system regarding both net baryons [13], and produced

hadrons [19] favors a three-sources approach, with δ-function initial conditions at the

beam rapidities, supplemented by a source centered at the equilibrium value yeq. This

value is equal to zero for symmetric systems, but for the asymmetric d + Au case its

deviation from zero according to (2) is decisive in the description of particle production.

Physically, the particles in this source are expected to be generated mostly from gluon-

gluon collisions since only few valence quarks are present in the midrapidity region at
√

sNN = 200 GeV [13]. Particle creation from a gluon-dominated source, in addition to the

sources related to the valence part of the nucleons, has also been proposed by Bialas and

Czyz [20]. The final width of this source corresponds to the local equilibrium temperature

of the system which may approximately be obtained from analyses of particle abundance

ratios, plus the broadening due to the collective expansion of the system. Formally, the

local equilibrium distribution is a solution of (1) with diffusion coefficient D3
y = Deq

y , and

δ-function initial condition at the equilibrium value.

The PHOBOS-collaboration has analyzed their minimum-bias data successfully using

a triple Gaussian fit [21]. This is consistent with our analytical three-sources approach,

although additional contributions to particle production have been proposed. Beyond

the precise representation of the data, however, the Relativistic Diffusion Model offers an
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analytical description of the statistical equilibration during the collision and in particular,

of the extent of the moving midrapidity source which is indicative of a locally equilibrated

parton plasma prior to hadronization.

With δ−function initial conditions for the Au-like source (1), the d-like source (2)

and the equilibrium source (eq), we obtain exact analytical diffusion-model solutions as

an incoherent superposition of the distribution functions Rk(y, t) because the differential

equation is linear. The three individual distributions are Gaussians with mean values

< y1,2(t) >= yeq[1− exp(−t/τy)]∓ ymax exp (−t/τy) (3)

for the sources (1) and (2), and yeq for the moving equilibrium source. Hence, all three

mean values attain yeq(b) as determined from (2) for t→∞, whereas for short times the

mean rapidities are smaller than, but close to the Au- and d-like values in the sources 1

and 2. The variances are

σ2
1,2,eq(t) = D1,2,eq

y τy[1− exp(−2t/τy)]. (4)

The charged-particle distribution in rapidity space is then obtained as incoherent

superposition of nonequilibrium and local equilibrium solutions of (1)

dNch(y, t = τint)

dy
= N1

chR1(y, τint) + N2
chR2(y, τint) + N eq

chRloc
eq (y, τint) (5)

with the interaction time τint (total integration time of the differential equation), and the

partial distributions (k=1,2,eq)

Rk(y, τint) =
1√

(2πσ2
k(τint))

exp
[
−(y− < yk(τint) >)2

2σ2
k(τint)

]
. (6)

The incoherent sum of these distributions differs decisively from a single Gaussian

that is sometimes taken to model pseudorapiditry distributions for produced particles

(together with the Jacobian transformation that would generate the dip seen in the data

at midrapidity for symmetric systems, cf. sect.3).

In the present work, the integration is stopped at the value of τint/τy that produces the

minimum χ2 with respect to the data and hence, the explicit value of τint is not needed as

an input. The result for central collisions is τint/τy ' 0.4 for d + Au, and τint/τy ' 0.46

for Au + Au. As the time evolution parameter in the actual numerical calculation we
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take p = (1 − exp(−2t/τy)), and the corresponding values are p= 0.55 for d + Au, and

0.6 for Au + Au.

The average numbers of charged particles in the target- and projectile-like regions N1,2
ch

are proportional to the respective numbers of participants N1,2,

N1,2
ch = N1,2

(N tot
ch −N eq

ch)

(N1 + N2)
(7)

with the constraint N tot
ch = N1

ch + N2
ch + N eq

ch . Here the total number of charged particles

in each centrality bin N tot
ch is determined from the data. The average number of charged

particles in the equilibrium source N eq
ch is a free parameter that is optimized together with

the variances and τint/τy in a χ2-fit of the data using the CERN minuit-code [22]. With

known τint, including its dependence on centrality, one could then determine τy and Dy,

but this is beyond the scope of the present work.

3 Application to d + Au collisions

The time evolution of the resulting RDM-solutions is shown in Fig.1 for central collisions of

d + Au at
√

sNN = 200 GeV for short values of τint/τy = 0.005 (p=0.01), and large values

τint/τy = 2.3 (p=0.99). In the latter case, the system is already very close to statistical

equilibrium in pseudorapidity space, as is evident from the distribution functions shown

in the lower part of Fig.1, which are almost symmetric with respect to the equilibrium

value. In the actual collision, the system remains between these two extreme cases, and in

particular, it remains far from the equilibrium situation, because strong interaction stops

long before this situation is approached, see Fig.2.

We present the results in pseudorapidity space η = −ln[tan(θ/2)] since particle iden-

tification was not available. The conversion from y− to η− space of the rapidity density

dN

dη
=

dN

dy

dy

dη
=

p

E

dN

dy
= J(η, 〈m〉/〈pT 〉)dN

dy
(8)

is performed through the Jacobian

J(η, 〈m〉/〈pT 〉) = cosh(η) · [1 + (〈m〉/〈pT 〉)2 + sinh2(η)]−1/2. (9)

Here we approximate the average mass < m > of produced charged hadrons in the central

region by the pion mass mπ, and use a mean transverse momentum < pT > = 0.4 GeV/c.
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In the Au-like region, the average mass is larger due to the participant protons, but

since their number Z1 < 5.41 is small compared to the number of produced charged

hadrons in the d + Au system, the increase above the pion mass remains small: < m >≈
mp ·Z1/N

1
ch+mπ ·(N1

ch−Z1)/N
1
ch ≈ 0.17GeV . This increase turns out to have a negligeable

effect on the results of the numerical optimization, where we use < m > / < pT >= 0.45

for the Jacobian transformations in the three regions. For reasonable deviations of the

mean transverse momentum from 0.4 GeV/c, the results remain consistent with the data

within the experimental error bars.

The result of the RDM calculation is shown in Fig. 2 for five collision centralities of

d + Au, and minimum-bias, and compared to recent PHOBOS data [1, 21]. In case of

central collisions, the charged-particle yield is dominated by hadrons produced from the

Au-like source, but there is a sizeable equilibrium source that is more important than the

d-like contribution. This thermalized source is moving since yeq has a negative value for

d + Au, whereas it is zero for symmetric systems.

The equilibrium source in the light and asymmetric d + Au system is found to contain

only 19% of the produced charged hadrons in central collisions. The total particle number

and the particles created from the Au-like source decrease almost linearly with increasing

impact parameter, but the magnitude of the equilibrium source is found to be roughly

independent of centrality [4]. As a consequence, particle production in the equilibrium

source is relatively more important in peripheral collisions. The variance of the central

source lies for sufficiently small impact parameters between the values for the Au- and

d-like sources [4]. In the equilibrium source, a statistical descrition of particle production

in terms of a temperature and a chemical potential is meaningful. This is, however, not

the case for the nonequilibrium fractions of the distribution function.

The minimization procedure yields precise results so that reliable values for the rela-

tive importance of the three sources for particle production can be determined, Table 1.

Here the average impact parameters < bj > for the five centrality cuts j are determined

according to

< bj >=
∫

bσj(b)db/
∫

σj(b)db (10)

with the geometrical cross sections σj(b). In a sharp-cutoff model with limiting impact

8



parameters b1, b2 in each centrality bin j, this is

< bj >=
2

3

(b3
2 − b3

1

b2
2 − b2

1

)
j
. (11)

Whereas the total particle number and the particles created from the Au-like source de-

crease almost linearly with increasing impact parameter, the magnitude of the equilibrium

source is roughly independent of centrality. As a consequence, particle production in the

equilibrium source is relatively more important in peripheral collisions. The variance of

the central source lies for sufficiently small impact parameters between the values for the

Au- and d-like sources.

The rapidity relaxation times and diffusion coefficients can also be obtained from

(3),(4), but this requires an independent information about the interaction times. A

small discrepancy in case of the most peripheral collisions (80-100%) is a consequence of

the three straggling data points in the region -4 < η < −3.

The observed shift of the distributions towards the Au-like region in more central

collisions, and the steeper slope in the deuteron direction as compared to the gold direction

appear in the Relativistic Diffusion Model as a consequence of the gradual (incomplete)

approach to equilibrium. The dependence of the shape and the absolute magnitudes on

centrality are particularly evident in Fig.3 where the pseudorapidity distributions for all

centralities are shown in a single plot in comparison with the PHOBOS data.

Given the structure of the underlying differential equation that we use to model the

equilibration, together with the initial conditions and the constraints imposed by Eqs.

(2) and (7), there is no room for substantial modifications of this result. In particular,

changes in the impact-parameter dependence of the mean values in (3) that are not in

accordance with (2) vitiate the precise agreement with the data.

4 Application to Au + Au

The three-sources RDM has previously been applied to the Au + Au system at various

incident energies for net protons [13], and for produced charged hadrons [19]. For net

protons, the number of particles contained in the midrapidity source can be determined

rather accurately, whereas this is not the case for produced charged hadrons. This is

due to the uncertainty in the initial conditions (δ−functions are clearly correct for the
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participant protons, but they remain ambiguous for produced particles), and also due to

the symmetry of the system, which does not permit unique results of a χ2−fit of the data.

A previous result [19] for Au + Au in the three-sources-RDM shows indeed that the

size of the equilibrium source for particle production at a given centrality can not be

determined uniquely, and may be different in the heavy system [19] at the same energy as

compared to d + Au. Here we fix the particle content in the midrapidity source at a given

value of < b > /bmax to approximately the same value as in the d + Au case, where the

result is given from fitting the analytical solutions to the data (see Tab.1). Here < b > is

determined for a given centrality as described in the previous section.

The result for central Au + Au-collisions at
√

sNN = 200 GeV is shown in Fig.4 (upper

frame) together with PHOBOS data [3]. The time evolution of the RDM-solutions can be

seen by comparing short-time solutions (middle frame for short values of τint/τy = 0.005,

or p=0.01) with the solutions for large times (lower frame for τint/τy = 2.3, or p=0.99). In

the latter case, the system is again very close to statistical equilibrium in pseudorapidity

space. The actual collision with τint/τy = 0.46, or p=0.6, (top frame) remains between

these two extreme cases.

The comparison with PHOBOS data for various centralities can be seen in Fig.5, where

the individual partial distributions are also shown. For each centrality, the percentage of

produced charged hadrons is taken approximately from the d + Au results. It rises for

more peripheral collisions, because the number of charged hadrons produced from nucleon-

nucleon collisions in the target- and projectile-like region of pseudorapidity space falls

more strongly than the overall number of produced hadrons. However, the formation of

an equilibrated quark-gluon plasma in the local equilibrium region prior to hadronization

can probably only be expected for central collisions, since it requires high excitation and

density.

5 Conclusion

To conclude, we have investigated charged-particle production in d + Au and Au + Au

collisions at
√

sNN= 200 GeV as function of centrality within the framework of an analyt-

ically soluble three-sources model. Excellent agreement with recent PHOBOS pseudora-

pidity distributions has been obtained, and from a χ2-minimization we have determined
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the diffusion-model parameters very accurately.

For central d + Au collisions, a fraction of only 19% of the produced particles arises

from the locally equilibrated midrapidity source. Although this fraction increases to-

wards more peripheral collisions, the formation of a thermalized parton plasma prior to

hadronization can probably only be expected for more central collisions.

The d + Au results show clearly that only the midrapidity part of the distribution

function comes very close to thermal equilibrium, whereas the interaction time is too short

for the d- and Au-like parts to attain the thermal limit. The same is true for the heavy Au

+ Au system at the same energy, but there the precise fraction of particles produced in

the equilibrium source is more difficult to determine due to the symmetry of the problem.

The relativistic systems can thus be seen to be on their way towards statistical equilib-

rium. However, due to the dynamical evolution both the asymmetric and the symmetric

system remain far from reaching thermodynamic equilibrium, which is closely approached

only by the hadrons created from the central source that is mostly due to gluon-gluon

collisions.
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Table 1. Produced charged hadrons as functions of centrality in d + Au collisions at
√

sNN = 200 GeV, yb = ± 5.36 in the Relativistic Diffusion Model. The average impact

parameter for each centrality bin is < b >, the corresponding equilibrium value of the

rapidity is yeq, the variance of the central source in y−space is σ2
eq; < N1,2 >[1] are the

respective average numbers of participants. The number of produced charged particles

is N1,2
ch for the sources 1 and 2 and N eq

ch for the equilibrium source, the percentage of

charged particles produced in the thermalized source is neq
ch.

Centrality(%) < b > (fm) yeq σ2
eq < N1 > < N2 > N1

ch N2
ch N eq

ch neq
ch(%)

0-20 2.53 - 0.944 3.99 13.5 2 131 19 35 19

20-40 4.63 - 0.760 3.95 8.9 1.9 78 17 31 25

40-60 5.99 - 0.564 5.70 5.4 1.7 33 11 38 46

60-80 7.10 - 0.347 7.44 2.9 1.4 9 5 35 71

80-100 8.05 - 0.169 6.89 1.6 1.1 2 2 24 86

min. bias 5.66 - 0.664 4.04 6.6 1.7 56 15 21 23
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Figure captions

Fig. 1 Time evolution of the analytical solutions in the three-sources Relativistic Dif-

fusion Model (RDM) for minimum-bias d + Au collisions at
√

sNN = 200 GeV.

The curves in the upper frame show the three partial pseudorapidity distributions

(dNch/dη)k and their incoherent sum at short times τint/τy = 0.005 corresponding

to p=0.01. In the lower frame, τint/τy = 2.3 corresponding to p=0.99 displays the

solutions for large times where they come close to statistical equilibrium. Strong

interaction stops long before this situation is reached, see Fig.2.

Fig. 2 Calculated pseudorapidity distributions of charged hadrons in d + Au collisions at
√

sNN = 200 GeV for five different collision centralities, and minimum-bias in com-

parison with PHOBOS data [1, 21]. The analytical RDM-solutions are optimized

in a fit to the data. The corresponding minimum χ2-values (top left to bottom

right) are 4.7, 5.9, 2.4, 1.7, 1.9, 2.1. Au-like, d-like, and central partial distribu-

tions are shown for each centrality. Only the midrapidity part comes close to local

equilibrium.

Fig. 3 Calculated pseudorapidity distributions of charged particles from d + Au colli-

sions at
√

sNN = 200 GeV for five different collision centralities, and minimum-bias

in comparison with PHOBOS data [1, 21]. The steeper slope in the deuteron direc-

tion is due to the nonequilibrium properties of the system.

Fig. 4 Time evolution of the analytical solutions in the three-sources Relativistic Diffu-

sion Model (RDM) as in Fig.1, but for central (0-6%) Au + Au collisions at
√

sNN

= 200 GeV. The curves in the middle frame show the three partial pseudorapid-

ity distributions at short times τint/τy = 0.005 corresponding to p=0.01. In the

lower frame, the distributions are close to equilibrium with τint/τy = 2.3 (p=0.99).

The upper frame gives the comparison with PHOBOS data [3]; here, τint/τy = 0.46

(p=0.6).

Fig. 5 Calculated pseudorapidity distributions of charged hadrons in Au + Au collisions

at
√

sNN = 200 GeV for six different collision centralities in comparison with PHO-

BOS data [2, 3]. The relative strength of the midrapidity source at each centrality is
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chosen here in analogy to d + Au, cf. text. The analytical RDM-solutions are opti-

mized in a fit to the data. The corresponding minimum χ2-values (top left to bottom

right) are 1.2, 1.0, 0.95, 0.67, 0.53, 0.70. Only the midrapidity part comes close to

local equilibrium. Its relative importance increases with decreasing centrality.
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