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1 Introduction

Over the last couple of years, many interesting features of non-perturbative effects in M-
theory on AdSy background were discovered via the AdS/CFT correspondence. Utilizing
the powerful techniques of the supersymmetry localization [1] and so-called Fermi gas
approach [2] to the partition function of the dual CFT on S2, now we have a very detailed
understanding [3] of the non-perturbative effects in M-theory on AdSy x S7/Zj, which is
holographically dual to the ABJ(M) theory [4, 5].

It is realized that the existence of the two types of instanton effects, worldsheet in-
stantons [6] and membrane (D2-brane) instantons [7], is necessary for the consistency of
the theory. From the bulk M-theory perspective, these two types of instantons are both
originating from certain configurations of M2-branes wrapping some three-cycles, but they
are distinguished by the different dependences on the Planck constant A = 27wk of the
Fermi gas system. Membrane instantons are already visible in the semi-classical small
h-expansion of the Fermi gas, while worldsheet instanton effects are non-perturbative in
h. One can study such worldsheet instanton effects from the opposite large h regime, by
1/h-expansion of the matrix model associated with the Fermi gas system, which corre-
sponds to the ordinary genus expansion of the matrix model with the string coupling given
by gs = 1/h [8-10]. From the viewpoint of this gs-expansion, the membrane instantons
appear as non-perturbative effects in gs. The pole cancellation mechanism found in [11] is
important for the consistency of these two expansions, since it guarantees that we can go
smoothly from the small A regime to the large A regime. There are also additional contri-
butions, namely the bound states of worldsheet instantons and membrane instantons [12],
which are hard to study from both small & and large h expansions. Fortunately, in the
case of the ABJ(M) theory, we have a complete understanding of the worldsheet instan-
tons, membrane instantons, and their bound states, thanks to the relation to the (refined)
topological string on local P! x P! [3, 13-16] and exact results for various specific values of
the parameters [13, 14, 17, 18]. (see [19, 20] for similar progress in half-BPS Wilson loop)

However, for more general 3d gauge theories with less supersymmetry, we still do

not know detailed structures of the non-perturbative effects.!

Some progress along this
direction has been made in the study of an N' = 4 U(N) gauge theory with N; fundamental
and one adjoint hypermultiplets, which appears as the worldvolume theory on N D2-
branes in the presence of Ny D6-branes. After applying the localization technique [22-
25], the partition function of this theory on S3 is reduced to a matrix model, called the

Ny matrix model [26, 27]. In [28], using the Fermi gas approach with the identification

!The only exception so far is the orbifold ABJM theory analyzed in [21]. The grand potential of this
theory has a simple relation to the one of the ABJM theory.



h = Ny, the analytic forms of the first few membrane instanton corrections of this model
were determined. Worldsheet instantons can also be studied, in principle, by the genus
expansion of the Ny matrix model. The genus-zero and the genus-one free energies of the
Ny matrix model were calculated in [26], but in practice the computation of the higher
genus corrections is not so easy. Instead, the analytic forms of the first few worldsheet
instantons were found in [28] from the exact computation of the partition functions at
finite N up to certain high N = Npyax. It turned out that the results of the membrane
instantons and worldsheet instantons in the Ny matrix model are quite different from the
ABJ(M) case. In particular, the membrane instanton coefficients are given by the gamma
functions of Ny and quite different from the Gopakumar-Vafa type formula [29] in (refined)
topological string, where only trigonometric functions of i or 1/h appear. To understand
the underlying structure better, it is desirable to study non-perturbative effects in various
other models with N = 4 supersymmetries.

In this paper we study a special class of N' = 4 super Chern-Simons matter theo-
ries in three dimensions [30, 31]: a circular quiver gauge theory with the gauge group
U(N) x UN)I x U(N)_j, x UN)S™" and bi-fundamental hypermultiplets one by one
between nearest neighboring pairs of gauge groups. The subscripts in the gauge group rep-
resent the Chern-Simons level for each factor. In this paper, we will refer to this theory as
“(p,q)-model”. It is expected that the (p,¢)-model is the low-energy effective theory of N
M2-branes probing the orbifold (C*/(Z, x Z,))/Zx [32, 33], where the orbifolding action is
given by (2.90), and this model is dual to M-theory on AdSy x (S7/(Z, x Z,))/Zy. through
the AdS/CFT correspondence. The (p,q)-model can be regarded as a two-parameter de-
formation of the ABJM theory, hence it is expected that there is a rich non-perturbative
structure in this model. For instance, the ABJM model corresponds to the (p,q) = (1,1)
model, while the Ny matrix model corresponds® to the (p,q) = (1, Ny) model with the
Chern-Simons level k = 1.

We will study the large N instanton effects in the (p, ¢)-model by analyzing the par-
tition function on S3. By applying the localization method, the partition function of the
(p, ¢)-model is reduced to a matrix integral [22-24], which can be further studied by the
Fermi gas formalism with the identification & = 27k. Note that the partition function of
the (p,¢)-model is invariant under the exchange of p and ¢ with fixed k. In the original
set-up of the circular quiver gauge theory, p,q and k are all integers, but at the level of
the partition function, we can consider an analytic continuation of the parameters (p, g, k)
to arbitrary real (or complex) numbers. The study of the (p,¢)-model in the Fermi gas
formalism was initiated in [37, 38]. The perturbative part of the grand potential was de-
termined in [37], and in [38] it was found that there are three types of membrane instanton
corrections in the grand potential,

O™ 7), Ol 1), O™), (1.1)

where p denotes the chemical potential of the Fermi gas system. These instantons con-
2pkN

¢ ) and

. . . . —ry/ 24kN —
tribute to the canonical partition function at large N by O(e r ), Ofe

2This correspondence is understood from the 3d mirror symmetry [34, 35] as explained in [4, 36].
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27), respectively. The first two types of instantons are simply related by the

Oe ™
exchange of p and ¢. In this paper, to study such membrane instanton corrections we will
develop a systematic method for the h-expansion (WKB expansion) of the grand potential.
Using the data of the WKB expansion, we determine the analytic form of the leading men-
brane instanton correction of the first two types in (1.1) for generic (p, g, k), and for the last
type in (1.1) we find the analytic forms of the leading and the next-to-leading menbrane
instanton corrections. Also, there are worldsheet instanton corrections of the order

Ap

O(e wir), (1.2)

which contributes to the canonical partition function by O (67%\/%) at large N. From the
exact computation of the partition functions at finite N, we find the analytic form of the
leading worldsheet instanton correction for generic (p, ¢, k). We will see that our results of
the menbrane instantons and worldsheet instantons satisfy the pole cancellation conditions
as expected, and they also correctly reproduce the known results of the ABJM model and
the Ny matrix model by taking the appropriate limits of the parameters (p, ¢, k). Study of
the bound state corrections in the (p, q) model is beyond the scope of this paper.

This paper is organized as follows. In section 2, after introducing the Fermi gas for-
malism of the (p, ¢)-model, we explain our method of the WKB expansion of the grand
potential and our algorithm for the exact computation of the partition functions. We also
comment on the instanton effects in the (p,q) model from the dual gravity viewpoint.
Then, we present the results for the (p,q) = (1, ¢) case in section 3, and the results for the
general (p, q) case in section 4. In the both cases, we find the analytic forms of the first few
membrane instanton and worldsheet instanton corrections. In section 5, we consider some
interesting cases with the special values of (p,q). We discuss that the grand potential for
(p,q) = (1,—1) is captured by the refined topological string on a resolved conifold. We also
find an exact closed form expression of the grand partition function of the (p,q) = (2,2)
model at k = 1. Section 6 is devoted to conclusions and discussions. In appendices A to F,
we summarize some useful results used in the main text.

2 Fermi-gas approach to N' = 4 quiver CS matrix model

In this section we introduce the ideal Fermi gas formalism of the (p,¢)-model and discuss
how to extract information on the large N non-perturbative effects in the corresponding
M-theory dual.

2.1 From matrix model to Fermi-gas

It is known that the partition function of the (p, ¢)-model on S? is reduced to the matrix
integral thanks to the supersymmetry localization [22-24],

(a) l (a) ]

280 = s [ 11w e [ 3 (02 - )] T Ml o
=t | Lo v iz 2 N e
i3

(2.1)



where p®Ptetl) = ;D This matrix model can be further simplified by using the ideal
Fermi gas approach [2]. To be self-contained, here we briefly review the derivation of the
Fermi gas representation. First, by using the Cauchy determinant formula

[Tic; [2 sinh “ } [2 sinh %= y]:|

- 1
Hi,ﬂcosh%” R e

p ;. 2cosh w ’
we rewrite the partition function as
Z(N,k) Z /pf[q A [ ' i ( (D)2 )}
’ N! 2mk)N drk = Hi

—+qg—1
pTq— 1
X H H FONMCS XH ot

a=1 Lj=12 COSh =19 cosh -2 2;”“”
_ i Z(_l)o aN W H ( COINEY) ) (2.2)
N H PG s By ) .
o 7j=1

where we have trivialized most of the permutations and the function p is given by

p+q emk 2,%@(44—1))2 p+g—1 1 1
pl.9) 2k / H 21k 2cosh x;;;;?) [2 cosh 48 —ptD 2*];(”1)] 2 cosh 7”(1);27?’.
(2.3)
Thus we can regard the partition function as an ideal Fermi gas system with the density
matrix p(z,y). The expression of p is further simplified if we regard p as the matrix
element of the quantum mechanical operator [)(Q, ]5) with (Q, ]5) satisfying the canonical
commutation relation

a=2

[Q,P] =ih, h=2rk. (2.4)
Then, the density matrix p(z,y) is understood as®
1

pl,y) = +(zlply), (2.5)
where _ o
ﬁ(Q7 P)= 6ﬁ@2%67§Q2%. (26)
(2 cosh g) (2 cosh %)
iQ? L iQ? A iP2 A zP2 A A
Using the convenient formula e 25 f(P)e™ 2r = f(P — Q) and e 2 g(Q)e™ 2= = g(Q + P),
we find
HOP) = e a1 L ew, 2.7)

q
(2 cosh %) (2 cosh g)

3We are using the following convention

@p)=ctor, [ Rianal=1 [ SEiPe=1,



If we perform the similarity transformation

ING/2 i p i p )\ —a/2
p— (2 cosh %) eﬁ]ﬂp“e_ﬁlﬂ (2 cosh %) , (2.8)
then the operator p is simplified to
A 1 1 1
p(Q, P) = (2.9)

(2 cosh g)qﬂ (2 cosh g)p <2 cosh %>q/2'

Note that the partition function is invariant under any similarity transformations. In the
coordinate representation, the density operator (2.9) is expressed by

1 1 1 p i(xi—x2) p i(xp—x2)
— -~ — 2.10
Ak (2c0sh )" (2cosh )" <2 ok 2 2w )0 B

where B(z,y) = I'(x)['(y)/I'(z + y) is the Euler beta function. For p € Z~¢, one can show
that this expression reduces to the one* in [39]. In particular, for p = ¢ = 1, it reduces to the

p(r1,T2)=

density matrix in the ABJM Fermi-gas as expected. Also, the case for (p,q,k) = (1,2,1)
gives the density matrix for the U(N )2 x U(N + 1)_2 ABJ theory [13, 40, 41] as explained
in [28]. Note that the partition function is invariant® under the exchange p <> ¢. This
invariance is no longer manifest in the coordinate representation (2.10).

2.2 Grand canonical formalism

As was proposed in [2], a useful way to treat this system is to introduce the grand canonical
partition function

E(k, k) =1+ ZKNZ(N,k), Kk =ek, (2.11)
N=1

where k£ and p is the fugacity and the chemical potential, respectively.® We can return to
the canonical partition function by

1 dr _

The grand partition function is given by the Fredholm determinant

o

E(k k) = det(1+ rp) = [[(1 + kAn), (2.13)
n=0
“More explicitly, it is given by
p—1 . 2
1 1 1 1 z1—x2\2 | (2§—1)
2(p—1)!7k (2 cosh 171)4/2 (QCOSh %)(1/2 2 cosh 1127,::2 l_.[j:21 |:( 127rk2) + ]4 ] for odd p

p(x1,12) = B

_ 1 oo 2 :
1 1 1 1 —x2 1 —To .2
Ap—DI7?K (3cosh Z1)?/? (2cosh 22)7/? 25inh T F2 LLI=1 [( ber2) } for even p

®We can easily show this by the canonical transformation Q' ]5') = (=P, Q) and the similarity trans-
formation p — (2 cosh %/)q/z(Z cosh %)p/zﬁ@ cosh %/)7‘5’/2(2 cosh %)7”/2.
5In the following, we will use both s and j, interchangeably.



where A\, (n € Z>¢) are the eigenvalues of p. The spectral problem for this system is
represented by the Fredholm integral equation:

/OO dx’ p(x, 2" ) (2") = N (). (2.14)

—00

It is easy to see that the grand potential is given by

= o~ (=)
J (K, k) =logE(k, k) = — / Cp(g)a (2.15)
(=1
where (,(s) is a spectral zeta function defined by
[e.e]
Cp(s) =Trp® =) A (2.16)
n=0

In particular, for s = ¢ € Z~g, it can be computed directly by the multi-integral

Cp(0) = /00 . ./00 dxy---dxg p(x1,22) - - p(T0, 271). (2.17)

As in [42, 43], it is convenient to rewrite (2.15) as the following Mellin-Barnes like integral:

c+ioco ds

T, k) = — / = ONCHFORS (2.18)

The constant ¢ must be taken such that 0 < ¢ < 1. Depending on the sign of u, one
can deform the integral contour in the following ways. For p < 0, one can deform the
countour by adding an infinite semi-circle C; as shown in figure 1. Then the integral can
be evaluated by the sum of the residues over all the poles in the region Re s > ¢. As shown
in [42], the spectral zeta function (,(s) does not have any poles in the region Res > 0. If
0 < ¢ < 1, the poles inside the contour are located at s = ¢ (¢ € Z~), coming solely from
the factor I'(—s), and thus we precisely recover the sum (2.15). On the other hand, for
i > 0 one can deform the contour by adding the opposite semi-circle C_ as in figure 1.
In this case, one needs the information of the poles in the region Res < ¢, in which (,(s)
may have non-trivial poles, and the problem is highly non-trivial for general k. As we will
see below, in the semi-classical analysis, we can find all the poles of (,(s) and compute the
large p expansion systematically.

2.3 Classical approximation

Since the ideal Fermi gas formalism provides us with the quantum mechanical description
of the system, it is useful to consider the semi-classical h-expansion, or equivalently the
small-k expansion

1 o
Jwie(u, k) =+ > T (), (2.19)
n=0

where Jwkp is expected to approximate the exact grand potential J up to exponentially
suppressed corrections in A. Let us start with the classical approximation, namely O(k~1).



Figure 1. One can deform the integration contour in (2.18) into a closed path by adding an infinite
semi-circle Cy (C_) for u < 0 (1 > 0). We schematically show the poles of the integrand.

Note that the large p expansion in this limit has already been analyzed in [38]. Here, we
simply re-derive their result by using the Mellin-Barnes integral (2.18). In the classical
approximation, the density operator is given by

1 1
2 cosh %)q (2 cosh g)p'

P = (2.20)

Then, the spectral zeta function can be easily computed by the phase space integral

00 2(PS\T'2(48
Céo)(s)z/ dQdP 1 1 EREGINC.

oo Am? (2(:osh %)qs (2COSh g)ps B 4W2W'

(2.21)
We would like to know the large p expansion of the classical grand potential. Plug-
ging (2.21) into (2.18), one obtains

1 ctico g T2(B2S\[2( 48
K ]

If we take the integral contour C_ in figure 1, then the leading large y contribution comes

TO () = e, (2.22)

c—100 2mi

from the residue at s = 0:

1 2(Bs\[2( 48 ) 4 — 2 _ 2 3 3
_7Resr(8)p(_s)w S 3 p-—4q HJFP +4q ¢
4m? s=0 ['(ps)T'(gs) 3m2pq 6pq m2pq

(3). (2.23)

In the region Re s < 0, the integrand of (2.22) has the following three types of poles:

2 2
s = ——n, 5= ——n, s=—n, (n € Zso). (2.24)
p q
The residue at s = —2n/p is given by

I‘\2 ps FQ qs I‘2 _ngq "
_ % Res p(s)p(_s)wesu _ 1 <2”) cse (27T”> Me*%‘. (2.25)
4% s=—2n/p



The residue at s = —2n/q is obtained by exchanging p and g. The residue at s = —n is
also computed as

F ZL,F2 W —J_"_IFQ _np F2<_ﬁﬂ
L(ps )F(QS) dr*n I'(=np) T'(—nq)

Res I'(s)I'(—s

4%28*—n

We conclude that the large p expansion of the classical grand potential takes the form

2 A-p—¢ P+ 0 .
TO(u) = 37r2pq“3+ 6 p+ g C(B)Jrjh(/m( )+j1\(/[2)H( )+\71\(42),111(M)v (2.27)
where N o
O () =3 (P e () )
Tz (1) ;27m<n> C< ’ )F(—qu)e ,
© 2/ np
9 1) = L 2 oo () E00) oo
7) (=)

© (NN ( D" ()
Tro )—n < 4n?n F(_n;) I'(=nq)

These expressions reproduce the results in [38].

2.4 Semi-classical analysis

Let us proceed to the quantum corrections to the grand potential. To compute the quantum
correction to (,(s), we use the Wigner transform, as in [2]. For a given operator A, the
Wigner transform is defined by

dqQ’ iPQ!
w(Q,P)—/ g <Q— ’Q+ > (2.29)
The trace of A is then given by the phase space integral
P
TrA= / de Aw (Q,P). (2.30)

Let us apply the Wigner transform to the inverse of the density operator

. AN\ 4/2 5\ P AN q/2
O=p"'= <2cosh§> <2cosh]23> <2cosh622> . (2.31)

As shown in appendix A, the Wigner transform of O is given by
w (@, P) = ( 4 cosh 3~ 4sin 5 2 cosh 5 (2.32)

Using this result, one can easily compute the WKB expansion of Ow(Q, P) up to any

order. We would like to compute the spectral trace

C(s) =Trp* =Tr O, (2.33)



Expanding O~ around Oy as in [2, 42], the Wigner transform of O~ is computed by

O w=>_ MOVV-T[(@ — Ow) lw, (2.34)

!
r=0

where (s), is the Pochhammer symbol. To compute the summand in (2.34), one needs
the Wigner transform of operator products. The Wigner transform of a product of two
operators is computed by

(A- B)w = Aw * By, (2.35)

where the Moyal product x is defined by

ih <~ — — =
Ax B = A(]},p) exp [2(8958;; - ﬁpﬁx)] B(l‘)p)
- n on (2.36)
n 1 ih —m m an—m
-3 () (3) o awnge ey

n=0m=0

S up to any desired order, in principle. However, the

In this way, one can compute Tr O~
integral appearing in (2.34) for general s is complicated and hard to evaluate. Practically,
it is sufficient to compute it for s € Z-o. Here, we use an interesting idea in [38]. The
quantum correction 7 (1) can be constructed by acting a non-trivial differential operator

on the classical one:
TN (@) =DMTO (),  (n=12,...), (2.37)

where D™ is a differential operator of u. Its explicit form up to n = 2 was computed
in [38]. An efficient way to fix this differential operator is as follows. We first compute
the expansion of 7™ (k) around & = 0. This can be done by using the formula (2.34) for
s € Zg. Taking an ansatz of the form of D™, we try to fix unknown parameters to match
the first several coefficients of 7 (k). If the ansatz is correct, the obtained result must
reproduce higher order coefficients. In this way, one can verify the obtained operator up
to any desired order. Using this method, we have indeed fixed the differential operator up
ton = 17. The result up to n =4 is given in appendix B.

Using this method, we finally find that the semi-classical grand potential has the
following large u expansion

JwWkB (1 k) = Tpert (11, k) + Tnvz1(p, k) + Tz, k) + Tz (p, k), (2.38)

where Jphert (1, k) is the perturbative grand potential given by

C,q(k
Tpert (1, k) = Pg”,ﬁ + Byg(k)p+ Apg(k), (2.39)
with ) )
2 4—p*—q°  pgk
k)= —— By (k)= —— * 477" 2.4
Cralh) = g o Bralk) =5 =+ (2.40)



The constant part Ay 4(k) is a complicated function of k, whose exact form was conjectured
in [37]
Apg(k) = 5 (PP Ac(ak) + ¢*Ac(pk)) , (2.41)

where A.(k) is given by [28] (see also [44])

2¢(3) K3 K2 [ T
Ao(k) = 1— =) +2
(¥) 2k ( 6) " 7r2/0 dxek —

There are three types of exponentially suppressed corrections with the following forms

L\D\»—t

i log(1 — e~ %%). (2.42)

_2np _2np
Jnz,(p, k Zan (p,q,k)e #, Jzun(p, k Zan (¢, p,k)e
(2.43)

Iz, k Z/Bn p,q k)e .

Note that ay,(p, g, k) is not symmetric in p and g, while £, (p, ¢, k) is symmetric (namely,
an(p,q, k) # an(q,p, k), Bn(p,q, k) = Bn(q,p, k)). Our task is to fix these coefficients.
In the later analysis, it is convenient to introduce a function D(s,p, q, k) by

D(e™) = D(s,p,q, k)e™, (2.44)

where D is a generating function of D™,
o0
D=1+) kD", (2.45)

The definition (2.44) means that D(s, p, ¢, k) is obtained by replacing 9, in D by s. Then,
the WKB expansion of the spectral zeta function is simply given by

(0)
() = L1 D0, 1), (2.46)

where the classical part ¢ ,(;0) (s) is given by (2.21). Also, the membrane instanton coefficients
in (2.43) are generically given by

RO on 0)
an(pa q, k) ]EJZ%Q)D <_p3p7q7k> ) ﬁn(paqak) = Béqu)D (_napaqvk)> (247)

where ol )( q) and Bn (p, q) are the classical parts in (2.28):

2(_ng n—1712(_1P\172(_"q
0@ (p,q) = 2" ese [ 222 a2l BO(p.q) = Y PRI Ty)
no 2mn \ n P I‘(_%)’ no 4m2n T'(—np) T'(—ngq)
(2.48)
Thus our goal is to determine D(—2n/p,p, q, k) and D(—n,p,q,k). It is useful to notice

the following symmetric property:
D(87P7Q7 k) = D(_87_p7 —-q, k) (249)

One can show this by using ﬁ]p%_p’q_)_q =p~ ! and Cp—l(—S) = (p(s)-

~10 -



2.5 TBA approach

There is another approach to compute the grand potential by using the so-called TBA
equations. In [45], the semi-classical expansion of the ABJM Fermi-gas was computed in
this approach. In the present situation, for p = 1,2, we can use this method. For p = 1,
the density matrix is given by

1 e 3U(z1)—5U(z2)
27k 2 cosh (%) '

p(z1,22)] g = with U(z) = qlog {2 cosh g} . (2.50)

The kernel (2.50) has the same form as the one in [46], and one can immediately use the
result there. The functional equations are given by

R, (‘T + m) e (x - 7T21k> P [U <x " 7r;k> v <x - W;k)] e, (2.51)

ik ik
n (m + Wé) +n (m — 72) = —kRi(x),

and . ,k
R_ wik R_(y— ™k
(z+ Wfk) (@ lk) = 2ik0, arctan n(x). (2.52)
Ri(v+7%57)  Ry(r—757)
The grand potential is computed by
1 [e.e]
0T (5. Blys = 1y [ del(Rala) + R-(0)). (2.53)

where an integration constant is fixed by the condition J(x = 0,k) = 0.
For p = 2, the density matrix is
1 1 1 na ‘
A2k (2cosh % )q/2 (2cosh % )Q/2 sinh #52

p(1,22)|,—n = (2.54)

In this case, the density matrix is different from the one in [46]. Nevertheless, as explained
in appendix C, we find the following functional equations determining the grand potential
for p = 2 in a similar way to the p = 1 case,
E(x + mik)é(z — mik) = n*(z) — 1,
n(x + mik) + n(x — wik) = 2¢£(z) cosh 2r(z),

( ) ( ) (2.55)
w(x + mik w(x — mik
- = 2i0, th
E(z+mik)  &(x — mik) 10, arccothn(z),
where £(x), n(z) and w(z) are unknown functions, and r(x) and t(x) are given by
B ) t(x) B K
T(CC) = arcsinh T, t(CC) = m (256)
The grand potential is then given by
1 oo
T (kK)o =— [ d inh® r(z). 2.
0xJ (K, K)o — /Oo x w(x)sinh” r(x) (2.57)

The functional equations (2.51), (2.52) and (2.55) can be solved systematically around
k = 0. Therefore one can compute the WKB expansion of the grand potential.
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2.6 Non-perturbative corrections: worldsheet instantons

So far, we have considered the semi-classical analysis, which is perturbative in the sense of h.
As explained in [2, 47], the grand potential receives quantum mechanical non-perturbative
corrections in k. These non-perturbative corrections are caused by the worldsheet instan-
tons in the dual string/M-theory and invisible in the semi-classical analysis.” In the case
of ABJM Fermi-gas, fortunately these corrections can be predicted with the help of the
topological string on local P! x P!. Interestingly, for some special cases, the Fermi-gas sys-
tem is related to a quantum mechanical system associated with the topological string [48]
on certain CY, as will be seen later. In these cases, it will be possible to predict the
worldsheet instanton correction, as in the ABJM Fermi-gas. However, in general, we do
not know such a connection, and do not have a systematic treatment of these corrections
so far. One approach to compute them is to consider the matrix model computation in the
't Hooft limit, as was performed in [9] for the ABJM matrix model. In appendix D, we
compute the planar free energy of the (1, ¢) model and find the worldsheet instanton effect
in the planar limit.

Following the argument in [2, 47|, one can estimate an order of such a non-perturbative
correction. Let us consider the classical Fermi surface with energy E:

H(P,Q)=plog <2 cosh g) + qlog <2 cosh g) =F. (2.58)

This gives an algebraic curve in the phase space. By rescaling P = pP’, Q = ¢@Q’, this
expression becomes

P/ Ql
plog (2 cosh ) + qlog <2 cosh > =F. (2.59)
2p 2q

In the large E limit, we can approximate the Fermi surface as

'y P Q'
H(P',Q")=FE ~log 2cosh? + log 2(:osh7 , (2.60)

up to exponentially suppressed correction. This approximated Hamiltonian leads to the
equations of motion
0H 1 P . oH 1 Q'

= = —tanh —, P'=-— = ——tanh —. 2.61
ap 2 Mn aQ ~ 2 (2.61)

Q/

On the equi-energy orbit H(P', Q') = E, Q' becomes

1 2 Q' _op
Q = 3 1 — 16 cosh e (2.62)

"Very recently, a new scenario was proposed in [42]. This scenario states that the non-perturbative
correction to the grand potential is produced by the perturbative resummation of the spectral zeta function
via the integral transform (2.18). It would be interesting to explore the worldsheet instanton correction in
this approach.
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The solution of this equation of motion is given by
Q' t
tanh — =msn | -, m 2.63
2 4’ ’ (2.63)
where sn(u,m) is the Jacobi’s elliptic sine function and m? = 1 — 16e2¥. As the function
of ¢, this has the real period w; and the imaginary period wo,

w1 = 16K(m), wy = 8iK(m'), (2.64)

where K(m) is the complete elliptic integral of the first kind and m’? = 1 — m?. Now we
consider the complexified Fermi surface, in which we regard )’ and P’ as complex variables.
Then, the complexified Fermi surface (2.58) determines a Riemann surface, and we have
two kinds of periods associated with this Riemann surface [2]. One of them computes the
volume surrounded by the surface (2.58). We refer to this cycle as the “B-cycle” and to
the other as the “A-cycle”, following [47].% The large E behaviors of the periods can be
easily estimated. Noting

/
P'(t) = —log <cosh2 26_2E> +0(e72F), w =2E+ O(e™%F), (2.65)
the period along the B-cycle is given by
1 o[z _28 _2m  8E?
f PdQ = / POQ )t + 07 e ) = 3 L o(B). (2.66)
B bq 7(«11/2 bq
In order to compute the A-period, it is convenient to use the variables
Q =ih, t=ir. (2.67)
Then we obtain
: wa/2i . 25 2E 8miE
7{ PdQ = - P0irydr+ 0%, e %) = E L o). (2.68)
A Pq J—wo/2i pq

As explained in [2], the quantum mechanical instanton effect is related to the A-period.
The leading order of this correction is
1 4F
exp f PdQ] = exp [—] . (2.69)
[h A pak
4
This means that the grand potential receives the non-perturbative correction of order e pak .

We conclude that the worldsheet instanton correction in the present case is expected to
take the form

> _4m
Tws(i.k) = dim(p, q, k)e vach. (2.70)
m=1

We observe that this expectation is precisely consistent with the exact computation of the
partition function for various (p, ¢, k) and the planar solution of the (1, ¢) model analyzed in
appendix D. For the very first few coefficients, we can guess the exact forms of d,,(p, q, k),
as given in the next two sections. In addition to the worldsheet instantons, there also exist
bound states of the membrane instantons and the worldsheet instantons. Computation of
these bound state contributions is beyond the scope of this work.

8Note that this convention is opposite to the one in [2].
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2.7 Exact computation of the partition function

In this subsection we present our algorithm for the exact computation of the partition func-
tion with fixed integer p, which is a simple generalization of the ABJ(M) case [11, 13, 17].
First let us recall the formula for the grand partition function

o (—R)"
- _ . n
E(k, k) = exp [ Z - Trp™ |, (2.71)
n=1
where we define multiplication and trace of two matrices p1, p2 as
oo o0
p1p2(w1, 22) = / dy p(x1,y)p2(y, x2), Trpr= / dy p1(y,y). (2.72)
—0o0 —0o0

This formula tells us that we can exactly compute the canonical partition function with
the rank NV if we find exact values of Tr p™ with n = 1,--- | N. Therefore, below we explain
how to compute the values of Tr p" exactly for integer p.

2.7.1 The case of odd p
When p is odd, the density matrix is given by
1 1 1 fx1,x2)

p(x1,x2) = ., (2.73)
2(p— D'wk (2 cosh %)qﬁ (2 cosh %)qﬂ 2 cosh Hg=
where )
B 2 . 2 p—1
r1 — T2 (23 — 1) Y
flar,z2) =[] [( 5k > + =) fipalad. (2.74)
Jj=1 7,3'=0
Then, we rewrite the density matrix as
-1
E(l‘l)E(m'Q) L J g
= il 2.75
p(.%'l, .%'2) M<m1) i M(.%'Q) et f]j 1Ty , ( )
where .
e2k z
x) = T M(z) =2(p — 1)rwkek. (2.76)
(2 cosh %)q
This relation is also schematically represented by
p—1
{M,p} =" fiy(@E)® (a7 E). (2.77)
J,j'=0

Here we regard p, M and #/E as the symmetric matrix, diagonal matrix and vector, re-
spectively, whose indices are the coordinates (z1,z2). Applying this relation iteratively,

we find
n—1 p—1
(0,0 = S-S (o B) o (0" B), (2.78)
=0 3,4'=0
which is equivalent to
n—1

p—1
(4) ("
M (1) + (—1)" 1M (y) gzo(‘”(E(xl)E(m)MZ:O Figrd? (1) 6, _ ().

p" (w1, 22) =

(2.79)
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Here d)éj )(x) satisfies the recursion relation

o0@) = g [ ) B ) (2.80)

with the initial condition
oY) = 29, (2.81)

Once we know the series of functions <Z>gj )(ac), we can compute Tr p" systematically.

2.7.2 The case of even p

For even p, the density matrix is given by

1 1 1 f(.%’l, .1‘2)
p(r1,T2) = . — (2.82)
4(p — 1)Im2k? (2cosh %)q/Q (2cosh %)q/Q 2sinh #1752
where
£-1 N p—1
1— X2 . i g
f(x1,22) = (21 — 22) [( 5T > + 42| = Z fijralad . (2.83)
Jj=1 J,j'=0
Then, we rewrite the density matrix as
Bla)B(rs)
= D02 ol d 2.84
ple1, 2) M(z1) — M(z2) .Zof” Sk (2.84)
Ji'=
where .
€2k 2,9 T
E(x) = 7 M(z) =4(p — 1)n“k“ex. (2.85)
(2 cosh %)q
This relation has the similar structure as in the odd p case:
p—1
Moo= Y fip (@)@ (a7 B). (2:86)

3,3'=0

Hence, a similar argument leads us to

—

n

— p—1 . .y
(~D'E(@)E(2) Y. fy00 (@)e)_(22), (2.87)

£=0 7,4'=0

n _ 1
P ) = NGy = )

where ¢§j )(ac) satisfies formally the same relations (2.80) and (2.81) as in the odd p case.

2.7.3 Free energy for various (p, g, k)

Using the method explained in the previous subsections, we have computed the exact values
of partition functions up to certain N = Npax, for various (p,q, k). For example, for the
case of (p,q, k) = (1,2,2),(2,3,1),(2,3,2), we have computed the exact partition functions
up to Nmax = 66,32,33, respectively. Some examples of the exact values of partition
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Figure 2. The free energy (—log Z) is plotted against N3/2 for some (k,p,q). The straight lines
show the perturbative free energy (—1log Zpert)-

functions can be found in appendix F. These exact data are very useful to extract the
instanton corrections as in [11].

From the general argument in the Fermi gas approach [2], in the large N limit the
partition function Z(N, k) behaves as

Z(N, k) = Zpert(N, ) - [1 + O(e™VV)], (2.88)
where the perturbative part is given by the Airy function [2, 10]
Zen(N.K) = (k) PeAa WA [C () VAN — Byg(k)]. (289)

The constants A, 4(k), Bp4(k) and C, (k) appearing in Z,e, (N, k) are none other than the
coefficients of the perturbative part of the grand potential (2.39). In figure 2, we plot the
exact values of the free energy (—log Z) for some (k, p, ¢) with the perturbative free energy
(—log Zpert). We can easily see that the exact free energy shows a good agreement with the
perturbative free energy since their difference is exponentially suppressed in the large N
regime. We also observe that the free energy scales like N3/2 for large N as expected from
the AdS/CFT correspondence as found earlier in [2, 49, 50]. The perturbative free energy
also contains the log-correction ilogN in subsubleading large N correction as expected
from the one-loop analysis on the gravity side [51].

2.8 A comment on the gravity dual

The (p,q)-model is expected to be the effective theory of N M2-branes on the orbifold
(C*/(Zyp x Zq)) /2y, [32]:
2mi _2mi
b (21,22,23,24) ~ (e 7 21, 9 29,23,24),
2mi _2mi
OB (21,722,23,24) ~ (21,20,€ P z3,€ P z4),

2mi _ 2w 27 _ 27

(ZSC : (Zl,ZQ,Zg,Z;L) ~ (eqube Tq227eﬁz3’e W'Zél)' (290)
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This implies that the (p, g)-model is dual to M-theory on AdSy x (S7/(Zy, x Z4))/Z with
the metric

R2
d82 = st?‘&d& + RZdS%SU(prZq))/Zkv (291)

where

R = (3212 kpgN)'/1,,. (2.92)

Since this background has many nontrivial 3-cycles, we could have discrete holonomies
of the 3-form potential along the cycles as in the ABJ theory [5]. For Imamura-Kimura
type theory with equal ranks of gauge groups (without fractional branes), the discrete
holonomies depend on the ordering of 5-branes in its type IIB brane construction. This
has been studied in detail in [52] by analyzing monopole operators in general Imamura-
Kimura type theory. According to the formula in [52], we expect that the gravity dual of
the (p, ¢)-model does not have the discrete holonomies.

There are some predictions on the free energy — log Z from the gravity side. First the
free energy of the classical SUGRA with the boundary S is given by (see e.g. [53])

= YN (2.93)

Also by one-loop analysis of the 11d SUGRA on AdS4x X7 with the smooth 7d manifold X7,
it is known that the one-loop free energy contains the following universal log-correction” [51]

1
1 log N. (2.94)

On the CFT side, this behavior comes from the the Airy functional behavior (2.89) in the
perturbative free energy.

Next we give some comments on nonperturbative effects. Let us first recall the ABJM
case. For the ABJM case (p = ¢ = 1), if we identify the M-theory circle with the orbifolding
direction by Zj, and shrink the circle, then the 11d supergravity on AdSy x S7/Z; becomes
the type IIA supergravity on AdS,; x CP3. In the type ITA superstring on AdS; x CP?,
we have worldsheet instanton effect, which comes from fundamental string wrapping the
nontrivial 2-cycle CP! in CP? [6]. From the M-theory viewpoint, this corresponds to an
M2-brane wrapping the non-trivial 3-cycle S3/Z;, in S7/Zj. For the general (p, q) case, we
also expect that there are similar non-perturbative effects as in the ABJM case. Note that
the orbifold (2.90) includes the nontrivial 3-cycle (S3/(Z, x Z,)/Z), which is obtained
by taking zo = z4 = 0, for example. This implies the presence of non-perturbative effect
coming from M2-brane wrapping this cycle, whose weight is given by'?

exp | -TwzVol ((S*/(Z, x Zq))/Zk)] = exp [—2];;] = exp [—27r1 / lipi\;] . (2.95)

When X7 has fixed points as in our case, there might be extra massless degrees of freedom and the

logarithmic behavior could change. However, the agreement to the CFT side implies absence of such extra
contributions.
ONote that the tension Tz of the M2-brane is given by Tase = 1/(47r2lf,).
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Since the 3-cycle becomes two-dimensional in the large-k limit, we expect that this effect
corresponds to the worldsheet instanton effect described by the fundamental string wrap-
ping a 2-cycle in the type IIA superstring theory. One can see that the weight (2.95) of
the worldsheet instanton effect computed from the gravity side correctly reproduces the
weight (2.69) obtained by the matrix model, after changing the variable from the canonical
to the grand canonical ensemble. This is also consistent with the planar solution of the
(1, q) model computed in appendix D.

3 Results on the (1, g)-model

In this section, we summarize some explicit results in the case of p = 1. In this case, the
system can be thought of as a one-parameter deformation of the ABJM Fermi-gas by ¢,
or the deformation of the Ny matrix model [26, 27] by k. Therefore, the results for k =1
(and ¢ = Ny) must reproduce those in the Ny matrix model. Similarly, in the limit ¢ — 1
(with general k), the results must also reproduce those in the ABJM Fermi-gas.

3.1 Membrane instanton corrections

Let us first consider the membrane instanton corrections. First of all, one notices that the
classical membrane instanton corrections JI\(/IOQ)J and jl\(/loim in (2.28) are divergent in the
limit p — 1. As was shown in [38], these divergences are, however, canceled by each other.
One finds that after the cancellation, the finite part is given by

T (1) = (g + s ae) = D (4 @)y + 80 (@)™, (3.1)
n=1
where
1 [2n\ I'?(—nq)

O)(g) = —
" (4) 27%n < n > I'(—2nq)’ (3.2)
50 () = - (2 E=na) [1+ 2n(H,, — Ha,) + 2ng(¢(—ng) — (—2ng))] |

" 4m2n?2 \ n ) T'(—2nq) " n '

Here H,, is the n-th harmonic number, and (z) = 0,logI'(z) is the digamma function.
There is no limit problem for jl\(/?Q) NG

~ ) > _ 2np
Apnle) = lim Ry =Y ol (@)™,
n=1
\ (3.3)
a(o)( )_ 1 2n ese 2m™n FQ(_a)
n'\d 2\ n q F(_Qj)'

q

Therefore, in the case of p = 1, the large p expansion (2.38) reduces to

Cl,q(k)
3

TP, k) = 163+ Bi g (k) + A g(k) + Fuio (. k) + Az (e, k), (3.4)
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where
o

Faz1(p, k) =D (g, k)i + Gu(g, k))e ™,
=l (3.5)

_ 2np

jMz,H(u, k) = Z an(q, ke o .
n=1

Note that ay(q, k) = an(q,1,k), not a,(1,q,k). Acting the differential operator D™ in
appendix B on the classical grand potential, one can find the WKB expansion of each
coefficient.

Coefficients of e~2"#. To find the WKB expansions of 7,(q, k) and d,(q, k), we need
to compute
DM (ue™2™) and DM (e72). (3.6)

The computation of 7,(q, k) is relatively easy, compared to the other instanton coefficients
an(q,k),0n(q, k). Tt takes the form

A0

g, B) = P2 @ D20, 1,0,8), .1)

where, as mentioned in the previous section, D(—2n, 1, ¢, k) is obtained by replacing d,, in
the differential operator D by —2n. Therefore its WKB expansion is

n?(1+ 2n)q?
24(—1+ 2nq)
n3(1+ 2n)¢® (4 — 24n + 4¢ — 3ng + 14n?q)
5760(—3 + 2nq)(—1 + 2nq)

D(_2n7 17 q, k) =1- (ﬂ-k)2

(3.8)

(k) 4+ O(k5).

Since we have fixed D™ up to n = 17, we can compute the WKB expansion up to O(k34).
All of the following results reproduce the correct WKB expansions up to this order. From
the WKB data, we find analytic expressions for n =1, 2:
1 k
D(_Qa ]-a q, k;) = 2F1 <_q7'q7 *—Q;SiHQ W) )
2° 22 2
1 1 k 2 1 k (3.9)
s T
D(—4,1,q,k) = 3 2 F1 (—q, —4 526 sin” ) +3 2 Fy <—q, —2g5 5245 sin” 2) :
One can check that, in the limit & — 1, v1(q, k) and ~2(q, k) given by (3.7) with (3.9)

reduce to

1 T?(—q/2) 1 <1+ 2 )Fz(—Q) (3.10)

1) = - V="4=
’yl(q’ ) 27‘(’2 F(—q) ’ 72(‘]7 ) 47-[-2 COS TTq F(—Qq)7

which are in perfect agreement with the known results of Ny-matrix model in [28].

The constant part 0,(g, k) is more involved. Both of (3.6) contribute to 6,(q, k).
The latter contribution is just D(—2n,1,q,k). A simple computation shows that the p-
independent contribution of the former is given by 9sD(s, 1, q, k)|s=—2,. We conclude that

5 (q)
k

5l k) = (D(=2n,1,4,k) + 0,D(5,1, 0, K)ls=-2n ) (3.11)
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where the WKB expansion of 0;D(s, 1, q, k)|s=—2n is given by

ng? (=1 — 3n + nqg + 4n’q)

0sD(s,1,q,k)|s=—2n =
s (S, » 4, )|s— 2n 24(—1+2nq)2

(wk)?

n2q3
 2880(—3 + 2nq)2(—1 + 2nq)?
+510n%)q — 2n(8 4 13n + 48n* + 212n°)¢* + 2n*(2 + 5n

+ 12n% + 56n3)q3] (k) 4+ O(kS).

[=3(=3 + 160 +60n°) + (9 —n + 126" (3.12)

It is difficult to guess an exact form of this expansion even for n = 1.

Coefficients of e—2n#/4, Next, let us consider the second type correction jMZH. The
coefficient ay,(q, k) is given by

(0)
n 2

The WKB expansion of D(—2n/q,1,q, k) is given by

2 2(2
D=2 1 g k) =1 CED
q 24q(—1+2n)

n3(2n + q) (—24n + 14n? + 4q — 3nq + 44¢?)
5760¢%(—3 + 2n)(—1 + 2n)

(3.14)
(mk)* + O(KY).

It is not easy to find out an exact expression of this expansion, but for n = 1 we find a
surprisingly simple expression in terms of the g-gamma function,

2 [?(1+1/q)Lq(1+2/q) —.% "
D(-=,1,q, k> = 1 22 q=e™N, 3.15
( q I'(1+2/q) P3(1+1/q)q | (3.15)

where I'q(2) is the g-gamma function defined in appendix E. As we will see in the next
section, this conjecture comes from the analysis of this instanton coefficient for the 1/q € Z
case (4.21). When kq € R, there is a subtlety of the definition of the g-gamma function
due to |q] = 1. As explained in appendix E, one can define the ¢-gamma function with
lq| = 1 by regularizing the infinite product using the zeta-function regulariation. Using the
result (E.12) in appendix E, one obtains the all-order WKB expansion

2 _ = (=) 1By, 1 —1 2n
p(-210k)=e0 [Z B (0B (1447) = Bt (1207)) (ko)

wk T )" 1By, _ _ n
—9 ¢ Ot< ) [Z on 2n—|—12 (2B2n41 (¢71) = Bant1 (2471)) (mkq)”

(3.16)
where B,, and B, (x) are the Bernoulli number and the Bernoulli polynomial, respectively.
From the first line to the second line in (3.16), we have used the identity

B (1 +w) = By (w) + mw™ L (3.17)
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Figure 3. We plot I1(3,k) (Left) and «1(3,%) (Right) as functions of k. In general, a;(q, k) has
simple poles at even k.

By using an integral representation of the Bernoulli polynomial [54]

sin 27w om

Bopsr(w) = (=1)" 1 (2n + 1)/ dt . 0<w<1, (3.18)
0

cosh 27t — cos 2w

one can perform the resummation of (3.16). For ¢ > 2, one easily finds

2 k k
D <_qa 17 q, k) = % cot <7T2> exp[ll(Q7 k)]a q Z 27 (319)
where
00 48in? T sm 2T (cosh 27t + 2 cos® T) sinh(wkat /2
Ii(g, k) = / dt < a <(q/)> (3.20)
0 (cosh 27Tt — cos <) (cosh 2wt — cos °F) mkqt /2

For 1 < ¢ < 2, to use the integral representation (3.18), we further need to shift the
argument by using (3.17) with w = 2¢~! — 1. Then we find

2 7wk 7wk sin 5t (2—q)
D(=21,qk) =cot () 2227V oonin(q k)], 1<q¢<2, 3.21
(prak) =T e () Tty ewlhia b q (3.21)

where I1(q, k) is the same as above. In a similar way, one also obtains the integral repre-
sentation for 0 < ¢ < 1. These integral representations are very useful to understand the
pole structure of a1 (g, k). Since the integrand of I;(q, k) is exponentially dumped for large
t and does not have singularities in the integral domain for ¢ # 1,2 and finite k, I1(q, k)
takes in a finite real value and hence does not have any singularities for £ > 0. Thus the
singularities of a1 (g, k) come only from the cotangent factor in (3.19) or (3.21). In figure 3,
we illustrate these for ¢ = 3.

3.2 Worldsheet instanton corrections

In the case of p = 1, the worldsheet instanton corrections take the form

_4m
Jws(p, k)|pey = Z dm(1,q, k)e” *". (3:22)
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From a consistency with the results for various integral (¢, k) (see appendix F), we conjec-
ture the exact form of worldsheet instanton coeflficients for m = 1, 2:

q
di(l,q,k) = —5———,
(L. k) sin%’rsin%r
. 2
1 q? qsmg—z (3.23)

— + .
2 27 2 21 sooAm i 2T o AT
2sin ok sint g 2sin % sin gp sin p

d2(17 q, k) - -

Note that these are also consistent with the planar free energy computed in appendix D.
In the limit ¢ — 1, these precisely reproduce the worldsheet instanton corrections in the
ABJM Fermi-gas computed in [11]. Also, for ¢ = 2, (3.23) reproduces the worldsheet
instanton coefficients of (p,q) = (1,2) model found in [38].

3.3 Pole cancellations

Since we have determined some of the instanton coefficients analytically, we can see the
pole cancellations in some special limits of (g, k) beyond the semi-classical approximation.
These are important non-trivial tests of our conjectures.

ABJM limit. In the limit ¢ — 1, all of ay,(q, k), 7n(q, k) and 6,(q,k) are divergent.
Let us see the cancellation of these divergences for n = 1. We first notice that I(q, k)
behaves as

lim 11 (¢, k) = O((g — 1°). (3.24)

Using the integral representation (3.21), one finds that the divergence of (g, k) is given by

lim o ( k:)ef%u——icos mk #-F —i—l—ﬂ—kcotﬂ—k b
e ) 2 ) 12(q—12 "\ TR

T —1
. S T (3.25)
+u? + 1—7T—kcot7r—k +1+M—W—kcotﬁ—k+0( —1)|e 2
a 2 g )M Ty 16 2 "2 1 ’
The divergence of v1(q, k) is
4 wk 1
li = — — | |—4+1 —-1)]. 2
ng%(q,k) % COS( 5 ) [q_ [ H1+0( )] (3.26)
Thus we get
. 2 on
Jim, (al(q, kle @ +pmlg ke )
4 k 1 wk wk 1
- 7 - P t— ) —— —2u (327)
w?kCOS’( 2 ) [2<q—1>2+( L% ) q—l]e
+ (a1 (k) + bi(k)p + ci (k) + der(k))e™ ™ + O(g — 1),
where A " 5 " .
T T T
ay (k) =~ s, b1 (k) = ;cos7cot DR

(3.28)

ci(k) = —3+%+lcotlk+ﬁ0862lk coslk
W=\sr "12 " x 2 2 2
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and

4 nk\ (1 72(4-k?) 7wk 7wk
(501 (k) == —r COS <2> (2 + T - 7 cot 2> - Cl(k). (329)

The divergence of the u-dependent part is precisely canceled. Furthermore, the coefficients
a1(k) and by(k) in the finite part perfectly agree with the results in the ABJM Fermi-
gas [11]. The divergence of the p-independent part must be canceled by 01(q, k). This
means that 1 (g, k) must behave as

4 wk 1 wk wk 1
li = — — |l +|(1——F—cot— | —| — . .
qu{lJr 01(q. k) o cos( > ) [Q(q 2 ( cot 5 ) . 1] dei (k). (3.30)

This is regarded as the constraint for d1(q, k).

k — 2 limit. Let us consider another limit & — 2. In this limit, the coefficient aq(q, k)
2,
of e 0 diverges, as shown in figure 3. This divergence must be canceled by the leading

4
worldsheet instanton correction of order e~ o . Tt is easy to find

4 2 1 2u+q+mcecot T _om
lim dy(1,q,k)e” o = L+ 0k -2 : 3.31
s (L, k)e s |:7TSiIlgk—2+ sin 7 +0l e o (3:31)
Using the integral expression (3.19) or (3.21), we also find
_2p 2q 1 cot 7~ _2n
li k = |- - —= 4+ 0(k-2 : 3.32
klgéal(q’ Je v [ Tsinf k—2 sin% + 0 )]e ’ (8:32)

The singular parts are indeed canceled as expected. The finite part is finally given by

2 o
PYa -5 (3.33)

I ke % +di(1,q,k)e 5
k e
kl_)Hé (al(q, Je ¢ +di(1,q,k)e ¢ ) wsin%e

This correctly reproduces the coefficient (F.13) of e=2#/4 for the (p,q,k) = (1,¢,2) case
(see appendix F).

k — 2n limit. More generally, a;(q, k) has a pole at k = 2n (even integer). From the
integral expression (3.19), we find that o;(g, k) behaves in the limit £ — 2n as

n . m(n+tj)
| 1 2 S
1 k)= — [ —+0(1). 334
kgélno”(q ) k— 2”7TSin277r j=1 sin g v .

This pole should be canceled by the worldsheet n-instanton
_2 _dnp
lim (al(q, ke ¢ +dy(1,q,k)e ) = finite. (3.35)
k—2n
One can see that da(1, ¢, k) in (3.23) indeed has the correct pole structure at k = 4 satisfying

the condition (3.35). For n > 3, this pole cancellation condition (3.35) gives the constraint
for a possible form of d,,(1,q, k).
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4 Results on the (p, q)-model

In this section, we give explicit results for the general (p,g)-model. The basic strategy is
the same as in the case of p = 1. We compute the WKB expansion of each membrane
instanton coefficient, and then conjecture its analytic form. Since the WKB expansions
become much more complicated than those for the (1,¢)-model, it is harder to determine
their analytic forms. To fix the worldsheet instanton corrections, we use the exact results
for various integral (p,q, k) in appendix F.

4.1 Exact partition function for N = 2

We first compute the spectral zeta function at s = 2, exactly. It is easy to find that (,(1)
is exactly given by

_ [ _ 1 rEErg)
Also, (,(2) can be computed as follows,
1 1 1 1
2)= | d - < - <
) / el (2cosh £)P (2 cosh %)q (2 cosh £)P (2 cosh %)q ) (4.2)

[ sy el Gyl ) 1
(2 cosh g)P (2 cosh g)p (2cosh 5)7 (2 cosh §)4°

By using the fact that (z| G(P) |y) depends only on x —y and shifting the integral variable
x — x +y, we find

_ dzdy 1 2 1 1
) = | o ta = oo By " | e gy G g

(4.3)
dx 1 2
~ [l 0 [ Fao).
T (2cosh 5)P
where
> dy 1 1 1 T(g)? q q. 1 ok
Faa) /_oo 27k (2cosh TE0)a (2cosh §)1  2rkT(2g) 2 1\ 27272 TE TS
(4.4)

Using the Fourier transform

1 1 p  ir p iz
——— 0 :7B(7 757_7)5 4.5
o g)p| =P T a2 T (4.5)

we finally find

B(q, o . . 1 .
(p(2) = 8(7(11313) / dz B? (g + zx,g - zw) o Fy (q’ g; = + ¢; —sinh? 7rlm> , (4.6)

where we have rescaled the integration variable x — 27wkx. Note that this is an exact
expression. Recalling the relation (2.15), the exact partition functions for N = 1,2 are
given by

200 =), Z@.K) = ~36(2)+ 56(1)* (4.7
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In the case of p = ¢ = 1, Z(2, k) correctly reduces to the exact partition function for N = 2
in the ABJM theory, computed in [55].

For the spectral trace (,(¢) with general £ € Z~q, we conjecture that it has a simple
integral representation

Co(D)= / Ty (QUU(P)l 1 #2200V (Q)U(P)EL D 1900 Y (Q)U(P) - €722 V(Q)U(P)
(4.8)

Here, for simplicity, we have introduced the notation V(Q) = (2cosh %)*q,U(P) =
(2cosh £)7P, and the derivatives in (4.8) act on all functions on their right. One can show
that, for ¢ = 2, (4.8) indeed agrees with (4.6). Although we do not have a proof of (4.8)
for £ > 3, we have checked that this conjectured expression (4.8) correctly reproduces the
WKB expansion.

4.2 Membrane instanton corrections

In this subsection, we consider the membrane instanton corrections.

Coefficients of e™™*. Let us first consider the coefficient of e~ in (2.43). The WKB
expansion of D(—n,p,q,k) up to O(k*) is given by

n*(n® — 1)p*q’
96(—1 + np)(—1 + ng)
n3(n® — 1)p*¢® (80n — 24p — 24n’p — 24q — 24n’q + 17npq + Tn’pq)

92160(—3 + np)(—1 + np)(—3 + ng)(—1 + nq)

D(—n,p,q,k) =1— (mk)? (4.9)

(k) + O(K9).

One notices that D(—1, p, q, k) does not receive the quantum corrections: D(—1,p,q, k) = 1.
This is indeed the case. Since (,(1) does not receive any corrections, we have D(1,p,q, k) =
1 for any (p, q). Using the reflection symmetry (2.49), we conclude that D(—1,p,q, k) = 1.
Therefore 51 (p, ¢, k) is exactly given by

BOMm.q) 1 TA=B)T2(-9)

Bilpa: k) = === = T T (Sp) T(=a)

(4.10)

Moreover, the WKB expansion for n = 2 has the following remarkable structure:

= (=1)" A
D(—2 S e o) () 411
(—=2,p,q,k) nEO @) Fa(p)fnl9) | (4.11)
where a generating function of f,(p) is given by
- fn(p) 2 p p1 . 9
L AN N N ) 4.12
nzzo @n)° TFI\ T2 iy P (4.12)

More explicitly, f,(p) is given by

n _1\n _p\2 m ‘ m
falp) =) ) ' 5 2 Z(—I)J< ° .)(2j)2”. (4.13)
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In the previous subsection, we have already computed (,(2). From (4.6), one finds that

I'(2p) 2 1,
27T2(p )/ dx B ( iz, o 9~ >2F1 > 2 2~|—q,—smh kx| . (4.14)

Using the symmetry (2.49), one immediately obtains
D(—2,p, q, k) = D(2> -p, =4, k)

L(=2p) [ s/ P . D . q q 1 o (4.15)
_27TF2(—1@)/_OOCZ3€B (=5 +im =5 i) oy (=5, -5i5 — g sinb ko )

D(2,p,q,k) =

One can understand the factorized structure (4.11) of D(—2,p, g, k) from the expression of
(p(2) in (4.8). We emphasize that this expression is valid for any (p, ¢). In particular, for
p=1,2,3,4, we find the following analytic expressions

q q 1 . o Tk
D(=2,1,q,k)=oF (L 9 > g2 ™8 4.1
( , 1,4, ) 2 1< 27 272 q; S1n 2>7 ( 6)
2 1 q q 2
D(~2,2 LR b
( ) 7Q7k) 3 32 1( 27 272 q;s1n 7T]€>,
9 q q 1 . o Tk 1 q q 1 . o OTk
D(-23,q,k)=—oF (-2 -2 - ™)y =y (L9 0 gin? 2T
( y95, 4, ) 102 1< 27 272 q; S 2 +1O2 1 27 232 q; S 2 )

18 16 qg 1 qg q 1 . 9
D(=2,4,q,k)=— 42 ,F B k)4 P 42 i onk )
( y %, 4, ) 35+352 l( 2 272 Q781n 7T> 352 1< 27 272 q;s1m- a7

Similarly, if either D(n,p, ¢, k) or D(—n,p,q,k) (n € Zg) is known, one can know the other
by the symmetry (2.49) and the analytic continuation (p,q) — (—p, —¢). By matching the

WKB data, we find the analytic form of D(—n,p, ¢, k) for some other cases

)
3 1 3 2
D(_3727q7k) = -2 <_q,_g; 5 - q;SiHQTFk') + g,

) 2

D(-3,4,q,k) = 787 o F1 < 32(]’ —q; % — %;sin2 7Tk:> + % o F ( q, g,% - %;sin2 77,14:)
(ot Satan) 2

D(—4,2,q,k) = % o Fy <—3q, —q; ; 2¢; sin? 7Tk> + 32—5 o Fy (—Qq, —q; % — 2¢; sin? 77,7{:)
+ % o F (—q, ; 2¢;sin 7rk‘> 385 (4.17)

Note that when ¢ is an integer, the hypergeometric series in (4.16) and (4.17) are truncated
to a finite sum, and they are reduced to some combinations of trignometric functions.

Coefficients of e~2"#/P,  The WKB expansion of the coefficient of e=2"*/P up to O(k*) is
D <2”’p7q7k) _ . _"¢@2n—p)2n+p) (nk)?
p 24p(—1+2n)(—p + 2nq)
N n’¢*(2n — p)(2n + p) (
5760p2(—3 + 2n)(—1 + 2n)(—3p + 2nq)(—p + 2nq)
—12p® — 48n%q + 28n3q — 12p%q + 17np2q) (k) + O(KP).

80np — 48n’p (4.18)
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Here we focus on the n = 1 case, i.e., the coefficient of e=2#/?. For the case of qg/p=m€

Z~q, we find that the following expression correctly reproduces the WKB expansion up
to O(k3%)

. Aj
2 m\? “Lmpsinmjk |’
D <_p, p, mp, k> s Y 11 ! G| o 6

Z)xmjl sin

One can easily show that this can be rewritten as a contour integral

2 (m+ 1) dz 1)/~ sinmjk
D k P ———
< p’p7 mp; ) r2m+1) j{ 0 omigmtl P mpz j ’TJ’“P

j=1 sin
_ T(m+1)? f dz ﬁ T4 2q otz (4.20)
L(2m+1) [, 2mizmt1 S i an—i—%-{-% ) .

where q = €. In particular, when (p,q) = (1/m,1), this integral can be evaluated
explicitly by expanding the integrand using the g-binomial formula. By picking up the

coefficient of 2", we find

1 w2 T2 sin 3
D( 2m, .1 k:) Gl T s 250 (4.21)
7j=1 2m

By noticing that (4.21) can be written as a combination of g-factorials, we have arrived
at the conjecture in the previous section that the coefficient of e=2#/? is given by the ¢-
gamma function (3.15) for the general (p,1) case. Also, for the (p,q) = (2/m,2) case, the
integral (4.20) can be evaluated exactly thanks to the formula (3.9.1) in [56]

2 ml?
D 2k = -m —m . m+1
( mvma ’ > ( )'2¢1(q »q » 959,49 )

2 mkj
sin
© 'E [T m (4.22)
m

] | sin? Lk] 175, Lsin? ”kj

where 2¢1(q%, q%,q%; q, z) denotes the basic g-hypergeometric series. This suggests that the
the coefficient of e~2#/? for the general (p,2) case is given by a certain analytic continuation
of (4.22) to a non-integer m. However, compared to the g-gamma function appearing in
the (p,1) case, the precise definition of the ¢g-hypergeometric series with |q| = 1 is much
more subtle (see [57] for some proposal). We leave it as an interesting future problem. For
q > 2, the integral (4.20) is hard to evaluate explicitly.

When m = ¢/p is not integer, the contour integral representation (4.20) is no longer
correct due to the branch cut of 1/ 29/P+1 Instead, we conjecture that the coefficient of
e~21/P for the general (p,q) case is given by the following integral along the real segment
O0<z<xl

2 2I'(—2q/p) /l dz Fp.k
D(-= =1 aF(pkz) _ (1 4 z)2a/p 4.23
( p,p,q,k> TR ) J T \° (1+2)%/P ), (4.23)
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with

o~ (=t 11 2
F(p,k,z)=2 ——B —+ — | Lij_opn(— kp)<™. 4.24
k) =23 e (5 ) V()i (1.21)
Here Li,(z) denotes the polylogarithm. We do not have a proof of this conjecture, but we
have confirmed that it correctly reproduces the WKB expansion up to O(k3*). For p > 2,
one can rewrite F'(p, k, z) as the following integral form by using (3.18),

2w

0 n
F(p,k,z) = / dt P log(l+2zcoshmkpt +22),  p>2. (4.25)
0 cosh 27t + cos ?”

For p < 2, one has to shift the argument of the Bernoulli polynomial in (4.24) to use the
integral representation.

4.3 Worldsheet instanton corrections

As in the same way in the previous section, we can compute the worldsheet instanton
corrections for various integral (p, ¢, k) (see appendix F). From these data, we conjecture
that the leading worldsheet instanton correction in (2.70) is given by

pbq
dl(pvqak): - or - on " (426)
SlnpkaIquk

To guess the higher order corrections is not easy. For the (1,¢)-model, we conjectured
the 2-instanton correction in (3.23). We also conjecture the 2-instanton correction for the
(2, q)-model as

4
92 q? q(2 + cos @)

d2(2,4: k) = Csin?2r gin?T + sin 27 sin 47 - (4.27)
qk k k qk

One can check that in the limit ¢ — 2 this reproduces the result of (p,q) = (2,2) model
in [38].
4.4 Pole cancellations

The worldsheet 1-instanton coefficient (4.26) for the general (p, ¢) case has a pole at k = 2/q

2

e b (4.28)

k— 2

. _ A 1 2p q
lim di(p,q,k)e r* = ——— [ + 7¢? cot > +q(2u + p)
q

This pole should be canceled by the membrane 1-instanton coefficient ay(p, ¢, k) of e=24/P
given by (4.23). We have checked numerically that the membrane l-instanton coeffi-
cient (4.23) has the correct pole and residue to cancel the pole of worldsheet instan-
ton (4.28). Similarly, the pole of the membrane 1-instanton at & = 4/q should be canceled
by the worldsheet 2-instanton

_8u _2u
lirr}L [dg(p,q, k)e rak + aq(p,q,k)e” P | = finite. (4.29)
k—=>

q

This gives the constraint for a possible form of da(p, q, k). However, it is difficult to nu-
merically calculate the integral (4.23) in the regime k£ > 2/q, and hence we are unable to
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determine the residue of «1(p,q,k) at k = 4/q so far. Also, it is not clear whether the
residue of a1(p,q, k) at k = 4/q for the ¢ > 3 case is simply given by trigonometric func-
tions. It would be interesting to find the exact form of worldsheet 2-instanton coefficient
da(p, q, k) for the general (p, q) case. We leave it as a future problem.

5 More results in special cases

In this section, we discuss results for some specific values of (p,q). In some special cases,
there is a direct connection to the topological strings on certain Calabi-Yau three-fold.

5.1 Relation to the topological strings
5.1.1 The (2,2)-model and the local D5 del Pezzo

In [39], it was observed that the worldsheet instanton correction in the (2, 2)-model can be
reproduced by the topological string on the local Dy del Pezzo surface. Here we show that
the Fermi surface (2.58) with p = ¢ = 2 is indeed equivalent to the mirror curve for the Ds
del Pezzo. Let us rewrite (2.58) as

(P72 4 e PI2yp(eQ/2 4 o= Q/2)a = F, (5.1)
For p = ¢ = 2, this reduces to
ePT@ 4 el 1 eP=Q £ 2@ 41 44207 Q 4o PHQ p P o7P0@ = F, (5.2)

Looking at figure 1 in [58], one finds that this Fermi surface is identical to the mirror curve
for the D del Pezzo.!! Following the formulation in [48, 59], the (quantized) mirror curve
is enough to compute the free energy on the corresponding geometry in the topological
string. However, one should be careful about the prescription of the quantization of the
mirror curve. As in [48], a natural way to qunatize the mirror curve is Weyl’s prescription:

e PHeQ _y orPHsQ (5.3)

On the other hand, the quantization of the Fermi surface (5.1) leads to
(P2 e PRy 1 ey ) = P [uy), (5.4)

where [1)) is an eigenstate in the quantum spectral problem. This quantization induces an

additional factor: o L
e'rPesQ — e—rsm'kerP—O—sQ‘ (55)

Such k-dependent factors should be taken into account appropriately when one computes
the membrane instanton correction from the topological string free energy.'? In particular,
one should carefully indentify the moduli in the topological string and the parameters in
the Fermi-gas system. See [47] in more detail in the ABJM case.

"The local Ds del Pezzo surface corresponds to the polyhedron 15 in figure 1 in [58].
12Note that the worldsheet instanton correction is determined by the classical mirror curve. We do not
need the quantization of the curve in the computation.
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5.1.2 The (1, —1)-model and the resolved conifold
For (p,q) = (1,—1),'3 the function D(s,1,—1, k) becomes remarkably simple:

ks
D(s,1,-1,k 5.6
( )= o (5.6)
Then we can compute the WKB grand potential by
T [CT° ds et
Jwis(p, k) = —/ o T whs w2 7S (5.7)
4 Je—ico 2mi ssin T sin® T
where we have used I'(2)I'(—2) = —n/(zsin(7z)). By taking the integral contour C; in
figure 1 and picking the poles at s = 4n/k and s = 2n with n € Z, we find
1 & )" % 1 & wk Tkn | o,
z il I o M i
Jwics (1, K T4 g nsm2 27"‘ 4 ; n? sin 7% [ o 2 cot 2 | (5:8)

The first term is similar to the WS instanton effects while the second term is similar to the
membrane instantons. Although each term has poles for rational values of k, these poles
are actually canceled and the result is finite.

We can understand this expression from the refined topological string on the resolved
conifiold as follows. First let us note that the classical Fermi surface for (p,q) = (1,—1) is
determined by

P + _P
ez e 2 B
-3 =¢, (5.9)
e2 +e 2
1+4e? el —e 2@ — (5.10)

where (Q', P') = (Q, %) This equation is the same as the mirror curve of the resolved
conifold (see [60] for instance) and hence we expect that the (p, ¢)-model for (p,q) = (1, —1)
is described by the topological string on the resolved conifold.

Let us explicitly test our expectation (see also [42]). The free energy of the refined
topological string on the resolved conifold is given by [60]

0 Qn
F(617€2; Q) = - Z n(q”/2 — q_n/Q)(tn/Q — t_n/2)7 (511)

n=1
where

g=¢€t, t=e 2 (5.12)
Then the Nekrasov-Shatashvili limit [61] becomes

o0

. 1 Qn
Fxs(e; Q) = 6121210 el (€1, €2;Q) = Z e pp—cL (5.13)

n=1

13This case cannot be defined in the original setup. We define this case as a naive analytic continuation
in the ideal Fermi gas system.
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If we identify the parameters as

4 2
e =mik, Q=ex, T=-F =2 (5.14)
k k
then we find
1 & e%
Fns(A\T) = o5 Zl T (5.15)
Also, in the standard topological string limit €; = —ey with the identifications
A
e = %@ Q = et (5.16)
the free energy becomes
4n,u
Fiop(k, 1) = § Z nsm2 e T (5.17)
By comparing the grand potential (5.8) with (5.15) and (5.17), we easily see
k) = Fiop(k — Ans (A, T) |- 5.18
JWkB (11, k) = Fiop(k, 1) + 51 X Ns(AT) (5.18)

This structure is the same as the relation between the ABJ(M) theory and refined topo-
logical string on local P! x P! [3, 13, 14].

5.1.3 A comment on general case

For general values of (p, q), we do not find the correspondence to the topological strings on
the known Calabi-Yau geometries. As in section 2, the WKB expansions of the membrane
instanton corrections can be computed for any (p,q) even though we do not know the
topological string counterpart. Let us give a comment how to compute the worldsheet
instanton corrections systematically for generic (p,q). As seen above, the Fermi surface is
closely related to the mirror curve of the corresponding topological string. This suggests us
to regard the Fermi surface (5.1) for general (p, ¢) as a “mirror curve” of an unconvetional
geometry. Using the formulation in [62], one can, in principle, compute the genus g free
energy for this “mirror curve.” It is natural to expect that this free energy just gives the
worldsheet instanton corrections in the Fermi-gas system. The important point is that the
formulation in [62] can be applied for any spectral curve even if its geometrical meaning is
unclear. In practice, however, it is not easy to compute the higher genus correction in this
way. It would be interesting to test this expectation explicitly.

5.2 Exact partition function for the (2,2)-model at k =1

The (2, 2)-model was studied in [39] in detail. Here we point out that the grand potential
at k = 1 is exactly related to the topological string free energy on local P! x P1.14 The
modified grand potential for the (2,2)-model at k = 1 is given by (see [39] for detail)

32¢(3) 4’ +4p+4 26++92
Fan(i1) = o 20E) | Ap 2u . p+p+9/

672 2 T 2

e 4 ... (5.19)

14 As already seen, the (2,2)-model is related to the topological string on the local Ds del Pezzo surface.
The relation here is probably accidental.
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One notices that this large u expansion is very similar to the one in the ABJM Fermi-gas
at k =2 [11]. In [15], the ABJ(M) grand potential at k = 1,2 is exactly written in terms
of the topological string free energy. Recalling this fact, one easily finds that the modified
grand potential (5.19) is written as

1 / t? 1" NS
J272(u, 1) = ﬁ <F0(t) — tFO(t) + EFO (t)) + Fl(t) + Fy (t) (5.20)

Several definitions are in order. The functions Fy(t) and Fi(t) are the standard genus
zero and genus one free energies on local P! x P!, respectively.'® These are computed in
a standard way of the special geometry. The function FlNS(t) is the first correction to
the refined topological string free energy in the Nekrasov-Shatashvili limit. The Ké&hler
modulus ¢ is related to the complex modulus z by the mirror map

33
t=—logz+4z4F3 <1,1,2,2;2,2,2;—162> : (5.21)
In the present case, the complex modulus z is related to the chemical potential or fugacity by
1
—e M=, 5.22
z=e - (5.22)

As in [15], the genus zero free energy is written in the closed form

K(1+ 162)

F// t — ‘2
olt) = K(—162) (5.23)
At the large radius point (t — 00), this leads to
t3 9 328 777
F - _9 4 -t _ 7 =2t =3t _ —4t —5t 24
o(t) G C(3) +4e 5¢ +—27e 16 ¢ +0(e™), (5.24)

where we have fixed integration constants properly by following [15]. Eliminating ¢
by (5.21), one easily finds

12 1
Fo(t) — tF)(t) + EFé’(t) = ——log® 2z —2¢(3) +4(log?z — log z + 1)z

6
+ <—26 log? z + log z — Z) 224 %(828 log? z +228log z + 77)2% + O(2*) . (5.25)
The free energies I (t) and F{¥5(t) are also exactly given by
1 1 K(-162)
Fi(t) = D log[642(1 + 16z)] — B log <7T> (5.26)
_ logz 2 10 , 224 4 4
=-—75 tgr—3&+ 9z+(9(z),
1 1
NS _ = -
F™(t) = B log 2 51 log(1+ 16%) (5.27)

logz 2 16 , 512 4

= ——z4+ —2"——2z
12 3 3 9

Plugging these results into (5.20), one can check that the large p expansion (5.19) is

+0(z2Y).

correctly reproduced.

15Since there are two Kahler moduli ¢; and ¢2 in local P* x P!, the free energy is in general a function of
these two parameters (t1,¢2). Here we denote the free energy in the diagonal slice by Fy(t,t) = F,4(t).
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Exact grand partition function.

Once the modified grand potential is known, one can
compute the grand partition function. The grand partition function is constructed from
the modified grand potential by

E(Ma k‘) _ Z eJ(,u+2m’n,k)‘

neL
Plugging the result (5.20) into the summand in this equation, one finds

(5.28)
ef22(ut2minl) — oJa2(pn1) exp [m’nQT + 2mwin <§ — g)} , (5.29)
where
o % ! o i F// F/ 5 30
r= 2R, €= R - Fi0). (5.30)
We have used the identity exp[—%] = exp[—m

] with n € Z. Therefore the exact

o = sy (6 2.

(5.31)
This expression is useful in 4 — co. Now we want to analytically continue it to the regime
point [9, 15]:

p — —oo (or k = 0). To do so, we write Z35 in terms of periods around the orbifold

3
grand partition function is expressed in terms of the Jacobi theta function

(5.32)
. 16) ’
where k = &2 and Gy is the Meijer G-function. Along the computation in [15], one finds
that the grand partition function is finally given by

3 111 3 &2
A=—3F (=, =,=1, 5 ——
87T3 2(272a27 727 16)7
~ 111 ~2 2~ ~2
K _923( 5,5,5 K TR 111, 3 &
0 A)=-Gz5| 27272 | - — — 3k, = =1, = —
Fold) = 33(0,0,—% 16>+ 2 ° 2<2’2’2’ )

_ A2 -
E2.2(p, 1) = exp [_w? <f0 —\Fo + 2a§fo) + F + FNS] 92(€,7),
where

(5.33)
R S S s S AP
T = —; = @8/\?@, é-: - = ﬁ()\a)\‘ro - 8>\‘F0)’ (534)
and
_ 1
Fi1 = —logn(27) — 3 log 2. (5.35)
Now, we can expand the grand partition function around x = #? = 0. Using the expasions
4 2\, K K 199+3 4
T (fo Tt 28AF°> 57 sean? | zznsaoe T O (5.36)
log k K2 K3
Fi+ FYS = - - O(x"
LA s 32768~ oazss T O
. 1 k 1536 — 25672 + 9
1 T)= -1 —5 —
0g0a(6,7) = glogr + o 20491274
N 368640 + 6144007% — 1282887* + 20257° 3
106168320076

+O(rY),
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we finally get

k  15—72 , 855+ 7hr? — 167
= D=1+
22(p 1) = 14 5 + ok 51840070

This precisely reproduces the exact values of the partition function in [39].

w24+ O(kh). (5.37)

6 Conclusions

In this paper we have studied the partition function of the (p,q)-model on S and in-
vestigated its large N instanton effects by using the Fermi-gas approach. Based on the
systematic semi-classical WKB analysis, we have found the analytic results on the mem-
brane instanton corrections. The membrane instanton coefficient of the type e ™™ is related
to the spectral zeta function (,(n) by the reflection symmetry (2.49). From the explicit
forms of (,(1) in (4.1) and (,(2) in (4.6), we know the exact expressions of the coeflicient
of e for n = 1,2. As shown in (4.16) and (4.17), when p is an integer with generic g,
the coefficients of e™™* reduce to some combinations of the hypergeometric functions. The
membrane instanton of the type e=2™/P (or e~2"*/1) is more involved. We found an inte-
gral representation (4.23) of the coefficient of l-instanton e~2/? for generic (p, g, k). Very
surprisingly, for the special case of (p,q) = (1,¢), the coefficient of e~2#/? is given by the
g-gamma functions (3.15). We emphasize that this is quite different from the Gopakumar-
Vafa type formula [29] in topological string, where only trigonometric functions of & or 1/k
appear. It is very interesting to understand the physical meaning of this finding better.
From the observation of the special case (4.22), we speculate that for the general (p,q)
case, the coefficient of e~2#/P in (4.23) is related to ¢g-hypergeometric functions.

We have also found some exact results on worldsheet instanton corrections, which
appear as the quantum mechanical non-perturbative corrections in the Fermi gas, from the
exact computation of the partition functions at finite N. We have found the worldsheet
1-instanton for the general (p, ¢) case in (4.26), and the worldsheet 2-instanton for the (1, ¢)
and (2,¢q) cases in (3.23) and (4.27), respectively. It would be interesting to understand
more general structure of the worldsheet instanton corrections for the general (p, q) case.

We have seen that the apparent poles at the various integral (or rational) values of
(p,q, k) are actually canceled out between the worldsheet instantons and membrane in-
stantons, as required. In particular, for the (p,q) = (1, 1) case, after the pole cancellation
the remaining finite part reproduces the known results of the ABJM theory in the highly
non-trivial way. It is interesting that the quadratic polynomial of x in front of e=2* for
the membrane instanton of ABJM theory correctly appears from the (p, ¢)-model after the
pole cancellation. However, this is very mysterious from the viewpoint of bound states. In
the case of the ABJM theory, one can remove the effects of the bound states by introducing
the effective chemical potential peg, which is determined by the coefficients of ;2 in the
membrane instantons. However, before the pole cancellation there is no p? term in the
membrane instantons. Therefore it seems that there is no natural way to introduce peg in
the (p, ¢)-model for generic (p,q). It would be very interesting to study the structure of
the bound states in the (p, ¢)-model.
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A Computing the Wigner transform

In this appendix, we derive (2.32). The computation is almost the same as the one in [42].
By definition, the Wigner transform of O is given by

I / /2 e /2
W(Q,P>:/_ th e (20 hQ+2Q/2>q (2005hQQ/2>q

/ P /
X<Q—C§ <2cosh ) Q>
/ “ / © JpP'  iplo P'\P
<Q ¢ <2008h ) @ > / e <2czosh ) . (A.2)
2 . 2n 2
Therefore, we find

% dQ'dP ir-rha 2Q S kQN\Y? P'\?
= w h® — + 4sinh — .
Ow(Q, P) /oo on)? e 2 (4COS 5 + 4sin 1 2 cosh 5 ) (A.3)

where we have rescaled the integration variable @' — kQ’. As in [42], we expand the

(A.1)

The last part is written as

integrand around k = 0,

/N /2 o0
(cosh2 % + sinh? k? >q = Z em () (RQ)?™. (A.4)

m=0

Then the integral over Q' gives the derivative of the delta function:

o] d ! sp—pPho!
/ A Q = (~ami) ' (P - P) (A.5)
—oo 2T
Thus one can easily perform the integral over P’
dP/ P/ p P p
/ 5 — (2mi)?msm) (P — P) <2 cosh 2) = (27midp)*™ <2 cosh 2) . (A.6)
oo 2T

Using these results, we finally get

P p
= Z cm(x 27mk:ap)2m <2 cosh >
m=0

q/2 P
<4 cosh? =~ Q 4 sin? Wk2ap> <2 cosh 5) .
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B Differential operators

Here we list the explicit forms of the differential operators D™ up to n = 4. Although

we have actually computed the differential operators up to n = 17, it is too long to write

down and we do not write the explicit forms for n > 5. They are available upon request

to the authors.

n* p?q*9; (1 - 97)

96 (1+pOy) (1 +qd)’

)2 PPa*} (1= }) (—fopady — Bo+ 03} + (—1f5 —8) 0, — 25H0)
(L +p9u)(3 4+ pOu)(1 + q0u)(3 + qOu)

D) —

D2

)

D®)

_ (ﬁ

—\ 96

_ (ﬂj)s p*q°0;; (1-9;7) §p3q387+ﬁp2q2(p+q)86
96/ (14 pdu)(3+ pdu)(5+ pdu)(1+ qdu)(3+ qdu)(5+ gdy) | 70 K35 B

1 8

+ P (p? (89¢% + 464) + 1544pq + 464¢°) 07, + = (p3 (93¢ + 36) + p*q (93¢* + 560)

+ 560pq® + 36q3)6ﬁ + % (p3q (367¢2 + 2272) + 16p? (767¢° + 336) + 32pq (T1¢* + 784)
+ 5376q2>a§ + % (9p3 (23¢% + 8) + p2q (207¢2 + 2240) + 448p (592 + 4) + 8¢ (9¢2 + 224))35

)

4 192
+ % (23p3q + 6p* (3¢ + 7) + pq (23¢* + 112) + 42¢> + 56) 9, + % (P® +¢%)

b (%) Pa'0} (1-07)
96 (14 p0u) (3 + p9u) (5 + pOu)(7 + pOu) (1 + q0u) (3 + qOu) (5 + q0u)(7 + qdy)

P3¢ ((3481¢2 + 56128) p? + 147360gp + 56128¢?) 59

1400 ®

— ' (p+9)9)° -

381p°¢° 1, 942
1400 # 175

— ip2q2 ((1327q2 +4000) p® + ¢ (1327¢ + 22512) p® + 22512¢%p + 4000q3)a§

175
- % ((14359q* + 39852847 + 276480) p* + 960q (11999 + 3776) p°

, 6
+ 64¢> (6227¢° + 121204) p* 4 3624960¢°p + 276480q4) of — T ((4603q4 + 18320¢% + 3200) p°

+ ¢ (4603¢* + 148032¢° + 106240) p* + 1922 (771¢> + 2749) p® + 16¢° (1145¢> + 32988) p?
1
1400
— 480 (7123¢" + 32032¢> + 5760) p* — 64¢ (13703¢* + 6752444 + 539136) p°

+ 106240¢"p + 3200q5>8ﬁ + (fq (27859¢" + 876992¢° + 737280) p°

— 3072¢° (5005¢2 + 26036) p* — 147456¢° (5¢° + 234) p — 2764800q4)ai (B.1)
6

BT ((5433q4 + 30080¢° + 3200) p® + ¢ (5433¢* + 276048¢” + 267520) p*

+ 48 (5751q" + 3927642 + 7840) p® + 64¢ (470¢* + 29457¢° + 33984) p?

+ 256¢2 (1045¢ + 8496) p + 640¢°® (5¢° + 588))63 - 1%3 (q (2095342 + 14880) p°
+ 30 (423¢* + 12376¢° + 1440) p* + ¢ (20953¢* + 551680¢° + 1184256) p*

+ 48 (7735¢* + 5247642 + 16960) p* + 964 (155¢* + 12336¢> + 20800) p 4 960¢° (45¢> + 848))82

- % (5 (977¢% + 40) p° + 8¢ (201¢® + 3560) p* + 24 (67¢* + 19804 + 980) p?

+ ¢ (4885¢* + 475204° + 139776) p* + 64 (445¢" + 21844% + 1200) p

+40q (5¢* + 588¢° + 1920))83 - % (44qp5 +(9¢% +75) p* — 124 (¢> — 8) p°

+ 3 (3¢* +60q® + 28) p® + (44¢° + 96¢° + 448¢) p + T5¢* + 84¢° + 200) O — 2304 (p° + ¢°)
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C Derivation of the TBA functional equations for p = 2

Here we derive the functional equations (2.55). We start with the recursion relation (2.80).
Defining new functions by z/)é] )(ZL‘) = e;T¢é])(x), then the recursion relation (2.80) is

o0 (4)
wéj)(l') _ / dy r—1y Qpéfl(y) (C.1)

oo (2mk)? 2sinh Z2¥ (2cosh §)7°

rewritten as

Following the argument in [47], these functions also satisfy the following functional relation

1

() ; (7) ; () ()
Y (x4 2mik) + ), (v — 2mik) + 29, () = a0 (7). C.2
£+ 2mik) + 9@ 2mik) + 200 0) = i) (©2)
Therefore the original functions (bgj )(m) satisfy
(7) : (’) : (’) 1 (’)
— ¢y (v + 2mik) — ¢y (v — 2mik) + 20,7 () = ——— ¢, 1 (T). C.3
P+ 2mik) — o) o~ 2mik) + 20 (0) = o elhi@. (©3)
Let us introduce a generating functional of gbﬁj )(:L'):
20 (@) = Y~ (=r)'0 (@) (C.4)
(=0
The functional relation (C.3) is then written as
V) (2 + 2mik) + ®Y) (z — 2mik) = 2(1 + t(z))®Y) (z), (C.5)

where t(x) is defined by (2.56). We have used the identity: —qﬁéj) (x+2mik) —qﬁéj) (x—2mik)+
2¢((Jj)(x) = 0 for qb(()j)(:p) =27 (j = 0,1). One notices that the functional relation (C.5) is the
same form as Baxter’s TQ-relation. The functions ®)(z) (j = 0,1) are two independent
solutions of the TQ-relation. A crucial fact is that these two solutions satisfy the so-called
quantum Wronskian relation:

O (z + 7ik)®M (z — mik) — O (2 — wik)®W (x + wik) = const. (C.6)

The constant is fixed by taking the limit x — 0. Since we have ®©)(z) = 1 4+ O(k)
and ®1)(2) = 2 + O(k), one easily finds that the constant must be —27ik. For later
convenience, we rescale ®)(x) by

1
o1 (@)= 00 (),  d_(2) = ——0W(a). (1)
mik
Then the rescaled functions satisfy the quantum Wronskian
O (v + mik)P_ (v — mik) — Oy (z — wik)P_(z + wik) = 2. (C.8)

As shown below, this relation plays a crucial role in deriving (2.55). Our goal is to compute
the diagonal elements of the resolvent:

R() = fﬁp(az,x) = S () ), (C.9)
n=0
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Using the formula (2.87), one finds
_ BX@) (g0 ) 1) 0
R@) = 350 (2@ ()0,00) () — 21 (2)9,0 ()

where W{f, gl = f(x)d' () — f'(x)g(x) is the standard Wronskian.
Now we derive (2.55) from the quantum Wronskian (C.8). In the following, we use a

_ M@y ey (10

2T K

notation, for simplicity,

f* = f(x % wik). (C.11)
Let us first consider the square of (C.8)
(@TO- — 01 0F)? =4. (C.12)

It is easy to see that this is equivalent to
TP P P = i(@i@: +@70T)2 — 1. (C.13)
Introducing the functions £(z) and n(z) by
§(z) = @4 (1)@ (2),

1 (C.14)
n(x) = 5((I)Jr(:c + mik)®_(z — mik) + @y (x — Tik)P_(z + Tik)),
then we get the first equation in (2.55).
Next we rewrite n(z + wik) + n(x — wik) as
1
n(x + wik) + n(x — wik) = 5 Oy (x4 2mik)P_(x) + O (2)P_(x + 2mik)
+ &, (2)P_(x — 2mik) + Oy (z — 27ik)D_(x) (C.15)
= 2(1 + t(x))¢(x),
where we have used the TQ-relation (C.5). Using (z) in (2.56), we get the second equation
n (2.55).
Finally we consider the Wronskian
1 1
w(z) = gW[<1>+, d_]= z(<1>+(:L~)<1>’_(g;) - (2)®_(z)). (C.16)
One can see
w(z +mik)  w(r —mwik)  1[(272F)  (P1PT)
— = | e | (C.17)
§(x +mik)  f(x—mik) 0| PLOT U
From the quantum Wronskian, we have (& ®1)" = (®X®Z)’. Thus one obtains
w(z +mik)  w(z —mik) 2 (@ @F)
. e (C.18)
(x4 mik)  E(x—mwik)  d PTOTO DT
On the other hand, we have
n) 1 R G C O (C.19)
n(z) — 1 &(x + mik)é(z — mik) 2 AR '

Therefore we find the final equation in (2.55). It is easy to see the grand potential is written
as (2.57) by using (C.10).
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D Planar solution for p =1

In this appendix, we compute the free energy of the (1, ¢)-model in the 't Hooft limit

N
k—o0, N—o00, A= ?:ﬁxed, q = fixed. (D.1)

For p = 1, the canonical partition function takes the simple form

1 / dNz Hi<j tanh? %
(

Z(N,k)|,_, = ,
(N-B)lpmr = 537 2m)N TT,(2 cosh E2t)a

(D.2)

which is the one-parameter deformation of the Ny-matrix model by k. If we change the
variable as

zi = €"i, (D.3)
then we find 0 2
1 alz N ici(zi — 25
Z(N,E)|,_, = / e_ziv(zl)w—’ D4
NPl =31 | Gy [T, i + ) (D4
where
V(z) = qlog (2F/% 4 z7F/2), (D.5)

In the large-k limit, this potential is rewritten as

1 1
V(z) = kg [ ‘;gz + = (ImLis(2) + ImLis(—2)) + O(k‘2)] . (D.6)
m 0
In [63], the authors have computed the planar free energy of the matrix model with the
potential
1] logz 1 ¢ C . ¢ -2
Vikmz(z) = = | — 5 + = (Ileg(zze ) + ImLis(ize )) +O(k™9) ], (D.7)
g T T

by using the technique in [64]. Hence if we take g = 1/(wkq) and £ = 7i/2 in their planar
solution, then we can obtain the planar free energy of the (1,¢) model. Since the ABJM
case corresponds to ¢ = 1, this means that the planar free energy of (1,q) model is the
same as the one of the ABJM model with the replacement k — kq:

log Z(N, k)| = log Z(N, k)|, o) (D.8)

p=1,planar =1,planar,k—kq *

Recalling that the planar free energy of the ABJM theory has the worldsheet instanton

2N
effect with the weight (’)(«5727T F) [6, 9], we easily see that the planar free energy of the
(1, q) model has also the non-perturbative effect of the order

—ox. /2N

O(e ka)) (D.9)

which is the same as the expected WS instanton effect from the gravity side.

-39 —



Let us see that this result is consistent with our result on the grand potential. As
(D.10)

explained in [2, 26], the 't Hooft limit in the grand canonical language is
w— 00, k— oo, ,&:H:ﬁxed.
(D.11)

In this limit, we can expand the grand potential as
o0
T (e k)lpey = D K22 T4 0),
g=0

which should be considered as the “genus” expansion of the grand potential. Then the
“planar” grand potential Jy(fi, q) is related to the planar free energy Fy(A) by the Legendre
transformation: 4 p
i, q) = Fo(A) — A== Fp(A = —Fp(A). D.12
Jo(i,a) = Fo(A) = AeFo(A), = Fo(A) (D.12)
Noting the planar free energy takes the form
Fy(A) = QZfO()\q)a with Aq = 57 (D.13)
then the Legendre transformation relation becomes
jO (ﬂv Q) d ~ ﬂ d
— fo(\) — N — Fh (N =0 () D.14
Jo(Aq) T 0(Ag),  fq q d)\qfO( a)s ( )
(D.15)

Jo(fi,q) = ¢° Jo(i, 1)’ﬂ~>ﬂq :

This relation leads us to
We can easily check that the perturbative grand potential (2.39) and the fist two worldsheet
(D.16)

instanton corrections (3.23) satisfy this relation:
1
+ Al,l(k)|o(k2) + O( )7

_ 272 ~3 -
Tpert (11, k) |p:1 =qk 2 + oq M
21.2 21.2
gk _ 3¢k

T 42

and
dl(lv q, k)

1—2 (4900

E On the g-gamma function
In this appendix we propose a useful integral representation of the g-gamma function. The
(E.1)
(9% 9)oc

g-gamma function I'q(2) is defined by
Iq(2) = (1 —q)
(E.2)

(1 —ag’).

—

in terms of the g-Pochhammer symbol

(a;9)00 =
0

J
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The two important properties of the g-gamma function are the following functional relation
and the behavior in the limit q — 1

1—g¢°

Fy(z+1) = I'q(2), lim I'q(2) = T'(2). (E.3)

1—q q—1

The infinite product representation (E.1) of the g-gamma function is well-defined when
lg) < 1. However, in our case of interest q = e with A € R, we have to deal with the
g-gamma function with |q| = 1. In this case, the naive infinite product expression (E.1)
per se is ill-defined, and we have to define the ¢g-gamma function with |q| = 1 as a certain
analytic continuation from |q| < 1. In the literature, such analytic continuation was pro-
posed by using either the double sine function [57] or the Faddeev’s quantum dilogarithm
integral [65].

In this paper, we propose an alternative integral representation of the g-gamma func-
tion with |q| = 1, which is useful for the numerical calculation of the instanton coefficient
n (3.15). We regularize the infinite product appearing in g-Pochhammer symbols by using
the zeta-function regularization. For q = e, the g-Pochhammer symbols in (E.1) can be
rewritten as

oo e Si0 h(n+z) 00 i 2 n+z)
(@ @)ee = [ [ —iha™F 22— | = (—in) @212 [T 22—,
2

n=0

n=0 2

n+1) (E4)
, ¢(0,1 ~1,1) sin
(q7q)oo - ( Zﬁ) )qZC H E ’
= 2
where ((s,a) denotes the Hurwitz zeta function
C(s,0) = i _ (E.5)
’ n=0 (n + a)s
Plugging the value of ((s,a) at s =0,—1
1 1/1
C(Oaa) - 5-@, C(_La) - 5 <6+a_a2> ) (E6)
into (E.4), we find
ih(y_1)(5—2 sin% 172 oo sin Ln;l) g
Ty(z) = et DE2) —5 H 7 — T (E.7)
2 n=0 2 Sin 9

Now, let us consider the % expansion of the infinite product part in (E.7). Using the
expansion
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we find

) (n+1) %
1;[ % sin L";Z)
2m
> [1og(n+ 1)~ log(n+ 2)] + 32 3 D Bow s [ 0 2] ()
n=0 n=0m=1
e m 2m
—¢'(0,1) + ¢'(0,2) + Z 2m§::h {C(—2m, 1) = {(—2m, z)}

=1

This can be further simplified by using the relation

I'(z) Bom+1(2)
'0,2) =1 —9m, z) = — —2mAE) E.l
C0.5) =log T2, ((~2m,z) = 2, (E.10)
and (E.9) becomes
h(""'l) h o 2m
sin 5 B2m32m+1( )h
1 2 — ogT'(2 : E.11
08 H g sin HE2) ogT'(z) + 21 2m(2m + 1)! (B-11)

Putting all together, we find the following representation of the g-gamma function with

gl =1

sin 2 e > (—=1)™ Boy, Bopr1(2)h2™
Ty(z) = €1 G- DE2D(2) <2 exp m2mt . (E12)

Using the property of the Bernoulli polynomial (3.17), one can show that (E.12) indeed
satisfies the functional relation in (E.3), as required. Also, one can easily see that (E.12)
reduces to the usual gamma function in the limit 2 — 0.

However, (E.12) is still a formal expression since the summation in the exponential
factor is a divergent asymptotic series. When 0 < z < 1, we can resum this series by using
the integral representation of the Bernoulli polynomial (3.18) and (E.8). Finally, we arrive
at our integral representation of the g-gamma function valid for 0 < z < 1 and |q| =1

. h\ 172 . : ht
ih sin 5 e sin 27z sinh %
L (2) = o212 2 _/ | 2 ||
a(2) = e (2) h P 0 dtcosh ot —cos2me O L
(E.13)

For the case z ¢ (0,1), a similar integral representation can be obtained by using the
functional relation (E.3) repeatedly.
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F Exact values of Z(N, k) and instanton corrections

Using the exact values of the partition functions for various integral (p, ¢, k), we can deter-
mine the non-perturbative part of the modified grand potential'®

an(“? k) = J(:u’v k) - Jpert(/b k)7 (Fl)

by the numerical fitting, in a similar way as the ABJM case [11].

In this appendix, we list the non-perturbative part of the grand potential Jy,(u, k) and
the exact partition functions Z(N, k) for N = 2, 3,4, for various integral (p, q, k). We drop
the N =1 case since we know the exact value of Z(1,k) in a closed form (4.1) for general
(p,q, k). Actually we have computed the exact partition functions for higher N > 5, but
they are too lengthy to write down in this appendix. We have also computed the exact
partition functions for several other (p, g, k)’s which are not listed below. They are available
upon request to the authors.

The case of (p,q) = (1, 2).

2(2,2) = 72— 8 (3.2) = 6172 — 600 (4.2) = 960 — 9424m* 4 9457*
T 102472 T 36864073 e 9437184074 ’
20+ 2 102 +Tu+17/2 881+ 52/3
Tup(1,2) = 2 2y [— a +7T2M ik +1} e—2ﬂ+“;r/e—3“
26912 + 1931/4 + 265/16 47924 + 1102/5
2 51
8972 — 864 —21384 + 1331172 — 2048373
7(2,3) = 2F "0 7(3.3) = T T var
3110472 1007769673
2(4.3) = 614304 — 18213127% — 32768+/37> + 19629774
U 193491763274 ’
8 o . 42 4+2u+1 88 238 _su
an(/J,, 3) - 56_% — 66_% + |:_Iu—g7r2u_}_ 9:| 6_2M — 76_%
2
N %6_% 52p +p+9/4 1540 —in 826726_1%
15 672 9 189
2_4 —264 372 — 18073
2(274):577 8’ Z(3.4) = 0+ 8337 807 |
819272 589824073
6400 — 1577672 — 486473 + 30817
2(4’4) _ T T 4+ T ’
40265318474
. 1 16vV2 s 1002 +7u+7/2 45
Jup (1, 4) = 2v/2e 7% + Ry e M4 fef%—i- _MOouTE T T2 A e 2k
T 3 272 2
N 288@6_% L [88n+ 52/3 640 _—
5 67 3

1The modified grand potential J(u, k) is related to the full grand potential 7 (u, k) by

e (mk) _ Z e’ (nt2mink)

nez

As shown in [11], the modified grand potential removes the “oscillatory part” from the full grand potential.
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33172 — 3240 2(3.6) —495720 + 28703772 — 43520+/37°

Z(2,6) =

74649672 241864704073 ’
2(4,6) = 459794880 — 116139614472 — 320716800+/37% + 28977422574
S 5015306502144074 ’
8 u 14 2 20 +1 B 154 _4u
an(/.l/, 6) = %6 g — ?e ; + |:(Iu3ﬂ_) +8\/§:| e B ?6 ; (F2)
The case of (p,q) = (1,3).
32—3n2 7552 — 76572 143360—278784mw2 4267757
2(2,2)= 1228872’ 2(3,2)= 4718592072’ 2(4,2)= 4227858432074 ’
~2(2u+3) _2 _(2u+3)2 2 e
an(uﬂ)—i\/g7r e +[ = T3¢
r 3 2
N (2M+?,)) +76u 47(2u+1) 2(2u+3)_8 o2
N \/37'(3 37'('2 67‘(’2 \/§7r
N [ (2ut3)t 2(2u+3)* 166u+133/4+g s
24 2 &Y 3 €
[V3(2u+3)°  8(2u+3)%  332u2+112911/2+399/4  4v/3(24+3) 10w
+ — —48|e” 3,
575 V33 2 T
10572 —1024 —1024—26247+93972
2(2,4)= 78643272 ' 2(3,4)= 10066329672 ’
Z(4,4)= 367001600 — 87139532872 — 35137536073 + 19636942574
T 4329327034368007% ’
o [2(2p+3) _2m 3v3(2p+3) _
Jup(p1,4) =6e s+[ Jon —11}e s +[—7T+35 e h. (F.3)
The case of (p,q) = (1,4).
2772 —256 2197572 — 216832
Z(2,2)=——, Z(3,2)= )
(2,2) 39321672 (3,2) 1307993702473
2(4,2) = 3153920000 — 709233715272 4+ 68622592574
T 1607262661509120074 ’
2(21+4 2u+4)2 3 1 2v/2(2u+4)3
an(H,Q)Zif( s )e_g—k[—( lH; ) + (it )] e_“+[\[( M;_ ) —4\@] e_STM,
™ s T 3
17915572 — 1767096 — 585293688 490802854972 — 155975680+/3 73
Z(273): 5 Z(373): s
18139852872 740541350707273
7(4.3)= 1168603329600 — 2706064255728 72 +120082923520+/3 73 + 1959795867757
T 2843678786715648074 ’
16 _u 86 _2u 2u+2 2458 4
an(u,?)):%e g—ge ;"_ |:_/;)7T+88\/§:| e H_ 3 e éu,
584172 —57344 —14508032+4568271172 — 134095573
Z(274):7r—> Z(374): * i i ,
15099494472 334846387814473
Z(4.4)= 1192021196800 —25696642744327% — 8199206830087 +5091130166857*
T 1675761273846890496074 ’
4 ﬁ(p+2) o
an(iuﬂ 4) = Sin%e 4+ [ﬂ_tang “+const| e 2. (F4)
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The case of (p,q) = (1,6).

_ 33757% — 32768 13721617572 — 1354203136

7(2.2) = 3.9) —
(2,2) 75497472072 (3,2) 660723675955200073
Z(4.2) = 18673845640626176 — 3645544701296640072 + 35020036770468757*
e 2036887828360895397888000074 ’
2021 + 6 21+ 6)2 3(4pu + 6
an(u,2)=7( n )e—%+ [—( “7:; ) +\f( ;‘Jr )—2] e %
2u+6)  3vV32u+6)4u+6) 32u+56 8
(2u+6)*  3v3(2u+ J(4p+6)  32u+56 8 | 5 (F.5)
3 272 3 V3

The case of (p,q) = (2,3).

3 (5% — 48) 6784 — 687>
Ze, ) =——— "2 ZB3,1)= ——
(2,1) 4096072 (3,1) 7077888073
Z(4.1) = 45731840 — 9235192872 + 888772574
A 1046394961920074 ’
42u+3) _2u 2u+3)2 3vV3Ap+3) 10| _a
an(l’l’u 1) = ge ; + [_( 7‘(‘2 ) - (271' ) — ? e 3
221 +3)%  8(4u? +491/2 +49/4)  4(2u+ 3
{(u+)+(u+ “§+/)+(“+)+16}e2ﬂ,
\/§7'r3 3 \/371'
4572 — 436 —240 4 187072 — 18774
7(2.2) = — " 7(3.2) =
(2,2) 08304072 ’ (3,2) 23592960075 ’
Z(4.2) = 887040000 — 206355072072 + 67248227207* — 857883873675 + 80223412578
T 2343924714700800078 ’
3(2u+3) 37 81 + 20
Jup(1,2) = 4V/3e 75 + [‘[( ’T:Jr ) _ 3 e 3+ [— “: +22\/§] e H
2 _
N 3 4+ 9u 109/3+67u+17_g 6_%
7T2 \/§7r 3
—6076 — 21607 + 130572
Z(2.4) =
(2,4) 3145728072 ’
2(3.4) = —15360 — 576007 + 5656072 + 95628073 + 4319727* — 2355757
T 4831838208007> ’

Z(4,4) = (7096320000 — 336211814407% — 4955005440073 + 2382272307807
+ 14424390288007° — 18920352743521% — 204991059042077
+ 7954396931257%) /(240017890785361920007%),

Jnp (1, 4) = 12¢/2¢75 + (=26 + 5v/3)e 5. (F.6)
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The case of (p,q) = (2,4).

1 _ 4 2 _1 2 _ 4
Z(2.1) = 05 — 47  Z23.1) = 0395 + 990072 — 8967 ’
48384074 63866880076
Z(4.1) = —154729575 4 29521492072 — 1200544807% + 929433676
o 33476463820800078 ’
4 2) 2u% — 181, — 18 32 2)3 —128 80/3 u
oo (1, 1) = (1 + )6_2+[u i —2]e—“+[ (/H:r3 i p+ /]6_32
T T 3T 3T
64 0% —29542/3 + 3767u/18 — 4945/36
_64(p+2) n n* /3 + 37674/ / 82| e,
34 2
2(2.2) = 134400 — 9649672 + 850574
e 99090432074 ’
2(3.2) = —9461760 — 1162304072 + 5513703274 — 545737576
A 4185579847680076 ’

Z(4,2) = (—6125543424000 + 1561591263232072 + 71258154572807*
— 1372544905622475 + 13019277521257%) /(7020523305471836160007),

4 K 3u
Ant2) ool 4 4 [ 16V20u+) | 373 s
s 3T 4

6200145 — 535683672 — 752640+/37° + 8960007
8571080448074
Z(3,3) = (237546155385 — 795888797220m2 — 3234857472001/37° + 1758863922048

+ 353173708800+/37° — 3469312000007°) /(22269004092453888007°),

Z(4,3) = (—60294434727802275 + 2322732330919400407% — 133698981198182400+/37°
+ 4986433274334501607" + 393619532866560000v/37°
— 102396466118698444875 — 2380804825379635201/377

+ 2084242800640000007%) / (945474215993151024660480007°),
32

Jop(11,2) = 8V/2e™ 5 + [

b

7(2,3) =

Joo(11,3) = —=¢~ 5 — 16e” 5. F.7
The case of (p,q) = (2,6).
2 —182932 12 4472 — 10944 4
2(2,1) = 931 7707 2(3,1) = 8293275 + 126553447 0944007 ’
3991680074 3810936729600076
Z(4,1) = —39855355314775 + 644692437168787% — 247501109322727% + 18873264384007°
T 1477258099364855808000078 ’
8 3 u 4 32 3v3(2 3 10 o
o 1) = (0 + )6_3+l_ (/H; 2 V3(2u+ )_16_23
\/§7T m ™ 3
1 3 402 + 4 4
{ 6(u+3)°  8(4p” + 2u+ 9) N 8(p+3) 16} .~
\/571'3 3T \/371'
2(2,2) 40370176 — 11893855272 + 1169437574
T 2092789923840074 ’
2(3,2) = —51211183063040 + 77067276149767% + 527751227475007* — 53730858431257°

255747634699331174400076
Z(4,2) = (—25823407803062655385600 4 506633290675545149276167>

+ 186487951690759002877447* — 396457161224434761520807°
+ 37755261796563792731257%) /(5075820179618539253692524134400007°),
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Jup (1, 2) = 24e75 + {10(\%;?9 - 5()] e 5. (F.8)

The case of (p,q) = (3,4).
—2880 + 1368072 — 133367 + 121570

Z(2,1) =

2 88473607 ’

2(3.1) = 241920 + 10281607 — 36318247* + 25548327° — 2226697
T 1070176665607 ’

Z(4,1) = (—7770470400 — 270768960007% — 5674252953607* + 13040549508807°
— 7647020842327° + 6468626587577 /(843812897292288000717),

1 L 2 4
Jup(p, 1) = 8V/3e™ 5 + 2V3(2u+3) 9 5] e 3+ [—8”+3 +161V3] e,
T

™ 18
2(2,2) = —241920 4 7812007 — 13318967 + 1275757°
e 3963617280076 ’
7(3,2) = —10866240 — 6622440072 + 1029422687 — 97390657°
e 6696927756288007" ’

Z(4,2) = (16428264652800 — 2654804984832007 + 9708669479308807*
— 32151258174963207° + 56967892184141127% — 3547297149534048 71"
+ 304177955956875712) /(209679629390092173312000072),

Jnp (1, 2) = 8v/6e 6 + (—737 + 6\/§> e 5. (F.9)

The case of (p,q) = (4,4).

—T7875 + 3969072 — 232757 + 20327°

40642560078
675675 — 114345072 + 170374057* — 254547707 + 995491278 — 764928710

Z(3,1) =
(3:1) 212446789632007 12
Z(4,1) = (82084377375 + 105789002319007% — 90755193028507* 4- 842953066355407°

— 2645547332878457% + 2268222742108967'° — 653343855240967 12
+ 455758501478471) /(3040021782620798976000076),

Z(2,1) =

)

)

12 28 n 64 3 736 n
Jop(p, 1) = 16e” % + [H —48} e 4 {_(“H + 2 %
T s 3
1942 + 127 512
+ {— oS o +const} e h, (F.10)
s ™

The case of (p,q) = (4,6).

2(2,1) = —872025 + 211018572 — 10348807* + 849287C
e 1788272640007
Z(3,1) = (1355404050 — 1859660302572 + 849944850307 — 877189929207°

+ 283363441927° — 20570112007°) /(30731393787494400007'2),
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)
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4(p+3)
V3n

The case of (p,q,k) = (1,q,2). In the case of (p,q,k) = (1, ¢,2) with general ¢, from
the numerical fitting we find that the non-perturbative part of grand potential takes the

Jop (11, 1) = 16v/3e5 + [ - 50} e 5. (F.11)

similar form as the Ng-matrix model [28]

m=1

Tl k=2)= 3 Pulmale” o +3 [be(qm + Cz(Q)}e’%“ +o, (F.12)
/=1

where Py, (11, q) is a m*™ order polynomial of y and the ellipses denote the contributions of
bound states. The first three terms of P,,(u, q) are given by

1 353 84
Pilp,q) = —P1, Pap,q) = —PF Py — ,
1(1, q) o 2 (145 q) 1 +43132 2 25755
252 354 10s4s5 52 2s¢ 28485
Ps(p,q) = —2P — 2P, P, + Py+ A P+ — , F.13
3(1,4) 3s1 1 251 12 9515253 3 515% ! 8%83 S%S% ( )
where we defined
2
Sp = sinﬂ, P, = M (F.14)
q T

We also conjecture that the 1-instanton coefficients b1(q), c1(g) in (F.12) are given by

1 T?%(—q)

bila) = 21(q) = Con2 cos(mq)T'(—2q)"

(F.15)
By taking the limit ¢ — n (n € Z), one can check that the conjectured form of instanton
coefficients (F.13) and (F.15) correctly reproduces the result of Jyp(u,2) listed above for
the (p,q, k) = (1,¢,2) case with various integer q.

One can derive the expression of b1(¢) in (F.15) by taking the limit £k — 2 of v1(q, k)
given by (3.9). However, if we take the limit naively, we get a wrong answer. To repro-
duce (F.15), we have to first rewrite 1 (g, k) by using the transformation of hypergeometric
function as

1 T?(—q) q q1 o mk
k)= ——— F 1 1 - g4 _
Vl(qa ) 7T2]€ P(_2q)2 1 27 27 9 q;sim 2
1 T?(—q) 1 o Tk

- F(—q—q:—gs . F.1

Taking the limit £ — 2 in the last expression, we correctly obtain b;(¢) in (F.15).
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