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ABSTRACT

Abstract

Intensity of galactic cosmic rays (GCRs) shows dynamic temporal variations in various time
scales; transient decreases lasting for several days, diurnal variation, 11-year or 22-year cycle
variation, and so on. Only a worldwide detector network allows us to separately deduce variations
of the isotropic intensity (or GCR density) and the anisotropy on an hourly basis. In this thesis,
I present results of the space weather study based on the GCR observations with the Global
Muon Detector Network (GMDN).

In former works analyzing a single detector data, diurnal (or ecliptic) and north-south (NS)
anisotropies were derived on a daily basis from separate analysis methods and/or separate detec-
tors. The GMDN, on the other hand, provides us with a three-dimensional (3D) anisotropy using
a single analysis method on an hourly basis. I confirm that the anisotropy is more accurately
derived by the GMDN than by the traditional analysis, while results obtained from two analyses
are fairly consistent with each other as far as the yearly mean value is concerned.

Based on the convection-diffusion equation describing the large-scale transport of GCRs in
the interplanetary space, the spatial gradient of GCR density is deduced from the observed
anisotropy. High temporal resolution of the GMDN allows us to infer the spatial structure of the
GCR depleted region formed behind the interplanetary shock (IP-shock) which causes a short-
term density decrease (called Forbush Decreases; FDs) on its arrival at the earth. By analyzing
FDs following the IP-shocks generated by the solar eruptions (such as coronal mass ejections;
CMEs) from various heliographic locations on the sun, I derive the 3D average distribution of
GCRs in the depleted region for the first time. It is confirmed that the magnetic sheath in
the western flank of IP-shock excludes more GCRs than in the eastern flank, in accord with
the east-west asymmetric magnetic configuration model of IP-shock expected from the spiral
configuration of the interplanetary magnetic field (IMF) arising from the solar rotation. T also
confirm the density gradient suggesting a density minimum in an expanding CME propagating
radially outward from the eruption location on the sun. The FDs observed simultaneously by the
neutron monitors (NMs) and the GMDN, which are sensitive to ~ 10 GV and ~ 60 GV GCRs,
respectively, show a soft rigidity spectrum of the FD.

I also analyze the year-to-year variation of the 3D anisotropy using the GMDN for the first
time. The first order anisotropy observed with the GMDN from 1992 to 2013 shows a variation
in a correlation with the solar activities. Amplitude of the diurnal anisotropy shows 11-year cycle
variation in a correlation with the solar activity, while the phase varies according to the 22-year
periodic reversals of the solar dipole magnetic field polarity, referred as the A > 0 (A < 0) epoch
when the dipole directs northward (southward). I find that the anisotropy component parallel
to the IMF in the ecliptic plane shows a 22-year cycle variation which is responsible to the
phase variation of the diurnal anisotropy. NS component of the gradient indicates a local density
maximum close to the heliospheric current sheet (HCS) in A < 0 epoch while the gradient
indicates a local minimum close to the HCS in A > 0 epoch. This 22-year variation of the
gradient is in an agreement with the drift model prediction. The radial density gradient, on the
other hand, does not show a clear 22-year variation predicted by the drift model, while it shows
a significant 11-year variation. The parallel mean free path of the pitch angle scattering of GCRs
deduced from the anisotropy and the radial gradient also show significant 11-year variations out
of phase with each other, indicating equilibrium between the radial diffusion and the solar wind
convection of GCRs. The parallel mean free path has an average magnitude of ~ 1 AU for ~ 60
GV GCRs which is comparable to the numerical simulation of the pitch angle scattering.

In addition to the GMDN data, I also analyze GCRs recorded by a single muon detector
(MD) at Nagoya over 44 years from 1970 to 2013. The diurnal anisotropy is derived from the
diurnal variation of the muon count rate, while the NS anisotropy is derived from a difference
between count rates (called the “GG-component”) recorded by the north-viewing channel and
the south-viewing channel of Nagoya MD. The 3D anisotropy is deduced by combining the
diurnal anisotropy and the NS anisotropy. From the long-term variation over 4 solar activity
cycles, I find a small 22-year variation of the radial gradient, but it is masked by a larger 11-year
variation and by a persistent long-term trend over the last several solar cycles. It is also found
that the anisotropy parallel to the IMF, i.e. the parallel diffusion streaming of GCRs, has a flat
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rigidity spectrum, while the perpendicular anisotropy mainly arising from the drift streaming
has a harder spectrum.
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Figure 1: Schematic view of the Parker spiral. The central solid line circle represents the solar
surface. Currents flowing near the source surface eliminate the transverse components of the
magnetic field, and the solar wind extends the source surface magnetic field into interplanetary
space. (Schatten et al., 1969)

1 Introduction

1.1 Solar modulation of galactic cosmic rays (GCRs)

Existence of the solar wind, supersonic plasma flow from the sun, was first suggested by Biermann
(1957) from the acceleration of the ion tails of comets. Based on a dynamical model, Parker (1958)
predicted the super sonic solar wind and suggested that the solar dipole magnetic field frozen-in
(Alfvén, 1942) the solar wind moves with the solar wind and forms a spiral configuration (Parker
spiral; Figure 1) of the interplanetary magnetic field (IMF). The existences of the solar wind
and the Parker spiral have been confirmed by a number of spacecraft observations. The solar
wind moving radially outward from the sun reduces its pressure by the adiabatic expansion until
it decelerates at the solar wind termination shock (TS) formed around 100 AU from the sun.
Beyond the TS, there is a boundary called the heliopause where the solar wind pressure balances
with the interstellar gas. The region filled with the solar wind plasma inside the heliopause
is called the heliosphere. Galactic cosmic rays (GCRs) in the interstellar space interact with
the IMF and its irregularities moving outward from the sun and form a characteristic density
distribution in the heliosphere, i.e. the density distribution formed by the solar modulation of
GCRs.

1.1.1 Transport equation of GCRs in the interplanetary space

Transport equation of GCRs The transport equation (or continuity equation) of GCRs
in the interplanetary space is given (cf. Parker, 1965; Gleeson & Axford, 1967; Gleeson, 1969;
Gleeson & Webb, 1980; Webb & Gleeson, 1979) as

ou 0 g 0 (pVSW 8U>

E—Far. __Bp

L= 1
3 or (1)
where the particle position 7, momentum p, and time t are specified in the frame fixed in the
solar system and Vgw is the solar wind velocity. A term on the right hand side of equation (1)
represents the adiabatic cooling of GCRs arising from the expansion of the radial solar wind.
U(r,p,t) and S(r,p,t) are the differential number density and the bulk flow of GCRs related to
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the phase-space density F(r,p,t) as

U(hp,t)Ap:/ F(r,p,t)dp, (2)
S(r,p,t)Ap=/ vF(r,p,t)d%p (3)

where 7, is the region in the momentum space surrounded by two spheres of radii p and p + Ap
and v is the particle velocity.
The GCR flow S is expressed as

ou
S=CUVegw — K- — 4
WK (@)
where the first and second terms in the right side represent the convection and diffusion flows of
GCRs, respectively.

()

is the Compton-Getting factor (Compton & Getting, 1935; Gleeson & Axford, 1968a; Cutler &
Groom, 1986; Amenomori et al., 2004). The second term of the right side in equation (5), which
depends on the momentum spectrum of the density U(p), arises from a change of the momentum
spectrum due to the transformation of the reference frame from the solar wind frame moving with
Vsw to the fixed frame (Gleeson & Axford, 1968a). K is the diffusion tensor representing the
diffusion and drift effects of GCRs and written in an orthogonal coordinate system (eq, ez, e3)

with ey parallel to the mean IMF which remains after averaging small fluctuations of the magnetic
field, as

K, 0 0
K = 0 K, Kr |. (6)
0 —Kr K|

K| is the diffusion coefficient parallel to the IMF given as

)\HU
Ky=— 7
1= 3 (7)
where )| is the mean free path of the GCR pitch angle scattering (Jokipii, 1971) in the direction
parallel to the IMF. K| is the diffusion coefficient perpendicular to the IMF given as

K, = (8)

where
aj = Aj/Re (9)

is the dimensionless mean free path parallel to the IMF normalized to the Larmor radius of
GCR particles in the mean IMF, R;. In many cases of the solar modulation, K is significantly
smaller than K| by 1/(1 + aff) because of a large aj.

|

Kp = (10)

is the off-diagonal diffusion coefficient representing the diamagnetic drift effect.
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Force-field solution The force-field solution (Gleeson & Axford, 1968b; Gleeson & Urch,
1973) of equation (1) allows us a simple estimation of the solar modulation of GCRs. On the
spherically-symmetric assumption, equation (4) is replaced by

oU
= - K. — 11
Sp = CUVsw = Kprs (11)

where r is the radial distance from the sun, S, is the radial component of the bulk flow, and
K,. = K| cos? ) + K| sin? 1) (12)

is the radial diffusion coefficient with 1 denoting an angle between the Parker spiral and the
radial direction. If the angular distribution of GCRs is nearly isotropic, i.e. the integration in
equation (3) is nearly zero (S, ~ 0), we obtain from equation (11)

G _ 10U _ CVsw
T U K,

(13)

where G, is the radial (fractional) density gradient of GCRs. The radial distribution U(r),
therefore, is derived as

(14)

Ulr) = Ulrg) exp (— "’ CVSWdr)

r K’I’T

where rp is the position of the heliospheric boundary. For the GCRs with relativistic speeds,
momentum spectrum U(p) is expressed by the power-law spectrum oc p~7 with v ~ 2.7 and C

becomes a constant
2+

3

according to equation (5). U(r) in equation (14), therefore, increases with increasing r, i.e.
the radial density gradient G, is positive (outward gradient). This implies that the outward
convection flow represented by the first term of the right side in equation (11) balances with
the inward diffusion flow represented by the second term which arises from the radial density
gradient resulting from the convection.

The radial density gradient (or positive G,.) has been confirmed by a number of in situ
observations with spacecraft (e.g. Neher & Anderson, 1964; O’Gallagher, 1967; O’Gallagher &
Simpson, 1967) and S, ~ 0 in the steady state, i.e. the balance between the convection and
diffusion flows, is also roughly confirmed from ground-based observations of the GCR anisotropy
(e.g. Rao et al., 1963; Bercovitch, 1963). We can, therefore, conclude that the convection-diffusion
equilibrium mentioned above plays a primary (or major) role in the solar modulation of GCRs.

C= (15)

1.1.2 The first order anisotropy of GCRs

The force-field model mentioned in the previous section assumes a spherically-symmetric trans-
port of GCRs in equation (11). I note, however, that the azimuthal and latitudinal components
of S are almost always detected with a substantial value. This indicate that there is a limit to
deduce a correct density distribution of GCRs using the force-field model. Observation of the
three-dimensional GCR, anisotropy which is eliminated in derivation of the equation (13), on
the other hand, allows us to infer the density gradient OU/0r via equation (4) without such an
assumption.

The first order anisotropy and the density gradient The GCR anisotropy at a space-
time (7,t) is represented by the phase space density F(p) which is a function of an observed
momentum magnitude p. F(p) is expanded in the spherical harmonics in the polar coordinate
system (p, 0, ¢) as

F(p) = Z Y. (p,0,9) = Z Z {F)*“(p) cosmae + F**(p) sinme} P (cos ) (16)

n=0m=0
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where 0 and ¢ are orientation angles of a vector p and P! (cos ) is the semi-normalized spherical
function by Schmidt (Chapman & Bartels, 1940). The zeroth and first harmonics, Yy(p, 0, ¢) and
Y1(p, 0, ¢) are related with the GCR density U(p) and bulk flow S(p) (e.g. Klimas & Sandri, 1971;
Gleeson, 1969; Gleeson & Webb, 1980) as

1 1

Y Ap=F(p)Ap=— | F(p)d’p=——U(p)A 1
0. 0:0)8p = Fr)dp = o | Pl = U, a7)
(). o). F0) Ap = 15 | Fo)p = 180, (18)

LA ol dmp? ), v 4mvp?
The first order anisotropy vector, &(p) is defined as
1 c 1s Oc

€)= 5o (F'°(p), Fi*(p), FY“(p)) - (19)

From equations (4), (17) and (18), &(p) is related to the GCR flow S and the density gradient

oU/or as
38 3C 3 ou
-2 _ 2w —K. —. 20
¢ U v oW + U or (20)
The anisotropy vector & is defined to direct opposite to S, pointing toward the upstream direction
of S. On the frame fixed to the earth moving around the sun with the orbital motion velocity

Vg, the solar wind velocity Vsw is modified to Vgw — Vg, that is,

3C 3 ou
=—— (Vosw -V, —K. —. 21
¢ v (Vow B)+ vU or (1)
The dimensionless mean free path o in equation (9) is considered to be o ~ 10 for ~ 60 GeV
GCRs (Bieber et al., 2004) analyzed in this thesis, indicating aﬁ > 1. The off-diagonal diffusion

coefficient K7 in equation (10), therefore, can be approximated as
KTNK”/OéH ZURL/B (22)

from equation (7). The perpendicular diffusion coefficient K| in equation (8) is redefined using
a mean free path (A ) perpendicular to the IMF as

K, =Av/3. (23)
Inserting equations (7), (9), (15), (22) and (23) to equation (21), we obtain
A 0 0
2+ I
E=——T(Vew-Ve)+| 0 A R |-G (24)
0 —Rp XL

where I replaced the particle speed v with the speed of light, ¢ which is approximately equal to
v for GCRs analyzed in this thesis and

10U
T Uor
represents the fractional density gradient vector normalized to the density U. It is noted that
the first term of the right side in equation (24), representing the solar wind convection flow and

the earth’s orbital motion around the sun, is independent of the particle momentum p. Equation
(24) can be rewritten as

(25)

€:_2+Tﬂy(‘/SW_VE)+)\HGH+)\J_GJ__RLg x G (26)
where G| and G| are the density gradients parallel and perpendicular to the IMF, B is the
IMF vector. The second and third terms of the right side in equation (26) represent the diffusion
flow of GCRs, while the forth term represents the drift flow (or the diamagnetic drift) arising
from a combination of the gyro motion and the density gradient of GCRs. Equation (24) or (26)
allows us to deduce the density gradient G in the vicinity of the earth (or to infer the density
distribution in the interplanetary space) from the observed anisotropy &.
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Co-rotation anisotropy The first order anisotropy in the ecliptic plane is known to have an
amplitude of ~ 0.4 % and a phase at 90° GSE longitude (e.g. Rao et al., 1963; Bercovitch, 1963)
in general. From equation (8), the ratio between parallel and perpendicular mean free paths, «

is estimated as
_ AL _ K| 1

“= >\H o KH N1+Ozﬁ

The third term of the right side in equation (26) is, therefore, negligible if G| is comparable
with or less than G| and I also eliminate the fourth term because of Rz /A = 1/a) ~ 0.1. The
ecliptic (radial and azimuthal) components of £ in equation (26) are given in the GSE coordinate
system, as

~0.01 (27)

fm = 2 —Z rstw - /\”GH COS’(/) (28)
fy = )\HGH Sin¢ (29)

where the earth’s orbital motion speed Vg is ignored because its magnitude (30 km/s) is negligible
compared with Vsw ~ 400 km/s. Applying an assumption of &, ~ 0, i.e. the radial convection-
diffusion equilibrium, we obtain

2
t T Vaw tan sy ~ 0.6 % (30)

fy:

where Tused v = 2.7, Vaw = 400 km/s, and ¢ = 45°. The difference from the observed anisotropy
(~ 0.4 %) is attributed to the contribution from G| which is ignored in this calculation (Gleeson,
1969). This anisotropy is called co-rotation anisotropy and interpreted as the convection flow of
GCRs arising from the “co-rotation” of the IMF around the sun.

1.2 Space weather

The force-field model and the co-rotation anisotropy mentioned in the previous sections had
provided us with a limited success in the study of GCR modulation, which assume the radial
equilibrium between the solar wind convection and the diffusion (S, ~ 0 and & ~ 0). The
interplanetary environment including the GCRs actually shows dynamic variations deviating
from such an equilibrium state, called the “space weather”, because of the dynamic solar activity
and the contribution from the latitudinal drift low which were ignored in the radial convection-
diffusion equilibrium. In this thesis, I present results of the space weather study by focusing
on two phenomena of the GCR modulation, the GCR density depression behind interplanetary
shocks (IP-shocks) and the solar cycle variation of the GCR density distribution. I introduce
previous studies related to them in this section.

1.2.1 GCR depression behind interplanetary shocks (IP-shocks)

Short term decreases in the galactic cosmic ray (GCR) isotropic intensity (or density) follow-
ing geomagnetic storm sudden commencements (SSCs) were first observed by Forbush (1937)
(Forbush Decreases, FDs). In general, FDs start with a sudden decrease within 3 hours of the
SSC onset (Lockwood, 1960), reach maximum depression within about a day and recovers to the
usual level over several days (recovery phase). Most of the decreases follow geomagnetic SSCs
but correlation studies between the ground-based cosmic ray data and spacecraft (e.g. Fan et
al., 1960) or solar radio (e.g. Obayashi, 1962) data indicate that the origin of the FD is not the
geomagnetic storm but the IP-shock associated with the solar eruption such as the coronal mass
ejection (CME), which causes the SSC as well (Yermolaev & Yermolaev, 2006; Gopalswamy et
al., 2007).

The depleting effect of IP-shocks on GCRs is explained by the “propagating diffusive barrier”
model (Wibberenz et al., 1998). The compressed and disturbed magnetized plasma in the sheath
behind the IP-shock reduces the GCR. diffusion from the outer heliosphere due to the enhanced
pitch angle scattering and works as a diffusive barrier. The diffusive barrier suppresses the inward

10
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flow arising from the radial density gradient of GCRs and sweeps out GCRs as it propagates
radially outward, forming the GCR depleted region behind the IP-shock.

Investigating a relation between the heliographic longitude of associated solar eruptions on
the sun and the magnitude of GCR depression in FDs; a number of studies suggest the east-west
asymmetry (E-W asymmetry) of FDs associated with eruptions on the eastern region of the sun
have slightly larger magnitude than western eruptions (Kamiya, 1961; Sinno, 1962; Yoshida &
Akasofu, 1965; Haurwitz et al., 1965; Barnden, 1973a,b; Cane et al., 1996). It is also reported
that large FDs with prominent magnitudes are often observed in association with eruptions near
the central meridian of the sun. Yoshida & Akasofu (1965) called this the “center-limb effect”.
I note, however, that the E-W asymmetry presented by previous papers seems insignificant due
to a large event-by-event dispersion of the maximum density depression in FD masking the
systematic E-W dependence.

Barnden (1973a,b) and Cane (2000) gave a comprehensive interpretation of the observations
including the E-W asymmetry and center-limb effect applying the magnetic configuration model
of Hundhausen (1972) to FDs. The IP-shocks associated with solar eruptions are driven by the
ejected “driver gas” (Hirshberg et al., 1970), i.e. the interplanetary CME. The central region
of the CME (or the CME ejecta), whose longitudinal extent is less than 50° at 1 AU (Cane &
Richardson, 2003), is detected only for IP-shocks originating near the central meridian, while
the accompanying shock formed ahead of the CME has a greater longitudinal extent exceeding
100° (Cane, 1988). A closed magnetic field configuration called the magnetic flux rope (MFR) is
formed in the central region of the CME (Burlaga et al., 1981; Klein & Burlaga, 1982). Expansion
of the MFR excludes GCRs from penetrating into the MFR, causing a prominent FD as found by
Cane et al. (1996). The E-W asymmetry, on the other hand, is attributed to the IP-shock which
has a global effect on the GCRs (Cane et al., 1994). The interplanetary magnetic field (IMF)
has a spiral configuration known as the Parker spiral (Parker, 1958) and the eruption site on the
solar photosphere moves toward west due to the sun’s rotation before the IP-shock arrives at the
earth. The compressed IMF in the sheath of IP-shock, therefore, has a larger magnitude at the
western flank of the IP-shock than at the eastern flank, leading to a small diffusion coefficient
of the GCR pitch angle scattering (Jokipii, 1971) and a larger FD in the eastern events. This
CME-driven shock model is also consistent with the observed longitudinal distribution of the
solar energetic particles (Reames, 1995; Reames et al., 1996).

In addition to the temporal variation of GCR density, FDs are often accompanied by dynamic
variations of the anisotropic intensity of GCRs (or GCR anisotropy) observed with ground-based
detectors such as neutron monitors and muon detectors. The cosmic ray counting rate observed
with a ground-based detector is known to show a diurnal variation (Hess & Graziadei, 1936),
indicating an equatorial GCR flow from the direction of the local time when a maximum count
rate is observed. The enhancement of amplitude and the rotation of phase of the diurnal variation
accompanying FDs were first reported by Duggal & Pomerantz (1962) and Wada & Suda (1980)
performed a statistical analysis of the evolution of diurnal anisotropy for SSC events. Duggal &
Pomerantz (1970) and Suda & Wada (1981) also found enhanced north-south asymmetry in GCR
intensities observed with the northern and southern geographic polar detectors, indicating an
enhancement of the north-south GCR anisotropy in FDs. Combination of the observed diurnal
and north-south anisotropies enabled Nagashima et al. (1968) to infer the three-dimensional
density distribution. However, after that, such a three-dimensional analysis of the transient
anisotropy was rarely performed until a worldwide detector network started operation. The
counting rate of a single neutron monitor, which is analyzed in most previous studies, contains
contributions from the GCR density and anisotropy superposed to each other and analyzing
these two contributions separately has been difficult. Also the analysis of the diurnal variation
provides only the daily mean of the equatorial anisotropy, which is insufficient for analyzing the
dynamic variation during FDs. This has been a problem also in analysis of the temporal variation
of GCR density in previous studies, as pointed out by Cane et al. (1996).

11
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1.2.2 Solar cycle variation of GCRs

Solar cycle variations of the solar wind parameters, such as the solar wind velocity, magnitude and
orientation of the solar magnetic field and/or IMF, and the tilt angle of the heliospheric current
sheet (HCS), alter the spatial distribution of GCR density in the heliosphere as partly mentioned
in Section 1.1. Long-term variations of the interplanetary environment arising from the 11-year
and 22-year cycle variations of the sun, i.e. the solar cycle variations of the interplanetary space,
are called the “space climate”. We can easily expect from the force-field solution (equations
(13) and (14)) that the radial density gradient and the density of GCRs at the earth vary
in a positive and negative correlations with the 11-year cycle variation of the solar activity,
because the turbulent (quiet) magnetic field in the solar activity maximum (minimum) may
reduce (enhance) the diffusion coefficient of GCRs, resulting in the large (small) density gradient
and the low (high) density.

The drift model (Jokipii & Kopriva, 1979) applied the drift flow of GCRs to the numerical
model of the GCR modulation. The diamagnetic drift represented by the fourth term of the
right hand side of equation (26) causes an apparent GCR flow which appears as the inflow of
GCR particles into an spatial volume element, but does not transport the particles beyond a
range of the gyro radius. We can, however, expect a particle transportation traversing the line
of magnetic force via other drift processes, if there is a spatial gradient of the magnetic field as
in the interplanetary space. From equations (1), (4) and (6), the density variation arising from
the drift flow, proportional to the off-diagonal diffusion coefficient Kr, is written as

oU ) 00 0\ 5y
o) "y Y0 B fege
D r 0 7KT 0 T
OKr U  OKr oU 0
- O o =5 (UV) 31
0z 813 8353 0o or ( D) ( )
where Vp is the drift velocity defined as
OKr 0K 0 B
Vo (O’ dxs ~ Ozo ) or ( TB) (32)

The right hand side of equation (31) can be simply understood as a GCR flow convected with
a velocity Vp in addition to the solar wind convection represented by the first term of the right
hand side of equation (4). From equation (22), the drift velocity in equation (32) is written as

0 B vP 0 B
Vo =5, % (KTB> = 3cor (B)
2
P <B2a x B+ B x 83) (33)

= 3¢B4 or or

where the Larmor radius Ry, is given as Ry, = P/(¢B) with P denoting the rigidity of GCR
particle. The first term in the parenthesis represents the curvature drift arising from the magnetic
field curvature V x B, while the second term is the gradient drift (or the VB drift) arising from
the spatial gradient of the magnetic field magnitude perpendicular to the force line (Parker, 1957;
Isenberg & Jokipii, 1979). The orientation of the drift flow in equation (32) clearly depends on the
magnetic field orientation. The curvature and the radial gradient of the Parker spiral magnetic
field cause a latitudinal GCR flow, which cannot be described by the GCR modulation model
(such as the force-field model) taking account of only the convection and diffusion flows.

A polarity of the IMF (pointing away from or toward the sun) is determined by the polarity
of the solar magnetic field at the foot point on the sun. The polarity of the solar dipole magnetic
field is opposite on the northern and southern sides of the equator forming a sector structure
in the heliosphere as shown in the left panel of Figure 2. The boundary surface between the
IMF sectors is called the HCS (Wilcox & Ness, 1965) and predicted to form a wavy structure in
the heliosphere (Figure 2), due to the tilt of the solar dipole from the solar rotation axis. The
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Figure 2: (Left) Sector structure of the IMF observed with IMP 1 spacecraft from Decem-

ber 1963 to February 1964 (Schardt & Opp, 1967). (Right) Schematic view of the wavy HCS
[http://wso.stanford.edu/].
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Figure 3: (Left) Latitudinal drift flow of GCRs in the heliosphere in the A > 0 epoch. The
system is symmetric about both axes. (Middle) GCR density distribution in the heliosphere in
the A > 0 epoch. (Right) GCR density distribution in the heliosphere in the A < 0 epoch.
(Jokipii & Kopriva, 1979)

drift model (Figure 3) of GCR transport predicts a bi-directional latitudinal gradient pointing
in opposite directions on the opposite sides of the HCS if the HCS is flat (Jokipii & Kopriva,
1979). The predicted spatial distribution of the GCR density has a minimum along the HCS in
the “positive” polarity period of the solar polar magnetic field (also referred as A > 0 epoch),
when the IMF directs away from (toward) the sun in the northern (southern) hemisphere, while
the distribution has the local maximum on the HCS in the “negative” period (A < 0 epoch) with
the opposite field orientation in each hemisphere. The field orientation reverses every 11 years
around the maximum period of the solar activity. A tilted current sheet introduces modifications
of density distribution around the wavy HCS. For example the local minimum of the density in
A > 0 epoch does not locate right on the HCS, but the general tendencies in the sense of the
latitudinal gradient remain the same as outlined above (Kéta & Jokipii, 1982, 1983).

The variation of the spatial distribution of GCR density causes the variation of the first
order anisotropy of GCRs at the earth as expected from equation (24). One of such variations is
the 22-year variation of the solar diurnal anisotropy in which the phase of the anisotropy shifts
toward earlier hours in the local solar time around every A > 0 solar minima (Thambyahpillai &
Elliot, 1953; Forbush, 1967; Ahluwalia, 1988; Bieber & Chen, 1991, and references therein). By
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analyzing the anisotropy observed with neutron monitors (NMs) in 1968-1988, Chen & Bieber
(1993) revealed that the observed phase-shift of the diurnal anisotropy is due to the decrease
of the diffusion streaming parallel to the IMF, i.e. the second term (A G| ) of the right side of
equation (26), in A > 0 solar minima. The simple drift model predicts smaller G, (or smaller
G)) in A > 0 epoch than in A < 0 epoch, if the diffusion coefficients are the same in both epochs
(Levy, 1976; Erdos & Kota, 1980; Kdéta & Jokipii, 1983; Potgieter & Moraal, 1985). Finding
a significant 11-year solar cycle variation but no clear 22-year variation in the observed G,
however, Chen & Bieber (1993) suggested that the smaller parallel streaming was caused by the
smaller A\ in the A > 0 epoch, possibly due to the magnetic helicity effect in the turbulent
magnetic field (Bieber & Pomerantz, 1986; Bieber et al., 1987).

The long-term variation of the north-south (NS) anisotropy normal to the ecliptic plane has
been derived also from NM data. Bieber & Pomerantz (1986) and Chen & Bieber (1993) derived
this anisotropy from the difference between count rates in a pair of NMs which are located near
the north and south geographical poles observing intensities of GCRs arriving from the north and
south pole orientations, respectively. They found a ~ 10-year cycle variation in this component
anisotropy which implied the radial density gradient (G,.) changing in a correlation with the solar
activity, while they found no significant difference between G,s in A > 0 and A < 0 epochs in
a contradiction to the simple drift model prediction. Derivation of the NS anisotropy, however,
have been difficult because the difference between only two detector’s count rates is easily affected
by instrumental variations of each detector such as the gain change.

1.3 Research object

The space weather or the space climate has been studied using only the spacecraft observation
by many previous works. An in situ (or a single point) observation with spacecraft, however,
can give the information only of a local spatial structure, in which the global magnetic structure
such as the Parker spiral, IP-shock, MFR, or HCS is masked by small scale fluctuations of the
solar wind plasma. There is also a remote sensing (or optical) observation probing the global
spatial structure, but it observes only the solar surface or solar corona and cannot measure
the interplanetary space. In this thesis, I present results of analyses on the space weather or
space climate using a worldwide network of the cosmic ray detectors, the Global Muon Detector
Network (GMDN). The GCR observation can make a major contribution to the space weather
study because the solar modulation of GCRs is governed by a global magnetic structure over
the scale comparable to the Larmor radius (~ 0.3 AU for ~ 60 GV GCR in ~ 5 nT magnetic
field) as practically demonstrated by Kuwabara et al. (2004, 2009) and Fushishita et al. (2010b).
It is also noted that the heliospheric magnetic field contributes to GCR modulation as an in-
tegration because GCRs pass the whole heliosphere before approaching the earth, as typically
demonstrated by the force-field solution in equation (14). This allows us to infer the average
magnetic configuration in the whole heliosphere from the GCR observation.

The 3D vector of the first order anisotropy corrected for the solar wind convection and the
earth’s orbital motion around the sun represents a GCR flow proportional to the spatial density
gradient of GCRs as seen in equation (24). We can thus derive the density gradient from the
observed 3D anisotropy based on Parker’s transport equation. While the scalar density reflects
only the information at the observation point, the density gradient vector allows us to infer the
3D spatial distribution of GCRs. In most of former works, however, the diurnal anisotropy and
the NS anisotropy were studied separately using a single NM or muon detector (MD) because
the two anisotropy components are derived by quite different analysis methods and/or different
detectors. Only a worldwide detector network viewing various directions in space, such as the
GMDN, can derive the 3D anisotropy simultaneously and separately from the density variation
with a sufficient temporal resolution even for the short-term variation, such as the FD.

In Section 2, I describe a theoretical background of the MD data analysis and the analysis
method of the GMDN. In Section 3, I deduce the GCR density distribution behind IP-shocks
using the GMDN. In former analyses of the IP-shock events observed with the GMDN, the GCR
density and density gradient have been used to analyze a geometry of the GCR depleted region
in each individual FD (Munakata et al., 2003, 2006; Kuwabara et al., 2004, 2009; Rockenbach
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et al., 2014). I perform, on the other hand, superposed epoch analyses of the GCR density
and gradient derived from observations with the GMDN for 45 IP-shock events and analyze the
average spatial distribution of GCR density behind the IP-shock. The solar cycle variation of the
global density distribution in the heliosphere during a period from 1992 to 2013 is also deduced
using the GMDN in Section 4. T also describe the traditional analysis method and compare the
NS anisotropies derived by the GMDN and traditional method. After confirming the consistency
between anisotropies observed with the GMDN and a single MD at Nagoya, I expand the period
of analysis back to 1970’s by combining the diurnal and NS anisotropies observed with a single
MD at Nagoya. In Sections 3 and 4, the rigidity dependences of the GCR depression behind
IP-shock and the solar cycle variation of GCRs are also studied by comparing observations with
the MD and NM. I present the summary and conclusion of this thesis in Section 5.
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Figure 4: Schematic views of (left) the scintillator-type MD and (right) the PRC-type MD at
Nagoya and Kuwait station, respectively (http://cosray.shinshu-u.ac.jp/crest).

2 Observation and data analysis

2.1 Muon detector (MD) and modeling the muon intensity

The MDs used in this thesis consist of two (upper and lower) horizontal layers of plastic scintilla-
tors or proportional counter (PRC) tubes, respectively, and a 5 cm layer of lead is located among
or above them to absorb the soft component of the secondary cosmic rays. Each horizontal layer
of the scintillator-type MD (left of Fgiure 4) comprises an array of 1 m x 1 m plastic scintillators,
each viewed by a photomultiplier tube. Each PRC tube in the PRC-type MD (right of Fgiure
4) is a 5 m long cylinder with a 10 cm diameter and each layer of the PRC-type MD consists of
a pair of PRC tube arrays, X- and Y-layers. In the X-layer, axes of the PRC tubes are aligned
north-south (Y) direction to determine the east-west (X) position of the muon path, while the
PRC tubes are aligned X direction in the Y-layer to determine the Y position. The upper and
lower layers are vertically separated by 1.73 m in the scintillator-type MD and 0.8 m in the
PRC-type MD, respectively, to determine a incident direction of a muon from positions of the
unit detectors outputting a signal of muon detection. A recording system in the scintillator-type
or PRC-type MD is triggered by the twofold or fourfold coincidence of pulses from all layers,
respectively, and counts a number of muons for each directional channel.

From a numerical calculation of the cosmic ray propagation in the atmosphere, Murakami
et al. (1979) derived a response function (R(P,©,d, E,,)) of the atmospheric muon intensity to
the isotropic component of the primary cosmic rays. R(P,©,d, E,) is a function for the primary
cosmic ray rigidity P, zenith angle © of the muon incident angle in a polar coordinate system
(0, @) fixed on the detector with the z-axis corresponding to the vertical direction, atmospheric
depth d, and threshold energy E,, of muons. The average number of muons produced by primary
cosmic rays with rigidity P and recorded by the j-th directional channel of the i-th station is
expressed as

(ni;(P)) = / / 9i(P,©,®)R(P,0,d, E,)dQdS (34)
Sij Q5

where S; ; and ; ; are the effective area and the effective solid angle of the j-th directional
channel. In this calculation, I set an element of the effective area, d.S, as a 10 cm x 10 cm square
area. An element of the solid angle multiplied by an element of the effective area, dQ2dS is given
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as
4

(dQdS) 0 = dSldSUh(;OS O (35)
where Oy, is a zenith angle of the viewing direction from an element d.S; in the lower layer to an
element dS, in the upper layer of the detector, and h; is a vertical interval between the lower and
upper layers of the i-th detector. The integral in equation (34) is carried out by summing up the
integrand for all (dQ2dS);,s in the j-th directional channel of the i-th detector. The atmospheric
depth (d = d;) is calculated from the altitude of the i-th detector and the muon threshold energy
E,, depends on the column density of the lead layer along the path of muons, i.e. a function
(EL(0)) for ©. g;(P,0,®) is defined as

g9i(P,©,®) = Ofor P < P,(0,9)
= 1lfor P> P,(0,®) (36)
where P,;(©, ®) is a geomagnetic cut off rigidity of primary cosmic rays below which (n; ;(P)) is
insignificant. P.;(0, ®) is a function for (0, ®) and the geographic location of the i-th detector
and calculated using a particle trajectory code (Lin et al., 1995) in the geomagnetic field. From

equation (34), we can derive the average number of muons produced by primary cosmic rays in
all rigidity range, as

(Nij) =/O <ni,j(P)>dP:/0 /Su/mjgi(P,@, ®)R(P,0,d, E,)dQdSdP.  (37)

The median primary rigidity P,,; ; of the j-directional channel of the i-th detector is defined as

1

P,
3l = [ sy ar. (38)

From equation (16), ratio of the cosmic ray intensity J(P,0,¢) to the isotropic component,
J(P) =Yy(P), is expressed as

J(P,0,¢) ZZO:O YTL(P797¢)

J(P) Yo(P)
= 3 F(P) cosm Ey(P) sinm " (cos
- ,;)n;){ Fg°(P) Ot Fee(p) ¢} Py (cos ). (39)

It is noted that the magnitude of the cosmic ray momentum, p, is replaced with the cosmic ray
rigidity P and the angle (0, ¢) is redefined to represent the incident angle of primary cosmic rays
while it represented the direction of p in equation (16), opposite to the incident angle. From
equations (34) and (39), the number of muons including the anisotropic component is written as

nm-(P) = /S /Q gi(P7@, @)R(P,@,d, E/L)deds

-y /S /Q (P, 6, )R(P,6,d, F,))Gu(P) -

n=0m=0

{1 cos me + 7" sinme} Pl (cos 0)d2dS (40)

where

) (e ) = ( Fiie) ) )

and G, (P) represents a rigidity spectrum of the n-th harmonics. The incident angles 6 and ¢
are defined in the local geographical (GEO) coordinate system and related to P, ©, and ® as

#(P,0,0) = ¢ (P,0,d)— ¢ + wt; (43)
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where ¢5' is the geographic longitude of the i-th station, ¢; is the local solar time in hour at the
station ¢, and w = 7/12. The GEO coordinate system is defined as the z-axis is directed toward
geographic north pole, the z-axis is in the equatorial plane pointing toward the mid-night (00:00
local solar time) direction, and the y-axis completes the right-handed coordinate set. Angles
09" (P,©, @) and ¢9"(P,©,®) are the geographic co-latitude and longitude of the asymptotic
direction of primary cosmic rays with rigidity P before entering the earth’s magnetosphere,
respectively, and calculated using the particle trajectory code as well as P.;(9, ®).

I introduce differential coupling coefficients (Nagashima, 1971; Fujimoto et al., 1984) defined

< deps (P) ) _dP
ds’n,lj(P) <N ]>
m or COS?’Tl((ﬁ?r - ¢?t)
P! (cos 07") ( sinm (g0 — ¢2t) dQds. (44)
The differential coupling coeflicients are determined by the detector properties, e.g. i and 7,
and the primary cosmic ray rigidity P. Using equations (42), (43), and (44), equation (40) is
rewritten as

as

9;(P,©,2)R(P,0,d,E,) -

nii(P)AP = (Nij) Y > Gu(P

n=0m=0
(e {deys (P) cosmwt; — dsyy 5 (P) sinmwt; }
+ e {dspy ( ;(P) cosmwt; + dey; ;(P) sin mwt; }] . (45)
By integrating with P, number of muons is given as
o0
N; :/0 n;j(P)dP = (N;; Z Z {777”C Cpi,j COSTWE; — s - sinmwt; )
n=0m=0
+ ' (s 5 cos mwt; 4 ¢y sinmwt;) | (46)

where

() - om () "

are constants called the coupling coefficients.
In the case that the anisotropy is expressed only in terms of the first order harmonics, the
fractional deviation of the muon number is given as

Ni;(t)

150 = (Nij)

= Io(t)ch coij + eSEO (1) (ch,j coswt; — s%” sinwt;) +
fGEO( t) (sh jcoswt; + 01” sin wt; ) §GEO( )01” (48)
where ¢ is an universal time and wt; is derived as
wt; = wt + 5" (49)
In(t) = n°(t) represents the density variation and
(E575C(1), &0 (1), €57C (1)) = (mi (), mi* (1), mP°(1)) (50)

represents the first order anisotropy vector £ in GEO coordinate system. The rigidity spectrum
of the first order anisotropy is assumed as

G1(P)=G(P) = 1forP<P,
= Ofor P> P, (51)

where P, is an upper limiting rigidity of the anisotropy set at 10> GV, far above the most
sensitive rigidity of the muon detectors, as in Kuwabara et al. (2004, 2009); Okazaki et al. (2008)
and Fushishita et al. (2010a,b).

18



2  OBSERVATION AND DATA ANALYSIS
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Figure 5: The asymptotic directions of all directional channels of the GMDN. A solid character represents the
vertical channel of each detector. A Line is the direction of primary cosmic rays with rigidities in central 80 %
(10 — 90 %) response of each channel.

2.2 The Global Muon Detector Network (GMDN)

The GMDN! started operation measuring the three dimensional (3D) anisotropy on an hourly
basis with two-hemisphere observations using a pair of MDs at Nagoya (Japan) and Hobart
(Australia) in 1992. In 2001, another small detector at Sao Martinho da Serra (Brazil) was added
to the network to fill a gap in directional coverage over the Atlantic ocean. The current GMDN
consisting of four multi-directional muon detectors was completed in 2006 by expanding the Sao
Martinho da Serra MD and installing a new detector in Kuwait. Figure 5 maps the asymptotic
directions of all directional channels available in the GMDN. For more detail description of the
GMDN, readers can refer to Okazaki et al. (2008).

I analyze a percent deviation, I; ;(t), of the pressure corrected hourly count rate of muons
in the j-th directional channel of the i-th detector in the GMDN at the universal time t. GCR
density Io(t) and three components (759 (t), £55O(t), FFO(t)) of the first order anisotropy in
the GEO coordinate system are derived on an hourly basis by best-fitting Ilﬁg (t) in equation (48)
to I; ;(t) (see Appendix A).

Lhttp://cosray.shinshu-u.ac.jp/crest
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3 Average spatial distribution of GCRs behind IP-shocks

3.1 Derivation of GCR density and density gradient

In this section, I derive the anisotropy (£$FO(t), §$EO (1), €SEO(¢)) and the density Io(t) from
the fractional deviation I; ;(t) of the pressure corrected muon count rate from the average over
27-days centered by the SSC onset, using the analysis method described in Appendix A. In
order to remove longer-time density variations superposed on the short-term decreases in FDs,
e.g. the 27-days cycle variations arising from the sun’s rotation, I also take a fractional deviation
of Ip(t) in each SSC event from the average over 5-days from a day before the SSC onset for the
superposition analysis in Section 3.4.

The GCR density variation free from the atmospheric temperature effect can be deduced
from count rates recorded by polar neutron monitors (NMs), as

IThule t IMcMurdo t
M (g) = (t) +2 (t)

(52)

where I™0e () and IMeMurdo(4) are fractional deviations of the pressure corrected count rates in
Thule and McMurdo NMs? in Greenland and Antarctica, respectively, from the 5-days average.
II™(t) in equation (52) gives a good measure of the GCR density, also because it contains only
minor effects of the diurnal and north-south anisotropies (Suda & Wada, 1981). By comparing
Io(t) by the GMDN with I (¢) by NMs in Sections 3.3 and 3.4, I will confirm that my conclu-
sions in this thesis are not seriously affected by the atmospheric temperature effect. Since the
median rigidity of primary GCRs observed by NMs is ~ 10 GV, while the median rigidity of
GCRs observed by the GMDN is ~ 60 GV, we can also analyze the rigidity dependence of the
GCR density depression in FDs by comparing Io(t) with I5™(¢).

I correct the anisotropy vector for the solar wind convection and the Compton-Getting effect,
using the solar wind velocity Vaw in spacecraft data and the earth’s orbital motion speed set at
30 km/s, as

£°() = €0 + 7 (Vow () ~ Vi) (53)
based on equation (26). Hourly solar wind velocity Vgw(t) for my analysis is mainly given by
the ACE level 2 data® and I also use the WIND spacecraft data® when there is a gap in the ACE
data, after confirming consistency between two data sets before and after the data gap. The
ACE and WIND data are lagged for 1 hour as a rough correction for the solar wind transit time
between the spacecraft at L1 Lagrangian point and the earth. From equations (9) and (26), the
corrected anisotropy £"(t) is related to the parallel (G)/(t)) and perpendicular (G'i (t)) density

gradients, as
B(1)

Sw(t) :RL(t) {OA|G|(t)+Ou_GJ_(t)— % XGJ_(t)} (54)

where a; = A (t)/Rp(t) is a dimensionless mean free path perpendicular to the IMF. From
equation (54), the density gradient G(t) is given in terms of the anisotropy, as

1 w 1 w B w

where Sﬁ” (t) and €Y (t) are components of £ parallel and perpendicular to the IMF. The Larmor
radius Ry (t) is calculated as Rp(t) = P/(cB(t)) with P denoting the rigidity of GCR particle
which T set at 60 GV for my analysis of the GMDN data, the representative median rigidity
of primary GCRs observed with the GMDN. The IMF vector B(t) is given by the IMF vector
in the ACE or WIND data lagged for 1 hour. Following theoretical calculations by Bieber et
al. (2004), I assume in this thesis constant o and a; at o) = 7.2 and oy = 0.05q. This

2http://neutronm.bartol.udel.edu/
Shttp://www.srl.caltech.edu/ACE/ASC/
4http://wind.nasa.gov/data.php
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assumption is also used by Okazaki et al. (2008) and Fushishita et al. (2010a) and proved to
result in reasonable GCR density distribution in the vicinity of the interplanetary disturbance.
Moreover, Fushishita et al. (2010b) deduced the parallel mean free path )| from the observed
“decay length” of the loss-cone precursor of an IP-shock event and obtained A| comparable to
my assumption of \| = 7.2R,.

3.2 Identification of IP-shocks associated with solar eruptions

I infer spatial distribution of GCRs behind IP-shock, by analyzing temporal variations of the
GCR density and its spatial gradient in IP-shock events, each identified with a source location on
the sun. IP-shocks are known to cause the geomagnetic storm sudden commencements (SSCs)
in general (Smith, 1983; Wang et al., 2006). I identify IP-shock arrivals with SSCs listed by the
German Research Centre for Geosciences (GFZ) and extract 79 CME-associated shocks (CME
events) from 214 SSCs in a period between 2006 and 2014, referring to the space weather news
(SW news) of the National Institute of Technology (NIT), Kagoshima College® on the date of
each SSC occurrence. The SW news reports current status of the solar surface and interplanetary
space each day, monitoring SDO, SOHO, ACE, and GOES spacecraft data, geomagnetic indices,
and solar wind prediction by the Space Weather Prediction Center (SWPC), NOAA. It estimates
not only the interplanetary origin of each geomagnetic storm but also the associated solar event,
allowing us to associate a CME eruption on the sun with each TP-shock event recorded at the
earth. For the heliographic location of the CME eruption on the solar surface, I use the location
of the associated H-« flare or filament disappearance in the solar event list by SWPC.

Table 1 lists 79 CME events collected in this manner. All the SSC onsets in the CME
events coincide with discontinuous increases in solar wind speed, magnetic field magnitude or
proton density in the ACE or WIND data, ensuring that the SSC can be used as an indicator
of the IP-shock arrival in CME event. Solar event associations of 26 events in this table are also
included in the Richardson/Cane Near-Earth Interplanetary CMEs list® (Cane & Richardson,
2003; Richardson & Cane, 2010). From further analysis in this thesis, I exclude 12 events noted
with 1 or I in Table 1 which lack the GMDN data or the location of the CME erutpion in the
SWPC data and use remaining 67 events.

Figure 6a displays heliographic locations of 67 CME eruptions on the solar surface. The
latitudinal () distribution of CME eruptions is limited in the low- and mid-latitude zone between
0°-40° above and below the heliographic equator, as shown by a gray filled histogram in Figure
6c. The longitudinal (¢) distribution of CME eruptions, on the other hand, spreads over a wide
range as shown by a gray filled histogram in Figure 6b, allowing us to analyze the longitudinal
distribution of GCRs behind IP-shock. It is also seen in Figure 6b that the maximum number of
events occurs around the longitudinal center as reported in previous studies (e.g. Gopalswamy
et al., 2007). Each red number in Figure 6a indicates a number of CME eruptions in each
heliographic region on the sun enclosed by solid lines denoting equator (A = 0°) and 5 meridians
(¢ = —90°,—45°,0°,45°,4+90°).

Out of the 67 CME events, I use for my superposition analyses only 45 events associated
with CME eruptions in the central region (—45° < ¢ < +45°) on the sun (I call these events
as “central events”), because other 22 events associated with CME eruptions outside this region
are known to show different properties when observed at the earth (Gopalswamy et al., 2007).
In subsections 3.4.2 and 3.4.3, I will perform superposition analyses for 22 “FE-events” and 23
“W-events” of the central events associated with CME eruptions in eastern (—45° < ¢ < 0°) and
western (0° < ¢ < +45°) regions on the sun, respectively. Blue and red histograms in Figure 6b
represent ¢ distributions in the E- and W-events. In subsection 3.4.4, on the other hand, I will
classify the central events into 26 “N-events” associated with northern (A > 0°) CME eruptions
and 19 “S-events” associated with southern (A < 0°) CME eruptions, as represented by red and
blue histograms in Figure 6c.

Shttp://www.kagoshima-ct.ac.jp/
Shttp://www.srl.caltech.edu/ACE/ASC/DATA /level3/icmetable2.htm
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Figure 6: Heliographic locations of solar flares and filament disappearances associated with 67
events in Table 1. The top panel displays the locations plotted on the solar surface (a), while
bottom panels display histograms of the heliographic longitude, ¢ (b) and latitude, A (c¢) of the
location. Black solid points in panel (a) indicate the “central events” in —45° < ¢ < +45°. A
red number in panel (a) indicates the event number in each region on the sun divided by black
solid lines, equator line (A = 0°) and 5 meridian lines (¢ = —90°, —45°,0°, +45°,490°). Blue
and red histograms in panel (b) represent the E- and W-events while those in panel (c) are the
S- and N-events, groups in the central events. For the definition of the E-, W-, N- and S-events,
see the text. (Kozai et al., 2016)
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3.3 Event samples

I first present some event samples in this Section, before I analyze the average spatial distribution
of GCRs by superposing events.

3.3.1 December 14, 2006 SSC event

This SSC event is followed by a record intense geomagnetic storm with the maximum Kp index
of +8. The associated CME occurred following an X3.4 solar flare on December 13, 02:34 UT at
S06W24. A comprehensive view of this event is presented by Liu et al. (2008) based on spacecraft
data, while Fushishita et al. (2010b) analyzed a precursory “loss-cone” anisotropy observed with
the GMDN prior to this event recorded at the earth. I focus on the GCR density distribution
observed after the SSC in the present thesis.

Figure 7 displays temporal variations of the solar wind data in panels (a) to (d), the GCR
density Iy observed with the GMDN (color shaded curve) and NMs (green curve) in panel (e)
and three GSE components of the density gradient G' derived from the GMDN data in panels (f)
to (h), all during a time interval from 1 day before the SSC onset to 3 days after the SSC onset.
The IMF sector polarity indicated by red and blue points in Figure 7a is designated referring
to the hourly mean magnetic field B(¢) observed in the GSE coordinate system, as away when
B, < By and toward when B, > B,, as expected from the Parker’s spiral magnetic field. The
variance of the magnetic field, 0% (¢) displayed by a green curve in Figure 7b is derived on an
hourly basis as

1 i 2 i 2 i 2
o3(1) = s S {0 Bo) 4 (40) — By0) + (L) - Bo()°} (56)
i=1
where b'(t) (i = 1,2,---,60 minute) is a minute average of the magnetic field in a temporal

interval ¢ ~ t + 1 hours. The GCR densities, Io(t) and IJ™(¢) are normalized to the 6 hours
average prior to the SSC onset.

As reported by Liu et al. (2008), the azimuthal angle ¢5 of the magnetic field orientation in
Figure 7c shows a monotonous rotation during one day after the end of December 14, indicating
a Magnetic Flux Rope (MFR) passing the earth. G, in Figure 7f shows a negative enhancement
after the SSC onset until the end of the magnetic sheath region behind IP-shock, corresponding
to the decreasing phase of the density in Figure 7e. This is consistent with a density minimum
approaching the earth from the sunward direction (z > 0) and being observed as a negative
enhancement of G,. Following the sheath region, positive G, and G, in Figures 7g and 7h are
clearly enhanced when the earth enters the minimum density region inside the magnetic flux
rope (MFR), indicating that the density minimum passed the south-west of the earth (y < 0
and z < 0) after propagating radially outward from the CME eruption on the sun. According
to Liu et al. (2008), the GSE latitude and longitude of the MFR axis orientation best-fitted to
the spacecraft data are ~ 60 degree and ~ 270 degree in the GSE-coordinate, respectively, and
the axis passed the west of the earth. The density gradient in Figure 7 is consistent with the
GCR density minimum located on the MFR axis approaching and leaving the earth. Kuwabara
et al. (2004, 2009) presented the detail analysis of the density gradient vector derived from the
GMDN data and deduced the cylinder geometry of the GCR depleted region in CMEs.

I also note that the temporal variation of the GCR density, Iy, derived from the GMDN data
in Figure 7e is in a good agreement with I)™ (green curve) derived from NM data which is free
from the atmospheric temperature effect. This ensures that the GCR density is properly derived
from the GMDN data in this event by my analysis method. Magnitude of the FD, on the other
hand, is larger in IJ'™ derived from NM data than in Iy derived from the GMDN data, indicating
a soft rigidity spectrum of the density depression in FD.
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Figure 7: A sample event following the SSC on December 14, 2006 at 14:14 UT. The heliographic
location of the solar eruption associated with this SSC event is indicated above the right top
corner of this figure. Panels from the top to the bottom display (a) hourly values of the solar
wind speed (Vsw), (b) magnetic field magnitude (B) and variance (0%), (c) GSE longitude
(¢B) and latitude (Ap) of the magnetic field orientation, (d) solar wind proton density (n,) and
temperature (7},), (¢) GCR density (Ip), and (f-h) GSE-z,y, z components of the GCR dnesity
gradient (G), each as a function of time on the horizontal axis. The solar wind parameters in
panels (a-d) are measured by ACE or WIND spacecraft. The GCR parameters in panels (e-h) are
derived from the GMDN data, except for the green curve in panel (e) which is derived from NM
data and whose scale is shown on the right vertical axis. In panels (a-d), black and green curves
or circles are plotted on the left and right vertical axes, respectively. Also the away and toward
IMF sector polarities in each hour are respectively indicated by a red and blue solid circles in
panel (a). The vertical red line in each panel indicates the SSC onset time. (Kozai et al., 2016)
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Figure 8: A sample event following the SSC on June 16, 2012 at 20:20 UT displayed in the same
manner as Figure 7. (Kozai et al., 2016)

3.3.2 June 16, 2012 SSC event

This SSC event displayed in Figure 8 is observed with a CME which erupted from the sun
accompanying an M1.2 solar flare on June 13, 13:41 UT at S16E18. G, and G, in Figures
8g and 8h show negative and positive enhancements, respectively, indicating that the density
minimum region passed the south-east of the earth after propagating radially outward from the
CME eruption on the sun. A nearly 180° rotation of the magnetic field latitude Ap in Figure 8c
accompanied by the rapid decrease and recovery of Iy in Figure 8e indicates a MFR passing the
earth in the first half of June 17. During the same period, ecliptic components of the gradient, G,
and G, in Figures 8f and 8g, show clear reversals from negative to positive when the earth passes
near the density minimum in the MFR. G, remains positive during the same period possibly
indicating the density minimum passed the south of the earth. It should be noted, however,
that the earth is mostly in the away IMF sector during this period as indicated by red points
in Figure 8a and the positive G, is also expected from the drift model for the large-scale GCR
transportation in away sector. The positive G, in December 14, 2006 event is also observed
mostly in away sector (see Figures 7a and 7h). I will analyze this effect in detail later in Section
3.4.4. T note again that the overall temporal variations of Iy and I(l)\IM in Figure 8e are in a good
agreement with each other, while the magnitude of the density depression in FD is significantly
larger in II"™ than in Iy, indicating a soft rigidity spectrum of the density depression in FD.
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Figure 9: A sample event following the SSC on April 13, 2013 at 22:55 UT displayed in the same
manner as Figure 7. (Kozai et al., 2016)

3.3.3 April 13, 2013 SSC event

This SSC event displayed in Figure 9 is observed with a CME which erupted from the sun
accompanying an M6.5 solar flare on April 11, 07:10 UT at NO9E12. A monotonous rotation of
¢p in Figure 9c and decreases of the proton density n, and temperature 7}, in Figure 9d indicate
an MFR passing the earth during a day after 3/4 of April 14, but it shows only a minor effect
on the GCR density Iy and Ii™ in Figure 9e. G, in Figure 9g, on the other hand, shows a
negative enhancement during the MFR period in accord with the GCR density minimum region
propagating radially outward from the CME eruption on the sun and passing the east of the
earth. G, shows a clear reversal of its sign from positive to negative during the MFR period.
G, and G in June 16, 2012 SSC event displayed in the previous subsection also showed similar
reversals. This typically demonstrates an advantage of the density gradient (or anisotropy)
observations in deriving a three-dimensional geometry of the GCR depleted region in the MFR,
which is difficult to deduce only from the observed GCR density (I and IJ™™).

29



3 AVERAGE SPATIAL DISTRIBUTION OF GCRS BEHIND IP-SHOCKS

3.4 Superposition analysis and the average spatial distribution of GCR
density

In this section, I perform a superposition analysis of the 45 central events and deduce the average
spatial distribution of GCRs. As seen in sample events in Section 3.3, all events show different
temporal profiles of the solar wind parameters, i.e. the duration and magnitude of the solar
wind speed and magnetic field enhancements, the duration of the magnetic sheath and the MFR
signatures following the sheath, are all different in one event from the other, causing different
temporal variations in Iy and G. I cannot derive these individual features of each event from the
superposition analysis which simply averages out these features. The analysis of the GMDN data
for deriving individual event features can be found elsewhere (Munakata et al., 2003; Kuwabara et
al., 2004, 2009). The superposition analysis, on the other hand, allows us to discuss the average
features of Iy and G which reflect the average spatial distribution of GCRs behind IP-shock.
This is my motivation of the superposition analyses presented below.

3.4.1 Conversion of temporal variations to spatial distributions of the GCR density
and gradient

The temporal variations of the solar wind parameters and the GCR density and density gradient
analyzed in the preceding sections represent spatial distributions of those parameters convected
radially outward by the solar wind and observed at the fixed location of the earth. Due to the
difference in the average solar wind velocity, however, even an identical spatial distribution may
result in different temporal variations. In order to deduce average spatial distributions more
accurately from the superposition analysis presented in the following subsections, I first convert
the temporal variations to the spatial distributions. By assuming the spatial distribution of a
quantity Q(z,y, z) in steady state on the solar wind frame, the temporal variation of @ (Qg(t))
at the earth (xg = 0,yg = 0,z = 0) is related to the spatial distribution of @, as

where ¢ is the time measured from the SSC onset at ¢t = 0 and Vaw () is the solar wind velocity
measured at the earth at . Thus, the time ¢ can be converted to the GSE coordinate z as

xTr = sz(t)t. (58)

It is noted, however, that the conversion by equation (58) may cause the following technical
problem. According to equation (58), two separate times ¢; and t5 correspond to 1 = Vaw (£1)t1
and zo = Vaw (t2)te, respectively, and, in case of Vaw(t1) < Vsw(t2), we can keep ¢ and x in the
same order, i.e. 1 < xg if {1 < to. In case of Vaw(t1) > Vsw(t2), on the other hand, we may
get ©1 > xo even if t; < to. To avoid this problem and keep x and ¢ in the same order, I make

the conversion, as
t/At

z(t) =Y Vew(kAt)At (59)
k=0
where At is set at At = 1 hour corresponding to the hourly count rate analyzed in this thesis.
Note that > 0 (x < 0) corresponds to t > 0 (¢ < 0) after (before) the SSC onset and x increases
toward the sun (i.e. GSE-z direction) with z = 0 corresponding to the IP-shock arrival at the
earth at t = 0. = 0.1 AU roughly corresponds to ¢ ~ 9 hours in the case of Vgw = 450 km/s.
The calculated x by equation (59) may not give us a real spatial coordinate, because I only
use the solar wind velocity Vgw observed at t at the earth which is assumed to be constant after
t. The real Vgw and GCR spatial distributions actually vary even in the solar wind frame due
to, for instance, the expansion of the CME during the propagation through the earth. Even so,
the conversion gives us an estimation of the spatial scale of the GCR distribution in FD in the
vicinity of the earth which is a main subject of the present thesis. Moreover, the conversion also
works for correcting each event for the difference in the average solar wind speed. It is noted
that I confirmed all conclusions derived in this thesis remaining essentially unchanged before and
after the conversion.
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3.4.2 Average features of the GCR density distribution

Figure 10 shows the superposed spatial distributions of the solar wind speed (Vsw), IMF mag-
nitude (B) and variance (0%), proton density (n,) and temperature (7,,), GCR densities derived
from the GMDN and NM data (Ip and IJ'™), and exponent (7) of the power-law rigidity spec-
trum of the density depression estimated from Iy and I each as a function of the GSE-z in AU
on the horizontal axis which is calculated from equation (59). The left and right panels display
the superpositions of the E- and W-events defined in Section 3.2, respectively. In each panel,
black (green) point and error whose scales are shown on the left (right) vertical axis are derived
from the average and dispersion of the superposed spatial distributions in every Az = 0.02 AU
on the horizontal axis. The gray (green) curve whose scale is shown on the left (right) vertical
axis is the average of the intense events in which the maximum density depression in NM data
exceeds 2 % (see Table 1). A range of -0.2 AU < = < 4+1 AU is covered in this figure. In case of
more than two IP-shocks are recorded within this range, I use only the data before (after) the
following (previous) SSC onset for the superposition throughout this thesis, in order to minimize
the interference between separate events without losing events for my superposition analysis.

Average spatial distributions of I(z) and IJ™(z) in Figures 10d and 10e are normalized to
the average over 0.06 AU in -0.06 AU < x < 0 AU. Each of them generally shows an abrupt
decrease at z = 0 AU followed by a gradual recovery continuing up to z = 1 AU, i.e. a well-known
feature of the typical FD. Looking at this figure closer, I also find that the initial decreasing phase
of Ip(z) and I (z) (the left panels of Figures 10d and 10e) in the E-events ends within 0 AU
< z < 0.1 AU, the sheath region behind IP-shock as indicated by the enhanced 0%, n, and T,
in Figures 10b and 10c. This is consistent with numerical calculations (e.g. Nishida, 1982) of
the “propagating diffusive barrier” model mentioned in Section 1.2.1, indicating that the cosmic
ray modulation by the compressed magnetic field sheath is a main cause of the GCR density
depression in the E-events. The initial decreasing phase of In(z) and I)™(x) (the right panels
of Figures 10d and 10e) in the W-events, on the other hand, spreads wider up to  ~ 0.2 AU
with a slower decreasing rate than in the E-events. Since the earth in the W-events encounters
the eastern flank of IP-shock, the slower decrease of GCR density in the magnetic sheath in the
W-events can be attributed to a weaker compression of IMF in the eastern flank of IP-shock as
discussed in Section 1.2.1 (Cane et al., 1994). This E-W asymmetry of GCR modulation in the
sheath region is seen clearer in intense events displayed by gray curves in Figures 10d and 10e.

After the initial decreasing phase, Iy(x) and I™(z) also show broad minima followed by
gradual recoveries. This is due to an additional GCR modulation in the central CME region
(or CME ejecta) behind the sheath region which is typically indicated by a broad pit of T}, in
the right panel of Figure 10c. The magnetic flux rope (MFR) often formed in the CME ejecta
excludes GCRs from penetrating into the MFR by its adiabatic expansion, sometimes causing
prominent GCR decreases. The GCR density depression in FDs is generally caused by these
two distinct modulations respectively in the sheath and central CME regions. The modulation
in the central CME region is seen clearer in Iy(z) and I (z) in W-events (the right panels of
Figures 10d and 10e) than in E-events in the left panel, because of the weaker modulation in
the sheath region due to the E-W asymmetry mentioned above. The modulation is also seen in
intense E-events displayed by gray curves in the left panel as broad minima extending over 0.1
AU < z < 0.5 AU, but the density depression is much larger in the sheath region. The maximum
depression of GCR density Ip(z) by the GMDN in Figure 10d is slightly larger in E-events than
in W-events in accord with the E-W asymmetry in the FD magnitude mentioned in Section 1.2.1,
while the asymmetry is clearer in intense events (gray curves in Figure 10d). This is probably
due to the larger E-W asymmetry of the GCR modulation in the sheath in intense IP-shocks. If
we look at IN™(x) by NMs in Figure 10e, however, there is no such clear E-W asymmetry seen in
the maximum depression even in the intense events. This is due to that the relative contribution
of the modulation in the central CME region to the total GCR modulation is larger in ~ 10 GV
GCRs monitored by NMs than in ~ 60 GV GCRs observed by the GMDN.

The rigidity dependence of GCR density depression can be quantitatively evaluated from the
comparison between Io(x) and IN™ (z) in Figures 10d and 10e. On an assumption of a power-law
dependence (P of the density depression on the GCR rigidity (P), the power-law index gamma
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Figure 10: Averages of the superposed spatial distributions of the solar wind parameters and
GCR density: (a) solar wind speed (Vsw), (b) magnetic field magnitude (B) and variance (%)
measured by the ACE or WIND spacecraft, (c) solar wind proton density (n,) and temperature
(T,), (d) GCR density (Ip) observed with the GMDN, (e) GCR density (I;"™) observed with
NMs, and (f) exponent (I') of the power-law rigidity spectrum of the GCR density depression,
each as a function of GSE-z in AU measured from the SSC onset at © = 0 (or ¢ = 0 in time ?)
indicated by a vertical red line. For the conversion from recorded time t to GSE-z, see the text.
Black (green) point and error in panels (a-c), each plotted on the left (right) axis, are derived
from the average and dispersion of the superposed distributions in every Ax = 0.02 AU on the
horizontal axis. In panel (f), a black point is derived from the black points in panels (d) and (e)
(see text), while an error bar is evaluated by an error propagation from errors in panels (d) and
(e). Gray and green curves in each panel display the averages of the intense events in which the
maximum density depressions in FDs derived from NM data exceed 2 %, each plotted on the left
and right vertical axes, respectively. Left panels display the E-events, while right panels display
the W-events (see Figure 6 and text). (Kozai et al., 2016)
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can be given by the ratio Io(x)/I)™(z) as

_ In (Lo(z)/I5™ (z))
In (Payvpn/Prw)

where Payvipy = 60 GV and Pyy = 10 GV are representative median rigidities of primary GCRs
observed with the GMDN and NMs, respectively. Figure 10f displays I'(z) as a function of x.
The black points in Figure 10f indicate I' derived from the black points in Figures 10d and 10e,
while the gray curve in Figure 10f shows I' derived from the gray curves in Figures 10d and
10e for intense FDs. It is seen that I' varies in a range of -1.2 < I" < -0.6 in accord with most
of the previous studies reporting ~ 1 (Lockwood, 1960; Wada & Suda, 1980; Sakakibara et al.,
1985, 1987; Morishita et al., 1990). The black points in E-events in the left panel of Figure 10f
also show a rapid decrease with increasing x during the recovery phase of the FD in x > 0.4,
implying that higher rigidity (60 GV) GCRs recover faster than lower rigidity (10 GV) GCRs.
The I' in intense E-events displayed by a gray curve in Figure 10f, on the other hand, shows no
such rapid decrease in E-events, remaining at I' ~ —0.7 up to x = 1. This is due to the faster
and stronger shocks, as indicated by gray and green curves in Figures 10a-10c, preventing even
high energy GCRs from refilling the density depleted region in FDs. The I' in W-events (black
points and a gray curve in the right panel of Figure 10f) also shows no rapid decrease, probably
due to the longer duration of the enhanced solar wind velocity as shown in the right panel of
Figure 10a, which is similar to the gray curve in the left panel. It is interesting to note that
the I' in W-events also shows a transit decrease to I' ~ —0.9 in 0.2 AU < = < 0.4 AU where
T}, in the right panel of Figure 10c decreases and the modulation in the central CME region is
observed in the right panel of Figures 10d and 10e. This implies that the modulation in the
central CME region has a softer rigidity spectrum than the modulation in the sheath region.
Due to this rigidity dependence, the density depression in the central CME region dominates
the total depression in FD in I5™(x), particularly in W-events. This is consistent with that the
E-W asymmetry of the maximum density depression due to the modulation in the sheath region
is seen only in Iy(x) by the GMDN but not in I (z) by NMs.

I(z) (60)

3.4.3 GCR density gradient in the ecliptic plane

Figure 11 shows the superposed GCR density and gradient derived from the GMDN data in the
E- and W-events, together with the solar wind parameters, in the same manner as Figure 10.
Before the SSC onset (x < 0), average G, in Figure 11d has a negative offset of ~ —1 %/AU
due to the radial density gradient in the steady state arising from the solar wind convection of
the GCR particles (cf. Parker, 1965; Munakata et al., 2014). Following the SSC onset (x > 0),
the negative G in Figure 11d shows a clear enhancement immediately behind IP-shock. This
enhancement extends ~ 0.2 AU in W-events, while it extends ~ 0.1 AU in F-events. This E-W
asymmetry of G, corresponds to the longer initial decreasing phase of the density I, (Figure
11c¢) in the W-events discussed in the previous subsection. It is shown in Appendix B that G,
in Figure 11d is consistent with the spatial derivative of Iy in Figure 11c (dly(x)/dx).

Average distribution of G, in Figure 11e shows a broad negative (westward gradient) enhance-
ment behind IP-shock in E-events while it shows a positive (eastward gradient) enhancement in
W-events. The eastward (westward) gradient on the east (west) side of the central CME implies
that the GCR density minimum is located around the longitudinal center behind IP-shock, in
accord with the center-limb effect suggested by Yoshida & Akasofu (1965). This is also confirmed
in the gray curve in Figure 11le, the superposition of the intense events in which the maximum
density depressions in FDs derived from NM data exceed 2 %.

Figure 12 shows “bubble plots” representing the spatial distribution of G, in all events. Solid
circles plotted along a vertical line represent all G, observed during an event as a function of
GSE-z on the vertical axis while the horizontal axis represents the heliographic longitude (¢)
of the location of the solar eruption associated with each event. Blue and red circles represent
negative and positive G, respectively, and the diameter of each circle is proportional to |G,|.
The shaded area represents the heliographic region (¢ < —45° and ¢ > +45°) outside the central
region on the sun, in which the CME events are excluded from the superposed epoch analysis
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Figure 11: Averages of the superposed spatial distributions: (a-c) solar wind speed (Vaw),
magnetic field magnitude (B) and variance (0%) and GCR density (I) in the same manner as
Figures 10a, 10b and 10d, and (d-f) three GSE components of the GCR density gradient (G,

Gy, G,) derived from the GMDN data. The format is the same as Figure 10. (Kozai et al., 2016)
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Figure 12: Spatial distribution of G, classified according to the value of G: (a) distribution of
positive G, and (b) negative G,. Different marks refer to different domains of G, (see right of
panel (b)). Solid circles along a vertical line display G, in an event as a function of GSE-z on
the vertical axis, while the horizontal axis represents the heliographic longitude (¢) of the solar
eruption associated with each event. (Kozai et al., 2016)

in this thesis. The enhanced Gys behind the shock front have both of the positive and negative
signs in Figure 12a showing all events, but in Figures 12b and 12¢ showing positive and negative
G, separately, the positive G, (red circles) is seen to be dominant in western (¢ > 0°) events
while negative G,, (blue circles) is dominant in eastern (¢ < 0°) events. This asymmetry results
in the enhancements with opposite signs in Figure 1le. The spatial extent of the enhancement,
on the other hand, seems to be larger in G, than in G, as seen in Figures 11d and 1le. It is
interesting to note that G, in Figure 11e shows simultaneous enhancements in 0 AU < z < 40.1
AU with opposite signs in F- and W-events, which are possibly related to the sheath structure
between IP-shock and the CME ejecta.

The north-south component of the density gradient, G, in Figure 11f also shows a positive
enhancement after the SSC onset particularly in the W-events, but this can be attributed to a
north-south asymmetry of the density depression in FDs collected in this thesis. As shown in the
next section, the S-events have a significantly deeper density depression than the N-events. This
implies that the GCR density minima propagating radially outward from the CME eruptions
on the sun were deeper when they passed the south of the earth, resulting in the positive G,
(northward gradient) enhancement in the right panel of Figure 11f. This may be the case also in
the E-events, but the number of E-events is almost two times larger in the northern hemisphere
(15 events) than in the southern hemisphere (7 events), as displayed by Figure 6a. This implies
that the GCR density minimum region propagating radially outward from the CME eruption on
the sun passed the north of the earth in most of the E-events, canceling out with the north-south
asymmetry of the density depression mentioned above. The IMF sector polarity during FDs may
also affect the GG, distribution as mentioned in subsection 3.3.2, but I have confirmed that the
IMF sector dependence have only a minor effect on the average GG, distribution in Figure 11f,
by performing the correction for the IMF sector dependence described in the next section.

3.4.4 GCR density gradient perpendicular to the ecliptic plane

Latitudinal (north-south) distribution of GCR density behind IP-shock has rarely been investi-
gated by former works. This is partly because solar eruptions are limited in low- and mid-latitude
regions on the sun (see Figres 6a and c), prohibiting reliable analyses of the latitudinal distribu-
tion from the GCR density observed at the earth’s orbit. The three-dimensional gradient vector
analyzed in this thesis, on the other hand, allows us to deduce the latitudinal density distribu-
tion as well as the distribution in the ecliptic plane. The north-south component of the density
gradient, G, is expected to be southward or negative (northward or positive) in the N-events
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Figure 13: Averages of the superposed spatial distributions of (a) Gz, (b) Gy and (c) G in the same manner
as Figure 11. The left panels display the average distributions in the away IMF sector while the right panels are
in the toward IMF sector. For the superposition in this figure, I used only the central events, as well as Figures
10 and 11. (Kozai et al., 2016)

(S-events), if the density minimum region passes north (south) of the earth, propagating radially
outward from the CME eruption in the northern (southern) hemisphere of the sun.

Tt is noted, however, that the sector polarity of the IMF (away or toward) also has to be taken
into account when we analyze G, because the drift model of the large-scale GCR transport in
the heliosphere predicts a persistent latitudinal gradient as mentioned in Section 1.2.2 which
depends on the IMF sector polarity. The drift model predicts a spatial distribution of the GCR
density having a local maximum close to the HCS in the “negative” polarity period of the solar
polar magnetic field (also referred as the A < 0 epoch) when the IMF directs toward (away from)
the sun above (below) the HCS (Kdéta & Jokipii, 1982, 1983). All SSC events before 2012 in
Table 1 are recorded in A < 0 epoch. The density distribution in A > 0 epoch (period from
2013 in Table 1) when the IMF directs away from (toward) the sun above (below) the HCS, on
the other hand, is predicted to have a minimum close to the HCS. The drift model thus predicts
positive (negative) G, in away (toward) IMF sectors regardless of A > 0 or A < 0 epoch. This
drift model prediction of G, has been actually confirmed by previous analyses of the GMDN and
NM data (Chen & Bieber, 1993; Okazaki et al., 2008; Fushishita et al., 2010a; Munakata et al.,
2014; Kozai et al., 2014).

Figure 13c displays superposed G, distributions of 45 central events in away and toward IMF
sectors. In producing this figure, IMF sector polarity is designated referring to the hourly mean
magnetic field B(t) in ACE or WIND data as described in subsection 3.3.1. The sector polarity
is defined on an hourly basis in each event, so hourly G.s in an event are separated into two
IMF sectors, in case of the sector boundaries recorded during the event. It is clear in this figure
that the average G, is positive in the away sector (left panel of Figure 13¢) while it is negative
in the toward sector (right panel), in accord with the drift model prediction described above.
Average distributions of G, and G, in Figures 13a and 13b, on the other hand, do not show such
a significant dependence on the IMF sector polarity. It is also seen that the magnitude of G, is
enhanced behind IP-shock (z > 0), i.e. the positive (negative) G, in the away (toward) sector is
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enhanced up to 3-5 times of that ahead the shock (z < 0).

To correct GG, in the N- and S-events for the sector dependence mentioned above, 1 first
calculate the average G, in each IMF sector, respectively for the N- and S-events. I then
calculate the average G,s in the N- and S-events, as

GZ(N) + GI(N)

GHT(N) = ! (61)

where G4(N) and GT(N) (GA(S) and G (S)) are average G.s in the away and toward sectors in
the N-events (S-events), respectively. Black points in the left (right) panel of Figure 14f display
the GA+T(N) (GA+T(S)) distribution with errors calculated from standard errors of GA(N) and
GT(N) (GA(S) and GT(S)) in equations (61) and (62). Figures 14a-14e show the distributions
of the solar wind speed (Vi ” ), IMF magnitude (B4+7) and variance ((¢%)4*7), GCR density
I3 and ecliptic components (GA+T, G of the density gradient, all corrected for the IMF
sector dependence in the same manner as equations (61) and (62).

It is clear in Figure 14f that the positive (northward) gradient is enhanced in the S-events.
This is qualitatively consistent with a density minimum region propagating radially outward
from the CME eruption on the sun. A negative G, enhancement in the N-events shown by
black points in the left panel of Figure 14f, on the other hand, is insignificant compared with the
positive enhancement in the S-events. Durations or magnitudes of the enhancements in the solar
wind speed (Figure 14a), IMF magnitude (Figure 14b) and GCR density depression (Figure 14c)
are clearly shorter or smaller in the N-events than in the S-events, indicating that the N-events
were weaker than the S-events. This may result in less significant negative enhancement of G,
in the N-events when compared with the positive enhancement in the S-events. In the intense
events in which the maximum density depression in FDs derived from NM data exceed 2 % (gray
curve in Figure 14f), we can see that in N-events the negative G, enhancement behind IP-shock
in 0 AU < z < 40.2 AU is larger than the black points. I note that G, in Figure 14f shows
simultaneous enhancements in 0 AU < x < +0.1 AU with opposite signs in N- and S-events,
which are possibly related to the sheath structure between IP-shock and the CME ejecta as well
as Gy in Figure 1le.

The GSE-y component of the density gradient, G, in Figure 14e shows a positive enhancement
in S-events, while the N-events are dominated by a negative G,,. This can be attributed to the
east-west asymmetry of the N- and S-event numbers. In the central region of the southern
hemisphere on the sun, 12 CMEs erupted from the western (0° < ¢ < +45°) region while 7
CMEs erupted from the eastern (—45° < ¢ < 0°) region, as seen in the event number in Figure
6a. This indicates that the CME eruptions associated with the S-events are dominated by those
on the western side on the sun, which may cause the density minimum regions passing the west
of the earth and the positive G, enhancement in the right panel of Figure 14e. CME eruptions
from the northern hemisphere on the sun, on the other hand, has a larger event number (15
events) in the eastern region than in the western region (11 events), possibly resulting in the
negative G, in the left panel of Figure 14e.
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Figure 14: Averages of the superposed spatial distributions in the (left) N-events and (right)
S-events: (a-c) solar wind speed (VS‘L\‘,GLT), magnetic field magnitude (B4*T) and variance
((0%)**T) and GCR density (13T in the same manner as Figures 10a, 10b and 10d, and
(d-f) three GSE components of the GCR density gradient (G427, GotT, G2*T). Each distribu-
tions in this figure is corrected for the IMF sector polarity dependence in Figure 13 by equations
(61) and (62) (see text). The format is the same as Figure 10. (Kozai et al., 2016)
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3.5 Summary and discussion of the GCR depression behind IP-shocks

Most of the previous studies of FDs analyze the temporal variation of a single detector counting
rate as monitoring the GCR density, or the isotropic intensity at the earth. Cosmic ray intensity
observed with a ground-based detector, however, includes contributions not only from the density,
but also from the GCR anisotropy simultaneously. Only a worldwide detector network, such as
the GMDN, allows us to observe the cosmic ray density and anisotropy separately with a sufficient
time resolution.

It has been shown in a series of papers that the GCR density gradient deduced from the
anisotropy observed with the GMDN is useful to infer the three dimensional geometry of the
cylinder-type depleted region in the MFR (Munakata et al., 2003, 2006; Kuwabara et al., 2004,
2009; Rockenbach et al., 2014). In this thesis, I present the superposition analysis of dozens of
FDs in Table 1 observed since 2006 when the full-scale GMDN started operation. I particularly
analyze the GCR density gradient deduced from the anisotropy together with the density in
FDs recorded following the IP-shocks, each caused by an identified solar eruption. By analyzing
the superposed density and gradient in FDs caused by eastern, western, northern and southern
eruptions on the sun, i.e. the -, W-, N- and S-events respectively, I deduced the average spatial
distribution of GCRs in FDs.

I found two distinct modulations of GCR density in FDs. One is in the magnetic sheath
region which extends over ~ 0.1 AU in GSE-z behind IP-shock. The density depression in the
sheath region is larger in the western flank of IP-shock than in the eastern flank, because the
stronger compressed IMF in the western flank shields more GCRs from outside as suggested by
Haurwitz et al. (1965).

The other modulation is in the central CME region behind the sheath and causes the addi-
tional density depression in x > 0.1 AU. This is attributed to an adiabatic expansion of the MFR,
formed in the central region of CME. The density minimum at the longitudinal center behind
IP-shock, which is caused by the CME ejecta or MFR, was confirmed from the negative and
positive enhancements of G in the E- and W-events, respectively. The negative and positive
G, enhancements in the N- and S-events, indicating the density minimum at the latitudinal
center behind IP-shock, are also seen when G is corrected for the asymmetry in the away and
toward IMF sectors (that is, above and below the HCS) predicted by the drift model. I also note
that the centered density minimum was seen not only in the central CME region but also in the
sheath region.

By comparing the density depressions observed with the GMDN and NMs, I confirmed that
the rigidity spectrum of the density depression is overall consistent with a soft power-law spec-
trum PU with I' ~ —0.8 as seen in Figure 10f. It was also found that the modulation in the
central CME region has a softer rigidity spectrum than the modulation in the magnetic sheath.
This may be related to a difference between GCR diffusion coefficients in the ordered magnetic
field of the MFR and in the turbulent IMF in the sheath region. The rigidity spectrum getting
softer during the recovery phase in F-events implies that the density depression recoveries faster
in ~ 60 GV GCRs than in ~ 10 GV GCRs, while such a recovery is not seen in the W-events
due to the longer duration of the solar wind speed enhancement. Previous studies (Bieber &
Evenson, 1998; Munakata et al., 2003, 2006; Kuwabara et al., 2004, 2009; Rockenbach et al.,
2014) analyzed the GMDN and NM data separately, but the combined analyses of these data
set, as presented in the present thesis, can provide us with an important information on the
rigidity dependence of GCR modulation in the space weather.

In addition to the asymmetry in the away and toward IMF sectors, GG, also shows negative
and positive enhancements behind IP-shock as shown in Figure 13. An enhanced longitudinal
component of IMF in the sheath behind IP-shock is expected to cause a latitudinal VB drift
(Sarris et al., 1989) and possibly enhance the latitudinal density gradient which changes sign in
away and toward IMF sectors as the observed G, .

Average spatial distribution of the GCR density in FD presented in this thesis demonstrate
that the observations of high energy GCR, density and anisotropy with the GMDN and NMs
provide us with good tools also for studying the space weather caused by IP-shock.
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4 Solar cycle variations of the GCR anisotropy and density
distribution

In this section, I analyze the GCR density distribution accompanying with the 11-year and 22-
year cycle variation of the solar activity, called the space climate. In addition to the GMDN
data analysis, I derive the long-term variation of the anisotropy also from data recorded by a
single multi-directional MD at Nagoya, Japan for comparison, using traditional analysis methods
described below.

4.1 Traditional analysis method
4.1.1 Harmonic analysis of the diurnal variation

As seen in equation (48), atmospheric muon intensity contains superposed contributions from
the first order anisotropy and the density of GCRs. The harmonic analysis, which is one of the
most commonly adopted traditional analysis methods, deduces only the components appear in
the diurnal variation of N; ;(t), i.e. the diurnal anisotropy (fS’EO,EE’EO), by assuming that the
GCR density Iy and the anisotropy components (5§E0,5§E0,5§E0)
longer than a day. '

The fractional deviation d; j(t) of the pressure corrected hourly muon count rate N; ;(t) at

the universal time ¢ from the 24-hours central moving average N; ;(t) is given as

vary only in a time scale

d; ;(t) = Vi g\Y) T 2V g\Y) (63)
" N ;(t)
where
1 t+11
Nij(t) =55 > Ni(t) (64)
—12

is expected to represent the contributions from the density Io(t) and the z-component anisotropy
¢GEO(t) because the diurnal variation should be averaged out to zero in N; ;(¢). I also check the
difference between the maximum and minimum values of dyiemurdo (), the fractional deviation
derived by applying equation (63) to the McMurdo NM data, in every day and exclude the day
with the difference exceeding 2.0 % from further analyses to avoid the influence of large cosmic
ray events such as the FD, in which the assumption mentioned above is invalid. I confirmed that
these excluded days include the majority of cosmic ray events reported so far (Cane et al., 1996;
Jordan et al., 2011). From d; ;(¢) in the remaining days, I obtain the monthly mean diurnal
variation D; ;(tnour) and its error as functions of the time of a day, as

1
D; j(thow) = ;kzdi,j(k§t}1our)a (65)
k
Zk {dz j(k; thour) - Dz j(thour)}2
o Di (L our = - - 66
( 7.7( h )) \/ nk(nk _ 1) ( )
where k denotes a remaining day in each month and tpoy, (hour = 1,2,---,24) denotes the

universal time of the day. nj is a number of the remaining days, k, in the month.

I derive the first order Fourier components (a; ;, b} ;) of D; j(thour) and their errors, as

24
Z Di,j(thour) < Coswthour ) ) (67)

sin withour

7N
=8
&
~
I
ENES

hour=1

(Ziw)) - > <Di,j<ﬁhour>>(cosg‘”th°” ) (68)

2
sin” wt
hour=1 hour

| €
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The universal time of a day, tnour, is related to the local solar time ¢; at the i-th station, as
Wthour - Wti - ¢2t (69)

where ¢5 is the geographic longitude of the i-th station. The Fourier components (a;J7 bgjj) in

the universal time is related to the Fourier components (a; ;,b; ;) of D; ;(t;) in the local solar
time, as
( a ) ) ( €OS Wihour ) _ ( a; ) _ ( cos(wt; — ¢5t) )
b;,j Sin Wipour b;,j sin(wti — dﬁt)
_ < aj jcos ¢ — b} sin @3 > ) < cos wt; >
- a; ; sin o3 + b ; cos o3 sin wt;

_ Qg5 . coswti
B < bi,j > ( sinwti ) <70>

The Fourier components in the solar local time and their errors are, therefore, derived as

aij _ cos ¢St —sin ¢ aj
( b ; ) o ( singst  cos g5t b, ) (71)
Plaig) | _ (coert sinlr ) (o2(a;) (72)
UQ(bi,j) - Sin2 ¢it C082 d)ft UQ(bg’j) .

From equation (48), D; ;(¢;) in the local solar time is modeled as
Dlﬁg(tz) = fSEO (cb,j cos wt; — sh’j sinwti)
+§SEO (shyj coswt; + Cii,j sinwt; )

fit
2]

fit 1 1 GEO
i\ _ [ Clij  Siiy & (74)
bﬁt - el 1 é-GEO

i, S1i,j  Cliyj y

represent model functions of the Fourier components (a; j,b; ;). It is noted that the diurnal
variation of the atmospheric temperature also contribute to the monthly mean diurnal variation
D; ;(t;) and equation (74) have to be modified by adding the temperature effect, as

fi 1 1 GEO
(s )=( S o) (Gwo )+ (5iom ) (75)
b —Slij Cliy &y b
where (a$°™, b$°™) represents the temperature effect on the diurnal variation of muon intensity

observed with the i-th detector, which is approximately common in all the directional channels
(js) (Okazaki et al., 2008).
I define the residual 7, , as

n; 2 2
X}Qlarm = EL: { (aiJ - ait]) + (bid _ big) } (76)

o2 (ai ;) a2 (bij)

= a;% coswt; + bf; sin wt; (73)

where

Jj=1

where n; is a number of directional channels in the i-th detector, which is set at ny = 17 for
Nagoya MD (i = 1). The best-fit parameters £¢5F©, fyGEO, a®™ and b§°™ in equation (75) which
minimize xZ, . are derived by solving equations,

8(X}21arm) — 8(Xl?1arnl) — 8(X1213‘I'1’Il) — 6(Xl?1arm) — O (77)
8£§EO aé'yGEO aa;;om 8b§0m '

I perform this calculation for Nagoya MD data in every month.
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4.1.2 Nagoya GG-component

The GG-component is a difference combination between intensities recorded in the north- and
south-viewing channels of Nagoya MD corresponding to 56° north and 14° south asymptotic
latitudes in free space (see Table 1 of Okazaki et al., 2008) and designed to represent the NS
anisotropy (£¢SF©) normal to the ecliptic plane free from the atmospheric temperature effect
(Nagashima et al., 1972; Mori & Nagashima, 1979). The GG-component is defined as

GG(t) = {In2(t) — Is2(t)} + {In2(t) — Ir2(t)} (78)

where Ixx(t) is the percent deviation of the pressure-corrected muon counting rate in the di-
rectional channel XX (= N2, S2, E2) of Nagoya MD from the monthly mean. Three directional
channels (N2, S2, E2) used in equation (78) have a common zenith angle (49°) of the central
viewing direction in the atmosphere, but the geomagnetic cut-off rigidities for these channels
are different depending on the azimuth angle of each viewing direction. The GG-component in
equation (78) is designed to minimize the temperature effect remaining in each of two differences
due to the difference in the cut-off rigidities. From equation (48), GG(t) is modeled as

GG(t) = £58O(1) (cf.gacoswt; — s1 g sinwt;) +
&0 (1) (s1.gg coswti + ¢f gg sinwt;) + E57° (1) o6 (79)
where
CniGG = 2Cn N2 — Cpis2 — CpiE2 (80)
ST,GG = 257T,N2 - 5777,32 - 5$E2 (81)

and c)'yx and s)'xy are the coupling coefficients calculated by equation (47) for the directional
channel XX of Nagoya MD. The term of Iy(t) is eliminated because of ¢ ;o = 0. The daily

mean NS anisotropy in space is calculated from the daily mean (@day) of GG(t), as

980 = GG /) g (82)
because the terms of the diurnal anisotropy ((5F°,¢5F0) in equation (79) should be averaged
out to zero in the daily mean if the diurnal anisotropy is constant over a day. The coupling
coeflicient C?,GG calculated from the differential coupling coefficients given by Fujimoto et al.
(1984) is listed in Table 2. I note that the median rigidity of primary GCRs recorded in the
GG-component is ~80 GV and slightly higher than ~60 GV for the entire Nagoya MD and the
GMDN, because of the inclined directional channels (N2, S2, E2) responding to relatively higher
rigidity GCRs.
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Table 2: Coupling coefficient of the Nagoya GG-component in an unit of 10%

until from until from
P, [GV] 1979 Sep. 29 1979 Sep. 30 P, [GV] 1979 Sep. 29 1979 Sep. 30
0.2E+02 -99 -101 0.7E+03 11176 10968
0.3E+02 -57 -35 0.8E+03 11323 11116
0.4E+02 688 675 0.9E+03 11437 11231
0.5E+02 1650 1591 0.1E+04 11529 11324
0.6E+4-02 2580 2485 0.2E+4-04 11949 11747
0.7E+402 3424 3301 0.3E+404 12088 11887
0.8E+02 4153 4010 0.4E+04 12159 11959
0.9E+02 4788 4629 0.5E+04 12201 12001
0.1E+03 5342 5170 0.6E+404 12229 12029
0.2E403 8409 8199 0.7E+404 12250 12050
0.3E4+03 9640 9426 0.8E+04 12265 12066
0.4E+03 10302 10090 0.9E+04 12277 12077
0.5E403 10703 10493 0.1E+05 12286 12087
0.6E4+03 10975 10765 oo 12368 12169

Coupling coefficient c? ¢ for each upper limiting rigidity P, is calculated on an assumption of the flat rigidity
spectrum, G(P) in equation (51). Differential coupling coefficients used for calculating 8(1) aq are given by Fujimoto
et al. (1984).

4.2 Solar cycle variation of the 3D anisotropy

In this section, I analyze year-by-year variations of the 3D anisotropy in a period from 1992 to
2013, after the prototype GMDN started operation as a two-hemisphere network of Nagoya and
Hobart MDs in 1992. Following Chen & Bieber (1993) who analyzed the solar cycle variation of
the 3D anisotropy for the first time using the NM data, I average the 3D anisotropy observed with
the GMDN and the NS anisotropy ¢S%© derived from the GG-component over each IMF sector
in every month designated as away (toward) if the daily polarity of the Stanford mean magnetic
field of the sun (Wilcox Solar Observatory; WSOT), shifted 5 days later for a rough correction
for the solar wind transit time between the sun and the earth, is positive (negative). In the
harmonic analysis of the Nagoya MD data, the mean diurnal variation Dg:j (thour) (D;?j(thour))
is calculated by averaging d; ;(t) over toward (away) sector in each month. The monthly mean
diurnal anisotropy in each IMF sector is then derived by equation (76). Three components

(§SEO(T/A), ESEO(T/A), SZGEO(T/A)) of the anisotropy in toward/away sector obtained from the

GMDN and Nagoya MD are first converted to components ( ;ET/A, yT/A, ZT/A) in the Geocentric

Solar Ecliptic coordinate system (GSE), as

T (83)
gt = PO Jcoss (85)

where 6 = 23.4° (cosd = 0.918) is the angle between the GSE-z axis and the GEO-z axis, i.e.
the tilt angle of the earth’s rotation axis from the normal line of the ecliptic plane.

From equation (26), the anisotropy components (i, &, £¥) in the solar wind frame is
obtained by subtracting the contribution from the solar wind convection and the Compton-
Getting effect arising from the earth’s orbital motion around the sun, as

oA = (A (24 )V e (86)
g/ = TA L (24 4)VE/c (87)
S = A (88)

where VS%A is the radial component of the solar wind velocity in the OMNI data® (King &
Papitashvili, 2005) and Vg = 30 km/s. I then calculate parallel and perpendicular components

"http://wso.stanford.edu/
8http://omniweb.gsfc.nasa.gov/
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Figure 15: Long-term variations of three components of the anisotropy vector in the solar wind frame. Panels
(a) to (c) display &) (on the left vertical axis), £, , and & as defined in equations (91) to (93), respectively, each
as a function of year on the horizontal axis. Solid and open circles in each panel represent anisotropies derived
from the GMDN and Nagoya data, respectively, while open squares in panel (a) display cos on the right vertical
axis. In each panel, yearly mean value and its error are deduced from the average and dispersion of monthly mean
values, respectively. Gray vertical stripes indicate periods when the polarity reversal of the solar polar magnetic
field (referred as A > 0 or A < 0 in the middle panel) is in progress (Kozai et al., 2014).

of the ecliptic anisotropy, as
g{/A _ f;“(T/A)bf/A + §;”<T/A)bg/‘4 (89)
A w w
gf/ = ¢ (T/A)bg/A + & (T/A)bg/A (90)

where b2/* and bg/ A are GSE components of a unit vector pointing away from the sun along the
IMF and calculated from the mean IMF in the OMNI data. Note that positive fﬁr/ 4 and {f/ A
correspond to the GCR streaming inward to the inner heliosphere parallel and perpendicular to
IMF, respectively. I finally obtain monthly mean components of the anisotropy in the solar wind

frame, as

& = (& +¢)/2 (91)
&= (+eh2 (92)
& o= (8 -¢h (93)

If the radial density gradient G, is always positive with the GCR density increasing away from
the sun, the NS anisotropy produced from B x G streaming (the fourth term of the right hand
side in equation (26)) reverses its orientation according to the sector polarity of the IMF vector
B. The definition of £, in equation (93) corresponds to the NS anisotropy () in the toward
sector on the assumption that the anisotropy vector, when averaged over one month, is symmetric
with respect to the HCS (heliospheric current sheet) and the NS anisotropy lies in an opposite
direction with the same magnitude above and below the HCS, as

¢ =-¢. (94)

Note that the positive £, corresponds to the southward GCR streaming perpendicular to the
ecliptic plane in the toward IMF sector. I perform calculations of £, §1, and £, described above
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in every month and deduce the yearly mean value and its error of each anisotropy component
from the mean and dispersion of 12 monthly values, respectively.

For the following discussions of yearly mean parameter, I also assign the polarity of the solar
polar magnetic field for each year referring to the “Solar Polar Field Strength” available at the
WSO web-site where the average polar field strength is given in every Carrington Rotation. I
assign the polarity of a year as A > 0 (A < 0) when the average polar field in the year directs
away from the sun in the northern (southern) hemisphere. I regard a year as a period of the
polarity reversal in progress when the year contains Carrington Rotations with the polar field
pointing away or toward in both hemispheres.

Figure 15 shows the temporal variations of the yearly mean ¢, £, and £, as defined in
equations (91) to (93) from top to bottom panels. Each panel shows that the temporal variations
of the anisotropy components derived from the GMDN (solid circle) and Nagoya (open circle)
data are fairly consistent with each other as far as the year to year variation is concerned. I can
see that the temporal variation of §| has two components. One is a 22-year variation resulting
in a slightly larger £ in A < 0 epoch (2001-2011) than in A > 0 epoch (1992-1998) as reported
by Chen & Bieber (1993). The other is a variation correlated with cos ), shown by open squares
in Figure 15a, where v is the IMF spiral angle derived from OMNI data (see equation (12)). &,
deduced from the GMDN (solid circles), on the other hand, shows an 11-year cycle with minima
in 1998 and 2007 around the solar activity minima, while £, shows no significant solar cycle
variation.

4.3 Solar cycle variation of modulation parameters

I derive the modulation parameters, i.e. the spatial gradients of GCR density and mean free paths
of the pitch angle scattering of GCRs in the turbulent magnetic field, from the 3D anisotropy
following the analysis method developed by Chen & Bieber (1993). The longitudinal component
of the density gradient, G, can be assumed to be G, ~ 0 as far as we discuss mean values
averaged over the solar rotation period, ~ 27 days. Based on this assumption and equation (54),
three components (£, {1, &) of the anisotropy vector derived by equations (91) to (93) are
related to the modulation parameters, as

& = NGreosy (95)
EL = ALGT» SiHT/) — RLGZ (96)
Ez = RLG’I‘ Sinw + )\J_Gz- (97)

where GG, and G, are the radial and latitudinal components of the density gradient. Note that
G, represents the latitudinal density gradient in toward sector, being positive when the GCR
density increases with increasing latitude, and changes its sign in away sector due to the assumed
symmetry (cf. equation (94)) above and below the HCS. The bidirectional latitudinal density
gradient G|;|, which is defined to be positive (negative) when the density increases away from
(toward) the HCS, is given by G, as

G|Z| = —sgn(A)GZ (98)
where A represents the polarity of the solar dipole magnetic moment and
sgn(A) = +1, for A > 0 epoch,
= —1, for A < 0 epoch.

Equations (95)-(97) include four unknown modulation parameters, A\, A1, G, and G, while we
have only three components (£, {1, &.) of the observed anisotropy. I therefore assume

)\J_/)\H =a =001 (99)

and derive three remaining parameters, \|, G and G.. Chen & Bieber (1993) and Bieber &
Chen (1991) also adopted the same constant value of « as one of representative values. From
(95), we get

G,- = f”/ (/\” COs w) . (100)
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Figure 16: Long-term variations of modulation parameters derived from the 3D anisotropy in the solar wind
frame. Each panel displays the yearly mean (a)G|,|, (b)Gr and (c))|| as a function of year. Solid and open circles
in each panel represent parameters derived from the GMDN and Nagoya data, respectively. In each panel, yearly
mean value and its error are deduced from the average and dispersion of monthly mean values. Gray vertical
stripes indicate periods when the polarity reversal of the solar polar magnetic field (referred as A > 0 or A < 0
in the bottom panel) is in progress. (Kozai et al., 2014)

Introducing this into (96), we get
G, = (afH tanw—fj_) /Rp. (101)
From (95), on the other hand, we also get

)\H = EH/ (GT COs 'l/)) . (102)

Introducing (101) and (102) into (97), we get a quadratic equation for G.,., as

RpsinyG? — .G, — ol (§L — agtanv) / (Rp cosp) =0 (103)

which has a solution for positive G,., as

G, = {fz + \/53 + 4o tan v (L — af| tanw)} /(2R sin?) . (104)

I first calculate G|, and G, from equations (101) and (104), respectively, for every month. I
then deduce the yearly mean and its error of each parameter from the mean and dispersion of
12 monthly values, respectively. I do not use equation (102) for calculating monthly mean |,
because G becomes close to zero in some months resulting in an extremely large A| and large
error of yearly mean A|. This problem occurs particularly in the analysis of NM data performed
in Section 4.5. I instead derive yearly mean A from yearly mean G, and cos® in equation (102)
and deduce the error by propagating from errors of yearly mean G, and cost. For Ry, I use
gyro-radii of 60 GV GCRs in the monthly mean IMF with the magnitude calculated from the
OMNT data.

Figure 16 displays temporal variations of modulation parameters, G|.|, G, and A obtained
from the GMDN (solid circle) and Nagoya (open circle) data from top to bottom panels. The
variations with 11-year and 22-year solar cycles are clearly seen in this figure. First, significant
11l-year variations are seen in both G and A which change in a clear anti-correlation. Second,
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G).| is positive in A > 0 epoch indicating the local minimum of the density on the HCS, while
it is negative in A < 0 epoch indicating the maximum in accord with the prediction of the drift
model by Kéta & Jokipii (1983).

4.4 Comparison between the north-south (NS) anisotropies

I now discuss about the NS anisotropy, because an accurate observation of this anisotropy is
crucial for obtaining a reliable 3D anisotropy and modulation parameters.

4.4.1 Previous works

I first briefly describe the previous works on the NS anisotropy. This anisotropy had been
derived from NM and Nagoya MD data in two different ways. Chen & Bieber (1993) derived
this anisotropy from the difference between count rates in a pair of NMs which are located
near the north and south geomagnetic poles observing intensities of GCRs arriving from the
north and south pole orientations, respectively. The NS anisotropy derived in this way is very
sensitive to the stability of operations of two independent detectors and can be easily affected
by unexpected changes of instrumental and/or environmental origins. The second method uses
the diurnal variation in the sidereal time. Due to the 23.4° inclination of earth’s rotation axis
from the ecliptic normal, the NS anisotropy normal to the ecliptic plane can be also observed as
a diurnal variation of count rate in sidereal time with the maximum phase at ~06:00 or ~18:00
local sidereal time (Swinson, 1969). A possible drawback of this method is that the expected
amplitude of the sidereal diurnal variation (~ 0.03 %) is roughly ten times smaller than that of
the solar diurnal variation (~ 0.4 %). The small signal in sidereal time can be easily influenced
by the solar diurnal anisotropy changing during a year. Another difficulty is that one can obtain
only the yearly mean anisotropy, because the influence from the solar diurnal variation, even if
it is stationary through a year, can be cancelled in sidereal time only when the diurnal variation
is averaged over at least one year. This makes it difficult to deduce a reliable error of the
yearly mean anisotropy. Mori & Nagashima (1979) proposed the third method to derive the NS
anisotropy from the GG-component of Nagoya MD, as described in detail in Section 4.1.2. The
NS anisotropy depends on the sector polarity of the IMF in a manner described by equation
(94). Based on this dependence, Laurenza et al. (2003) showed that the GG-component can be
used for inferring reliable sector polarity. By using the GMDN which is capable of observing the
NS anisotropy on an hourly basis, Okazaki et al. (2008) reported for the first time that the NS
anisotropy deduced from the GG-component is consistent with the anisotropy observed with the
GMDN for a year between March 2006 and March 2007.

4.4.2 NS anisotropies derived from Naogya GG and GMDN data

Figure 17 shows histograms of hourly (a and b) and daily (c and d) mean £5F9s observed by the
GG-component (a and ¢) and GMDN (b and d) in 2006-2013, which are classified according to
the IMF sectors designated as toward (blue histograms) if B, > B,, and away (red histograms) if
B, < By by using the GSE-z, y components (B, B,) of the IMF vector in the OMNI data. The
hourly ¢9FO observed by the GG-component is derived by applying equation (82) to the hourly
GG(t). The blue and red vertical dashed lines represent averages of the blue and red histograms,
respectively. I define “T'/A separation” following Okazaki et al. (2008) as

(T — A)/\/oroa

where T' (A) and op (04) are the average and standard errors of each histogram in the toward
(away) sector, respectively. It is noted that I used the standard errors as o (04), while Okazaki
et al. (2008) used standard deviation, resulting in larger T'/A separations than those in Okazaki
et al. (2008). Table 3 lists T'— A, \/oroa, T /A separation and “success rate” (Mori & Nagashima,
1979; Laurenza et al., 2003). The success rate is a ratio of the number of hours (days) when
the sign of the observed ¢SF© is positive (negative) in the toward (away) IMF sector to the
total number of hours (days) and is introduced as a parameter indicating to what extent we
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Figure 17: Histograms of the NS anisotropy. Each panel displays the histograms of fZGEO on hourly (a and
b) and daily (c, d, e) bases derived from the Nagoya GG-component (a and c¢), the GMDN (b and d) and NM
(Thule-McMurdo) (e) data in 2006-2013. Blue and red histograms in each panel represent distributions of €5FO
in toward and away IMF sectors, respectively, while blue and red vertical dashed lines represent averages of the
blue and red histograms, respectively. (Kozai et al., 2014)

Table 3: T — A, \/oroa, T/A separation, and success rate (Kozai et al., 2014)
Nagoya GG~ GMDN NMs

T—-A (%) daily 0.1504 0.1398 0.1090
hourly 0.1324 0.1258 -
voroa (%) daily 0.0033 0.0044 0.0062
hourly 0.0016 0.0013 -
T/A separation daily 46.2 31.5 17.8
hourly 81.2 96.6 -
success rate (%)  daily 73.5 68.7 59.6
hourly 58.2 62.0 -

Difference (T' — A) between average £5FOs in toward (T) and away (A) IMF sectors, geometric mean (,/5704)
of the standard errors of £5F0s in T and A sectors, “T'/A separation” (= (T — A)/,/a774) and “success rate”
(see text) derived from Nagoya GG-component, GMDN, and NM (Thule-McMurdo) data in 2006-2013 on daily
and hourly bases.

can infer the IMF sector polarity from the sign of the observed &,. Although I use the success
rate together with T/A separation for the following comparison, it is noted that a low success
rate doesn’t necessarily imply anything wrong in the observed £,. The IMF sector polarity
sensed by high energy GCRs should be regarded as the polarity averaged over a spatial scale
comparable to the Larmor radii of GCRs which span ~ 0.1 AU. It is natural to expect that the
IMF polarity averaged over such a large scale doesn’t always follow the single-point measurement
of the polarity by a satellite.

In Table 3, it is seen that the daily mean £$E© by the GMDN shows smaller T'/A separation
and success rate than ¢5FO deduced from the GG-component. The hourly ¢5F° by the GMDN,
on the other hand, has larger T'/A separation and success rate than the GG-component. The
hourly £€5F© by the GG-component has significantly larger dispersion in Figure 17a which reduce
the T/ A separation and success rate, partly due to the contribution from diurnal anisotropy as
expected from equation (79). The NS anisotropy by the GMDN shows similar success rate on
both daily and hourly bases, indicating that the NS anisotropy is successfully observed by the
GMDN, free from the contribution from the ecliptic anisotropy even on hourly basis.

4.4.3 NS anisotropy observed with neutron monitors (NMs)

I also examine the rigidity dependence of the NS anisotropy by analyzing NM data together with
the GG and GMDN data from 2006 to 2013. NMs have median responses to ~ 17 GV GCRs
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(Yasue et al., 1982), while the GMDN and GG-component have median responses to ~60 GV
and ~ 80 GV, respectively. Bieber & Pomerantz (1986) and Chen & Bieber (1993) defined the
NS anisotropy measured on the ground as

(105)

where fx (fs) denotes the intensity of cosmic rays measured at the northward-viewing (southward-
viewing) station. The ground-based NS anisotropy is thus derived on a daily basis from the daily
mean count rates, ny and ng, recorded by the NMs located near the north and south geographical

poles, respectively, as
5G_cmN—ns_aR—l (106)
= ann+ng aR+1

where R = nx/ng and a is a normalization constant determined by the relative efficiencies of the
north and south polar NMs. The constant a can be estimated for each month (Chen & Bieber,

1993), as
2 1
~N—_— = 107
RT+RA R (107)
where R” (R4) is the R averaged over toward (away) sectors in the month and R = (RT +R4)/2.
Inserting equation (107) to equation (106), the ground-based NS anisotropy is derived on a daily

basis, as

a

¢« R—-R AR AR _ R 1
* R+R 2R+AR 2R RT+RA 2
where AR = R — R and the terms of order (AR)? and higher are neglected.

From equation (48), on the other hand, the daily mean cosmic ray intensities fx and fs are
related to the NS anisotropy in space, £5FC | as

3 (108)

In = ndo+ fyeSH° (109)
fs chslo + g€dtO (110)

where ]k (c]g) is the coupling coefficient of the north (south) polar NM, derived from equation
(47). The terms of the diurnal anisotropy, £$%© and {S’EO, are neglected by assuming that the
anisotropy is almost constant over a day. By approximating Iy ~ 1 and inserting equations (109)
and (110) to equation (105), we obtain

£wo

[ —C +CO -9 Ay — b
gG _ ( ON OS) ( 1N 1S) 1IN éSgSEO (111)

© ey tcps) +(cn + cP5)EEFO iy + s
where [ assume |cly — | << [(cly — f)6SF0| and [efy + cls] >> |(ly + efs)€SPO, which
are valid for the north and south polar NMs. The NS anisotropy is thus derived from the
ground-based anisotropy obtained by equation (108), as
PO = el (112)

where byg is a constant calculated from coupling coefficients as

0 0

bas = M. (113)
Ay — ¢
IN ~ s

In this section, I use Thule and McMurdo NMs as the north and south polar NMs, respectively.
I also use Alert NM in Canada® as the north polar NM in the next Section, for a period in which
the Thule NM data are unavailable. The differential coupling coefficients of Thule, McMurdo,
and Alert NMs are given by Yasue et al. (1982) for both of the solar minimum and maximum
periods. Table 4 lists the constant, byg, calculated with G(P) in equation (51) for each upper

9http:/ /center.stelab.nagoya-u.ac.jp/ WDCCR/
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Table 4: Constant byg for the derivation of the NS anisotropy

Thule/McMurdo Alert/McMurdo

P, [GV]  solar min. solar max. solar min.  solar max.
0.13E+-01 1.1600 1.2000 1.0980 1.2000
0.16E+01 1.1324 1.1613 1.0791 1.1250
0.20E4-01 1.1135 1.1392 1.0697 1.1125
0.25E+-01 1.0971 1.1099 1.0581 1.0761
0.32E+401 1.0852 1.0918 1.0483 1.0554
0.40E4-01 1.0765 1.0775 1.0419 1.0447
0.50E+01 1.0680 1.0669 1.0360 1.0363
0.63E4-01 1.0623 1.0597 1.0322 1.0312
0.79E4-01 1.0569 1.0542 1.0287 1.0274
0.10E+-02 1.0520 1.0496 1.0255 1.0241
0.13E4-02 1.0488 1.0463 1.0231 1.0216
0.16E4-02 1.0472 1.0448 1.0222 1.0208
0.20E+-02 1.0468 1.0447 1.0226 1.0215
0.25E4-02 1.0472 1.0454 1.0238 1.0230
0.32E+4-02 1.0481 1.0467 1.0255 1.0251
0.40E+-02 1.0493 1.0482 1.0275 1.0273
0.50E4-02 1.0507 1.0500 1.0295 1.0298
0.63E+4-02 1.0522 1.0518 1.0314 1.0321
0.79E4-02 1.0535 1.0534 1.0331 1.0341
0.10E+03 1.0547 1.0549 1.0347 1.0359
0.13E+03 1.0557 1.0562 1.0359 1.0375
0.16E+03 1.0567 1.0574 1.0371 1.0390
0.20E4-03 1.0575 1.0584 1.0381 1.0402
0.25E+03 1.0583 1.0594 1.0390 1.0413
0.32E4-03 1.0590 1.0602 1.0398 1.0423
0.40E4-03 1.0596 1.0609 1.0406 1.0432
0.50E+03 1.0602 1.0615 1.0412 1.0439
0.63E4-03 1.0607 1.0621 1.0417 1.0446
0.79E+03 1.0611 1.0626 1.0422 1.0453
0.10E+04 1.0615 1.0631 1.0425 1.0457

00 1.0634 1.0662 1.0449 1.0494

Constant bns (see text) for each set of the NMs, Thule/McMurdo or Alert/McMurdo, in the solar
minimum and maximum periods. In this thesis, Thule NM is mainly used for the north polar NM, while
Alert NM is also used for the period in which the Thule NM data are unavailable. bns is calculated for
each upper limiting rigidity P, on an assumption of the flat rigidity spectrum, G(P) in equation (51).
Differential coupling coefficients used for calculating bys are given by Yasue et al. (1982).

limiting rigidity, P,. The constant byg used in this section is derived by averaging those for the
solar minimum and maximum periods with P, = oo, that is, averaging the second and the third
columns of the bottom row of Table 4, as

bns = (1.0634 + 1.0662)/2 = 1.0648. (114)

The T/A separation and success rate of this £FFO represents those parameters for ~17 GV
GCRs. The result of this analysis is presented in Figure 17e and Table 3. It is seen that T'— A
by NMs is smaller, i.e. the NS anisotropy is smaller than that obtained from the GMDN and
GG-component. T — A and the T/A separation are the smallest in NM data at ~17 GV and
the largest in the GG-component at ~80 GV, with the anisotropy in the GMDN at ~60 GV in
between, suggesting that the NS anisotropy increases with increasing rigidity (Yasue, 1980).
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4.5 Long-term variation over 44 years and rigidity dependence of the
modulation parameters

I confirmed in Section 4.2 that the 3D anisotropy derived by the combination of the harmonic
analysis and the GG-component of Nagoya MD is fairly consistent with that observed with the
GMDN as far as yearly mean values are concerned. Based on this, I extend in this section the
analysis period back to 1970s when only the observation with the Nagoya MD was available, and
derive the long-term variation of the 3D anisotropy and modulation parameters over 44 years
(~4 solar activity cycles). I also derive the anisotropy of ~ 17 GV GCRs during the same period,
by extending the analysis of NM data by Chen & Bieber (1993) to the most recent period. By
comparing anisotropies derived from Nagoya MD and NMs whose median rigidities differ by a
factor of about 3.5 from each other, I discuss the rigidity dependences of the anisotropy and the
modulation parameters.

4.5.1 Previous works

I briefly introduce the previous works on the rigidity dependences below. The flat rigidity
spectrum (with the upper limiting rigidity) of the diurnal anisotropy assumed in equation (51)
has been also assumed in many analyses based on the equilibrium between the inward diffusion
flow and the outward solar wind convection which is independent of the rigidity. Munakata et al.
(1997) treated the upper limiting rigidity P, as a free parameter in their analyses of the diurnal
anisotropy observed with multi-directional MDs. They found P, changing between 100 and 300
GV in a clear correlation with the solar activity (Munakata et al., 2002). Hall et al. (1997)
assumed a power-law rigidity spectrum, o< P¥, with both v and P, used as free parameters in
their analyses of the NM and MD data and reported the temporal variation of each parameter
in solar activity and solar magnetic cycles.

All these works take account of the rigidity dependence of the amplitude varying as a function
of time, but they still assume the phase of the space harmonic vector (i.e. (§SEO,§§;EO) in
equation (75)) independent of rigidity. In other words, they assumed a common rigidity spectrum
for two ecliptic components, parallel and perpendicular to the IMF. Bieber & Chen (1991), on
the other hand, also reported that the magnitude of the observed phase variation in A > 0
solar minimum increases with GCR rigidity (Agrawal, 1983). This rigidity dependent feature of
the observed phase variation cannot be reproduced properly, as long as one rigidity spectrum
common for two ecliptic components is assumed. This observed feature has been confirmed by
other papers (e.g. Oh et al., 2010), but its physical origin is still left unknown.

The rigidity spectrum of the NS anisotropy has also been studied. Yasue (1980) analyzed the
sidereal diurnal variation observed by NMs and MDs during 5 years between 1969 and 1973 and
found that observations were reproduced best by the average rigidity spectrum with v = 0.3 and
P, = 200 GV. This was the first experimental indication that the rigidity spectrum of the NS
anisotropy has a positive spectral index. Hall et al. (1994) also applied the same method to NM
and MD data observed between 1957 and 1985 and found the average spectrum with v = 0.5
and P, = 400 GV, again with a positive v. This suggests that each of two ecliptic components
may also have a spectrum with non-zero v.

In this thesis, I do not intend to determine each rigidity spectrum quantitatively by, for
instance, calculating both v and P, as free parameters in the best-fit calculation in every year.
In such best-fit calculations, we often see a significant anti-correlation between the best-fit v
and P, (Hall et al., 1994, 1997). A large P, with a small (or negative) v often returns similar
x2-value as a small P, with large (or positive) v does, increasing the systematic error of each
best-fit value. I instead examine the rigidity spectrum qualitatively based on the ratio between
parameters derived from NM and Nagoya MD data with a common assumption of the spectrum
with fixed values of v = 0 and P,, = 100 GV, respectively, as done in Chen & Bieber (1993). If the
ratio is close to one, the spectrum is consistent with the assumption. If the ratio is significantly
larger (smaller) than one, on the other hand, we can conclude that the spectrum is harder
(softer) than the assumed one. In this way, I can make a qualitative but reliable examination of
the rigidity dependence of each parameter.
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4.5.2 Data analysis

Nagoya MD data In this section, I set P, in equation (51) at P, = 100 GV. The NS anisotropy
¢GEO of 60 GV GCRs is derived from the GG-component using equation (82) with the coupling
coefficient ¢, calculated on an assumption of P, = 100 GV.

The upper limiting rigidity of the Compton-Getting anisotropy arising from the earth’s orbital
motion around the sun is infinite and much higher than 100 GV. This anisotropy is given in the

GSE coordinate system, as
&9 _ 0
(&0 )=( v (115)

where v and Vg are set at 2.7 and 30 km/s, respectively. The harmonic components of the j-th
directional channel of Nagoya MD are then given as

aCC C%QG S%CG ggG(GEO)
(e )= ( Sico otee ) Sowro (116)
j 1 1 &y

where SSG(GEO) and §5G(GEO) are the space anisotropy components in the GEO coordinate
1CG 1CG

system transformed from ¢$¢ and QEG. Coupling coefficients ¢;5> and s15* in equation (116) are
calculated from equation (47) using G(P) with P, = oo in equation (51). I subtract (aJCG, b]CG)
from the harmonics (a;, b;) in equation (71) observed with the j-th directional channel of Nagoya
MD. I then best-fit the model function (75) using equation (76) and obtain the diurnal anisotropy
in free space, (fSEO7§$EO) corrected for the Compton-Getting anisotropy.

In Section 4.2, the Compton-Getting anisotropy (ng,SSG) was subtracted from the space
harmonics (£;,&,) in equations (86) and (87), because the upper limiting rigidity (P, = 10°
GV) was commonly set for both of (£5¢,¢7%) and the space harmonics (&,,¢,) corrected for
the Compton-Getting anisotropy. In this section, on the other hand, P, is set at 100 GV only
for the anisotropy corrected for the Compton-Getting anisotropy, differently from P, = oo for
(ng,ng), and it is required to correct the Compton-Getting anisotropy (ajCG,bfG) in the
ground-based harmonics (a;,b;) observed with each directional channel (j). The difference of
the upper limiting rigidity (P, = 10> GV and 100 GV) between the former sections (4.2 to
4.4) and the present section causes differences of magnitudes of the anisotropy (£,£1,¢.) and
modulation parameters (G|.|,Gr,A|). I note, however, that the differences of the magnitudes
are time-independent and the solar cycle variation of each parameter discussed in this thesis is
not affected by the assumption of P,. Results derived with different P,s will be also shown and
discussed in Appendix C.

Figure 18 displays sample comparisons between the best-fit and the observed yearly mean
harmonic vectors for Nagoya MD in 2002 and 1976 when the solar activity were close to the
maximum and minimum, respectively. It is clear that the amplitude of the derived space har-
monic vector indicated in each panel is significantly larger in 2002 around the solar maximum
period than that in 1976 causing an “expansion” of the pattern drawn by lines connecting heads
of harmonic vectors observed by 17 directional channels. It is also clear that the phase of the
derived space harmonic vector is about 4 hours earlier in 1976 than in 2002, due to the 22-year
variation of the diurnal anisotropy.

Figure 19 displays a long-term variation of the common vector (dcom,bcom), Which is intro-
duced to represent the atmospheric temperature effect in equation (75). The mean amplitude of
the common vector is small (0.039 & 0.002 %), while the phase is almost stable around ~ 06:00
local time in an agreement with the average temperature effect reported from muon observations
(e.g. Mori et al., 1988). It is also seen in Figure 19 that the common vector shows no notable
long-term variations in correlation with the solar activity- or magnetic-cycle.
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Figure 18: Yearly mean harmonic dials of the diurnal anisotropy observed by the Nagoya MD in 1976
(left) around A > 0 solar activity minimum and in 2002 (right) around A < 0 solar activity maximum.
Solid circles display the harmonic vector (aj, b;) observed by the j-th directional channel with a; and
b; plotted on the vertical (GEO-z) and horizontal (GEO-y) axes, respectively, while open circles display
the best-fit vectors. The phases of the diurnal anisotropy with x > 0 and y = 0, x = 0 and y > 0,
z < 0and y =0, and x = 0 and y < 0 are 00:00, 06:00, 12:00, 18:00 in the local solar time, respectively.
To demonstrate the relative configuration of the observed (best-fit) harmonic vectors in 17 directional
channels, the head of each vector is connected with each other by solid (dotted) thin lines (see directional
channels indicated in the right panel). An open square with an error cross in each panel displays the
common vector representing the atmospheric temperature effect. Amplitude and phase of the best-fit
harmonic vector in free space are indicated in each panel. For reference, the cross in the bottom-right
corner in each panel represents errors of a; and b; in vertical (V) channel, deduced from the dispersion
of monthly values. (Munakata et al., 2014)
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Figure 19: Long-term variation of the common vector (a$°™, b$°™) in equation (75). Yearly mean

amplitude in % and phase (denoted by the local solar time of the maximum intensity) in hour of
the common vector are displayed in the upper and lower panels, respectively, each as a function
of year on the horizontal axis. The common vector is introduced as a free parameter representing
the atmospheric temperature effect on the diurnal anisotropy observed with the Nagoya MD (see
text). Yearly mean and error are deduced from the mean and dispersion of monthly mean values,
respectively. (Munakata et al., 2014)
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NM data I derive the diurnal anisotropy of ~ 17 GV GCRs from Swarthmore/Newark NM
datal!?. A fractional deviation from the 24-hours central moving average, dnewark(t), is calculated
from the neutron count rate using equation (63). I then obtain the monthly mean diurnal
variation (DNewark (fhour)) and the first harmonic components (aNewark, ONewark ) I the local solar
time in the same manner as Section 4.1.1. The expected harmonic components arising from the
Compton-Getting anisotropy are given as

aCG clca 51CG gCG(GEO)

Newark _ 1Newark 1Newark T ( 11 7)

bCG - _SICG chG CG(GEO)
Newark 1Newark 1Newark fy

similarly to equation (116). The first harmonic components (aNewark; ONewark) corrected for the
Compton-Getting anisotropy by subtracting (aggwark, bggwark) are related to the space harmonics

( ONewark ) — ( C%ll\fewark siNewark ) ( 590228 ) . (118)
bNewark “51Newark C1Newark Y

The coupling coefficients of Swarthmore/Newark NM, ¢\ are @0d STk owark i €quations (117)
and (118), are calculated by equation (47) with the same G(P) used in the analysis of Nagoya MD
data and the differential coupling coefficients given by Yasue et al. (1982). Equation (118) has
a different form from equation (75) by the common vector (a$o™,bs°™), because the NM count
rate is thought to be almost free from the influence of the atmospheric temperature variation.
The space harmonics at ~ 17 GV GCRs are given as

-1
gg}EO _ C%Newark S}Newark (Newark 119
GEO | = | _.1 1 b . (119)
Y S1Newark CINewark Newark

From equations (85), (93), (108), and (112), the NS anisotropy &, of ~ 17 GV GCRs is

derived as
. = bxns RT — RA
® 2cosé RT + RA’
I use Thule and McMurdo NMs for the north and south polar NMs, respectively, again. For a
period between 1976 and 1978 in which Thule NM data are unavailable, I use Alert NM data
instead of the Thule NM data. The constant bxg of Thule/McMurdo (Alert/McMurdo) NMs is
calculated by averaging those for the solar minimum and maximum periods with P, = 100 GV,

i.e. averaging the second and the third columns (the fourth and the fifth columns) of the row of
P, =100 GV in Talbe 4, as

(120)

bns = (1.0547 +1.0549)/2 = 1.0548 (121)
(bxs = (1.0347 4 1.0359)/2 = 1.0353) .

I confirmed that the anisotropy components derived from NM data in this section are consistent
with those in Chen & Bieber (1993), which analyzed the same NM data in a similar manner
during an overlapping period between 1970 and 1988 (Appendix D).

4.5.3 Anisotropy components

Figure 20 displays temporal variations of the amplitude (upper panel) and phase (lower panel)
of the yearly mean harmonic vector in free-space. The amplitude is ~ 4 % on the average while
the phase stays around 18:00 local solar time in both of the MD (solid circles) and NM (open
circles) data, in an agreement with the co-rotation anisotropy described in Section 1.1.2 which
indicates the equilibrium between the diffusion and convection flows of GCRs. It is clearly seen
that the phase in the lower panel shows a prominent 22-year variation, with minima occurring
in 1976 and 1997 around A > 0 solar minima. This phase variation is about ~ 2 hours in NM

Ohttp://neutronm.bartol.udel.edu/
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Figure 20: Diurnal anisotropy in free-space. Yearly mean amplitude in % and phase (denoted by the
local solar time of the maximum intensity) in hour of the diurnal anisotropy are displayed in the upper
and lower panels, respectively, each as a function of year on the horizontal axis. The solid and open
circles display the anisotropy obtained from Nagoya MD data at 60 GV and from NM data at 17 GV,
respectively. The diurnal anisotropy in this figure is corrected for the Compton-Getting effect arising
from the earth’s orbital motion around the sun (see text). Yearly mean and error are deduced from the
mean and dispersion of monthly mean values, respectively. The black and gray arrows above the upper
panel indicate the solar maximum and minimum years. (Munakata et al., 2014)

data, while it is almost double (~ 4 hours) in Nagoya MD data. The amplitude of the diurnal
anisotropy in the upper panel is smaller (larger) around the solar minimum (maximum) period
in both the NM and Nagoya MD data.

In order to calculate the 3D anisotropy in each IMF sector, I identify the sector polarity
(toward or away) of each day referring to the polarity of the Stanford Mean Magnetic Field of
the sun provided by the WSO, as described in Sections 4.2 and 4.3. For the period prior to
1975 when the data are not available on the WSO web-site, I identify the polarity by the OMNI
magnetic field data following the analysis by Bieber & Chen (1991). Because of serious gaps in
the OMNI data particularly in 1980’s and 1990’s, I give it up to use the OMNI IMF data for
an entire period of this analysis. By analyzing a period when both the Stanford Mean Magnetic
Field and the OMNI data are available, I confirmed that the daily sector polarities identified by
these two methods are quite consistent with each other.

The polarity of the solar polar magnetic field is also assigned in the same way as Sections 4.2

and 4.3, referring to the Solar Polar Field Strength by WSO. For a period prior to 1975 when
the WSO data are unavailable, I follow the assignment by Chen & Bieber (1993).
The anisotropy components (EGEO(T/A) fGEO(T/A), EZGEO(T/A)) in the GEO coordinate system
in each IMF sector is transformed to the GSE coordinate system by equations (83) to (85) and
corrected for the solar wind convection by equation (86). Figure 21 shows ), {1 and &, calculated
from equations (91) to (93), each as a function of year. It is seen that three components of the
anisotropy derived from Nagoya MD data (solid circles) are all positive throughout the entire
period in this figure. A clear 22-year variation seen in & in Figure 2la indicates that this
component anisotropy is responsible for the phase variation in Figure 20 as discovered in Chen
& Bieber (1993) and Bieber & Chen (1991). No such clear signature of 22-year variation is seen
in either £, or &, displayed in figures 21b and 21c.

There is a close correlation between the variation of the £ values obtained for NMs at 17 GV
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Figure 21: Three components of the anisotropy in the solar wind frame. Each panel from top to bottom
displays the yearly mean &, {1 and & in % as a function of year. Solid circles display the anisotropy
components derived from Nagoya MD data at 60 GV, while open circles show the anisotropy derived
from NM data at 17 GV. Yearly mean and error are deduced from the mean and dispersion of monthly
mean values, respectively. (Munakata et al., 2014)

and for Nagoya MD at 60 GV (open and solid circles in Figure 21a, respectively), indicating a
weak rigidity dependence of this anisotropy component. A scatter plot of & for NMs and that
for Nagoya MD on the = and y axes, respectively, yields a correlation coefficient r=0.92 and a
slope (ratio) of y/z = B =0.89+0.05, which suggests that & remains nearly constant despite
the factor of 3.5 difference between the rigidity ranges monitored by NM and Nagoya MD. On
the other hand, I find 8 =0.7740.07 for A > 0 which is significantly smaller than the value of
B =0.944-0.005 found for the A < 0 epochs, showing that the rigidity spectrum of ) is softer in
the A > 0 epochs. T also see a remarkable correlation between £, for NMs and that for Nagoya
MD with » = 0.75, while the § values turn out to be 1.65+£0.35 (1.26+0.14) in A > 0 (A < 0)
epochs, which indicates that £, increases with increasing P,,. The most significant difference
between NM and Nagoya MD data is seen in the magnitude of &, shown in Figure 21c. For this
component, I obtain 8 =4.45+0.61 (6.08+0.96) for the A > 0 (A < 0) epochs, which implies
that &, increases with increasing rigidity. The correlation between NM and Nagoya MD data
is, however, quite poor (r = 0.20) for this component. These features appearing in Figure 21
are qualitatively consistent with £, and &, increasing with rigidity. The ratios 3 for the three
anisotropy components are listed in the column of “P,=100 GV” in Table 5 in Appendix C.

I cannot derive any quantitative conclusions about the rigidity spectrum of the anisotropy
from the present analysis which assumes a priori a flat spectrum with the upper limiting rigidity
P, fixed at 100 GV. Each value of ratios (3s) described above, for instance, changes for different
value of P,. The rigidity dependences of £, £, and &, relative to each other, however, remain
unchanged even for different value of P, (see Appendix C). I will discuss the physical origin of
these rigidity dependences in the next section.
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Figure 22: Modulation parameters derived from the three dimensional anisotropy. Each panel from top to
bottom displays the yearly mean G|,|, G» and }|, each as a function of year. Solid circles display parameters
derived from Nagoya MD data at 60 GV, while open circles show parameters derived from NM data at 17 GV.
Note that the bidirectional latitudinal density gradient (G|.|) in the top panel is defined to be positive (negative)
when the spatial distribution of GCR density has a local minimum (maximum) on the HCS. G|,| and G, in the
top and middle panels are plotted on the vertical axis in linear scales, while A in the bottom panel is plotted in
a logarithmic scale. Yearly mean and error are deduced from the mean and dispersion of monthly mean values,
respectively. Because of the definition in equation (98), G| is not available in a year when the polarity reversal
is in progress. (Munakata et al., 2014)

4.5.4 Modulation parameters

For R;, for Nagoya MD and NM data, I use gyro-radii of 60 GV and 17 GV GCRs, respectively,
in the monthly mean IMF with the magnitude calculated from the OMNI data as described in
Section 4.3.

Figure 22 shows the temporal variations of the calculated modulation parameters, G|.|, G
and . Clearly seen in Figure 22a is that the bidirectional latitudinal density gradient (G|.|)
is positive (indicating the local minimum of density on the HCS) in A > 0 epoch, while it is
negative (indicating the local maximum of density on the HCS) in A < 0 epoch, in accord with
the drift model prediction (Kéta & Jokipii, 1983). There is no clear signature of an 11l-year
variation in Gi|;|. The 22-year variation of G|, appears cleaner and statistically more significant
with relatively smaller errors in Nagoya MD data than in NM data. The mean G|, derived
from Nagoya MD (NM) data is 0.424+0.05 (0.864+0.14) %/AU in A > 0, while it is -0.524+0.04
(-1.47£0.15) %/AU, indicating that the magnitude of G| is larger in A < 0 than in A > 0 in
both Nagoya MD and NM data.

The radial density gradient (G,) in Figure 22b, on the other hand, varies with ~ 11-year solar
activity cycle with maxima (minima) in solar maximum (minimum) periods (Chen & Bieber,
1993; Bieber & Chen, 1991; Bieber & Pomerantz, 1986), but there is no significant difference
seen between mean G,s in A > 0 and A < 0 epochs. The mean G, deduced from Nagoya MD
(NM) data is 0.89+0.11 (1.04+0.08) %/AU in A > 0 epoch, while it is 0.99+0.12 (1.13+0.10)
%/AU in A < 0 epoch. Tt is noted that there is a poor correlation between temporal variations
of G|;; and G, in both NM and muon data.

The parallel mean free path ()|) in Figure 22c also changes with the solar activity cycle with
minima (maxima) in solar maximum (minimum) periods. The mean \| deduced from Nagoya
MD (NM) data is 0.9040.10 (0.89+0.06) AU in A > 0, while it is 1.324+0.13 (1.14+0.10) AU in
A < 0. This indicates that the mean )\ is systematically larger in A < 0 than in A > 0 at 2 or 3
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Figure 23: Correlation plots between modulation parameters derived from NM data at 17 GV and Nagoya MD
data at 60 GV. The left, middle and right panels show correlations of G|.|, G and A||, respectively. Each panel
displays the parameter in Figure 22 derived from Nagoya MD data at 60 GV on the vertical axis as a function of
the parameter derived from NM data at 17 GV in the same year on the horizontal axis. Solid and open circles in
each panel display parameters in A > 0 and A < 0 epochs, respectively. Data points in years when the polarity
reversal is in progress are omitted in this figure. (Munakata et al., 2014)

sigma level. It is also interesting that A\js in NM and Nagoya MD data appear like persistently
increasing toward maxima in 2008 and 2009 during the last three solar activity cycles, while G.s
look like decreasing. The parallel mean free path ()\|) deduced from NM data (open circles)
shows peaks in 1985 and 2008 in A < 0 solar minimum epochs, while it shows smaller peaks
in 1974 and 1997 in A > 0 solar minimum epochs. This is qualitatively consistent with results
reported in Chen & Bieber (1993). In )| deduced from Nagoya MD data (solid circles), on the
other hand, the 11-year variation is more prominent with maxima in every solar minimum in
1976, 1987, 1997 and 2009, but no clear 22-year variation is visible in this figure. I will discuss
long-term variations of G, and A in more detail in the next subsection.

I now discuss the rigidity dependence of each modulation parameter. Figure 23 shows the
correlation between the parameters derived from NM data at 17 GV and from Nagoya MD data
at 60 GV. In A > 0 (A <0) epoch, G|.| from NM and Nagoya MD data in the left panel shows
a good correlation with 7 of 0.63 (0.86), while the average ratio (8 = y/x) of G|.| from Nagoya
MD data to that from NM data is 0.484+0.10 (0.3540.05) in A > 0 (A < 0) epoch indicating that
G 2| decreases with increasing P,,. Also similar but weaker correlations are seen in G, and )\H in
the middle and right panels with the average r of 0.53 (0.58) and 0.21 (0.54), respectively, while
Bs of G and A are 0.85+0.12 (0.87+0.13) and 1.00£0.13 (1.16+0.15), respectively, indicating
that these parameters are almost independent of P,,. Note that 3 of G|.| is significantly smaller
than 3 of G, indicating the softer rigidity dependence of G|, than that of G, when P, is fixed
at 100 GV. The ratio s derived from different P, are listed in Table 5 in Appendix C.

I finally discuss the physical origin of the rigidity dependences of anisotropy components
presented in the preceding section. As expressed in equations (95)-(97), £, and &, include
contributions from the diamagnetic drift added to the perpendicular diffusion, while § results
solely from the parallel diffusion. By using G, G|, and A\ on an assumption of A\| = a)| =
0.01Ay, I calculate individual contributions from the diffusion and drift to each of §, and &..
I find that the average diffusion contribution (A G, sinv) to £, is significantly smaller than
the average drift contribution (—R;G.) in both NM and Nagoya MD data, hence £, is mainly
arising from the drift effect. The average ratio of |\ G, siny| to | — R, G| contributing to &,
is 0.084+0.02 in NM data, while the ratio is 0.07£0.02 in Nagoya MD data indicating that the
average contribution from the diffusion to &, is less than 10 % in both NM and Nagoya MD
data independent of P,,. The average ratio of the diffusion (|A| G,|) to the drift (|R.G, sinv|)
contributing to £, is also small as 0.03+0.01 in Nagoya MD data. The ratio in NM data, on the
other hand, is 0.19+0.03 and significantly larger than the ratio in Nagoya MD data, indicating
that the relative contribution of the diffusion to £, increases with decreasing P,,. This is due to
the rigidity dependence of G|, which is softer than that of G, as discussed above. Since there
is only a poor correlation between temporal variations of G|, and G, in Figure 22, this may
explain the poor correlation between &,s by NM and Nagoya MD data which is shown in the
bottom panel of Figure 21 and discussed in the preceding section.
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Figure 24: Seasonal variations of the monthly mean NS anisotropies in 1984 (open circle), 1988
(solid circle), 2007 (open square), and 2011 (solid square), as a function of the month indicated
by the labels below the horizontal axis.

4.6 Summary and discussion of the solar cycle variation

In Sections 4.1 to 4.4, T compared the 3D anisotropy and modulation parameters (i.e. mean
free path and density gradient of GCRs) derived from the GMDN and Nagoya MD data during
1992 - 2013. By analyzing the distribution of the NS anisotropy separately in toward and away
IMF sectors, I confirmed that the hourly mean NS anisotropy by the GG-component shows a
large spread due to the local time dependent contribution from the ecliptic anisotropy. The
NS anisotropy by the GMDN, on the other hand, shows similar success rate on both daily and
hourly bases, indicating that the NS anisotropy is successfully observed by the GMDN; free from
the contribution of the ecliptic anisotropy. I also find that the NS anisotropy increases with
increasing rigidity in accord with Yasue (1980). I found three NS anisotropies observed with
NMs in ~ 17 GV, with GMDN in ~ 60 GV, and with GG-component in ~ 80 GV increasing in
this order.

I confirmed that the solar cycle variations of the 3D anisotropy and modulation parameters
derived from the GMDN and Nagoya MD data are consistent with each other as far as yearly
mean values are concerned. This fact is important particularly for the NS anisotropy derived
from the GMDN data, because the GG-component has been the only reliable reference of the
NS anisotropy in the rigidity region 50 — 100 GV. A seasonal variation of the GG-component
which indicates a contribution from the co-rotation anisotropy was also found. Figure 24 shows
monthly mean NS anisotropies in the years 1984, 1988, 2007, and 2011, around which phases of
the diurnal anisotropies are almost constant for several years at ~ 18:00 local solar time in an
agreement with the co-rotation anisotropy, as seen in the bottom panel of Figure 20. In Figure
24, the monthly mean NS anisotropy ¢SF© is calculated as

€SB0 _ (£50T) 1 (IO 13 (122)
where fSEO(T) (fZGEO(A)) is the NS anisotropy derived from the GG-component by equation (82)
and averaged over the toward (away) IMF sectors in each month. This NS anisotropy represents
the portion of the anisotropy common for both of the IMF sectors, while the NS anisotropy
derived in equation (93) represents the difference between the sectors. The coupling coefficient
c(lJ’GG in equation (82) is derived by assuming the upper limiting rigidity P, = 100 GV, i.e. given
by the row of P, = 100 GV in Table 2. We can see a seasonal variation of the NS anisotropy
with a maximum around the spring (February in 1988 and March in 1984, 2007, and 2011) and
a minimum around the fall (August in 1984, 1988, and 2007 and September in 2011). This is
roughly consistent with the GEO-z (parallel to the earth’s rotation axis) component of the co-
rotation (anti-parallel to the earth’s orbital motion, i.e. GSE-y) anisotropy, which has a positive
(northward) maximum in March and a negative (southward) maximum in September if it is
constant for a year.
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Figure 25: Long-term variation of A\ G derived from the GMDN data. Yearly mean value and
its error are deduced from the average and dispersion of monthly mean values. Gray vertical
stripes indicate periods when the polarity reversal of the solar polar magnetic field (referred as
A>0or A<O0)is in progress. (Kozai et al., 2014)

I find that the bi-directional latitudinal gradient G|.| shows a clear 22-year variation being
positive (negative) in A > 0 (A < 0) epochs indicating the local minimum (maximum) of the
GCR density on the HCS, in accord with the prediction of the drift model (Kéta & Jokipii,
1983). On the other hand, G, and A show significant 11-year variations in an anti-correlation
with each other, in accord with the force-field model represented by equation (14), i.e. the radial
convection-diffusion equilibrium without drift effect. The north-south anisotropy (&,) also shows
an 11l-year cycle variation in a positive correlation with solar activity.

The ecliptic component of the anisotropy () parallel to the IMF shows a 22-year variation
being slightly larger in A < 0 epoch (2001-2011) than in A > 0 epoch (1992-1998) as reported by
Chen & Bieber (1993). This variation of & is responsible to the well known 22-year variation of
the phase of the diurnal variation (Thambyahpillai & Elliot, 1953). I find that the variation of
§| also shows a correlation with the cos which is governed by the solar wind velocity. This is
reasonable because | is proportional to cos as given in equation (95). Figure 25 shows yearly
variation of &/ cos, i.e. \|G, by the GMDN. In this figure, the 22-year variation is seen more
clearly than in Figure 15 showing £ (Chen & Bieber, 1993). For an accurate analysis of the
solar cycle variation of the anisotropy, therefore, it is necessary to correct the observed variation
of § for variations of cos¢ and the solar wind velocity which vary without any clear 11-year or
22-year periodicities.

After confirming that the combination analysis of the diurnal variation and GG-component
of Nagoya MD provides a reliable 3D anisotropy being consistent with the GMDN observations
on yearly basis, I analyzed the long-term variations of the anisotropy and modulation parameters
over 44 years in Section 4.5 by expanding the analysis period back to 1970’s when Nagoya MD
started the operation. The solar cycle variations of the anisotropy and modulation parameters,
mentioned above, are confirmed by this analysis covering 4 solar activity cycles.

By also analyzing the data recorded during the same period by NMs (Swarthmore/Newark,
Alert/Thule and McMurdo) which have median responses to ~ 17 GV primary GCRs, I examined
the rigidity dependences of the anisotropy and modulation parameters. Figure 26 shows the
temporal variation of \|G, = £ /cost. Clearly seen is that the mean magnitude of \|G, is
significantly smaller in A > 0 (solid circles) than in A < 0 periods (open circles). The mean
magnitude of A\ G, derived from Nagoya MD data and that from and NM data in A < 0 epoch
are 1.07+0.03 and 1.1440.02, respectively, being fairly consistent with each other, while the mean
magnitudes in A > 0 periods are 0.684+0.04 % and 0.8940.05 %, respectively. I also note that
the ratio of |G, for Nagoya MD to that for NM data is smaller in A > 0 than in A < 0 periods,
indicating the softer rigidity spectrum of this component for A > 0 than for A < 0. This larger
decrease of \|| G in A > 0 epoch in Nagoya MD data than in NM data is responsible to the larger
phase shift of the diurnal anisotropy in A > 0 solar minimum epoch in Nagoya MD data. The
harder rigidity spectrum of £; than that of { mentioned previously is also partly responsible to
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Figure 26: Temporal variation of |G and the correlation between G, and \|. Upper two panels
display yearly mean A\ G, calculated from &)/ cos ), each as a function of year. Top panel shows
A| G deduced from Nagoya MD data, while middle panel shows A\ G, deduced from NM data.
Yearly mean values in A > 0 (A < 0) epoch are displayed by solid (open) circles, each with an
error deduced from the dispersion of monthly values in each year. Data points in years when
the polarity reversal is in progress are omitted in this figure. Bottom two panels are scatter
plots between G, and )| in logarithmic scales derived from Nagoya MD data (left) and NM data
(right). In each panel, yearly mean G, on the vertical (y) axis is plotted as a function of A
on the horizontal (x) axis. Solid and dashed straight lines display the functions y = ¢/z with a
constant parameter ¢ best-fit to data in A > 0 and A < 0 epochs, respectively. (Munakata et
al., 2014)
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the larger phase shift in Nagoya MD data in A > 0 minimum epochs. Hall et al. (1997) used
the NM and Nagoya MD data for analyzing the rigidity spectrum of the diurnal anisotropy and
obtained the average G(P) proportional to P~%1#92 with P, = 100 + 25 GV. Although their
spectrum seems to be consistent with G(P) assumed in this thesis, such a common spectrum for
§ and £, cannot reproduce the observed feature that the phase shift observed by Nagoya MD
in A > 0 solar minimum epoch is significantly larger than that by NM.

The average ratio between §|s in Nagoya MD and that in NM data is roughly consistent with a
rigidity independent spectrum, while the rigidity spectrum of £ is systematically softer in A > 0
than in A < 0. On the other hand, £, and &, derived from Nagoya MD data are significantly
larger than those from NM data, indicating that these components increase with P,,. According
to equations (95)-(97), £, and &, include contributions from the diamagnetic drift added to
perpendicular diffusion, while §; is caused by the parallel diffusion alone. It is reasonable,
therefore, to expect that the observed harder rigidity spectra of £, and &, are due to effects
from the drift. Based on numerical simulations of particle propagation in turbulent magnetic
field, Minnie et al. (2007) has shown that drifts are suppressed by magnetic turbulence, but the
suppression sets in at lower turbulence amplitudes for low-energy than for high-energy cosmic
rays. This may give a possible explanation for why the contribution of drift streaming results in a
harder rigidity spectrum. If this is the case, we may well need two different spectra, representing
diffusion and drift, combined in &, and &, to reproduce the correct rigidity dependence of the
diurnal anisotropy in space.

Equations (95)-(97) also imply that the drift contribution to £, is proportional to G|, while
the drift contribution to £, is proportional to G,. By comparing G, and G|, derived from NM
and Nagoya MD data, I find that the rigidity dependences of G, and £, are harder than those
of G| and &, (Yasue, 1980; Hall et al., 1994).

The 11-year variation is evident in the radial density gradient (G,) in Figure 22, while we
cannot identify a clear 22-year variation which should make the 22-year variation of A\ G, in
the drift model prediction (Levy, 1976; Erdos & Koéta, 1980; Kéta & Jokipii, 1983; Potgieter &
Moraal, 1985). The mean G, deduced from Nagoya MD (NM) data is 0.89+0.11 (1.04£0.08)
%/AU in A > 0 epoch, while it is 0.9940.12 (1.13+0.10) %/AU in A < 0 epoch. The mean
parallel mean free path ()|), on the other hand, turns out to be significantly larger in the
A < 0 than in the A > 0 epochs, in the both Nagoya MD and NM data. I find that the mean
A| deduced from Nagoya MD (NM) data is 0.9040.10 (0.89£0.06) AU in A > 0, while it is
1.3240.13 (1.14£0.10) AU in A < 0. Chen & Bieber (1993) suggested that the 22-year variation
of \|| is responsible for the reduction of |G, in A > 0 and for the 22-year variation of the diurnal
anisotropy. The two bottom panels of Figure 26 show the correlation between G, and A (both
in logarithmic scale) on the vertical (y) and horizontal (x) axes, respectively. Since A on the
r-axis is deduced from )G, divided by G, on the y-axis, data points in this scatter plot align
on a straight line when A\ G, is constant during the analysis period. Solid and dashed straight
lines in each panel display functions of y = ¢/x best-fitting to data in A > 0 and A < 0 epochs,
respectively, each with the intercept ¢ as a best-fit parameter. It is seen that, for the Nagoya
MD data (left panel) the best-fit ¢ for A > 0 data (solid circles) is about 64 % of that for the
A < 0 data (open circles). This is consistent with the lower A value derived from Nagoya MD
data for A > 0 epochs which is 68 % (=0.90/1.32) of that in A < 0 epoch, indicating that the
22-year variation of |G in the left panel is due to the 22-year variation of A on the horizontal
axis.

However, I also find in Figure 22 that \js (G,s) from NM and Nagoya MD data appear
to persistently increase (decrease) during the last three solar activity cycles reaching maximum
(minimum) in 2008-2009. Figure 27 displays the mean G, and A in A > 0 and A < 0 epochs,
each as a functions of time. It is clear particularly in the Nagoya MD data (left panels) that
there are long-term trends indicated by a best-fit solid line in each panel. The solar magnetic
field was unusually weak around this last solar minimum (2009), which resulted in the weakest
magnetic field (McComas et al., 2008) and a record-high GCR flux (Mewaldt et al., 2010). The
larger A (smaller G,.) in the last solar minimum is likely the result of the weaker solar minimum.
This trend enhances the difference between A > 0 and A < 0 means of \|, while it reduces the
difference between means of G- as seen in Figure 27. The simple means of G, or A in all A >0
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4 SOLAR CYCLE VARIATIONS OF THE GCR ANISOTROPY AND DENSITY
DISTRIBUTION
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Figure 27: Long-term trends of mean G and A\ in each solar magnetic polarity epoch. Left
(right) two panels display means derived from Nagoya MD (NM) data. Means in A > 0 and
A < 0 epochs are plotted by solid and open circles, respectively, at the central year of each
epoch. The vertical error is deduced from the dispersion of yearly means in each epoch, while
the horizontal bar indicates the period included in each epoch. Solid straight line in each panel
displays the linear long-term trend best-fit to four data points. (Munakata et al., 2014)

and A < 0 epochs are, therefore, seriously biased by these long term trends. If we look at the
deviation of each data point from the solid line in the Nagoya MD data, we find that G, and A
are both larger (smaller) in A < 0 (A > 0) epoch, although only at one sigma level.

The dynamic range of A (or G.) due to the 11-year variation in the lower panels of Figure 26
is close to an order of magnitude and much larger than the 22-year variation. Small signature of
its 22-year variation can be easily masked by the 11-year variation with much larger amplitude.
Also simple means of \| and G, in A > 0 and A < 0 epochs may be seriously biased by their
long term trends as seen above.
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5 SUMMARY AND CONCLUSIONS

5 Summary and conclusions

The traditional analyses of single MD or NM data described in Secion 4.1 provide the GCR
anisotropy separately from the isotropic intensity (or GCR density) only on a daily or longer
time basis, by assuming the GCR density and anisotropy almost constant over a day. Only a
worldwide detector network allows us to separately observe the GCR density and anisotropy on
a shorter time basis. In this thesis, I analyzed hourly variations of the GCR density distribution
by analyzing the Global Muon Detector Network (GMDN) data.

The high temporal resolution of the three-dimensional (3D) anisotropy observed with the
GMDN allows us to infer the spatial structure of the GCR depleted region formed behind the
interplanetary shock (IP-shock) which causes a short-term density decrease (called Forbush De-
creases; FDs) on its arrival at the earth. By analyzing FDs following the IP-shocks generated by
the solar eruptions (such as coronal mass ejections; CMEs) from various heliographic locations
on the sun, I derived the 3D average distribution of GCRs in the depleted region for the first
time. An east-west asymmetric distribution, which has been predicted by a magnetic configura-
tion model of the shock, was confirmed with the observed density gradient suggesting a density
minimum in an expanding CME propagating radially outward from the eruption location on the
sun. The FDs observed simultaneously by the neutron monitors (NMs) and the GMDN, which
are sensitive to ~ 10 GV and ~ 60 GV GCRs, respectively, showed a soft rigidity spectrum of
the FD.

I also analyzed year-to-year variations of the 3D anisotropy using the GMDN for the first
time. In former works analyzing a single detector or a pair of detectors data in a traditional way,
diurnal and NS anisotropies were derived on a daily basis from separate analyses. The GMDN,
on the other hand, provides us with the anisotropy in three dimensions from a single analysis on
an hourly basis. I confirmed that the NS anisotropy is more accurately derived from the analysis
of the GMDN data than from the traditional analyses, while results obtained from two analyses
are fairly consistent with each other as far as the yearly mean value is concerned.

The first order anisotropy observed with the GMDN from 1992 to 2013 shows a variation
in a correlation with the solar activities. I found that the anisotropy component parallel to the
IMF in the ecliptic plane shows a 22-year cycle variation which is responsible to the well-known
22-year variation of the phase of the diurnal anisotropy. The north-south density gradient normal
to the ecliptic plane indicates a local density maximum on the heliospheric current sheet (HCS)
in A < 0 epoch while it indicates a local minimum along the HCS in A > 0 epoch, in agreement
with the drift model prediction. The radial density gradient, on the other hand, does not show a
clear 22-year variation predicted by the drift model, while it shows a significant 11-year variation.
The parallel mean free path of the pitch angle scattering of GCRs also shows a significant 11-year
variation out of phase with the radial gradient, in accord with the force-field model of the GCR
modulation based on the equilibrium between the radial diffusion and solar wind convection
without drift effect. The mean free path has an average magnitude of ~ 1 AU for ~ 60 GV
GCRs which is also comparable to the numerical simulation of the pitch angle scattering.

In addition to the GMDN data, I also analyzed GCR anisotropies observed with a single
MD at Nagoya and NMs over 44 years from early 1970’s to 2013. The 3D anisotropy is derived
from the observed diurnal anisotropy combined with the NS anisotropy deduced from the GG-
component. From the long-term variation over 4 solar activity cycles, I found a small 22-year
variation of the radial gradient, which is masked by a larger 11-year variation and by a persistent
long-term trend over the last several solar cycles. It was also found that the anisotropy parallel
to the IMF| i.e. the parallel diffusion streaming of GCRs, has a flat rigidity spectrum, while the
perpendicular anisotropy mainly arising from the drift streaming has a harder spectrum.
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Appendix
A GMDN data analysis

The term of I(t) in equation (48) is approximately rewritten by including the rigidity dependence
(Kuwabara, 2005), as
Pri,j

—= 123
Pml,l ( )

Io(t)el ; = L™ (8) + I (1)
where I§?™(t) is the rigidity-independent portion of the density and I{(¢) represents the rigidity
dependence. P,,; ; is the median primary rigidity of the j-th directional channel of the 4-th
detector, defined by equation (38), while P11 denotes that of the vertical channel (j = 1) of
Nagoya MD (i = 1). I write down I§?™(¢) as depending on the station, i, because it possibly
includes a contribution from the atmospheric temperature variation, which is approximately
common for all the directional channels (js) of the i-th detector (Appendix B of Okazaki et al.,
2008). The coupling coefficient col is omitted because of CO = 1 for the upper limiting rigidity
set at P, = 10° GV. The model functlon (48) of fractional deviation of the pressure corrected
muon count rate is rewritten as

3 sz .
Ii{jt(t) =I5 () + 15 (¢ )P 1j1 + £GEO (1) (01” coswt; s%” smwti) +

mi,

£GEO( t) (sh jcoswt; + ch jsinwt; ) §GEO( )ch g (124)

A.1 V-subtraction method

This analysis method deriving a “day-by-day” variation of the anisotropy was first developed by
Okazaki et al. (2008). In order to correct the temperature effect, I subtract a fractional deviation
(I;,1) of the vertical channel count rate from that (I; ;) of the j-th directional channel in each

detector, i, as
AL () =1 ;(t) — L1 (¢). (125)

The model function of A ;(t) is given as

Alz;t(t) = I (t)Pij + §SEO(t) (Ac%i’j coswt; — Ash’j s1nwti) +

ml,1
fg’EO(t) (As%i’j cos wt; + Ac%i’j sinwti) + §zGEO(t)Ac(1Ji’j (126)
where
AIgfni,j = Pmi,j - Pmi.,l; (127)
ACZLM = CZLM - cmﬂ, (128)
ASZLM = snm” — snmi,l. (129)

I define the residual x%, as
4 n; ( AIth)
130
z:: Z 02 (AL ;) (130)

where n; is a number of directional channels in the i-th detector and
Jz(AIL]‘) :O'Q(ILJ')‘FO'Q(IZ'J). (131)

From equation (48), the statistical error o(I; ;) is derived from the muon count rate N; ; of the
j-th directional channel of the i-th detector, as

L~ (132)
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The best-fit parameters, I, , and , which minimize the residual x% are derived

on an hourly basis by solving equations,
oxy) _ o0%) _ 00x%) _ 9x%)

0I;  DEGFO ~ 9gGEO ~ peGEO 0. (133)

E E
50, €510

This analysis method, V-subtraction method, has a drawback that the obtained anisotropy has
a large statistical error due to the subtraction of count rates in equation (125), as represented by
equation (131), insufficiently for deriving an accurate anisotropy on an hourly basis. I therefore
extract only the “day-by-day” variations by taking 24 hours trailing moving averages of the
obtained parameters, as

t

— 1 -
It = 5 > L), (134)
T=t—23
¢GEO (1) — GEO
£S50(1) 247223@“ (135)

A.2 Normalization method

This analysis method was first developed by Kuwabara et al. (2004) and Okazaki et al. (2008)
added some modifications by combining the V-subtraction analysis. I normalize the fractional
deviation (I; ;(t)) of muon count rate to the 24 hours trailing moving average of the vertical
channel count rate in Nagoya MD, I 1(¢), as

L (t)

ml}_j (t) (136)

Iy =

where

—i > L (137)

T=t—23

For the hours when the Nagoya MD data is unavailable, I use the 24 hours moving average 1 3(1)
of the vertical channel of Sao Martinho da Serra MD (i = 3), instead of Iy 1(¢). The best-fit
function (124) for I}'}"(¢) is written by replacing I§;™ (¢) with I§°™(¢) common for all detectors,
as

nor P’I’TLZ .
I (ﬁt)(t) = I§o™(t) + I (¢ )P J 4 ¢GEO (1) (ch ; coswt; s%i’j sinwt;) +
ml,1

§GEO( t) (sh j coswt; + cli jsinwt; ) + §GEO(t)ch g (138)

because the contribution I§?™(¢) from the day-by-day temperature variation in each station (i) is
normalized to that of Nagoya or Sao Martinho da Serra station. It is noted that the contribution
from the hourly temperature variation is assumed to be negligible, and the contributions from
day-by-day variations of the density and NS anisotropy (Io(t) and £SFO(t)) are also eliminated
by this normalization. I define the residual x2_, as

4 n; (Inor _ I‘nc‘)r(ﬁt))Z

Koo = 2 o
nor ~ 0—2(11,0,)

(139)

The best-fit parameters, IS, 15, ¢GFO §5’EO, and ¢SFO | which minimize the residual x2,, are
derived on an hourly basis by solving equations,
B(Xﬁor) a(XI'QlOr) a(XIQlOI') 8(X1210r) a(Xﬁor)

Icom - oIy ~ DEGEO T DEGEO ~ DEGEO =0. (140)
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I extract only the “high-frequency” variation of each parameter by removing 24 hours trailing
moving average from the obtained parameter, as

S = L -—= 3 1), (141)

24 T=t—23
t
1
0y = &2 -5 >0 &R0, (142)
T=t—23

A.3 Derivation of GCR anisotropy and density

A combination analysis of the V-subtraction method and the normalization method (Okazaki et
al., 2008) allows us to deduce properly the hourly variations of the rigidity dependent density I} (¢)
and the anisotropy £€5F9(t), by combining the “high-frequency” variations derived by equations
(141) and (142) with the “day-by-day” variations derived by equations (134) and (135), as

Iy (t) Ig(t) + 0I5 (t), (143)
SEOM) = ESEO(t) + 66TV 0(1). (144)

The hourly variation of the density, Io(t), cannot be deduced from this analysis method because
the rigidity-independent portion of the density, that is, the first term of the right hand side in
equation (123), is eliminated in the best-fit function (126) in the V-subtraction analysis.

I introduce a new analysis method, therefore, to deduce the density variation Io(t). The
fractional deviation I; ;(¢) of the muon count rate is subtracted by the contributions from I§(t)
and £9FO () obtained in the combination analysis, as

Pmi,' .
L5 (t) = 1 j(t) — {Ig(t)Pljl +£570() (c1;j coswt; — sy, sinwt;) +
fyGEO(t) (sh,j coswt; + C%i,j sinwt;) + §SEO(t)cgi7j}. (145)

From equation (124), this represents the rigidity-independent portion of the density, I5?™ (¢), con-
taining the atmospheric temperature effect in the i-th station. I derive the rigidity-independent
portion of the density, I§>™(t), free from the temperature variation by taking a weighted average,

4 n;
LS IO
ISom _ Zl—l ZJ_I 3J71,g (146)

4 v
>ic1 Z?; Wi, j

where w; j = 1/02(1; ;). The temperature effect on I§™ is simply assumed to be almost averaged
out in this average over all stations of the GMDN. A density variation of the GCRs with rigidity
P = P,1,1 ~ 60 GV is derived as

Io(t) = I§™ (1) + I3 (1): (147)

By using the Global Forecast System (GFS) model'! for the vertical distribution of high alti-
tude atmospheric temperature, one year GMDN data in 2009 was corrected for the temperature
effect on an hourly basis (Dr. V. Yanke, private communication). Figure 28 displays a histogram
of the difference between the densities (panel (a)) or the anisotropy components (panels (b) to
(d)) before and after the correction, that is,

ACSED = €250 - ¢9Bo0R 149

where I§FS ( S ES(GFS)) denotes the GCR density (anisotropy components) derived from the

fractional deviation (I; ;(¢)) from each monthly average of the muon count rate corrected for the

http:/ /www.emc.ncep.noaa.gov
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Figure 28: Histograms of the differences (Aly and AEGEQ) between (a) the densities (Ip and I§7S) and (b-d)

z,Y,z

the anisotropy components (£z,y,. and {Sgg(GFS>) derived from the GMDN data (I; ;(t)s) in 2009 before and
after the correction for the atmospheric temperature effect using the GFS model.
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Figure 29: A histogram of the difference (AI) between fractional deviations of the densities (Ip and I§"S)
from the averages over each 5-days period in 2009.

atmospheric temperature by using the GFS model. Averages and deviations of the histograms
are also indicated in this figure. All the histograms in Figure 28 show Gaussian-like distributions,
with averages at 0.00 %, indicating that the atmospheric temperature effect should be almost
averaged out to zero and contained in standard errors of the superposed density and density
gradient distributions in Section 3. This should be also the case for the long-term analysis of the
GMDN in Section 4. Figure 29 displays a histogram of the difference (Aly) between fractional
deviations of the densities (I and I(?FS) from the averages over each 5-days period in 2009, for
a comparison with the superposition analysis in Section 3 in which I also take the fractional
deviation of the density from the 5-days average.

I derive Io(t) and £SFQ(¢) from I; j(t) uncorrected for the temperature effect in this thesis,
while another reliable correction analysis of I; ;(t) using the vertical distribution model of the
atmospheric temperature is also under development.
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Figure 30: GSE-z component of the density gradient in (left) E- and (right) W- events inferred
from the density distributions observed with the GMDN. Black points in panels (a) and (b)
represent the gradient calculated with Az = 0.02 AU, while a blue curve in panel (b) is the
gradient with Az = 0.1 AU (see text). A green point in panel (a) is the density gradient inferred
from the density distributions observed with NMs, calculated with Az = 0.02 AU. Red pints in
panel (b) is the same as the black points in Figure 11d, an average of the superposed gradient
derived from the anisotropy.

B GCR density gradient inferred from the temporal vari-
ation of GCR density

In section 3, I discussed a structure of the GCR depleted region behind IP-shock using the
density gradient derived from the first order anisotropy, for the first time. It is thus important to
confirm the consistency between the gradient and the density which has been analyzed by most
of the former works. In this Appendix, I infer the GSE-x component of the density gradient,
G, from the observed temporal variation of the density and compare it with G, derived from
the anisotropy.

I calculate the density gradient Aly(z)/Ax from the superposed Ip(x) shown by black points

in Figure 10d, as
Az 2Ax

where Az is set at Ax = 0.02 AU as an ad hoc choice. Black points in Figures 30a and 30b
display Aly(x)/Ax derived from I(z) observed with the GMDN, while green points in Figure
30a show AIJ™(x)/Ax, the density gradient inferred from the density distribution (I;™(x))
observed with NMs, which is displayed by black points in Figure 10e. It is seen that Aly(x)/Ax
and AINM(x)/Az are in a good agreement with similar negative enhancements in similar GSE-
z range (0 AU < & < +0.2 AU). The magnitude of the enhancement is three times larger in

AIM(z)/Az than in Aly(z)/Az.
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Red points in Figure 30b are the GSE-2z component (G,) of the density gradient derived from
the anisotropy, same as black points in Figure 11d. We cannot confirm a consistency between
Aly(z)/Az and G, in Figure 30b due to the large fluctuation of Aly(xz)/Ax, but a negative
enhancement of Alp(z)/Az in 0 AU < 2z < 40.2 AU seems to be roughly comparable with G,.

It is noted that the density gradient, or the anisotropy, should be regarded as reflecting a
global spatial structure over ~ 0.1 AU comparable to the Larmor radius (~ 0.2 AU) of ~ 60 GV
GCRs in the IMF of B = 7 nT. I change, therefore, the spatial interval Az in equation (150)
to Az = 0.1 AU. A blue curve in Figure 30b represents Aly(z)/Ax derived from equation (150)
with Az = 0.1 AU. Magnitude of the negative enhancement in the blue curve is fairly consistent
with G (black points), indicating that the density gradient derived from the anisotropy reflects
a global structure over a spatial scale comparable to the Larmor radius. We also see some differ-
ences between Alp(z)/Az and G, e.g. Aly(x)/Ax (blue curve) shows a negative enhancement
starting before the SSC onset (z < 0 AU), but this is obviously an artificial effect of the central
derivative with a large Az in equation (150). G, deduced from the anisotropy (red points), on
the other hand, shows the enhancement immediately after the SSC onset.

It is also noted that the red points show a negative off-set of ~ —1 %/AU which is not seen
in the black points and blue curves derived from the density variation. This indicates the radial
density gradient expected from the equilibrium between the radial diffusion and the solar wind
convection (see Section 1.1.1), which appears in the first-order anisotropy while does not appear
in the density variation.
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Figure 31: Three components of the free-space anisotropy derived from Nagoya MD data by
assuming P, =100, 200, 300 GV. Solid black, solid gray and open circles represent the components
obtained with P, =100, 200, 300 GV, respectively. (Munakata et al., 2014)

C Dependence on the upper limiting rigidity

In this section, I show how 8 (the ratio between anisotropies and modulation parameters derived
from NM and Nagoya MD data; see Section 4.5) depends on the upper limiting rigidity (P,)
assumed and that our major conclusions on the rigidity dependence derived from S are not
affected by changing P,. Figures 31 and 32 display anisotropy components derived from Nagoya
MD and NM data, respectively, with three different P,s. I choose this range of P, between 100
and 300 GV referring to the solar cycle variation of P, reported in Munakata et al. (1997). As
seen in Figure 32, the anisotropy derived from NM data is almost insensitive to changing P, as
pointed by Bieber & Chen (1991), while the anisotropy derived from Nagoya MD data changes
significantly. The increase of P, with the same spectral index (v) results in the reduction of the
amplitude of the free space anisotropy due to the correlation between these parameters. The
increase of P, also results in the phase of the diurnal anisotropy in free space shifting to earlier
hours, due to the reduced average deflection of GCR orbits in the geomagnetic field. Features of
anisotropy components in Figure 31 changing with P, are interpreted in terms of these natures
of the free space anisotropy. Table 5 lists average (3 for three Ps. Firstly, the average ¢, close
to (or slightly smaller than) one for all P,s indicate £ being similar in NM and Nagoya MD
data, while it is significantly smaller in A > 0 than in A < 0 for each P,. Secondly, the average
B¢, and B¢, are both significantly larger than one indicating harder rigidity spectra of £, and
§. than that of . The average ¢, is always larger than the average (¢ . Third, the average
Ba,., and Bg, are significantly smaller than one for all Pys.
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Figure 32: Three components of free-space anisotropy derived from NM data by assuming P, =100,
200, 300 GV. Solid black, solid gray and open circles represent the components for P, =100, 200, 300
GV, respectively. (Munakata et al., 2014)

Table 5: Average (8 values obtained with three different P,s in equation (51). (Munakata et al.,
2014)

polarity P, = 100GV P, =200GV P, = 300GV
A>0 0.774+0.07 0.7440.06 0.75+0.06
Be, A<O 0.94+0.05 0.8440.04 0.82+0.04
average 0.89+0.05 0.81+0.04 0.79+0.04
A>0 1.65+0.35 2.2440.34 2.36+0.33
Be ., A<O 1.26+0.14 1.59+0.14 1.70£0.14
average 1.35+0.14 1.80+0.13 1.93+0.13
A>0 4.45+0.61 2.814+0.39 2.4540.34
Be. A<O 6.08+0.96 3.8240.61 3.3240.53
average 5.2240.55 3.2940.35 2.86+0.31
A>0 0.48+0.10 0.6840.09 0.72+0.09
Ba,., A<O 0.35£0.05 0.46+0.05 0.49+0.06
average 0.39£0.05 0.53£0.05 0.57£0.05
A>0 0.8540.12 0.5640.08 0.50+0.07
Ba, A<O 0.87£0.13 0.5840.09 0.52+0.08
average 0.86+0.08 0.57+0.05 0.51+0.05
A>0 1.00+£0.13 1.4440.18 1.6240.20
B, A<O 1.16+0.15 1.53+0.19 1.65+0.21
average 1.084+0.09 1.47+0.12 1.61+0.13

The B value is the ratio of the parameter derived from Nagoya MD data at 60 GV to that derived from
NM data at 17 GV (see text). Average § values in A > 0 and A < 0 epochs and in the total period
consisting of all A > 0 and A < 0 epochs are listed. Average value and error are deduced from the
average and dispersion of yearly mean values.
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Figure 33: (a) Amplitude and (b) phase of the diurnal anisotropy and (c) the NS anisotropy,
each derived from NM data. Red squares display yearly means of the monthly diurnal and NS
anisotropies derived by equations (119) and (120) in Section 4.5, respectively, i.e. the same as
open circles in Figures 20 and 21c. A green point in the panel (c) represents an yearly mean of
the NS anisotropy derived in Section 4.4.3. Daily mean NS anisotropy derived by equation (108)
in Section 4.4.3 is averaged over each IMF sectors in every month and I calculated £, in equation
(93) and its yearly means shown by the green points. The anisotropy components listed by table
2 of Chen & Bieber (1993) are also plotted with black points.

D Comparison of the anisotropy components derived from
NM data

In Section 4.5, I deduced the diurnal and NS anisotropies from NM data every month and
obtained yearly means of them, in the same manner as Chen & Bieber (1993). I also deduced
the NS anisotropy on a daily basis in Section 4.4.3. This analysis using equation (108) is based
on the analysis method of Chen & Bieber (1993), while they derived only the 27-days or yearly
averages of the NS anisotropy and this analysis method deriving the daily NS anisotropy was
performed for the first time by this thesis. In this section, I compare the diurnal and NS
anisotropies derived in this thesis with those derived by Chen & Bieber (1993), which are listed
in table 2 of the paper.

Red squares display yearly means of the monthly diurnal and NS anisotropies derived by
equations (119) and (120) in Section 4.5, respectively, i.e. the same as open circles in Figures 20
and 21c. The period displayed by red squares is expanded to 1960’s from which the NM data are
available in the web page of Bartol Research Institute'?. The black points display those derived
by Chen & Bieber (1993). In the panels (a) and (b), we can see that the amplitude and phase are
slightly larger and later, respectively, in the red squares than in the black points. Major part of

Zhttp:/ /neutronm.bartol.udel.edu/
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this difference is assigned to a contribution from the Compton-Getting anisotropy arising from the
earth’s orbital motion around the sun. I derived the diurnal anisotropy in free space, red squares
in Figures 33a and 33b, by equation (119) in which the harmonics (aNewarks ONewark) measured
on the ground has already been corrected for the Compton-Getting anisotropy by subtracting
(aK8 s DS ) derived in equation (117). The black points in Figure 33 derived by Chen
& Bieber (1993) are, on the other hand, not corrected for the Compton-Getting anisotropy.
They subtracted the Compton-Getting anisotropy after deriving the free space harmonics. The
correction for the Compton-Getting anisotropy shifts the uncorrected diurnal anisotropy toward
the direction of 18:00 local solar time with a magnitude of ~ 0.05 %, causing an enlargement and
a delay of the amplitude and the phase, respectively, when the uncorrected diurnal anisotropy
points the phase between 12:00 and 18:00 local solar time, in agreement with the difference
between the red squares and the black points in Figures 33a and 33b.

In Figure 33c displaying the yearly mean NS anisotropy defined by equation (93), most of
the red squares derived in Section 4.5 are consistent with black points derived by Chen & Bieber
(1993) within the error bars, which are calculated from the dispersions of the monthly (or 27-
days) mean NS anisotropies in this thesis (or Chen & Bieber, 1993). A portion of the difference
between the red squares and the black points is attributed to the difference of the time interval (a
month or 27 days) in which the mean anisotropies are calculated by equation (93). The another
portion is due to the difference of the data set used to identify the IMF sector polarity, i.e. the
solar mean magnetic field provided by WSO is mainly used in this thesis while the Svalgaard’s
inferred magnetic polarity is used in Chen & Bieber (1993). These differences also contribute to
the diurnal anisotropy in Figures 33a and 33b. It is noted that the difference between the red
squares and the black points in Figure 33c is almost comparable to the error of each early mean
value.

Green points in Figure 33c display the NS anisotropy obtained in Section 4.4.3. Daily mean
NS anisotropy derived by equation (108) is averaged over each IMF sectors in every month and
I calculated £, in equation (93) and its yearly means. This NS anisotropy is not calculated for
a period between 1976 and 1978 because of the lack of Thule NM data. We can see that the
NS anisotropy deduced in Section 4.4.3 (green points) is fairly consistent with that derived in
Section 4.5 (red squares). It is noted that the green points are derived from equation (108)
with the coupling coefficient byg = 1.0648 in equation (114) on an assumption of the upper
limiting rigidity P, = oo, while the red squares and black points in all panels are derived from
the coupling coefficients for P, = 100 GV, obtained in equation (122) as bxg = 1.0548 for the NS
anisotropy. The difference of byg is, however, only a order of 1 % and invisible in Figure 33c.
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