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Summary. Huffman coding is one of a most famous entropy encoding me-
thods for lossless data compression [16]. JPEG and ZIP formats employ variants
of Huffman encoding as lossless compression algorithms. Huffman coding is a
bijective map from source letters into leaves of the Huffman tree constructed by
the algorithm. In this article we formalize an algorithm constructing a binary
code tree, Huffman tree.
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1. Constructing Binary Decoded Trees

Let D be a non empty set and x be an element of D. Observe that the root
tree of x is binary as a decorated tree.

The functor RN yielding a set is defined by the term
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(Def. 1) N× R.

Note that RN is non empty.
Let D be a non empty set. The binary finite trees of D yielding a set of trees

decorated with elements of D is defined by

(Def. 2) Let us consider a tree T decorated with elements of D. Then domT is
finite and T is binary if and only if T ∈ it .

The Boolean binary finite trees of D yielding a non empty subset
of 2the binary finite trees of D is defined by the term

(Def. 3) {x, where x is an element of 2α : x is finite and x 6= ∅}, where α is the
binary finite trees of D.

In this paper S denotes a non empty finite set, p denotes a probability on
the trivial σ-field of S, T1 denotes a finite sequence of elements of the Boolean
binary finite trees of RN, and q denotes a finite sequence of elements of N.

Let us consider S and p. The functor InitTrees p yielding a non empty finite
subset of the binary finite trees of RN is defined by the term

(Def. 4) {T , where T is an element of FinTrees(RN) : T is a finite binary tree
decorated with elements of RN and there exists an element x of S such
that T = the root tree of 〈〈(CFS(S))−1(x), p({x})〉〉}.

Let p be a tree decorated with elements of RN. The value of root from right
of p yielding a real number is defined by the term

(Def. 5) p(∅)2.
The value of root from left of p yielding a natural number is defined by the term

(Def. 6) p(∅)1.
Let T be a finite binary tree decorated with elements of RN and p be an

element of domT . The value of tree of p yielding a real number is defined by
the term

(Def. 7) T (p)2.

Let p, q be finite binary trees decorated with elements of RN and k be
a natural number. The functor MakeTree(p, q, k) yielding a finite binary tree
decorated with elements of RN is defined by the term

(Def. 8) 〈〈k, (the value of root from right of p) + (the value of root from right of
q)〉〉-tree(p, q).

Let X be a non empty finite subset of the binary finite trees of RN. The
maximal value of X yielding a natural number is defined by

(Def. 9) There exists a non empty finite subset L of N such that

(i) L = {the value of root from left of p, where p is an element of
the binary finite trees of RN : p ∈ X}, and

(ii) it = maxL.

Now we state the propositions:
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Constructing binary Huffman tree 135

(1) Let us consider a non empty finite subset X of the binary finite trees
of RN and a finite binary tree w decorated with elements of RN. Suppose
X = {w}. Then the maximal value of X = the value of root from left
of w. Proof: Consider L being a non empty finite subset of N such that
L = {the value of root from left of p, where p is an element of the binary
finite trees of RN : p ∈ X} and the maximal value of X = maxL. For
every element n such that n ∈ L holds n = the value of root from left
of w. For every element n such that n = the value of root from left of w
holds n ∈ L. �

(2) Let us consider non empty finite subsets X, Y , Z of the binary fi-
nite trees of RN. Suppose Z = X ∪ Y . Then the maximal value of
Z = max(the maximal value of X, the maximal value of Y ).

(3) Let us consider non empty finite subsets X, Z of the binary finite trees
of RN and a set Y . Suppose Z = X \ Y . Then the maximal value of
Z ¬ the maximal value of X. The theorem is a consequence of (2).

(4) Let us consider a non empty finite subset X of the binary finite trees
of RN and an element p of the binary finite trees of RN. Suppose p ∈ X.
Then the value of root from left of p ¬ the maximal value of X.

Let X be a non empty finite subset of the binary finite trees of RN. A
minimal value tree of X is a finite binary tree decorated with elements of RN
and is defined by

(Def. 10) (i) it ∈ X, and

(ii) for every finite binary tree q decorated with elements of RN such that
q ∈ X holds the value of root from right of it ¬ the value of root
from right of q.

Now we state the propositions:

(5) InitTrees p = S . Proof: Reconsider f1 = (CFS(S))−1 as a function from
S into Seg S . Define P[element, element] ≡ $2 = the root tree of 〈〈f1($1),
p({$1})〉〉. For every element x such that x ∈ S there exists an element
y such that y ∈ InitTrees p and P[x, y] by [12, (5)], [13, (87)], [7, (3)].
Consider f being a function from S into InitTrees p such that for every
element x such that x ∈ S holds P[x, f(x)] from [12, Sch. 1]. �

(6) Let us consider a non empty finite subset X of the binary finite trees
of RN and finite binary trees s, t decorated with elements of RN. Then
MakeTree(t, s, ((the maximal value of X) + 1)) /∈ X.

Let X be a set. The set of leaves of X yielding a subset of 2RN is defined by
the term

(Def. 11) {Leaves(p), where p is an element of the binary finite trees of RN : p ∈ X}.

Now we state the propositions:
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136 hiroyuki okazaki, yuichi futa, and yasunari shidama

(7) Let us consider a finite binary tree X decorated with elements of RN.
Then the set of leaves of {X} = {Leaves(X)}. Proof: For every element
x, x ∈ the set of leaves of {X} iff x ∈ {Leaves(X)}. �

(8) Let us consider sets X, Y . Then the set of leaves of X ∪ Y = (the set
of leaves of X) ∪ (the set of leaves of Y ). Proof: For every element x,
x ∈ the set of leaves of X ∪ Y iff x ∈ (the set of leaves of X)∪ (the set of
leaves of Y ). �

(9) Let us consider trees s, t. Then ∅ /∈ Leaves(
︷︸︸︷
t, s ). Proof: For every

element p, p ∈
︷︸︸︷
t, s iff p ∈ the elementary tree of 0 by [4, (19), (29)], [10,

(130)]. �

(10) Let us consider trees s, t. Then Leaves(
︷︸︸︷
t, s ) = {〈0〉 a p, where p is

an element of t : p ∈ Leaves(t)} ∪ {〈1〉 a p, where p is an element of
s : p ∈ Leaves(s)}. The theorem is a consequence of (9). Proof: Set
L = {〈0〉 a p, where p is an element of t : p ∈ Leaves(t)}. Set R = {〈1〉 a

p, where p is an element of s : p ∈ Leaves(s)}. Set H = Leaves(
︷︸︸︷
t, s ). For

every element x, x ∈ H iff x ∈ L ∪R by [2, (23)], [9, (6)]. �

Let us consider decorated trees s, t, an element x, and a finite sequence q of
elements of N. Now we state the propositions:

(11) If q ∈ dom t, then (x-tree(t, s))(〈0〉 a q) = t(q).

(12) If q ∈ dom s, then (x-tree(t, s))(〈1〉 a q) = s(q).

Now we state the propositions:

(13) Let us consider decorated trees s, t and an element x.
Then Leaves(x-tree(t, s)) = Leaves(t) ∪ Leaves(s). The theorem is a con-
sequence of (10), (11), and (12). Proof: Set L = {〈0〉 a p, where p is
an element of dom t : p ∈ Leaves(dom t)}. Set R = {〈1〉 a p, where
p is an element of dom s : p ∈ Leaves(dom s)}. For every element z,
z ∈ (x-tree(t, s))◦L iff z ∈ t◦(Leaves(dom t)). For every element z, z ∈
(x-tree(t, s))◦R iff z ∈ s◦(Leaves(dom s)). �

(14) Let us consider a natural number k and finite binary trees s, t decorated
with elements of RN. Then

⋃
the set of leaves of {s, t} =

⋃
the set of

leaves of {MakeTree(t, s, k)}. The theorem is a consequence of (8), (7),
and (13).

(15) Leaves(the elementary tree of 0) = the elementary tree of 0. Proof: For
every element x, x ∈ Leaves(the elementary tree of 0) iff x ∈ the elementary
tree of 0 by [4, (29), (54)]. �

(16) Let us consider an element x, a non empty set D, and a finite binary tree
T decorated with elements of D. Suppose T = the root tree of x. Then
Leaves(T ) = {x}. The theorem is a consequence of (15).
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Constructing binary Huffman tree 137

2. Binary Huffman Tree

Let us consider S, p, T1, and q. We say that T1, q, and p are constructing
binary Huffman tree if and only if

(Def. 12) (i) T1(1) = InitTrees p, and

(ii) lenT1 = S , and

(iii) for every natural number i such that 1 ¬ i < lenT1 there exist
non empty finite subsets X, Y of the binary finite trees of RN and
there exists a minimal value tree s of X and there exists a minimal
value tree t of Y and there exists a finite binary tree v decorated
with elements of RN such that T1(i) = X and Y = X \ {s} and v ∈
{MakeTree(t, s, ((the maximal value of X)+1)),MakeTree(s, t, ((the
maximal value of X) + 1))} and T1(i+ 1) = (X \ {t, s}) ∪ {v}, and

(iv) there exists a finite binary tree T decorated with elements of RN such
that {T} = T1(lenT1), and

(v) dom q = Seg S , and

(vi) for every natural number k such that k ∈ Seg S holds q(k) = T1(k)
and q(k) 6= 0, and

(vii) for every natural number k such that k < S holds q(k+1) = q(1)−k,
and

(viii) for every natural number k such that 1 ¬ k < S holds 2 ¬ q(k).

Now we state the proposition:

(17) There exists T1 and there exists q such that T1, q, and p are constructing
binary Huffman tree. The theorem is a consequence of (5) and (6). Proof:
Define A[natural number, set, set] ≡ if there exist elements u, v such that
u 6= v and u, v ∈ $2, then there exist non empty finite subsets X, Y
of the binary finite trees of RN and there exists a minimal value tree s
of X and there exists a minimal value tree t of Y and there exists a
finite binary tree w decorated with elements of RN such that $2 = X

and Y = X \ {s} and w ∈ {MakeTree(t, s, ((the maximal value of X) +
1)),MakeTree(s, t, ((the maximal value of X)+1))} and $3 = (X \{t, s})∪
{w}. For every natural number n such that 1 ¬ n < S for every element
x of the Boolean binary finite trees of RN, there exists an element y of
the Boolean binary finite trees of RN such that A[n, x, y]. Reconsider I =
InitTrees p as an element of the Boolean binary finite trees of RN. Consider
T1 being a finite sequence of elements of the Boolean binary finite trees
of RN such that lenT1 = S and T1(1) = I or S = 0 and for every natural
number n such that 1 ¬ n < S holds A[n, T1(n), T1(n + 1)] from [15,
Sch. 4]. Define B[element, element] ≡ there exists a finite set X such that
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T1($1) = X and $2 = X and $2 6= 0. For every natural number k such
that k ∈ Seg S there exists an element x of N such that B[k, x] by [11, (3)].
Consider q being a finite sequence of elements of N such that dom q = Seg S
and for every natural number k such that k ∈ Seg S holds B[k, q(k)] from
[8, Sch. 5]. For every natural number k such that k ∈ Seg S holds q(k) =

T1(k) and q(k) 6= 0. For every natural number k such that 1 ¬ k < S
holds if 2 ¬ q(k), then q(k+1) = q(k)−1 by [8, (1)], [2, (11), (13)]. Define
C[natural number] ≡ if $1 < S , then q($1 + 1) = q(1) − $1. For every
natural number n such that C[n] holds C[n + 1] by [2, (11)], [8, (1)], [2,
(14), (13)]. For every natural number n, C[n] from [2, Sch. 2]. For every
natural number n such that 1 ¬ n < S holds 2 ¬ q(n) by [2, (21), (13)].
For every natural number k such that 1 ¬ k < lenT1 there exist non
empty finite subsets X, Y of the binary finite trees of RN and there exists
a minimal value tree s of X and there exists a minimal value tree t of Y
and there exists a finite binary tree w decorated with elements of RN such
that T1(k) = X and Y = X \ {s} and w ∈ {MakeTree(t, s, ((the maximal
value of X) + 1)),MakeTree(s, t, ((the maximal value of X) + 1))} and
T1(k + 1) = (X \ {t, s}) ∪ {w} by [8, (1)]. Consider T2 being a finite set
such that T1(S) = T2 and q(S) = T2 and q(S) 6= 0. Consider u being an
element such that T2 = {u}. �

Let us consider S and p. A binary Huffman tree of p is a finite binary tree
decorated with elements of RN and is defined by

(Def. 13) There exists a finite sequence T1 of elements of the Boolean binary finite
trees of RN and there exists a finite sequence q of elements of N such that
T1, q, and p are constructing binary Huffman tree and {it} = T1(lenT1).

In this paper T denotes a binary Huffman tree of p.
Now we state the propositions:

(18)
⋃

the set of leaves of InitTrees p = {z, where z is an element of N×R :
there exists an element x of S such that z = 〈〈(CFS(S))−1(x), p({x})〉〉}.

The theorem is a consequence of (16). Proof: Set L =
⋃

the set of leaves
of InitTrees p. Set R = {z, where z is an element of N×R : there exists
an element x of S such that z = 〈〈(CFS(S))−1(x), p({x})〉〉}. For every ele-
ment x, x ∈ L iff x ∈ R by [13, (87)], [7, (3)]. �

(19) Suppose T1, q, and p are constructing binary Huffman tree. Let us consi-
der a natural number i. Suppose 1 ¬ i ¬ lenT1. Then

⋃
the set of leaves of

T1(i) = {z, where z is an element of N×R : there exists an element x of
S such that z = 〈〈(CFS(S))−1(x), p({x})〉〉}. The theorem is a consequence
of (18), (8), and (14). Proof: Define P[natural number] ≡ if $1 < lenT1,
then

⋃
the set of leaves of T1($1 + 1) = {z, where z is an element of

N × R : there exists an element x of S such that z = 〈〈(CFS(S))−1(x),
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Constructing binary Huffman tree 139

p({x})〉〉}. For every natural number k such that P[k] holds P[k+ 1] by [2,
(11)], [13, (78), (32)]. For every natural number k, P[k] from [2, Sch. 2].
�

(20) Leaves(T ) = {z, where z is an element of N×R : there exists an element
x of S such that z = 〈〈(CFS(S))−1(x), p({x})〉〉}. The theorem is a conse-
quence of (19) and (7).

(21) Suppose T1, q, and p are constructing binary Huffman tree. Let us con-
sider a natural number i, a finite binary tree T decorated with elements
of RN, and elements t, s, r of domT . Suppose

(i) T ∈ T1(i), and

(ii) t ∈ domT \ Leaves(domT ), and

(iii) s = t a 〈0〉, and

(iv) r = t a 〈1〉.
Then the value of tree of t = (the value of tree of s)+(the value of tree of
r). The theorem is a consequence of (15), (11), and (12). Proof: Define
P[natural number] ≡ if 1 ¬ $1 ¬ lenT1, then for every finite binary tree
T decorated with elements of RN and for every elements a, b, c of domT

such that T ∈ T1($1) and a ∈ domT \ Leaves(domT ) and b = a a 〈0〉 and
c = aa〈1〉 holds the value of tree of a = (the value of tree of b)+(the value
of tree of c). For every natural number i such that P[i] holds P[i+ 1] by
[2, (16), (14)], [8, (44)]. For every natural number i, P[i] from [2, Sch. 2].
�

(22) Let us consider elements t, s, r of domT . Suppose

(i) t ∈ domT \ Leaves(domT ), and

(ii) s = t a 〈0〉, and

(iii) r = t a 〈1〉.
Then the value of tree of t = (the value of tree of s) + (the value of tree
of r). The theorem is a consequence of (21).

(23) Let us consider a non empty finite subset X of the binary finite trees of
RN. Suppose a finite binary tree T decorated with elements of RN. Suppose
T ∈ X. Let us consider an element p of domT and an element r of N.
Suppose r = T (p)1. Then r ¬ the maximal value of X. Let us consider
finite binary trees s, t, w decorated with elements of RN. Suppose

(i) s, t ∈ X, and

(ii) w = MakeTree(t, s, ((the maximal value of X) + 1)).

Let us consider an element p of domw and an element r of N. Suppose
r = w(p)1. Then r ¬ (the maximal value of X) + 1. The theorem is
a consequence of (11) and (12). Proof: For every element a such that
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a ∈ dom d holds a = ∅ or there exists an element f of dom t such that
a = 〈0〉 a f or there exists an element f of dom s such that a = 〈1〉 a f by
[2, (23)]. �

(24) Suppose T1, q, and p are constructing binary Huffman tree. Let us con-
sider a natural number i. Suppose 1 ¬ i < lenT1. Let us consider non
empty finite subsets X, Y of the binary finite trees of RN. Suppose

(i) X = T1(i), and

(ii) Y = T1(i+ 1).

Then the maximal value of Y = (the maximal value of X) + 1. Proof:
Consider X, Y being non empty finite subsets of the binary finite trees
of RN, s being a minimal value tree of X, t being a minimal value tree
of Y , v being a finite binary tree decorated with elements of RN such
that T1(i) = X and Y = X \ {s} and v ∈ {MakeTree(t, s, ((the maximal
value of X) + 1)),MakeTree(s, t, ((the maximal value of X) + 1))} and
T1(i + 1) = (X \ {t, s}) ∪ {v}. Consider L1 being a non empty finite
subset of N such that L1 = {the value of root from left of p, where p is
an element of the binary finite trees of RN : p ∈ X0} and the maximal
value of X0 = maxL1. Consider L4 being a non empty finite subset of N
such that L4 = {the value of root from left of p, where p is an element
of the binary finite trees of RN : p ∈ Y 0} and the maximal value of
Y 0 = maxL4. Reconsider p1 = v as an element of the binary finite trees
of RN. For every extended real x such that x ∈ L4 holds x ¬ the value of
root from left of p1 by [2, (16)]. �

Let us consider a natural number i, a non empty finite subset X of the
binary finite trees of RN, a finite binary tree T decorated with elements of RN,
an element p of domT , and an element r of N. Now we state the propositions:

(25) Suppose T1, q, and p are constructing binary Huffman tree. Then if
X = T1(i), then if T ∈ X, then if r = T (p)1, then r ¬ the maximal value
of X.

(26) Suppose T1, q, and p are constructing binary Huffman tree. Then if
X = T1(i), then if T ∈ X, then if r = T (p)1, then r ¬ the maximal value
of X.

Now we state the proposition:

(27) Suppose T1, q, and p are constructing binary Huffman tree. Let us con-
sider a natural number i, finite binary trees s, t decorated with elements
of RN, and a non empty finite subset X of the binary finite trees of RN.
Suppose

(i) X = T1(i), and

(ii) s, t ∈ X.
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Constructing binary Huffman tree 141

Let us consider a finite binary tree z decorated with elements of RN. Sup-
pose z ∈ X. Then 〈〈(the maximal value of X) + 1, (the value of root from
right of t) + (the value of root from right of s)〉〉 /∈ rng z. The theorem is a
consequence of (26).

Let x be an element. Note that the root tree of x is one-to-one.
Now we state the propositions:

(28) Let us consider a non empty finite subset X of the binary finite trees of
RN and finite binary trees s, t, w decorated with elements of RN. Suppose

(i) for every finite binary tree T decorated with elements of RN such that
T ∈ X for every element p of domT for every element r of N such
that r = T (p)1 holds r ¬ the maximal value of X, and

(ii) for every finite binary trees p, q decorated with elements of RN such
that p, q ∈ X and p 6= q holds rng p ∩ rng q = ∅, and

(iii) s, t ∈ X, and

(iv) s 6= t, and

(v) w ∈ X \ {s, t}.
Then rng MakeTree(t, s, ((the maximal value of X) + 1))∩ rngw = ∅. The
theorem is a consequence of (11) and (12). Proof: Set d = MakeTree(t, s,
((the maximal value of X) + 1)). For every element a such that a ∈ dom d

holds a = ∅ or there exists an element f of dom t such that a = 〈0〉 a f

or there exists an element f of dom s such that a = 〈1〉 a f by [2, (23)].
Consider n2 being an element such that n2 ∈ rng d ∩ rngw. Consider a1

being an element such that a1 ∈ dom d and n2 = d(a1). Consider b1 being
an element such that b1 ∈ domw and n2 = w(b1). w ∈ X and w 6= s and
w 6= t. �

(29) Suppose T1, q, and p are constructing binary Huffman tree. Let us consi-
der a natural number i and finite binary trees T , S decorated with elements
of RN. Suppose

(i) T , S ∈ T1(i), and

(ii) T 6= S.

Then rng T ∩ rngS = ∅. The theorem is a consequence of (26) and (28).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ lenT1, then for every
finite binary trees T , S decorated with elements of RN such that T , S ∈
T1($1) and T 6= S holds rng T ∩ rngS = ∅. For every natural number i
such that P[i] holds P[i+ 1] by [21, (8)], [2, (16), (14)]. For every natural
number i, P[i] from [2, Sch. 2]. �

(30) Let us consider a non empty finite subset X of the binary finite trees of
RN and finite binary trees s, t decorated with elements of RN. Suppose

(i) s is one-to-one, and
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(ii) t is one-to-one, and

(iii) t, s ∈ X, and

(iv) rng s ∩ rng t = ∅, and

(v) for every finite binary tree z decorated with elements of RN such that
z ∈ X holds 〈〈(the maximal value of X) + 1, (the value of root from
right of t) + (the value of root from right of s)〉〉 /∈ rng z.

Then MakeTree(t, s, ((the maximal value of X) + 1)) is one-to-one. The
theorem is a consequence of (11) and (12). Proof: Set d = MakeTree(t, s,
((the maximal value of X) + 1)). For every element a such that a ∈ dom d

holds a = ∅ or there exists an element f of dom t such that a = 〈0〉 a f

or there exists an element f of dom s such that a = 〈1〉 a f by [2, (23)].
For every element x such that x ∈ dom d and x 6= ∅ holds d(x) 6= d(∅)
by [11, (3)]. For every elements x1, x2 such that x1, x2 ∈ dom d and
d(x1) = d(x2) holds it is not true that there exists an element f of dom s

such that x1 = 〈1〉 a f and there exists an element f of dom t such that
x2 = 〈0〉af by [11, (3)]. For every elements x1, x2 such that x1, x2 ∈ dom d

and d(x1) = d(x2) holds x1 = x2. �

(31) Suppose T1, q, and p are constructing binary Huffman tree. Let us con-
sider a natural number i and a finite binary tree T decorated with ele-
ments of RN. If T ∈ T1(i), then T is one-to-one. The theorem is a con-
sequence of (27), (29), and (30). Proof: Define P[natural number] ≡ if
1 ¬ $1 ¬ lenT1, then for every finite binary tree T decorated with ele-
ments of RN such that T ∈ T1($1) holds T is one-to-one. For every natural
number i such that P[i] holds P[i+ 1] by [2, (16), (14)]. For every natural
number i, P[i] from [2, Sch. 2]. �

Let us consider p.
Now we are at the position where we can present the Main

Theorem of the paper: Every binary Huffman tree of p is one-to-one.
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