Differentiation of Vector-Valued Functions on n-Dimensional Real Normed Linear Spaces

Takao Inoué
Inaba 2205, Wing-Minamikan
Nagano, Nagano, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

> Summary. In this article, we define and develop differentiation of vectorvalued functions on n-dimensional real normed linear spaces (refer to [16] and [17]).

MML identifier: PDIFF_6, version: $\underline{7.11 .074 .146 .1112}$

The papers [8], [14], [2], [3], [4], [5], [13], [18], [1], [12], [6], [10], [15], [11], [9], [21], [19], [20], and [7] provide the terminology and notation for this paper.

1. The Basic Properties of Differentiation of Functions from \mathcal{R}^{m} то \mathcal{R}^{n}

In this paper i, n, m are elements of \mathbb{N}.
The following propositions are true:
(1) Let f be a set. Then f is a partial function from \mathcal{R}^{m} to \mathcal{R}^{n} if and only if f is a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
(2) Let n, m be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, x$ be an element of \mathcal{R}^{m}, and y be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $f=g$ and $x=y$. Then f is differentiable in x if and only if g is differentiable in y.
(3) Let n, m be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, x$ be an element of \mathcal{R}^{m}, and y be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. If $f=g$ and $x=y$ and f is differentiable in x, then $f^{\prime}(x)=g^{\prime}(y)$.
(4) Let f_{1}, f_{2} be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n} and g_{1}, g_{2} be partial functions from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}+f_{2}=g_{1}+g_{2}$.
(5) Let f_{1}, f_{2} be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n} and g_{1}, g_{2} be partial functions from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}-f_{2}=g_{1}-g_{2}$.
(6) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and a be a real number. If $f=g$, then $a f=a g$.
(7) Let f_{1}, f_{2} be functions from \mathcal{R}^{m} into \mathcal{R}^{n} and g_{1}, g_{2} be points of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}+f_{2}=g_{1}+g_{2}$.
(8) Let f_{1}, f_{2} be functions from \mathcal{R}^{m} into \mathcal{R}^{n} and g_{1}, g_{2} be points of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f_{1}=g_{1}$ and $f_{2}=g_{2}$, then $f_{1}-f_{2}=g_{1}-g_{2}$.
(9) Let f be a function from \mathcal{R}^{m} into \mathcal{R}^{n}, g be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and r be a real number. If $f=g$, then $r f=r \cdot g$.
(10) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and x be an element of \mathcal{R}^{m}. Suppose f is differentiable in x. Then $f^{\prime}(x)$ is a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
Let n, m be natural numbers and let I_{1} be a function from \mathcal{R}^{m} into \mathcal{R}^{n}. We say that I_{1} is additive if and only if:
(Def. 1) For all elements x, y of \mathcal{R}^{m} holds $I_{1}(x+y)=I_{1}(x)+I_{1}(y)$.
We say that I_{1} is homogeneous if and only if:
(Def. 2) For every element x of \mathcal{R}^{m} and for every real number r holds $I_{1}(r \cdot x)=$ $r \cdot I_{1}(x)$.
The following three propositions are true:
(11) For every function I_{1} from \mathcal{R}^{m} into \mathcal{R}^{n} such that I_{1} is additive holds $I_{1}(\langle\underbrace{0, \ldots, 0}_{m}\rangle)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(12) Let f be a function from \mathcal{R}^{m} into \mathcal{R}^{n} and g be a function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f=g$, then f is additive iff g is additive.
(13) Let f be a function from \mathcal{R}^{m} into \mathcal{R}^{n} and g be a function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f=g$, then f is homogeneous iff g is homogeneous.

Let n, m be natural numbers. One can verify that the function $\mathcal{R}^{m} \longmapsto$ $\langle\underbrace{0, \ldots, 0}\rangle$ is additive and homogeneous.

Let n, m be natural numbers. Note that there exists a function from \mathcal{R}^{m} into \mathcal{R}^{n} which is additive and homogeneous.

Let m, n be natural numbers. A linear operator from m into n is defined by an additive homogeneous function from \mathcal{R}^{m} into \mathcal{R}^{n}.

We now state the proposition
(14) Let f be a set. Then f is a linear operator from m into n if and only if f is a linear operator from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
Let m, n be natural numbers, let I_{1} be a function from \mathcal{R}^{m} into \mathcal{R}^{n}, and let x be an element of \mathcal{R}^{m}. Then $I_{1}(x)$ is an element of \mathcal{R}^{n}.

Let m, n be natural numbers and let I_{1} be a function from \mathcal{R}^{m} into \mathcal{R}^{n}. We say that I_{1} is bounded if and only if:
(Def. 3) There exists a real number K such that $0 \leq K$ and for every element x of \mathcal{R}^{m} holds $\left|I_{1}(x)\right| \leq K \cdot|x|$.
Next we state three propositions:
(15) Let x_{1}, y_{1} be finite sequences of elements of \mathcal{R}^{m}. Suppose len $x_{1}=$ len $y_{1}+1$ and $x_{1} \upharpoonright$ len $y_{1}=y_{1}$. Then there exists an element v of \mathcal{R}^{m} such that $v=x_{1}\left(\operatorname{len} x_{1}\right)$ and $\sum x_{1}=\sum y_{1}+v$.
(16) Let f be a linear operator from m into n, x_{1} be a finite sequence of elements of \mathcal{R}^{m}, and y_{1} be a finite sequence of elements of \mathcal{R}^{n}. Suppose len $x_{1}=\operatorname{len} y_{1}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x_{1}$ holds $y_{1}(i)=f\left(x_{1}(i)\right)$. Then $\sum y_{1}=f\left(\sum x_{1}\right)$.
(17) Let x_{1} be a finite sequence of elements of \mathcal{R}^{m} and y_{1} be a finite sequence of elements of \mathbb{R}. Suppose len $x_{1}=\operatorname{len} y_{1}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x_{1}$ there exists an element v of \mathcal{R}^{m} such that $v=x_{1}(i)$ and $y_{1}(i)=|v|$. Then $\left|\sum x_{1}\right| \leq \sum y_{1}$.
Let m, n be natural numbers. Note that every linear operator from m into n is bounded.

Let us consider m, n. Observe that every linear operator from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ is bounded.

Next we state several propositions:
(18) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and x be an element of \mathcal{R}^{m}. Suppose f is differentiable in x. Then $f^{\prime}(x)$ is a linear operator from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
(19) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and x be an element of \mathcal{R}^{m}. Suppose f is differentiable in x. Then $f^{\prime}(x)$ is a linear operator from m into n.
(20) Let n, m be non empty elements of \mathbb{N}, g_{1}, g_{2} be partial functions from
\mathcal{R}^{m} to \mathcal{R}^{n}, and y_{0} be an element of \mathcal{R}^{m}. Suppose g_{1} is differentiable in y_{0} and g_{2} is differentiable in y_{0}. Then $g_{1}+g_{2}$ is differentiable in y_{0} and $\left(g_{1}+g_{2}\right)^{\prime}\left(y_{0}\right)=g_{1}{ }^{\prime}\left(y_{0}\right)+g_{2}{ }^{\prime}\left(y_{0}\right)$.
(21) Let n, m be non empty elements of \mathbb{N}, g_{1}, g_{2} be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n}, and y_{0} be an element of \mathcal{R}^{m}. Suppose g_{1} is differentiable in y_{0} and g_{2} is differentiable in y_{0}. Then $g_{1}-g_{2}$ is differentiable in y_{0} and $\left(g_{1}-g_{2}\right)^{\prime}\left(y_{0}\right)=g_{1}{ }^{\prime}\left(y_{0}\right)-g_{2}{ }^{\prime}\left(y_{0}\right)$.
(22) Let n, m be non empty elements of \mathbb{N}, g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, y_{0} be an element of \mathcal{R}^{m}, and r be a real number. Suppose g is differentiable in y_{0}. Then $r g$ is differentiable in y_{0} and $(r g)^{\prime}\left(y_{0}\right)=r g^{\prime}\left(y_{0}\right)$.
(23) Let x_{0} be an element of \mathcal{R}^{m}, y_{0} be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and r be a real number. Suppose $x_{0}=y_{0}$. Then $\left\{y \in \mathcal{R}^{m}:\left|y-x_{0}\right|<r\right\}=\{z ; z$ ranges over points of $\left.\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle:\left\|z-y_{0}\right\|<r\right\}$.
(24) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, x_{0} be an element of \mathcal{R}^{m}, and L, R be functions from \mathcal{R}^{m} into \mathcal{R}^{n}. Suppose that
(i) L is a linear operator from m into n, and
(ii) there exists a real number r_{0} such that $0<r_{0}$ and $\left\{y \in \mathcal{R}^{m}:\left|y-x_{0}\right|<\right.$ $\left.r_{0}\right\} \subseteq \operatorname{dom} f$ and for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every element z of \mathcal{R}^{m} and for every element w of \mathcal{R}^{n} such that $z \neq\langle\underbrace{0, \ldots, 0}_{m}\rangle$ and $|z|<d$ and $w=R(z)$ holds $|z|^{-1} \cdot|w|<r$ and for every element x of \mathcal{R}^{m} such that $\left|x-x_{0}\right|<r_{0}$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$. Then f is differentiable in x_{0} and $f^{\prime}\left(x_{0}\right)=L$.
(25) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and x_{0} be an element of \mathcal{R}^{m}. Then f is differentiable in x_{0} if and only if there exists a real number r_{0} such that $0<r_{0}$ and $\left\{y \in \mathcal{R}^{m}\right.$: $\left.\left|y-x_{0}\right|<r_{0}\right\} \subseteq \operatorname{dom} f$ and there exist functions L, R from \mathcal{R}^{m} into \mathcal{R}^{n} such that L is a linear operator from m into n and for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every element z of \mathcal{R}^{m} and for every element w of \mathcal{R}^{n} such that $z \neq\langle\underbrace{0, \ldots, 0}_{m}\rangle$ and $|z|<d$ and $w=R(z)$ holds $|z|^{-1} \cdot|w|<r$ and for every element x of \mathcal{R}^{m} such that $\left|x-x_{0}\right|<r_{0}$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

2. Differentiation of Functions from Normed Linear Spaces \mathcal{R}^{m} to Normed Linear Spaces \mathcal{R}^{n}

One can prove the following propositions:
(26) For all points y_{2}, y_{3} of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle \operatorname{holds}(\operatorname{Proj}(i, n))\left(y_{2}+y_{3}\right)=$ $(\operatorname{Proj}(i, n))\left(y_{2}\right)+(\operatorname{Proj}(i, n))\left(y_{3}\right)$.
(27) For every point y_{2} of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and for every real number r holds $(\operatorname{Proj}(i, n))\left(r \cdot y_{2}\right)=r \cdot(\operatorname{Proj}(i, n))\left(y_{2}\right)$.
(28) Let m, n be non empty elements of \mathbb{N}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, x_{0}$ be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$, and i be an element of \mathbb{N}. Suppose $1 \leq i \leq n$ and g is differentiable in x_{0}. Then $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_{0} and $\operatorname{Proj}(i, n) \cdot g^{\prime}\left(x_{0}\right)=(\operatorname{Proj}(i, n) \cdot g)^{\prime}\left(x_{0}\right)$.
(29) Let m, n be non empty elements of \mathbb{N}, g be a partial function from $\left\langle\mathcal{E}^{m}\right.$, $\|\cdot\|\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and x_{0} be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Then g is differentiable in x_{0} if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_{0}.

Let X be a set, let n, m be non empty elements of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. We say that f is differentiable on X if and only if:
(Def. 4) $\quad X \subseteq \operatorname{dom} f$ and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

The following four propositions are true:
(30) Let X be a set, m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n}\right.$, $\|\cdot\|\rangle$. Suppose $f=g$. Then f is differentiable on X if and only if g is differentiable on X.
(31) Let X be a set, m, n be non empty elements of \mathbb{N}, and f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. If f is differentiable on X, then X is a subset of \mathcal{R}^{m}.
(32) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and Z be a subset of \mathcal{R}^{m}. Given a subset Z_{0} of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $Z=Z_{0}$ and Z_{0} is open. Then f is differentiable on Z if and only if the following conditions are satisfied:
(i) $Z \subseteq \operatorname{dom} f$, and
(ii) for every element x of \mathcal{R}^{m} such that $x \in Z$ holds f is differentiable in x.
(33) Let m, n be non empty elements of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and Z be a subset of \mathcal{R}^{m}. Suppose f is differentiable on Z. Then there exists a subset Z_{0} of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $Z=Z_{0}$ and Z_{0} is open.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[13] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^{n}. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.
[14] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):19, 2009, doi:10.2478/v10037-009-0001-2.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
[17] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
[18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received February 23, 2010

