論文内容の要旨

本論文は、超臨界二酸化炭素を用いた超臨界溶体急速膨張法による有機半導体薄膜の作製プロセスの開発を目的としたものである。

有機半導体薄膜を用いたエレクトロニクスデバイス（有機EL素子、有機薄膜太陽電池、有機薄膜トランジスタ）は、軽量、フレキシブルかつ低コスト化が可能なデバイスとして注目を集めている。これらのデバイスの実現には、有機半導体の薄膜作製技術の開発が必要不可欠である。現在までに、蒸着法や溶液塗布法によって有機半導体薄膜が作製可能であることが示され、これらの手法によって得られた薄膜を用いたエレクトロニクスデバイスが試作されている。しかし、これらの薄膜作製手法は、得られる薄膜の性能やプロセスの生産効率に関する問題点を有しており、有機半導体の薄膜作製技術は確立したとはいえないと考えている。そこで、本論文では、薄膜作製技術の進歩を可能とする新規有機半導体薄膜作製手法として、二酸化炭素を用いた超臨界溶体急速膨張（RESS）法による薄膜作製法を提案し、RESS法による薄膜作製技術の開発と、エレクトロニクスディスプレイへの適用可能性の検討を行った。

第1章では、有機半導体の薄膜作製技術に関する既報論文を紹介するとともに、超臨界流体およびRESS法の特徴を述べることで、役割や制御の観点から超臨界二酸化炭素を用いた薄膜作製技術の利点を示し、本研究の意義と目的を明らかにした。

第2章では、第3章以降で述べる実験結果に対して考察するために必要となる薄膜作製と薄膜作製に関する基礎的知識を示した。

第3章では、RESS法による薄膜作製において必要不可欠な知見である超臨界溶体（超臨界二酸化炭素＋溶質系）中の溶質濃度のin situ（その場）測定手法の開発について述べた。数種類の液体有機溶媒と超臨界二酸化炭素を用いて、アントラセンおよびテトラセンに対する溶体濃度一吸光度関係を表す検量線を決定することで、薄膜作製中のアントラセンとテトラセンの濃度を正確に決定することが可能となった。

第4章では、RESS法による薄膜作製技術の開発と製膜メカニズムの解明を目的として、本法の操作因子が、アントラセン薄膜の作製に与える影響を検討した結果を報告した。RESS法における種々の操作因子（溶体噴射時間、基板加熱温度、ノズルー基板間距離、噴射溶体濃度、溶質溶接部温度・圧力）が、形成される薄膜を構成する结晶粒の表面形態と結晶構造に与える影響を明らかにし、結晶工学的見地からこれを評価した。その結果、本法によって作製される薄膜がVolmer-Weber型成長機構によって形成されることが明らかとなった。また、特定の操作因子の変化によって、結晶成長の律速過程が変化することが示された。さらに、律速過程の移行によって、薄膜を構成する結晶粒の成長速度、数密度および形態が大きく変化し、それが最
結論に得られる薄膜の表面形態にも大きく影響することが示された。本章では、以上の検討結果をまとめ、本法における薄膜設計指針を提案した。

第 5 章では、RESS 法によってテトラセンの薄膜を製造した。その結果、テトラセン薄膜が本法によって作製可能であることが明らかになった。次に、得られた薄膜に対して、デジタル顕微鏡と SEM を用いた表面形態の観察および XRD 分析による結晶性の評価を行い、本法によっくて作製されるテトラセン薄膜が高い表面平滑性と優れた結晶性を有していることを示した。さらに、得られた薄膜を活性層に用いた有機薄膜トランジスタ（OTFT）を試作し、半導体デバイスアナライザーによる電界効果移動度の測定を行った。その結果、作製した OTFT は良好なトランジスタ特性を示すことが明らかとなり、本法により作製される薄膜が半導体デバイスに適用可能であることを実証した。

第 6 章では、以上の結果をまとめ、結論とした。