Non-compact simple Lie group $E_{8(-24)}$ of type E_8

By TAKAO IMAI and ICHIRO YOKOTA

Department of Mathematics, Faculty of Science,
Shinshu University
(Received August 6, 1980)

It is known that there exist three simple Lie groups of type E_8 up to local isomorphism, one of them is compact and the others are non-compact. We have shown in [7] that the group

$$E_{8} = \{ \alpha \in \text{IsoC}(e_8, e_8) \mid [e_8, e_8] = \{ [\alpha R_1, \alpha R_2], \langle \alpha R_1, \alpha R_2 \rangle = \langle R_1, R_2 \rangle \} \}
$$

(where e_8 is a simple Lie algebra over C of type E_8 and $\langle R_1, R_2 \rangle$ a positive definite Hermitian inner product in e_8) is a simply connected compact simple Lie group of type E_8. In this paper, we consider one of the non-compact cases. Our results are as follows. The group

$$E_{8, t} = \{ \alpha \in \text{IsoC}(e_8, e_8) \mid [e_8, e_8] = \{ [\alpha R_1, \alpha R_2], \langle \alpha R_1, \alpha R_2 \rangle_1 = \langle R_1, R_2 \rangle_1 \} \}
$$

(where $\langle R_1, R_2 \rangle_1$ is another inner product in e_8) is a connected non-compact simple Lie group of type E_8 and its center $z(E_{8, t})$ is trivial:

$$z(E_{8, t}) = \{1\}.
$$

The group $E_{8, t}$ contains, as a subgroup, a special unitary group $SU(2)$ and a simply connected compact simple Lie group E_7 of type E_7 and the polar decomposition of $E_{8, t}$ is given by

$$E_{8, t} \cong (SU(2) \times E_7)/Z_2 \times R^{412}.
$$

The group $E_{8, t}$ contains also, as a subgroup, a special linear group $SL(2, R)$ and a connected non-compact simple Lie group $E_{7, 1}$ of type $E_{7(-24)}$. In order to show this, we construct another group

$$E_{8, 1} = \{ \alpha \in \text{Iso}(e_8, e_8) \mid [e_8, e_8] = [x, \alpha R_1, \alpha R_2] \}
$$

(where $e_{8, 1}$ is a simple Lie algebra of type $E_{8(-24)}$ and x a submanifold of $e_{8, 1}$)
which is isomorphic to $E_{8,1}$ and find subgroups $SL(2, \mathbb{R})$ and $E_{7,1}$ explicitly in this group $E_{8,1}$

I. Group $E_{8,1}$

1. Preliminaries.

Throughout this paper, we use the same notations as in [7]. However we arrange definitions and some properties of the exceptional Lie algebras \mathfrak{e}_6^C, \mathfrak{e}_7^C and \mathfrak{e}_8^C.

1.1. Jordan algebra \mathfrak{J}^C [1], [7].

Let \mathfrak{S}^C denote the split Cayley algebra over the field of complex numbers \mathbb{C} and \mathfrak{J}^C the Jordan algebra of all 3×3 Hermitian matrices with entries in \mathfrak{S}^C with respect to the multiplication $X \circ Y = \frac{1}{2}(XY + YX)$. In \mathfrak{J}^C, the inner product (X, Y), the positive definite Hermitian inner product $<X, Y>$, the crossed product $X \times Y$ and the cubic form (X, Y, Z) are defined respectively by

$$(X, Y) = \text{tr}(X \circ Y), \quad <X, Y> = (X, Y),$$
$$X \times Y = \frac{1}{2}(2X \circ Y - \text{tr}(X)Y - \text{tr}(Y)X + (\text{tr}(X) \text{tr}(Y) - (X, Y))E),$$
$$(X, Y, Z) = (X, Y \times Z)$$

where \overline{X} is the complex conjugate of X with respect to the field \mathbb{C} and E the unit matrix.

1.2. Lie algebra \mathfrak{e}_6^C [1], [7].

The exceptional Lie algebra \mathfrak{e}_6^C over \mathbb{C} of type E_6 is defined by

$$\mathfrak{e}_6^C = \{ \phi \in \text{Hom}_\mathbb{C}(\mathfrak{g}^C, \mathfrak{g}^C) \mid (\phi, X, X) = 0 \}.$$

For $A, B \in \mathfrak{J}^C$, we define $A \vee B \in \mathfrak{e}_6^C$ by

$$(A \vee B)X = \frac{1}{2}(B, X)A + \frac{1}{6}(A, B)X - 2B \times (A \times X), \quad X \in \mathfrak{J}^C,$$

then $\{ A \vee B \mid A, B \in \mathfrak{J}^C \}$ generates \mathfrak{e}_6^C additively. In \mathfrak{e}_6^C, we define a positive definite Hermitian inner product $<\phi_1, \phi_2>$ by

$$<\phi_1, \phi_2> = \sum_i <\phi_i B_i, A_i>$$

where $\phi = \sum_i A_i \vee B_i$. Finally, for $\phi \in \mathfrak{e}_6^C$, we denote the skew–transposes of ϕ by ϕ', ϕ' with respect to the inner products (X, Y), $<X, Y>$ in \mathfrak{J}^C respectively.
Non-compact simple Lie group $E_{6(-24)}$ of type E_6

$\langle \phi X, Y \rangle + \langle X, \phi' Y \rangle = 0, \quad \langle \phi X, Y \rangle + \langle X, \phi Y \rangle = 0,$

then $\phi', \phi \in \mathfrak{e}_6$.

1.3. Vector space \mathfrak{g} [2], [7].

We define a 56 dimensional vector space \mathfrak{g} by

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{h}.$$

In \mathfrak{g}, we define a positive definite Hermitian inner product $\langle P, Q \rangle$ and a skew-symmetric inner product $\{ P, Q \}$ respectively by

$$\langle P, Q \rangle = \langle X, Z \rangle + \langle Y, W \rangle + \bar{z} \zeta + \bar{\omega} \omega,$$

$$\{ P, Q \} = \langle X, W \rangle - \langle Z, Y \rangle + \bar{z} \omega - \bar{\omega} \zeta$$

for $P = (X, Y, \xi, \eta), Q = (Z, W, \zeta, \omega) \in \mathfrak{g}$. Finally, for $P = (X, Y, \xi, \eta) \in \mathfrak{g}$, we define $\hat{P} \in \mathfrak{g}$ by

$$\hat{P} = (-X, Y, -\bar{\eta}, \bar{\xi}).$$

1.4. Lie algebra \mathfrak{e}_7 [2], [4], [5], [7].

An exceptional Lie algebra \mathfrak{e}_7 over \mathbb{C} of type E_7 is defined by

$$\mathfrak{e}_7 = \{ \phi(\phi, A, B, \rho) \in \text{Hom}_{\mathbb{C}}(\mathfrak{g}, \mathfrak{g}) \mid \phi \in \mathfrak{g}, A, B \in \mathfrak{h}, \rho \in \mathfrak{h} \},$$

where $\phi(\phi, A, B, \rho)$ is a linear transformation of \mathfrak{g} defined by

$$\begin{pmatrix}
X \\
Y \\
\xi \\
\eta
\end{pmatrix} =
\begin{pmatrix}
\phi - \frac{1}{3} \rho & 2B & 0 & A \\
2A & \phi' + \frac{1}{3} \rho & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
\xi \\
\eta
\end{pmatrix}$$

$$= \begin{pmatrix}
\phi X - \frac{1}{3} \rho X + 2B \times Y + \xi A \\
2A \times X + \phi' Y + \frac{1}{3} \rho Y + \xi B \\
(A, Y) + \rho \xi \\
(B, X) - \rho \eta
\end{pmatrix}.$$

The Lie bracket in \mathfrak{e}_7 is given by

$$[\phi(\phi_1, A_1, B_1, \rho_1), \phi(\phi_2, A_2, B_2, \rho_2)] = \phi(\phi, A, B, \rho),$$
where

\[
\begin{align*}
\phi &= [\phi_1, \phi_2] + 2A_1 \sqrt{B_2} - 2A_2 \sqrt{B_1}, \\
A &= (\phi_1 + \frac{2}{3} \rho_1)A_1 - (\phi_2 + \frac{2}{3} \rho_2)A_2, \\
B &= (\phi_1' - \frac{2}{3} \rho_1)B_2 - (\phi_2' - \frac{2}{3} \rho_2)B_1, \\
\rho &= (A_1, B_2) - (B_1, A_2).
\end{align*}
\]

For \(P = (X, Y, \xi, \eta) \), \(Q = (Z, W, \zeta, \omega) \in \mathbb{P}^C \), we define \(P \times Q \in \mathfrak{e}_7^C \) by

\[
\begin{align*}
\phi &= -\frac{1}{4}(X \sqrt{W} + Z \sqrt{Y}), \\
A &= -\frac{1}{4}(2Y \times W - \xi Z - \zeta X), \\
B &= \frac{1}{4}(2X \times Z - \eta W - \omega Y), \\
\rho &= \frac{1}{8}(X, W) + (Z, Y) - 3(\xi \omega + \zeta \eta)).
\end{align*}
\]

Then \(\{ P \times Q \mid P, Q \in \mathbb{P}^C \} \) generates \(\mathfrak{e}_7^C \) additively. In \(\mathfrak{e}_7^C \), we define a positive definite Hermitian inner product \(\langle \Phi_1, \Phi_2 \rangle \) by

\[
\langle \Phi_1, \Phi_2 \rangle = 2 \langle \phi_1, \phi_2 \rangle + 4 \langle A_1, A_2 \rangle + 4 \langle B_1, B_2 \rangle + \frac{8}{3} \rho_1 \rho_2,
\]

where \(\Phi_i = \Phi(\phi_i, A_i, B_i, \rho_i) \in \mathfrak{e}_7^C \), \(i = 1, 2 \). Finally, for \(\Phi = \Phi(\phi, A, B, \rho) \in \mathfrak{e}_7^C \), we denote the skew–transpose of \(\Phi \) by \('\Phi \) with respect to the inner product \(\langle P, Q \rangle \) in \(\mathbb{P}^C : \langle \Phi P, Q \rangle + \langle P, '\Phi Q \rangle = 0 \), then

\[
'\Phi = \Phi(\phi, -B, -A, -\rho).
\]

In particular, \('\Phi \in \mathfrak{e}_7^C \). And the Lie algebra

\[
\mathfrak{e}_7 = \{ \Phi \in \mathfrak{e}_7^C \mid \Phi = '\Phi \}
\]

is a compact Lie algebra of type \(E_7 \).

1.5. **Lie algebra** \(\mathfrak{e}_8^C \) [2], [7].

An exceptional Lie algebra \(\mathfrak{e}_8^C \) is defined as follows. In a 248 dimensional vector space

\[
\mathfrak{e}_8^C = \mathfrak{e}_7^C \oplus \mathbb{P}^C \oplus \mathbb{P}^C \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C},
\]

we define a Lie bracket \([R_1, R_2]\) by
Non-compact simple Lie group $E_{6(6)}$ of type E_6

$[(\phi_1, P_1, Q_1, r_1, s_1, t_1), (\phi_2, P_2, Q_2, r_2, s_2, t_2)]=([\phi, P, Q, r, s, t])$

where

$$
\begin{align*}
\phi &= [\phi_1, \phi_2] + P_1 \times Q_2 - P_2 \times Q_1, \\
P &= \phi_1 P_2 - \phi_2 P_1 + r_1 P_2 - r_2 P_1 + s_1 Q_2 - s_2 Q_1, \\
Q &= \phi_1 Q_2 - \phi_2 Q_1 - r_1 Q_2 + r_2 Q_1 + t_1 P_2 - t_2 P_1, \\
r &= -\frac{1}{8} \{P_1, Q_2\} + \frac{1}{8} \{P_2, Q_1\} + s t_2 - s t_1, \\
s &= \frac{1}{4} \{P_1, P_2\} + 2 r s_2 - 2 r s_1, \\
t &= \frac{1}{4} \{Q_1, Q_2\} - 2 r t_2 + 2 r t_1.
\end{align*}
$$

Then \mathfrak{e}_6 becomes a simple Lie algebra over C of type E_6. In \mathfrak{e}_6, we use notations

$$
\begin{align*}
(\Phi, 0, 0, 0, 0, 0) &= \Phi, \\
(0, P, 0, 0, 0, 0) &= P, \\
(0, 0, Q, 0, 0, 0) &= Q, \\
(0, 0, 0, 0, 1, 0) &= 1.
\end{align*}
$$

Then the table of the Lie bracket among them is given as follows:

<table>
<thead>
<tr>
<th></th>
<th>Φ</th>
<th>P</th>
<th>Q</th>
<th>1</th>
<th>$\bar{1}$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>$[\Phi_1, \Phi_2]$</td>
<td>$(\Phi_1 P_2)^\text{ad}$</td>
<td>$(\Phi_1 Q_2)^\text{ad}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>$- (\Phi_2 P_1)^\text{ad}$</td>
<td>$\frac{1}{4} {P_1, P_2}^\prime \overline{1}$</td>
<td>$P_1 \times Q_2$</td>
<td>$\overline{1}$</td>
<td>0</td>
<td>$- P_1$</td>
</tr>
<tr>
<td>Q</td>
<td>$- (\Phi_2 Q_1)^\text{ad}$</td>
<td>$- P_2 \times Q_1$</td>
<td>$\frac{1}{8} {P_2, Q_1} 1$</td>
<td>Q_1</td>
<td>$- Q_1$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>P_2</td>
<td>$- Q_2$</td>
<td>0</td>
<td>$2 \overline{1}$</td>
<td>$- 2 \overline{1}$</td>
</tr>
<tr>
<td>$\overline{1}$</td>
<td>0</td>
<td>0</td>
<td>Q_2</td>
<td>$- 2 \overline{1}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>P_2</td>
<td>0</td>
<td>$2 \overline{1}$</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

For $R = (\Phi, P, Q, r, s, t) \in \mathfrak{e}_6$, we denote the adjoint transformation adR of \mathfrak{e}_6 by $\Theta(\Phi, P, Q, r, s, t)$.
Since \(e_8^C \) is simple, the Lie algebra \(\text{Der}(e_8^C) \) of all derivations of \(e_8^C \) consists of \(\text{ad}R, \quad R \in e_8^C \):

\[
\text{Der}(e_8^C) = \{ \Theta(\Phi, P, Q, r, s, t) \mid \Theta \in e_8^C, \quad P, Q \in \mathbb{C}, \quad r, s, t \in \mathbb{C} \}
\]

and it is also isomorphic to the Lie algebra \(e_8^C \).

In \(e_8^C \), we define a positive definite Hermitian inner product \(\langle R_1, R_2 \rangle \) by

\[
\langle R_1, R_2 \rangle = \langle \Phi_1, \Phi_2 \rangle + \langle P_1, P_2 \rangle + \langle Q_1, Q_2 \rangle + \frac{1}{8} r_1 r_2 + 8 s_1 s_2 + 4 t_1 t_2
\]

where \(R_i = (\Phi_i, P_i, Q_i, r_i, s_i, t_i) \in e_8^C, \quad i = 1, 2 \). Finally, for \(\Theta = \Theta(\Phi, P, Q, r, s, t) \in \text{Der}(e_8^C) \), we denote the skew–transpose of \(\Theta \) with respect to the inner product \(\langle R_1, R_2 \rangle \) by \(^t\Theta \) with respect to the inner product \(\langle R_1, R_2 \rangle \) by

\[
^t\Theta = \Theta(\Phi, -\Phi, P, -P, Q, -Q, r, -r, s, -s).
\]

2. Group \(E_{8, \epsilon} \).

In \(e_8^C \), we define another inner product \(\langle R_1, R_2 \rangle_{\epsilon} \) by

\[
\langle R_1, R_2 \rangle_{\epsilon} = \langle \Phi_1, \Phi_2 \rangle - \langle P_1, P_2 \rangle - \langle Q_1, Q_2 \rangle + \frac{1}{8} r_1 r_2 + 8 s_1 s_2 + 4 t_1 t_2
\]

where \(R_i = (\Phi_i, P_i, Q_i, r_i, s_i, t_i) \in e_8^C, \quad i = 1, 2 \).

The group \(E_{8, \epsilon} \) is defined to be the group of automorphisms of \(e_8^C \) leaving the inner product \(\langle R_1, R_2 \rangle_{\epsilon} \) invariant:

\[
E_{8, \epsilon} = \{ \alpha \in \text{Isoc}(e_8^C) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2], \quad \langle \alpha R_1, \alpha R_2 \rangle_{\epsilon} = \langle R_1, R_2 \rangle_{\epsilon} \}.
\]

The Lie algebra \(e_{8, \epsilon} \) of the group \(E_{8, \epsilon} \) is

\[
e_{8, \epsilon} = \{ \Theta \in \text{Der}(e_8^C) \mid \langle \Theta R_1, R_2 \rangle_{\epsilon} + \langle R_1, \Theta R_2 \rangle_{\epsilon} = 0 \}.
\]

We define an involutive automorphism \(\epsilon \) of \(e_8^C \) by
Non-compact simple Lie group \(E_{8(-24)} \) of type \(E_8 \)

\[
\begin{pmatrix}
1 \\
-1 \\
-1 \\
1 \\
1 \\
1
\end{pmatrix}
\]

Then \(\iota \in E_{8,1} \). And the two inner products \(\langle R_1, R_2 \rangle, \langle R_1, R_2 \rangle_\iota \) in \(\mathfrak{e}_8 \mathbb{C} \) are combined with relations

\[
\begin{align*}
\langle R_1, R_2 \rangle_\iota &= \langle \iota R_1, \iota R_2 \rangle = \langle R_1, \iota R_2 \rangle, \\
\langle R_1, R_2 \rangle &= \langle \iota R_1, \iota R_2 \rangle_\iota = \langle R_1, \iota R_2 \rangle_\iota.
\end{align*}
\]

We can define an automorphism \(\iota \) of \(E_{8,1} \) by

\[
\iota \alpha = \alpha \iota, \quad \alpha \in E_{8,1}.
\]

And for \(\Theta = \Theta(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8,1} \), we have \(\Theta \iota \in \mathfrak{e}_{8,1} \), more explicitly

\[
\Theta \iota = \Theta(\Phi, -P, -Q, r, s, t).
\]

Theorem 1. Any element \(\Theta \) of the Lie algebra \(\mathfrak{e}_{8,1} \) is represented by the form

\[
\Theta = \Theta(\Phi, P, -P, -Q, r, s, -t), \quad \Phi \in \mathfrak{e}_8, \quad P \in \mathfrak{m}_8, \quad r, s \in \mathbb{C}, \quad r + r = 0.
\]

In particular, the type of the group \(E_{8,1} \) is \(E_8 \).

Proof. Put \(\Theta = \Theta(\Phi, P, Q, r, s, t) \in \mathfrak{e}_{8,1} \), \(\Phi \in \mathfrak{e}_8 \), \(P, Q \in \mathfrak{m}_8 \), \(r, s, t \in \mathbb{C} \).

From the condition \(\langle \Theta R_1, R_2 \rangle_\iota + \langle R_1, \Theta \iota R_2 \rangle = 0 \), that is,

\[
\langle \Theta R_1, R_2 \rangle_\iota + \langle R_1, \Theta \iota R_2 \rangle = 0,
\]

we have \(\Theta \iota = \Theta \iota \), i.e.,

\[
\Theta(\Phi, -P, -Q, r, s, t) = \Theta(\Phi, -Q, -P, \bar{r}, -r, -t).
\]

hence \(\Phi = \Phi, \quad Q = -Q, \quad r = -r, \quad t = -t \). Therefore we see that the complexification of \(\mathfrak{e}_{8,1} \) is \(\mathfrak{e}_8 \mathbb{C} \), so the Lie algebra \(\mathfrak{e}_{8,1} \) is also of type \(E_8 \).

3. Subgroups \(E_7 \) and \(SU(2) \) of \(E_{8,1} \).

We have proved in [4], [6] that the group

\[
E_{7(-133)} = \{ \beta \in \text{Isoc}(\mathfrak{m}_8, \mathfrak{m}_8) \mid \beta(P \times Q)\beta^{-1} = \beta P \times \beta Q, \quad \langle \beta P, \beta Q \rangle = \langle P, Q \rangle \}
\]
is a simply connected compact simple Lie group of type E_7. Now, we shall show that the group $E_{8,1}$ contains compact subgroups of type E_7 and A_2.

Theorem 2. The group $E_{8,1}$ contains a subgroup

$$E_7 = \{ \alpha \in E_{8,1} \mid \alpha_1 = 1, \alpha_2 = 1, \alpha_3 = 1 \}$$

which is a simply connected compact simple Lie group of type E_7.

Proof. The mapping

$$E_{7(-133)} \ni \beta \mapsto \beta = \begin{pmatrix} \text{Ad}\beta & \\ \beta & 1 \end{pmatrix} \in E_7 \subset E_{8,1},$$

(\text{where } \text{Ad} \beta : e_7 \rightarrow e_7 \text{ is defined by } (\text{Ad} \beta)\phi = \beta \phi \beta^{-1})

gives an isomorphism between $E_{7(-133)}$ and E_7. The analogy of this proof is in [7] Theorem 25, so we omit here. (This Theorem follows also from the following Theorem 4).

Theorem 3. The group $E_{8,1}$ contains a subgroup

$$SU(2) = \left\{ A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & a_{1} & -b_{1} & 0 & 0 \\ 0 & b_{1} & a_{1} & 0 & 0 \\ 0 & 0 & 0 & |a|^2 - |b|^2 & -ab - \overline{ab} \\ 0 & 0 & 0 & 2ab & a^2 - b^2 \end{pmatrix} \in SU(2) \right\}$$

which is isomorphic to the special unitary group $SU(2) = \{ A \in M(2, \mathbb{C}) \mid A^*A = E, \det A = 1 \}$.

Proof. It is easy to verify that $SU(2)$ is a subgroup of $E_{8,1}$ (or see the following Theorem 4).

In the followings, we identify these groups $E_{7(-133)}$ with E_7, $SU(2)$ with $SU(2)$ under the above correspondences.

4. Involution automorphism ι and subgroup $(SU(2) \times E_7)/Z_2$ of $E_{8,1}$.

Theorem 4. The subgroup $\{ \alpha \in E_{8,1} \mid \alpha \iota = \alpha \}$ of the group $E_{8,1}$ is isomorphic to the group $(SU(2) \times E_7)/Z_2$, where $Z_2 = \{(E, 1), (-E, \iota)\}$.

Proof. We define a mapping $\phi : SU(2) \times E_7 \rightarrow \{ \alpha \in E_{8,1} \mid \alpha \iota = \alpha \}$ by
Since $A \in SU(2)$ and $\beta \in E_7$ commute in $E_{8,7} : A\beta = \beta A$, obviously ϕ is a homomorphism. We shall prove that ψ is onto. If $a \in E_{8,7}$ satisfies $\alpha\alpha = \alpha$, then α has the form

$$\alpha = \begin{pmatrix}
\beta_1 & 0 & 0 & \Psi_1 & \Psi_2 & \Psi_3 \\
0 & \beta_2 & \beta_{23} & 0 & 0 & 0 \\
0 & \beta_{23} & \beta_3 & 0 & 0 & 0 \\
l_1 & 0 & 0 & r_1 & r_2 & r_3 \\
l_2 & 0 & 0 & s_1 & s_2 & s_3 \\
l_3 & 0 & 0 & t_1 & t_2 & t_3
\end{pmatrix}$$

where $\beta_1 : \mathbb{C} \rightarrow \mathbb{C}$, $\beta_2, \beta_3, \beta_{23} : \mathbb{C} \rightarrow \mathbb{C}$, $l_i : \mathbb{C} \rightarrow \mathbb{C}$ are linear mappings, $\Psi_i \in \mathbb{C}$ and $r_i, s_i, t_i \in \mathbb{C}$, $i = 1, 2, 3$.

1. $[1, \overline{1}] = 2\overline{1}$ implies $[\alpha I, \alpha \overline{1}] = 2\overline{1}$, that is,

$$[[\Psi_1, 0, 0, r_1, s_1, t_1], (\Psi_2, 0, 0, r_2, s_2, t_3)] = [[\Psi_1, \Psi_2], 0, 0, s_1t_2-s_2t_1, 2r_1s_3-2r_3s_1, -2r_1t_2+2r_2t_1] = 2(\Psi_2, 0, 0, r_2, s_2, t_2).$$

Hence we have

1. $[\Psi_1, \Psi_2] = 2\Psi_2$,
2. $s_1t_2-s_2t_1 = 2r_2$,
3. $r_1s_2-r_2s_1 = s_2$,
4. $-r_1t_2+r_2t_1 = t_2$.

Similarly, from $[1, \overline{1}] = -2\overline{1}$, $[\overline{1}, \overline{1}] = 1$, we have

1. $[\Psi_1, \Psi_3] = -2\Psi_3$,
2. $s_1t_3-s_3t_1 = -2r_3$,
3. $r_1s_3-r_3s_1 = -s_3$,
4. $-r_1t_3+r_3t_1 = -t_3$,
5. $[\Psi_2, \Psi_3] = \Psi_1$,
6. $s_2t_3-s_3t_2 = r_1$,
7. $r_2s_3-r_3s_2 = s_1$,
8. $-r_2t_3+r_3t_2 = t_3$.
9. $r_1s_3-r_3s_1 = s_2$,
10. $-r_1t_3+r_3t_1 = -t_3$,
11. $2r_2s_3-2r_3s_2 = s_1$,
12. $-2r_2t_3+2r_3t_2 = t_0$.

\[\phi(A, \beta) = A\beta = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & a_1 & -b_1 & 0 & 0 & 0 \\
0 & b_1 & a_1 & 0 & 0 & 0 \\
0 & 0 & 0 & |a|^2-|b|^2 & -ab & -\overline{ab} \\
0 & 0 & 0 & 2\overline{ab} & a^2 & -\overline{b^2} \\
0 & 0 & 0 & -\overline{b^2} & a^2 & -b^2
\end{pmatrix} \begin{pmatrix}
\text{Ad} \beta & 0 & 0 & 0 & 0 \\
0 & \beta & 0 & 0 & 0 \\
0 & 0 & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \beta_1 & 0 & 0 & 0 \\
0 & 0 & \beta_2 & 0 & 0 \\
0 & 0 & 0 & \beta_3 & 0 \\
l_1 & 0 & 0 & r_1 & r_2 \\
l_2 & 0 & 0 & s_1 & s_2 \\
l_3 & 0 & 0 & t_1 & t_2
\end{pmatrix}. \]
\([\mathcal{F}, 1]=0\) implies \([\alpha \mathcal{F}, \alpha 1]=0\), that is,
\[
\left(\beta_i \mathcal{F}, 0, 0, l_i \mathcal{F}, l_2 \mathcal{F}, l_3 \mathcal{F}\right), (\mathcal{W}_i, 0, 0, r_i, s_i, t_i)
\]
\[=\left(\beta_i \mathcal{F}, \mathcal{W}_i\right), 0, 0, -s_i l_i \mathcal{F} + t_i l_2 \mathcal{F}, -2 r_i l_3 \mathcal{F} + 2 s_i l_i \mathcal{F}, 2 r_i l_3 \mathcal{F} - 2 t_i l_i \mathcal{F}\] = 0.

Hence we have
\[
(13) \ [\beta_i \mathcal{F}, \mathcal{W}_i]=0,
(14) \ s_i l_3 = t_i l_2,
(15) \ r_i l_2 = s_i l_1,
(16) \ r_i l_3 = t_i l_1.
\]

Similarly, from \([\mathcal{F}, \mathcal{W}]=0\), \([\mathcal{F}, \mathcal{W}]=0\), we have
\[
(17) \ [\beta_i \mathcal{F}, \mathcal{W}_i]=0,
(18) \ s_i l_3 = t_i l_2,
(19) \ r_i l_2 = s_i l_1,
(20) \ r_i l_3 = t_i l_1,
(21) \ [\beta_i \mathcal{F}, \mathcal{W}_i]=0,
(22) \ s_i l_3 = t_i l_2,
(23) \ r_i l_2 = s_i l_1,
(24) \ r_i l_3 = t_i l_1.
\]

And \([\alpha \mathcal{F}_1, \mathcal{F}_2]=\alpha \mathcal{F}_1, \alpha \mathcal{F}_2]\) implies
\[
(25) \ \beta_i \left[\alpha \mathcal{F}_1, \mathcal{F}_2\right]=\alpha \left[\beta_i \mathcal{F}_1, \mathcal{F}_2\right].
\]

We shall prove that \(\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = 0\) and \(l_1 = l_2 = l_3 = 0\).

Case (i) : \[
\begin{bmatrix}
r_1 & r_2 & r_3 \\
s_1 & s_2 & s_3 \\
t_1 & t_2 & t_3
\end{bmatrix}
\]
is not zero. For example, assume \(r_1 \neq 0\). First we show that \(\beta_i\) is non-degenerate. Suppose \(\beta_i\) is degenerate, then there exists \(0 \neq \Phi_0 \in \mathfrak{c}_i \mathbb{C}\) such that \(\beta_i \Phi_0 = 0\). From \(<\alpha \Phi_0, \alpha 1>=<\Phi_0, 1>=0\), we have
\[
<\beta_i \Phi_0, \mathcal{W}_i> + 8 \overline{\Phi}_0 r_1 + 4 \overline{\Phi}_0 s_2 + 4 \overline{\Phi}_0 t_3 = 0.
\]

Since \(l_2 = s_i l_1, l_3 = t_i l_1\) from (15), (16), we have
\[
\overline{\mathcal{W}}_0 (8 |r_1|^2 + 4 |s_1|^2 + 4 |t_1|^2) = 0.
\]

Therefore \(l_1 \Phi_0 = 0\), and hence \(l_2 \Phi_0 = l_3 \Phi_0 = 0\). Therefore \(\alpha \Phi_0 = 0\) for \(\Phi_0 \neq 0\). This contradicts to the non-degeneracy of \(\alpha\). Thus we see that \(\beta_i\) is non-degenerate, so \(\beta_i \mathfrak{c}_i \mathbb{C} = \mathfrak{c}_i \mathbb{C}\). Hence (15) shows that \(\mathcal{W}_i\) is a central element of \(\beta_i \mathfrak{c}_i \mathbb{C} = \mathfrak{c}_i \mathbb{C}\). Since the Lie algebra \(\mathfrak{c}_i \mathbb{C}\) is simple, we have
\[
\mathcal{W}_1 = 0, \quad \text{and hence} \quad \mathcal{W}_2 = \mathcal{W}_3 = 0
\]
from (1), (5). Again using \(<\alpha \mathcal{F}, \alpha 1>=<\Phi, 1>=0\), that is, \(\overline{\mathcal{W}} (8 |r_1|^2 + 4 |s_1|^2 + 4 |t_1|^2)\)
Non-compact simple Lie group $E_{6(-24)}$ of type E_6

= 0, we have $L_\Phi = 0$ for all $\Phi \in \mathfrak{e}_C$. Hence

$$L_1 = 0,$$

and hence

$$L_2 = L_3 = 0$$

from (15), (16).

case (ii). $r_i = s_i = t_i = 0$, $i = 1, 2, 3$ (which doesn't occur). In this case, $\Psi_1 \neq 0$, $\Psi_2 \neq 0$, $\Psi_3 \neq 0$ from the non-degeneracy of α. 133 = dim \mathfrak{e}_C = dim $(\beta_1 \mathfrak{e}_C + \mathfrak{e}_1 + \mathfrak{e}_2 + \mathfrak{e}_3)$ implies dim $\beta_1 \mathfrak{e}_C \geq 130$, and from $\langle \beta_i \Phi, \Psi_j \rangle = 0$, $i = 1, 2, 3$, $\langle \Psi_i, \Psi_j \rangle = 0$, $i \neq j$, we see that dim $\beta_1 \mathfrak{e}_C$ is just 130, so

$$\mathfrak{e}_C = \beta_1 \mathfrak{e}_C \oplus \mathfrak{w}_1 \oplus \mathfrak{w}_2 \oplus \mathfrak{w}_3.$$

However (13), (17), (21), (25) show that $\beta_1 \mathfrak{e}_C$ is an ideal of \mathfrak{e}_C. So $\beta_1 \mathfrak{e}_C = \mathfrak{e}_C$ from the simplicity of the Lie algebra \mathfrak{e}_C. This contradicts to dim \mathfrak{e}_C = dim $\beta_1 \mathfrak{e}_C = 130 < 133 = \dim \mathfrak{e}_C$.

Thus α has the form

$$\alpha = \begin{pmatrix}
\beta_1 & 0 & 0 & 0 & 0 & 0 \\
0 & \beta_2 & \beta_{23} & 0 & 0 & 0 \\
0 & 0 & \beta_{32} & \beta_3 & 0 & 0 \\
0 & 0 & 0 & r_1 & r_2 & r_3 \\
0 & 0 & 0 & s_1 & s_2 & s_3 \\
0 & 0 & 0 & t_1 & t_2 & t_3
\end{pmatrix}$$

II. $[P, 1] = -P$ implies $[\alpha P, \alpha 1] = -\alpha P$, that is,

$$[(0, \beta_2 P, \beta_{23} P, 0, 0, 0), (0, 0, 0, r_1, s_1, t_1)]$$

$$= (0, -r_1 \beta_2 P - s_1 \beta_{23} P, r_1 \beta_{32} P - t_1 \beta_3 P, 0, 0, 0)$$

$$= (0, \beta_2 P, \beta_{23} P, 0, 0, 0).$$

Hence we have

$$1 - r_1 \beta_2 = s_1 \beta_{23}, \quad 1 + r_1 \beta_3 = t_1 \beta_2.$$

Similarly, from $[P, 1] = 0$, $[P, 1] = -P$, we have

$$r_2 \beta_2 = -s_2 \beta_{23}, \quad r_2 \beta_3 = t_2 \beta_2,$$

$$r_3 \beta_2 + s_3 \beta_{23} = \beta_{23}, \quad r_3 \beta_3 = t_3 \beta_2 = \beta_3.$$

And from $[Q, 1] = Q$, $[Q, 1] = -\bar{Q}$, $[Q, 1] = 0$, we have
(32) \((1+r_1)\beta_{23} = -s_1\beta_2,\) \hspace{1cm} (33) \((1-r_1)\beta_3 = -t_1\beta_{23},\)

(34) \(r_2\beta_{23} + s_2\beta_2 = \beta_2,\) \hspace{1cm} (35) \(r_3\beta_3 - t_2\beta_{23} = -\beta_{32},\)

(36) \(r_3\beta_{23} = -s_2\beta_2,\) \hspace{1cm} (37) \(r_3\beta_3 = t_3\beta_{23}.\)

We shall prove that there exist \(a, b, c, d \in \mathbb{C}\) and \(\beta, \gamma \in \text{Isoc}(\varepsilon_7\mathbb{C}, \varepsilon_7\mathbb{C})\) such that

\[
\begin{cases}
\beta_2 = a\beta, & \beta_{23} = c\gamma, \\
\beta_{32} = b\beta, & \beta_3 = d\gamma,
\end{cases}
\quad
\begin{cases}
r_2 = -ab, & r_3 = cd, \\
s_2 = a^2, & t_3 = d^2.
\end{cases}
\tag{38}
\]

Case (i) : \(s_2 \neq 0, s_2 \neq 0\) implies \(t_3 \neq 0\). In fact, suppose \(t_3 = 0\). Then we have \(s_2t_1 = 2r_3, r_3t_1 = 0\) from (6), (8), hence \(r_3 = 0\). So \(s_2 \neq 0\) (because \(\alpha\) is non-degenerate) and hence \(t_1 = 0\). Hence \(r_1 = -1\) from (7). From \(<\alpha_1, \alpha_1> = <1, 1> = 8\), that is, \(8 + 4|s_1|^2 = 8\), hence \(s_1 = 0\). And \(r_2 = 0\) from (2) and finally \(s_2 = 0\). This contradicts to the hypothesis \(s_2 \neq 0\). Now, choose \(a, d \in \mathbb{C}\) such that

\[
a^2 = s_2, \quad d^2 = t_3
\]

and put

\[
b = -\frac{r_2}{a}, \quad c = \frac{r_3}{d},
\]

\[
\beta = \frac{1}{a}\beta_2, \quad \gamma = \frac{1}{d}\beta_3.
\]

Then \(
\beta_{32} = \frac{r_2}{s_2} \beta_2 = b\beta\)
from (28) and \(
\beta_{23} = \frac{r_3}{t_3} \beta_3 = c\gamma\)
from (37). Obviously \(\beta, \gamma \in \text{Isoc}(\varepsilon_7\mathbb{C}, \varepsilon_7\mathbb{C})\), because \(\alpha\) is non-degenerate.

Case (ii) : \(s_2 = 0, s_2 \neq 0\) implies \(t_2 = 0\) and \(r_2 = r_3 = 0, t_2 \neq 0, s_3 \neq 0\) from the same arguments as Case (i). Hence \(\beta_2 = \beta_3 = 0\) from (29), (36). Now, choose \(b, c \in \mathbb{C}\) such that

\[
-b^2 = t_2, \quad -c^2 = s_3
\]

and put

\[
a = 0, \quad d = 0,
\]

\[
\beta = \frac{1}{b}\beta_{32}, \quad \gamma = \frac{1}{c}\beta_{23}.
\]

Then (38) is also valid in this case.

III. \([P, Q] = \frac{1}{4} [P, Q] \bar{\alpha}\) implies \([aP, aQ] = \frac{1}{4} [P, Q] a \bar{\alpha}\), that is,
Non-compact simple Lie group $E_{8(-24)}$ of type E_8

\[[(0, \beta_2 P, \beta_3 P, 0, 0, 0), (0, \beta_2 Q, \beta_3 Q, 0, 0, 0)] \]
\[= (\beta_2 P \times \beta_3 Q - \beta_3 P \times \beta_2 Q, 0, 0, -\frac{1}{8} \{ \beta_3 P, \beta_2 Q \} - \frac{1}{8} \{ \beta_2 P, \beta_3 Q \}, \]
\[\frac{1}{4} \{ \beta_2 P, \beta_2 Q \} - \frac{1}{4} \{ \beta_3 P, \beta_3 Q \}) \]
\[= (0, 0, 0, 0, \frac{1}{4} \{ P, Q \} r_2, \frac{1}{4} \{ P, Q \} s_2, \frac{1}{4} \{ P, Q \} t_2) \]

Hence we have

\[\beta_2 P \times \beta_3 Q = \beta_3 P \times \beta_2 Q, \]
\[\{ \beta_2 P, \beta_2 Q \} + \{ \beta_3 P, \beta_3 Q \} = -2r_2 \{ P, Q \}, \]
\[\{ \beta_2 P, \beta_3 Q \} = s_2 \{ P, Q \}, \]
\[\{ \beta_3 P, \beta_3 Q \} = -t_2 \{ P, Q \}. \]

Similarly, from $[P, Q] = P \times Q - \frac{1}{8} \{ P, Q \} 1$, $[P, Q] = -\frac{1}{4} \{ P, Q \} 1$, we have

\[\beta_1 (P \times Q) = \beta_2 P \times \beta_3 Q - \beta_3 P \times \beta_2 Q, \]
\[\{ \beta_2 P, \beta_2 Q \} + \{ \beta_3 P, \beta_3 Q \} = r_1 \{ P, Q \}, \]
\[2\{ \beta_2 P, \beta_3 Q \} = -s_1 \{ P, Q \}, \]
\[2\{ \beta_3 P, \beta_3 Q \} = t_1 \{ P, Q \}, \]
\[\beta_3 P \times \beta_3 Q = \beta_3 P \times \beta_3 Q, \]
\[\{ \beta_3 P, \beta_3 Q \} + \{ \beta_3 P, \beta_3 Q \} = 2r_3 \{ P, Q \}, \]
\[\{ \beta_2 P, \beta_3 Q \} = -s_3 \{ P, Q \}, \]
\[\{ \beta_3 P, \beta_3 Q \} = t_3 \{ P, Q \}. \]

From either one of (41), (42) and either one of (49), (50), we have

\[\{ \beta P, \beta Q \} = \{ P, Q \}, \]
\[\{ \gamma P, \gamma Q \} = \{ P, Q \}. \]

Since there exists $\lambda \in C$ such that $\gamma = \lambda \beta$ from (31), so $\lambda^2 = 1$ from (51). If $\lambda = -1$, then by considering $-b$ instead of b, we may assume that

\[\beta = \gamma. \]

Now, from (44), (45), (46), (49), we have

\[r_1 = ad + bc, \quad \{ r_2 = -ab \}, \quad \{ r_3 = cd \}, \]
\[s_1 = -2ac, \quad \{ s_2 = a^2 \}, \quad s_3 = -c^2, \]
\[t_1 = 2bd, \quad \{ t_2 = -b^2 \}, \quad (t_3 = d^2). \]

IV. $[\Phi, \overline{P}] = (\Phi P)^\alpha$ implies $[\alpha \Phi, \alpha \overline{P}] = \alpha (\alpha P)^\alpha$, that is,
\[
\begin{align*}
[(\beta_1, \phi, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, \beta_1 P, \beta_2 P, 0, 0, 0, 0, 0, 0, 0, 0)] \\
= (0, (\beta_1, \phi, \beta_1 P, \beta_1, \phi, \beta_1 P), 0, 0, 0) \\
= (0, \beta_1 (\phi P), \beta_2 (\phi P), 0, 0, 0).
\end{align*}
\]

Hence we have
\[
\begin{align*}
(53) & \quad \beta_1 \phi \beta_2 = \beta_2 \phi, \\
(54) & \quad \beta_1 \phi \beta_2 = \beta_2 \phi.
\end{align*}
\]

Similarly, from \([\phi, Q] = (\phi Q)_-\), we have
\[
\begin{align*}
(55) & \quad \beta_1 \phi \beta_3 = \beta_3 \phi, \\
(56) & \quad \beta_1 \phi \beta_3 = \beta_3 \phi.
\end{align*}
\]

Now, from either one of (53), (54), we have \(\beta_1 \phi = \beta \phi \beta^{-1}\), in particular,
\[
\beta_1 (P \times Q) = \beta (P \times Q) \beta^{-1}.\tag{57}
\]

From (43) we have
\[
\beta_1 (P \times Q) = (ad - bc) \beta P \times \beta Q.\tag{58}
\]

Since \(ab - bc \neq 0\), choose \(p \in C\) such that \(p^2 = ad - bc\) and rewrite again
\[
\frac{1}{p} \beta \rightarrow \beta, \quad pa \rightarrow a, \quad pb \rightarrow b, \quad pc \rightarrow c, \quad pd \rightarrow d.
\]

Then, with respect to these new \(\beta, a, b, c, d\), the above statements (especially (38)) are also valid and from (57), (58) we have
\[
\beta (P \times Q) \beta^{-1} = \beta P \times \beta Q.\tag{59}
\]

Finally, we have
\[
\begin{align*}
\left\{ \begin{array}{l}
|a|^2 + |b|^2 = 1 \quad \text{from } \langle a \tilde{I}, a \tilde{I} \rangle = \langle \tilde{1}, \tilde{1} \rangle, \\
|c|^2 + |d|^2 = 1 \quad \text{from } \langle a \tilde{I}, a \tilde{I} \rangle = \langle \tilde{1}, \tilde{1} \rangle, \\
ac + bd = 0 \quad \text{from } \langle a \tilde{I}, a \tilde{I} \rangle = \langle \tilde{1}, \tilde{1} \rangle = 0, \\
ad - bc = 1.
\end{array} \right.
\end{align*}
\]

So \[
\begin{bmatrix}
 a & c \\
 b & d
\end{bmatrix} = \begin{bmatrix}
 a & -b \\
 b & a
\end{bmatrix} \in SU(2). \]

And from \(\langle a \tilde{P}, a \tilde{Q} \rangle = \langle \tilde{P}, \tilde{Q} \rangle\), that is, \(\langle \beta_2 P, \beta_2 Q \rangle + \langle \beta_2 P, \beta_2 Q \rangle = \langle P, Q \rangle\), i.e., \(|a|^2 + |b|^2 \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle\), hence we have
\[
\langle \beta P, \beta Q \rangle = \langle P, Q \rangle.\tag{60}
\]

So \(\beta \in E\) from (59), (60) and \(\beta_1 = Ad \beta\) from (57). Thus
Non-compact simple Lie group $E_{6(-24)}$ of type E_6

$$\begin{pmatrix}
\text{Ad} \beta & 0 & 0 & 0 & 0 \\
0 & a \beta & -b \beta & 0 & 0 \\
0 & b \beta & a \beta & |a|^2 - |b|^2 & -ab & ab \\
0 & 0 & 0 & 2ab & a^2 & -b^2 \\
0 & 0 & 0 & 2ab & -b^2 & a^2
\end{pmatrix}
$$

\[= \phi\left(\begin{pmatrix} a & -\overline{b} \\ \overline{b} & a \end{pmatrix}, \beta\right) \in \phi(SU(2) \times E_7).\]

Hence ϕ is onto. It is easy to verify that $\ker\phi = \{(E, 1), (-E, 1)\}$. Thus the proof of Theorem 4 is completed.

5. Polar decomposition of $E_{6,t}$.

In order to give a polar decomposition of the group $E_{6,t}$, we use the following

Lemma 5 ([3] p. 345). Let G be a pseudoalgebraic subgroup of the general linear group $GL(n, \mathbb{C})$ such that the condition $A \in G$ implies $A^* \in G$. Then G is homeomorphic to the topological product of the group $G \cap U(n)$ and a Euclidean space \mathbb{R}^d

$$G \cong (G \cap U(n)) \times \mathbb{R}^d$$

where $U(n)$ is the unitary subgroup of the general linear group $GL(n, \mathbb{C})$.

Lemma 6. $E_{6,t}$ is a pseudoalgebraic subgroup of the general linear group $GL(248, \mathbb{C}) = \text{Isoc}(e_6^C, e_6^C)$, and satisfies the condition $a \in E_{6,t}$ implies $a^* \in E_{6,t}$, where a^* is the transpose of a with respect to the inner product $\langle R_1, R_2 \rangle = \langle aR_1, aR_2 \rangle = \langle R_1, a^*R_2 \rangle = \langle a^{-1}R_1, R_2 \rangle = \langle a^{-1}tR_1, R_2 \rangle$ for $a \in E_{6,t}$, we have

$$a^* = a^{-1}t \in E_{6,t}.$$

And it is obvious that $E_{6,t}$ is pseudoalgebraic, because $E_{6,t}$ is defined by pseudoalgebraic relations $a[R_1, R_2] = [aR_1, aR_2]$ and $\langle aR_1, aR_2 \rangle = \langle R_1, R_2 \rangle$.

Let $U(248) = U(e_6^C) = \{ a \in \text{Isoc}(e_6^C, e_6^C) \mid \langle aR_1, aR_2 \rangle = \langle R_1, R_2 \rangle \}$ denote the unitary subgroup of the general linear group $GL(248, \mathbb{C}) = \text{Isoc}(e_6^C, e_6^C)$, then we have

$$E_{6,t} \cap U(e_6^C) = \{ a \in E_{6,t} \mid a\alpha = \alpha \} \cong (SU(2) \times E_7)/\mathbb{Z}_2 \quad \text{(Theorem 4)}$$

Since $E_{6,t}$ is a simple Lie group of type E_6, the dimension of $E_{6,t}$ is 248. Hence
the dimension d of the Euclidean part of $E_{6,1}$ is
\[d = \dim E_{6,1} - \dim (SU(2) \times E_7) = 248 - (3 + 133) = 112. \]

Thus we get the following

Theorem 7. The group $E_{6,1}$ is homeomorphic to the topological product of the group $(SU(2) \times E_7)/\mathbb{Z}_2$ and a 112 dimensional Euclidean space \mathbb{R}^{112}:
\[E_{6,1} \cong (SU(2) \times E_7)/\mathbb{Z}_2 \times \mathbb{R}^{112}. \]

In particular, the group $E_{6,1}$ is a connected non-compact simple Lie group of type $E_6(-26)$.

6. **Center $z(E_{6,1})$ of $E_{6,1}$.**

Theorem 8. The center $z(E_{6,1})$ of the group $E_{6,1}$ is trivial: $z(E_{6,1}) = \{1\}$.

Proof. Let $a \in z(E_{6,1})$. From the commutativity with $e \in E_{6,1}$, a has the form
\[a = A\beta, \quad A \in SU(2), \quad \beta \in E_7 \]
from Theorem 4. Furthermore, from the commutativity with all $A \in SU(2)$, we see $A \in z(SU(2)) = \{E, -E\}$. Similarly we see $\beta \in z(E_7) = \{1, \iota\}$ [4]. Hence $\alpha = 1$ or ι. However $\iota \notin z(E_{6,1})$ from Theorem 4. Thus $z(E_{6,1}) = \{1\}$.

II. **Group $E_{6,1}$**

In order to investigate the group $E_{6,1}$ more detail, we shall construct one more group $E_{6,1}$ which is isomorphic to $E_{6,1}$.

7. **Preliminaries.**

We consider the real restriction of the preceding chapter. The statements are similar to the complex cases. In the real case, the inner products $<,>$ will be denoted by $(,)$.

7.1. **Jordan algebra \mathfrak{J}** [1].

Let \mathfrak{C} denote the non-split Cayley algebra over the field of real numbers \mathbb{R} and $\mathfrak{J} = \mathfrak{J}(3, \mathfrak{C})$ the Jordan algebra consisting of all 3×3 Hermitian matrices with entries in \mathfrak{C} with respect to the multiplication $X \circ Y = \frac{1}{2}(XY + YX)$.

7.2. **Lie algebra $\mathfrak{e}_{6,1}$** [1].

The Lie algebra $\mathfrak{e}_{6,1}$ is defined by
\[\mathfrak{e}_{6,1} = \{ \phi \in \text{Hom}_\mathbb{R}(\mathfrak{J}, \mathfrak{J}) \mid \langle \phi X, X, X \rangle = 0 \}. \]

Then $\mathfrak{e}_{6,1}$ is a simple Lie algebra of type $E_6(-26)$. This $\mathfrak{e}_{6,1}$ is the Lie algebra of a Lie group.
Non-compact simple Lie group $E_{6(-26)}$ of type E_6.

$$E_{6,1} = \{ \alpha \in \text{Iso}_R(\mathbb{S}, \mathbb{S}) \mid \det \alpha X = \det X \}$$

which is a simply connected non-compact simple Lie group of type $E_{6(-26)}$.

7.3. Lie algebra $\mathfrak{e}_{7,1}$ [2], [5], [6].

We define a vector space \mathfrak{g} by

$$\mathfrak{g} = \mathbb{S} \oplus \mathbb{S} \oplus R \oplus R.$$

And the Lie algebra $\mathfrak{e}_{7,1}$ is defined by

$$\mathfrak{e}_{7,1} = \{ \Phi \in \text{Hom}_R(\mathfrak{g}, \mathfrak{g}) \mid \Phi = \Phi(A, B, \rho), \Phi \in \mathfrak{e}_{6,1}, A, B \in \mathfrak{g}, \rho \in R \}$$

as in I. 1. 2. Then $\mathfrak{e}_{7,1}$ is a simple Lie algebra of type $E_{7(-2s)}$. This $\mathfrak{e}_{7,1}$ is the Lie algebra of a Lie group

$$E_{7(-2s)} = \{ \alpha \in \text{Iso}_R(\mathfrak{g}, \mathfrak{g}) \mid \alpha(\mathfrak{g} \times \mathfrak{g}) = \alpha \mathfrak{g} \times \mathfrak{g}, \{ \alpha \mathfrak{g}, \alpha \mathfrak{g} \} = \{ \mathfrak{g}, \mathfrak{g} \} \}$$

(where $\mathfrak{g} = \{ P \in \mathfrak{g} \mid P \times P = 0, P \neq 0 \}$) which is a connected non-compact simple Lie group of type $E_{7(-2s)}$.

8. Lie algebra $\mathfrak{e}_{8,1}$.

We define a Lie algebra

$$\mathfrak{e}_{8,1} = \mathfrak{e}_{7,1} \oplus \mathfrak{g} \oplus \mathfrak{g} \oplus R \oplus \mathfrak{g} \oplus R$$

as in I.2.

Proposition 9. $\mathfrak{e}_{8,1}$ is a simple Lie algebra of type $E_{8(-24)}$.

Proof. Since the complexification Lie algebra of $\mathfrak{e}_{8,1}$ is \mathfrak{e}_{8}, $\mathfrak{e}_{8,1}$ is a simple Lie algebra of type E_8. A maximal compact subalgebra of $\mathfrak{e}_{8,1}$ is

$$\mathfrak{l} = \{ \theta \in \mathfrak{e}_{8,1} \mid '\theta = \theta \}$$

$$= \{ \theta(A, P, \tilde{P}, 0, s, -s) \in \mathfrak{e}_{8,1} \mid \theta \in \mathfrak{e}_{7,1}, '\theta = \Phi, P \in \mathfrak{g}, s \in \mathfrak{g} \}.$$

Hence the Cartan index of $\mathfrak{e}_{8,1}$ is

$$\dim \mathfrak{e}_{8,1} - 2 \dim \mathfrak{l} = 248 - 2(79 + 56 + 1) = -24,$$

that is, the type of $\mathfrak{e}_{8,1}$ is $E_{8(-24)}$.

9. Manifold \mathbb{X} and group $E_{8,1}$.

We define a subspace of $\mathfrak{e}_{8,1}$ by
\[
\mathcal{X} = \left\{ \begin{array}{l}
\Phi \\
 P \\
 Q \\
 r \\
 s \\
t
\end{array} \right\} \in \mathfrak{e}_{8,1} \\
\left\{ \begin{array}{l}
2t\Phi + Q \times Q = 0 \\
t^3P - trQ + \frac{1}{6}(Q \times Q)Q = 0 \\
st^a + rt^3 - \frac{1}{96}[Q, (Q \times Q)Q] = 0 \\
t > 0
\end{array} \right\}.
\]

Now, the group $E_{8,1}$ is defined to be the group of all automorphisms of the Lie algebra $\mathfrak{e}_{8,1}$ leaving \mathcal{X} invariant:

\[
E_{8,1} = \left\{ \alpha \in \text{Iso}_R(\mathfrak{e}_{8,1}, \mathfrak{e}_{8,1}) \mid \alpha \mathcal{X} = \mathcal{X}, \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.
\]

Proposition 10. \(\mathcal{X} = \{ \exp(\Theta(0, P_1, 0, r_1, s_1, 0) | P_1 \in \mathfrak{g}, r_1, s_1 \in \mathfrak{g} \}.\)

In particular, \mathcal{X} is connected.

Proof. The same as [7] Proposition 27.

Theorem 11. $E_{8,1}$ is a Lie group of type $E_{6(-24)}$.

Proof. The Lie algebra $\mathfrak{e}_{8,1}$ of $E_{8,1}$ is the derivation Lie algebra $\text{Der}(\mathfrak{e}_{8,1})$ (its proof is the same as [7] Proposition 28) which is isomorphic to $\mathfrak{e}_{8,1}$. Hence the type of the group $E_{8,1}$ is $E_{6(-24)}$ from Proposition 9.

10. Subgroups $E_{7,1}$ and $SL(2, \mathbb{R})$ of $E_{8,1}$.

We shall show that the group $E_{8,1}$ contains non-compact subgroups of type E_7 and A_2.

Theorem 12. The group $E_{8,1}$ contains a subgroup

\[
E_{7,1} = \{ \alpha \in E_{8,1} \mid \alpha 1 = 1, \alpha \mathfrak{g} = \mathfrak{g}, \alpha \mathfrak{a} = \mathfrak{a} \}
\]

which is a connected non-compact simple Lie group of type $E_{7(-25)}$.

Proof. The mapping

\[
E_{7(-25)} \ni \beta \mapsto \beta = \begin{pmatrix}
\text{Ad} \beta \\
\beta \\
1 \\
1
\end{pmatrix} \in E_{7,1} \subseteq E_{8,1}
\]

gives an isomorphism between $E_{7(-25)}$ and $E_{7,1}$. Its proof is analogous to [7] Theorem 25 (in [7], in order to prove that $\alpha \in E_{7,1}$ is a digonal form, we used the
properties of the inner product $\langle \, , \rangle$, but it follows only from the condition $\alpha[R_1, R_2]=[\alpha R_1, \alpha R_2])$.

Proposition 13. The group $E_{6,i}$ contains a subgroup

$$SL(2, \mathbb{R}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_1 & c_1 & 0 & 0 & 0 \\ 0 & b_1 & d_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+2bc & -ab & cd \\ 0 & 0 & 0 & -2ac & a^2 & -c^2 \\ 0 & 0 & 0 & 2bd & -b^2 & d^2 \end{bmatrix} \in SL(2, \mathbb{R})$$

which is isomorphic to the special linear group $SL(2, \mathbb{R}) = \{ A \in M(2, \mathbb{R}) \mid \det A = 1 \}$.

We identify these groups $E_7(-25)$ with $E_{7,1}$, $SL(2, \mathbb{R})$ with $SL(2, \mathbb{R})$ under the above correspondences.

11. Connectedness of $E_{6,i}$.

We shall prove that the group $E_{6,i}$ is connected.

Proposition 14. The isotropy subgroups $G_A = \{ \alpha \in E_{6,i} \mid \alpha_1 = 1 \}$ of the group $E_{6,i}$ at $1 \in \mathbb{S}$ is the semi-direct product of groups $\exp(\mathfrak{g})\exp(\mathfrak{r})$ and $E_{7,1}$:

$$G_A = (\exp(\mathfrak{g})\exp(\mathfrak{r}))E_{7,1}, \quad (\exp(\mathfrak{g})\exp(\mathfrak{r})) \cap E_{7,1} = \{1\},$$

where

$$\exp(\mathfrak{g})\exp(\mathfrak{r}) = \{ \exp(\theta(0, 0, Q, 0, 0, t)) \mid Q \in \mathfrak{g}, t \in \mathbb{R} \}.$$

In particular, G_A is connected.

Proof. First, note that $\mathfrak{g} \oplus \mathfrak{r} = \{ Q + t = (0, 0, Q, 0, 0, t) \mid Q \in \mathfrak{g}, t \in \mathbb{R} \}$ is a subalgebra of $\mathfrak{e}_{6,i}$ and $[Q, t] = 0$, so $\exp(\mathfrak{g})\exp(\mathfrak{r})$ is a connected subgroup of $E_{6,i}$ and $\exp(\mathfrak{Q}) = \exp(\theta(0, 0, Q, 0, 0, 0))$, $\exp(t) = \exp(\theta(0, 0, 0, 0, 0, 0))$ commute to each other. Now, let $\alpha \in G_A$ and put

$$\alpha_1 = (\theta, P, Q, r, s, t), \quad \alpha_1 = (\theta, P_1, Q_1, r_1, s_1, t_1).$$

Then, $[1, \mathfrak{g}] = -2\mathfrak{g}$, $[\mathfrak{g}, 1] = 1$ implies $[\alpha_1, 1] = -2\mathfrak{g}$, $[\alpha_1, 1] = \alpha_1$, that is,

$$\langle 0, 0, -P, s, 0, -2r \rangle = \langle 0, 0, 0, 0, 0, -2 \rangle,$$

$$\langle 0, 0, -P_1, s_1, 0, -2r_1 \rangle = \langle \theta, P, Q, r, s, t \rangle$$

respectively. Hence we have
Furthermore $[1, 1] = 21$ implies $[\alpha_1, \alpha_1^T] = 2\alpha_1$, that is,

$$
[(0, 0, Q, 1, 0, t), (\phi_1, -Q, Q_1, -\frac{t}{2}, 1, t_1)]
$$

$$
= (Q \times Q, -2Q, -\phi_1Q - Q_1 - \frac{3}{2}tQ, -t, 2, -\frac{1}{4}(Q, Q_1) - t^2 - 2t).
$$

$$
= 2(\phi_1, -Q, Q_1, -\frac{t}{2}, 1, t).
$$

Hence we have

$$\phi_1 = \frac{1}{2}Q \times Q, \quad Q_1 = -\frac{t}{2}Q - \frac{1}{3}\phi_1Q, \quad t_1 = -\frac{t^2}{4} - \frac{1}{16}(Q, Q_1).
$$

Thus we see that α has the form

$$
\alpha = \begin{pmatrix}
\ast & \ast & \ast & 0 & \frac{1}{2}Q \times Q & 0 \\
\ast & \ast & \ast & 0 & -Q & 0 \\
\ast & \ast & \ast & Q & -\frac{t}{2}Q - \frac{1}{6}(Q \times Q)Q & 0 \\
\ast & \ast & \ast & 1 & -\frac{t}{2} & 0 \\
\ast & \ast & \ast & 0 & 1 & 0 \\
\ast & \ast & \ast & t & -\frac{t^2}{4} + \frac{1}{36}(Q, (Q \times Q)Q) & 1
\end{pmatrix}
$$

On the other hand, $\exp\left(\frac{t}{2}\exp(Q)\exp(\frac{t}{2})\right)$

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{t}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{t}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -Q & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -Q & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{8}Q & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{4}Q & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$
Non-compact simple Lie group $E_{8(-24)}$ of type E_8

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{t}{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{t}{2} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & t & -\frac{t^2}{4} & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2}Q \times Q \\
-\cdot Q \\
-\frac{\cdot t}{2} - \frac{1}{6}(Q \times Q)Q \\
\cdot -\frac{\cdot t}{2} \\
\cdot 1 \\
\cdot \frac{1}{96} (Q, (Q \times Q) Q)
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{1}{2}Q \times Q \\
-\cdot Q \\
-\frac{\cdot t}{2} - \frac{1}{6}(Q \times Q)Q \\
\cdot -\frac{\cdot t}{2} \\
\cdot 1 \\
\cdot \frac{1}{96} (Q, (Q \times Q) Q)
\end{pmatrix}
= \alpha_1,
\]

and

\[
\exp \left(\frac{t}{2} \right) \exp (Q) 1 = \exp \left(\frac{t}{2} \right)(0, 0, Q, 1, 0, 0) = (0, 0, Q, 1, 0, t) = \alpha_1,
\]

\[
\exp \left(\frac{t}{2} \right) \exp (Q) 1 = 1 = \alpha_2.
\]

Therefore $\exp(-Q)\exp \left(-\frac{t}{2} \right)\beta \in E_{7,1}$, hence we have

\[G_2 = (\exp (P) \exp (R))E_{7,1}.\]

Next, for $\beta \in E_{7,1}$, we have

\[\beta(\exp(Q))\beta^{-1} = \exp(\beta Q), \quad \beta(\exp(P))\beta^{-1} = \exp(P).
\]

In fact,

\[
\beta(\exp(Q))\beta^{-1} R = \beta(\exp(Q))\beta^{-1}(\phi_1, P_1, Q_1, r_1, s_1, t_1)
\]

\[= \beta(\exp(Q))(\beta^{-1} \phi_1 \beta, \beta^{-1} P_1, \beta^{-1} Q_1, r_1, s_1, t_1).
\]
\[
\begin{align*}
\beta^{-1} \Phi_1 \beta - Q \times \beta^{-1} P_1 + \frac{1}{2} s_1 Q \times Q \\
\beta^{-1} P_1 - s_1 Q \\
\beta^{-1} Q_1 - \beta^{-1} \Phi_1 \beta Q + r_1 Q + \frac{1}{2} (Q \times \beta^{-1} P_1) Q - \frac{1}{16} (Q, \beta^{-1} P_1) Q - \frac{1}{6} s_1 (Q \times Q) Q \\
r_1 - \frac{1}{8} (Q, \beta^{-1} Q_1) \\
t_1 - \frac{1}{4} (Q, \beta^{-1} Q_1) + \frac{1}{8} (Q, \beta^{-1} \Phi_1 \beta Q) - \frac{1}{24} (Q, (Q \times \beta^{-1} P_1) Q) + \frac{1}{96} s_1 (Q, (Q \times Q) Q)
\end{align*}
\]

\[\exp [\beta Q] R,\]

an similarly \(\beta (\exp (t)) \beta^{-1} = \exp (t) \). This shows that \(\exp (\mathfrak{g}) \exp (\mathfrak{R}) \) is a normal subgroup of \(G_\perp \). Thus we have a split exact sequence

\[1 \to \exp (\mathfrak{g}) \exp (\mathfrak{R}) \to G_\perp \to E_{7,1} \to 1.\]

Hence \(G_\perp \) is the semi-direct product of \(\exp (\mathfrak{g}) \exp (\mathfrak{R}) \) and \(E_{7,1} \).

Theorem 15. The group \(E_{8,1} \) acts on \(\Xi \) transitively and the isotropy subgroup at \(\underline{1} \in \Xi \) of \(E_{8,1} \) is the semi-direct product of subgroups \(\exp (\mathfrak{g}) \exp (\mathfrak{R}) \) and \(E_{7,1} \).

Therefore we have the following homeomorphism

\[E_{8,1}/(\exp (\mathfrak{g}) \exp (\mathfrak{R})) E_{7,1} \simeq \Xi.\]

In particular, the group \(E_{8,1} \) is connected.

Proof is the direct consequence of Propositions 10, 14.

From the above theorem we have

Theorem 16. The group \(E_{8,1} \) is the connected component containing the identity of the automorphism group \(\text{Aut}(\underline{c}_{8,1}) = \{ a \in \text{Iso}_R(\underline{c}_{8,1}, \underline{c}_{8,1}) \mid [aR_1, R_2] = [aR_1, aR_2] \} \).

12. Center of \(E_{8,1} \).
Theorem 17. The center \(z(E_{8,1}) \) of the group \(E_{8,1} \) is trivial : \(z(E_{8,1}) = \{1\} \).

Proof. Let \(\alpha \in z(E_{8,1}) \). From the commutativity with \(\beta \in E_{7,1} \),

\[
\alpha \beta 1 = \alpha 1, \quad \alpha \beta_1 = \alpha 1, \quad \alpha \beta_1 = \alpha 1.
\]

From this we see that \(\alpha \) has the form

\[
\alpha = \begin{bmatrix} \beta & 0 \\ 1 & B \end{bmatrix}, \quad B \in M(3, \mathbb{R}).
\]

Next, from the commutativity with \(A \in SL(2, \mathbb{R}) \),

\[
B \begin{pmatrix} 1+2bc & -ab & cd \\ -2ac & a^2 & -c^2 \\ 2bd & -b^2 & d^2 \end{pmatrix} = \begin{pmatrix} 1+2bc & -ab & cd \\ -2ac & a^2 & -c^2 \\ 2bd & -b^2 & d^2 \end{pmatrix} B
\]

where \(\begin{pmatrix} a & c \\ b & d \end{pmatrix} \in SL(2, \mathbb{R}) \), we see \(B = \begin{pmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{pmatrix}, \ r \neq 0 \). Furthermore, from

\[
[a_1, a_1] = a_1,
\]

we have \(r^2 = r \), hence \(r = 1 \), so \(B = I \). Hence \(\alpha \in E_{7,1} \), moreover \(\alpha \in z(E_{7,1}) \) which is \(\{1, e^{\frac{1}{2}}\} \). And we see easily

\[
\exp(Q) \neq \exp(Q)/t, \quad \text{for} \ Q \in \mathfrak{h}
\]

(see Proposition 14). Therefore \(\alpha = 1 \). Thus we have \(z(E_{8,1}) = \{1\} \).

13. Isomorphism \(E_{8,1} \cong E_{8,1} \).

From Theorems 7, 11, 15, we see that the groups \(E_{8,1} \) and \(E_{8,1} \) are both connected and their Lie algebras have the same type \(E_{8(-24)} \). Therefore there exist central normal subgroups \(N, N_1 \) of the simply connected simple Lie group \(E_{8(-24)} \) such that

\[
E_{8,1} \cong E_{8(-24)}/N, \quad E_{8,1} \cong E_{8(-24)}/N_1.
\]

From Theorem 7, we know that the center of the group \(E_{8(-24)} \) is the cyclic group of order 2 : \(z(E_{8(-24)}) = \mathbb{Z}_2 \). And the centers of \(E_{8,1}, E_{8,1} \), are both trivial (Theorems 8, 17). Hence it must be \(N = N_1 = \mathbb{Z}_2 \). Therefore the groups \(E_{8,1} \) and \(E_{8,1} \) are isomorphic :

\[
E_{8,1} \cong E_{8,1}.
\]
References

