Non-compact simple Lie group $E_{7(-25)}$ of type E_7

by TAKAO IMAI and ICHIRO YOKOTA

Department of Mathematics, Faculty of Science,
Shinshu University
(Received Feb. 28, 1980)

It is known that there exist four simple Lie groups of type E_7 up to local isomorphism, one of them is compact and the others are non-compact. As for the compact case, it is known that the following group

$$E_7 = \left\{ \alpha \in \text{Iso}(\mathbb{R}^7, \mathbb{R}^7) \mid \alpha \mathbb{M} = \mathbb{M}, \{ \alpha_1, \alpha_1 \} = 1, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \right\}$$

is a simply connected compact simple Lie group of type E_7 [4]. As for one of non-compact cases, H. Freudenthal showed in [2] that the Lie algebra of the group

$$E_{7,1} = \{ \alpha \in \text{Iso}(\mathbb{R}, \mathbb{R}) \mid \alpha \mathbb{M} = \mathbb{M}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}$$

is a simple Lie algebra of type E_7, where \mathbb{M} is the Freudenthal's manifold in $\mathbb{R} = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, \mathbb{M}^c, \mathbb{P}^c the complexification of \mathbb{M}, \mathbb{P} respectively and $\{ P, Q \}$, $\langle P, Q \rangle$ inner products in \mathbb{P} or \mathbb{P}^c. In this paper, we shall investigate the structures of this group $E_{7,1}$. Our results are as follows. The group $E_{7,1}$ is a connected non-compact simple Lie group of type E_7 and its center is the cyclic group of order 2:

$$\mathbb{Z}(E_{7,1}) = \{ 1, -1 \}.$$

The polar decomposition of the group $E_{7,1}$ is given by

$$E_{7,1} \simeq (U(1) \times E_6)/\mathbb{Z}_3 \times \mathbb{R}^{24}.$$

In order to give the above decomposition, we construct another group

$$E_{7,t} = \left\{ \alpha \in \text{Iso}(\mathbb{P}^c, \mathbb{P}^c) \mid \alpha \mathbb{M}^c = \mathbb{M}^c, \{ \alpha_1, \alpha_1 \} = 1, \langle \alpha P, \alpha Q \rangle_t = \langle P, Q \rangle_t \right\}$$

(\text{where} $\langle P, Q \rangle_t$ \text{is another inner product in \mathbb{P}^c} \text{which is isomorphic to} $E_{7,1}$ \text{and find the subgroup $(U(1) \times E_6)/\mathbb{Z}_3$ explicitly in this group $E_{7,t}$}.)
1. Preliminaries.

Let \mathcal{C} denote the Cayley algebra over the field of real numbers \mathbb{R} and \mathfrak{A} the Jordan algebra consisting of all 3×3 Hermitian matrices in \mathcal{C} with respect to the multiplication $X \circ Y = \frac{1}{2} (XY + YX)$. In \mathfrak{A}, the positive definite symmetric inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\det X$ are defined respectively by

\[
(X, Y) = \text{tr}(X \circ Y),
\]
\[
X \times Y = \frac{1}{2} (2X \circ Y - \text{tr}(X) Y - \text{tr}(Y) X + (\text{tr}(X) \text{tr}(Y) - (X, Y)) E),
\]
\[
(X, Y, Z) = (X \times Y, Z) = (X, Y \times Z),
\]
\[
\det X = \frac{1}{3} (X, X, X)
\]

where E is the 3×3 unit matrix.

Now we define a 56 dimensional vector space \mathfrak{B} by

\[
\mathfrak{B} = \mathfrak{A} \oplus \mathfrak{A} \oplus \mathbb{R} \oplus \mathbb{R}.
\]

An element $P = \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix}$ of \mathfrak{B} is often denoted by $P = X + Y + \xi + \eta$ briefly. We define a bilinear mapping $\times : \mathfrak{B} \times \mathfrak{B} \rightarrow \mathfrak{A} \oplus \mathfrak{A} \oplus \mathbb{R}$ by

\[
P \times Q = \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} \times \begin{pmatrix} Z \\ W \\ \zeta \\ \omega \end{pmatrix} = \begin{pmatrix} 2X \times Z - \eta W - \omega Y \\ 2Y \times W - \xi Z - \zeta X \\ (X, W) + (Y, Z) + (X, Y) - 3(\xi \omega + \eta \zeta) \end{pmatrix}
\]

and a space \mathfrak{M} by

\[
\mathfrak{M} = \{ L \in \mathfrak{B} \mid L \times L = 0, \ L \neq 0 \}
\]

\[
\mathfrak{M} = \left\{ \begin{pmatrix} M \\ N \\ \mu \\ \nu \end{pmatrix} \in \mathfrak{B} \mid \begin{array}{l}
M \times M = \nu N \\
N \times N = \mu M \\
(M, N) = 3 \mu \nu
\end{array} \right\}.
\]

For example, the following elements of \mathfrak{B}
Non-compact simple Lie group $E_{7(-26)}$ of type E_7}

\[
\begin{pmatrix}
X \\
\frac{1}{\eta}(X \times X) \\
\frac{1}{\xi^2}\det X
\end{pmatrix}, \quad
\begin{pmatrix}
\frac{1}{\xi}(Y \times Y) \\
Y \\
\frac{1}{\xi^2}\det Y
\end{pmatrix}, \quad 1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

where $\eta \neq 0$, $\xi \neq 0$, belong to \mathbb{R}. Finally in \mathbb{R} we define the skew-symmetric inner product (P, Q) by

\[
(P, Q) = (X, W) - (Z, Y) + \xi \omega - \zeta \eta
\]

for $P = X + \hat{Y} + \xi + i\eta$, $Q = Z + \hat{W} + \zeta + i\omega \in \mathbb{R}$.

2. Group $E_{7,i}$ and its Lie algebra $\mathfrak{e}_{7,i}$.

The group $E_{7,i}$ is defined to be the group of linear isomorphisms of \mathbb{R} leaving the space \mathbb{R}^8 and the skew-symmetric inner product (P, Q) invariant:

\[
E_{7,i} = \{ \alpha \in \text{IsoR}(\mathbb{R}, \mathbb{R}) | \alpha \mathbb{R} = \mathbb{R}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}.
\]

We define a subgroup $E_{6,i}$ of $E_{7,i}$ by

\[
E_{6,i} = \{ \alpha \in E_{7,i} | \alpha 1 = 1, \alpha i = i \}.
\]

Proposition 1. The group $E_{6,i}$ is a simply connected non-compact simple Lie group of type $E_{6(-26)}$.

Proof. We define a group $E_{6(-26)}$ by

\[
E_{6(-26)} = \{ \beta \in \text{IsoR}(\mathbb{R}, \mathbb{R}) | \det \beta X = \det X \}
= \{ \beta \in \text{IsoR}(\mathbb{R}, \mathbb{R}) | \beta X \times \beta Y = \beta^{-1}(X \times Y) \}
\]

where $^t\beta$ is the transpose of β with respect to the inner product $(X, Y) : (\beta X, Y) = (X, ^t\beta Y)$. Then $E_{6(-26)}$ is a simply connected simple Lie group of type E_6 [1] and moreover of type $E_{6(-26)}$, since its polar decomposition is given by

\[
E_{6(-26)} \cong F_4 \times R^{26}
\]

where F_4 is a simply connected compact simple Lie group of type F_4 [1]. We shall show that the group $E_{6,i}$ is isomorphic to the group $E_{6(-26)}$. It is easy to verify that, for $\beta \in E_{6(-26)}$, the linear transformation α of \mathbb{R} defined by

\[
\alpha = \begin{pmatrix}
\beta & 0 & 0 & 0 \\
0 & ^t\beta^{-1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
belongs to $E_{7,i}$. Conversely suppose $\alpha \in E_{7,i}$ satisfies $\alpha \hat{1} = 1$ and $\alpha \hat{1} = 1$. Then from the conditions $\{\alpha X, \alpha \hat{1}\} = \{\alpha X, \alpha \hat{1}\} = 0$ and $\{\alpha \hat{X}, \alpha \hat{1}\} = \{\alpha \hat{X}, \alpha \hat{1}\} = 0$, we see that α has the form

$$\alpha = \begin{pmatrix}
\beta & \varepsilon & 0 & 0 \\
\delta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

where β, γ, δ, ε are linear transformations of \mathbb{G}. Since

$$\alpha \left(\begin{array}{c}
X \\
\frac{1}{\eta} (X \times X) \\
\frac{1}{\eta^2} \text{det}X \\
\eta
\end{array} \right) = \left(\begin{array}{c}
\beta X + \frac{1}{\eta} \varepsilon (X \times X) \\
\delta X + \frac{1}{\eta} \gamma (X \times X) \\
\frac{1}{\eta^2} \text{det}X \\
\eta
\end{array} \right) \in \mathbb{G},$$

we have

$$(\beta X + \frac{1}{\eta} \varepsilon (X \times X)) \times (\beta X + \frac{1}{\eta} \varepsilon (X \times X)) = \eta (\delta X + \frac{1}{\eta} \gamma (X \times X))$$

for all $0 \neq \eta \in \mathbb{R}$. Hence we have $\delta X = 0$ for all $X \in \mathbb{G}$ as the coefficient of η, therefore $\delta = 0$. Similarly $\varepsilon = 0$. Thus

$$\alpha = \begin{pmatrix}
\beta & 0 & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

Again the condition $\alpha (X + (X \times X) + \text{det}X + \hat{1}) = \beta X + (\gamma (X \times X)) + \text{det}X + \hat{1} \in \mathbb{G}$ implies

$$\begin{cases}
\beta X \times \beta X = \gamma (X \times X), \\
(\beta X, \gamma (X \times X)) = 3 \text{det}X.
\end{cases}$$

Hence $\text{det} \beta X = \frac{1}{3} (\beta X, \beta X \times \beta X) = \frac{1}{3} (\beta X, \gamma (X \times X)) = \text{det}X$, therefore $\beta \in E_{6(-26)}$ and $\gamma = \hat{\beta}^{-1} \in E_{6(-26)}$. Thus Proposition 1 is proved.

The group $E_{7,i}$ contains also a subgroup
Non-compact simple Lie group $E_{7(-26)}$ of type E_7

\[R^* = \begin{cases} \begin{pmatrix} r^{-1} & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r^2 \end{pmatrix} & \text{if } r \neq 0 \in \mathbb{R} \\ \end{cases} \]

(where 1 denotes the identity mapping of \mathbb{S}) which is isomorphic to the group $R^* = \{ r \in \mathbb{R} | r \neq 0 \}$.

From now on, we identify these groups $E_{6(-26)}$ and $E_{6,1}$, R^* and R^* under the above correspondences.

We consider the Lie algebra $\mathfrak{e}_{7,1}$ of the group $E_{7,1}$

\[\mathfrak{e}_{7,1} = \left\{ \phi \in \text{Hom}_\mathbb{R}(\mathbb{S}, \mathbb{R}) \mid \phi L \times L = 0 \text{ for } L \in \mathbb{R} \right\} \cap \left\{ \phi P, Q \mid \{ P, Q \} = 0 \text{ for } P, Q \in \mathbb{S} \right\} \]

H. Freudenthal proved in [2] the following

Theorem 2. Any element ϕ of the Lie algebra $\mathfrak{e}_{7,1}$ of the group $E_{7,1}$ is represented by the form

\[
\phi = \phi(\phi, A, B, \rho) = \begin{pmatrix}
\phi - \frac{1}{3} \rho & 2B & 0 & A \\
2A & \phi' + \frac{1}{3} \rho & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{pmatrix}
\]

where $\phi \in \mathfrak{e}_{6,1} = \{ \phi \in \text{Hom}_\mathbb{R}(\mathbb{S}, \mathbb{S}) \mid \langle \phi X, X, X \rangle = 0 \}$ (which is the Lie algebra of the group $E_{6,1}$), ϕ' is the skew-transpose of ϕ with respect to the inner product $\langle X, Y \rangle : \langle \phi X, Y \rangle + \langle X, \phi' Y \rangle = 0$, $A, B \in \mathbb{S}$, $\rho \in \mathbb{R}$ and the action of ϕ on \mathbb{S} is defined by

\[
\phi \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \phi X - \frac{1}{3} \rho X + 2B \times Y + \gamma A \\ 2A \times X + \phi' Y + \frac{1}{3} \rho Y + \xi B \\ (A, Y) + \rho \xi \\ (B, X) - \rho \eta \end{pmatrix}
\]

And the type of the Lie algebra $\mathfrak{e}_{7,1}$ is E_7.

We shall determine the Cartan index of the group $E_{7,1}$. For this purpose we use the following

Lemma 3 ([3], p.345). Let G be an algebraic subgroup of the general linear group $GL(n, \mathbb{R})$ such that the condition $A \in G$ implies $^tA \in G$. Then G is homeomorphic to the topological product of the group $G \cap O(n)$ (which is a maximal compact
subgroup of \(G \) and a Euclidean space \(\mathbb{R}^d \):

\[
G \cong (G \cap O(n)) \times \mathbb{R}^d
\]

where \(O(n) \) is the orthogonal subgroup of \(GL(n, \mathbb{R}) \). In particular, the Cartan index of \(G \) is \(\dim G - 2 \dim (G \cap O(n)) \).

Theorem 4. The group \(E_{7,1} \) is a simple Lie group of type \(E_7(-27) \).

Proof. We define in \(\mathfrak{g} \) a positive definite symmetric inner product \((P, Q) \) by

\[
(P, Q) = (X, Z) + (Y, W) + \xi + \gamma
\]

for \(P = X + Y + \xi + \eta, \ Q = Z + W + \zeta + \omega \in \mathfrak{g} \) and denote the transpose of \(\Phi \) with respect to this inner product \((P, Q) \) by \(^t\Phi : (\Phi P, Q) = (P, ^t\Phi Q). \) Then for

\[
\Phi = \begin{pmatrix}
\phi - \frac{1}{3}\rho^1 & 2B & 0 & A \\
2A & \phi' + \frac{1}{3}\rho^1 & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{pmatrix} \in \mathfrak{e}_{7,1},
\]

we see easily that

\[
^t\Phi = \begin{pmatrix}
-\phi' - \frac{1}{3}\rho^1 & 2A & 0 & B \\
2B & -\phi + \frac{1}{3}\rho^1 & A & 0 \\
0 & B & \rho & 0 \\
A & 0 & 0 & -\rho
\end{pmatrix},
\]

therefore \(^t\Phi \) also belongs to \(\mathfrak{e}_{7,1} \). Since \(E_{7,1} \) is an algebraic subgroup of the general linear group \(\text{Iso}_\mathbb{R}(\mathfrak{g}, \mathfrak{g}) = GL(56, \mathbb{R}) \), from Lemma 3, the Lie algebra \(\mathfrak{e}_{7,1} \cap o(\mathfrak{g}) \) (where \(o(\mathfrak{g}) = o(56) = \{ \Phi \in \text{Hom}_\mathbb{R}(\mathfrak{g}, \mathfrak{g}) | \Phi + ^t\Phi = 0 \} \)) of the group \(E_{7,1} \cap O(\mathfrak{g}) \) (where \(O(\mathfrak{g}) = O(56) = \{ \alpha \in \text{Iso}_\mathbb{R}(\mathfrak{g}, \mathfrak{g}) | (\alpha P, \alpha Q) = (P, Q) \} \)) is a maximal compact Lie subalgebra of \(\mathfrak{e}_{7,1} \). Now if \(\Phi \in \mathfrak{e}_{7,1} \) satisfies \(\Phi + ^t\Phi = 0 \), then

\[
\Phi = \begin{pmatrix}
\delta & -2A & 0 & A \\
2A & \delta & -A & 0 \\
0 & A & 0 & 0 \\
-A & 0 & 0 & 0
\end{pmatrix},
\]

where \(\delta \in \mathfrak{f}_4 = \{ \delta \in \mathfrak{e}_{7,1} | \delta' = \delta \} \) (which is the Lie algebra of \(F_4 \)). Therefore \(\dim (\mathfrak{e}_{7,1} \cap o(\mathfrak{g})) = \dim \mathfrak{f}_4 + \dim \mathfrak{g}_3 = 52 + 27 = 79. \) Hence

The Cartan index of \(\mathfrak{e}_{7,1} = \dim \mathfrak{e}_{7,1} - 2 \dim (\mathfrak{e}_{7,1} \cap o(\mathfrak{g})) \)
Non-compact simple Lie group $E_{7(-25)}$ of type E_7

$$= 133 - 2 \times 79 = -25.$$

Thus we see that the type of the Lie algebra $e_{7,1}$ is $E_{7(-25)}$.

3. Connectedness of $E_{7,1}$.

We shall prove that the group $E_{7,1}$ is connected. We denote, for a while, the connected component of $E_{7,1}$ containing the identity 1 by $(E_{7,1})_0$.

Lemma 5. For $A \in \mathfrak{g}$, the linear transformation $\exp_1(A)$ of \mathfrak{g} defined by

$$\exp_1(A) = \begin{pmatrix} 1 & 0 & 0 & A \\ 2A & 1 & 0 & A \times A \\ A \times A & A & 1 & \det A \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(the action of $\exp_1(A)$ on \mathfrak{g} is as similar to that of Theorem 2) belongs to $(E_{7,1})_0$.

Similarly for $B \in \mathfrak{g}$ we can define

$$\exp_2(B) = \begin{pmatrix} 1 & 2B & B \times B & 0 \\ 0 & 1 & B & 0 \\ 0 & 0 & 1 & 0 \\ B & B \times B & \det B & 1 \end{pmatrix} \in (E_{7,1})_0.$$

Proof.

For $\Phi_1(A) = \begin{pmatrix} 0 & 0 & 0 & A \\ 2A & 0 & 0 & 0 \\ 0 & A & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathfrak{e}_{7,1}$, we have $\exp_1(A) = \exp \Phi_1(A)$, hence $\exp_1(A) \in (E_{7,1})_0$. Similarly $\exp_2(B) \in (E_{7,1})_0$.

Proposition 6. The subgroup $G_1 = \{ \alpha \in E_{7,1} \mid \alpha^1 = 1 \}$ is the semi-direct product of the group $\exp(\mathfrak{g}) = \{ \exp(A) \mid A \in \mathfrak{g} \}$ (which is an abelian group) and the group $E_{6,1}$:

$$G_1 = \exp(\mathfrak{g})E_{6,1}, \quad \exp(\mathfrak{g}) \cap E_{6,1} = \{1\}.$$

Therefore G_1 is homeomorphic to

$$G_1 \simeq E_{6,1} \times \mathbb{R}^{27} \simeq F_4 \times \mathbb{R}^{33}.$$

In particular, the group G_1 is simply connected.

Proof. Let $\alpha \in G$ and put $\alpha \hat{1} = M + \hat{N} + \mu + \hat{\nu}$. Then the conditions $\{\alpha^1, \alpha \hat{1}\} = 1$ and $\alpha \hat{1} \in \mathfrak{g}_2$ imply $\nu = 1$ and $N = M \times M$, $\mu = \det M$ respectively. Therefore we have

$$\exp_1(M) \hat{1} = M + (M \times M) + \det M + \hat{1} = \alpha \hat{1}, \quad \exp_1(M)1 = 1 = \alpha 1.$$
8 TAKAO IMAI, ICHIRO YOKOTA

so \((\exp_1(M))^{-1} \in E_{6,1}, \) i.e.

\[
\alpha \in \exp_1(\mathfrak{g})E_{6,1},
\]

and conversely. Since the Lie subalgebra \(\{ \Phi_1(A) = \Phi(0, A, 0, 0) \in \mathfrak{e}_{6,1} | A \in \mathfrak{g} \}\) of \(\mathfrak{e}_{6,1}\) is abelian, the group \(\exp_1(\mathfrak{g})\) is also abelian. Moreover \(\exp_1(\mathfrak{g})\) is a normal subgroup of \(G_1\), because it holds that

\[
\beta \exp_1(A) \beta^{-1} = \exp_1(\beta A) \quad \text{for } \beta \in E_{6,1}, A \in \mathfrak{g}.
\]

Therefore we have the following split exact sequence

\[
1 \longrightarrow \exp_1(\mathfrak{g}) \longrightarrow G_1 \longrightarrow E_{6,1} \longrightarrow 1
\]

Thus we see that \(G_1\) is the semi-direct product of \(\exp_1(\mathfrak{g})\) and \(E_{6,1}\).

Theorem 7. The group \(E_{7,1}\) acts transitively on the manifold \(\mathfrak{M}\) (which is connected) and the isotropy subgroup \(G_1\) of \(E_{7,1}\) at \(1 \in \mathfrak{M}\) is \(\exp_1(\mathfrak{g})E_{6,1}\) (Proposition 6). Therefore the homogeneous space \(E_{7,1}/\exp_1(\mathfrak{g})E_{6,1}\) is homeomorphic to \(\mathfrak{M}\):

\[
E_{7,1}/\exp_1(\mathfrak{g})E_{6,1} \simeq \mathfrak{M}.
\]

In particular, the group \(E_{7,1}\) is connected.

Proof. Obviously the group \(E_{7,1}\) acts on \(\mathfrak{M}\). We shall prove that the group \((E_{7,1})_0\) acts transitively on \(\mathfrak{M}\). Since

\[
\exp_1(-E) \exp_2(E) = I, \quad \exp_1(E) \exp_2(-E) = -I, \quad \exp_2(-E) \exp_1(E) \exp_2(-E) = -1,
\]

it is sufficient to show that any element \(L \in \mathfrak{M}\) can be transformed in either of 1, -1, I, -I. Let \(L = M + N + \mu + \nu \in \mathfrak{M}\). First assume \(\mu > 0\). Then \(M = \frac{1}{\mu} (N \times N)\), \(\nu = \frac{1}{\mu^3} \det N\). Choose \(0 < r \in R\) such that \(r^2 = \mu\), then for

\[
\begin{pmatrix}
 r^{-1} & 0 & 0 & 0 \\
 0 & r & 0 & 0 \\
 0 & 0 & r^3 & 0 \\
 0 & 0 & 0 & r^{-3}
\end{pmatrix} \in (E_{7,1})_0
\]

we have \(r1 = \mu\), and hence

\[
\exp_2\left(\frac{N}{\mu}\right) r1 = \mu \left(\frac{N}{\mu} \times \frac{N}{\mu}\right) + \mu \left(\frac{N}{\mu}\right) + \mu \left(\frac{\det N}{\mu}\right) = \frac{1}{\mu} (N \times N) + N + \mu + \frac{1}{\mu^3} (\det N) = L.
\]

If \(\mu < 0\), \(L\) can be transformed in \(-1\). Similarly in the case \(\nu \neq 0\) the statement is also valid. Next we consider the case \(L = M + N \in \mathfrak{M}\), \(N \neq 0\). Then \(M \times M = N\)
\[\times N = 0, \quad \det M = 0, \quad (N, N) \neq 0 \] and so
\[\exp(\mathbf{N}) = e^* + e^* (N, N) + e^* . \]

So we can reduce to the first case \(\mu \neq 0 \). In the case of \(M \neq 0 \), the statement is also valid. Thus the transitivity of \((E_{7,1})\) on \(\mathcal{M} \) is proved. Therefore we have \(\mathcal{M} = (E_{7,1})_{p1} \), hence \(\mathcal{M} \) is connected. Since the group \(E_{7,1} \) acts transitively on \(\mathcal{M} \) and the isotropy subgroup of \(E_{7,1} \) is \(\exp(\mathfrak{g})E_{6,1} \), we have the following homeomorphism
\[E_{7,1}/\exp(\mathfrak{g})E_{6,1} \cong \mathcal{M} . \]

Since \(\exp(\mathfrak{g})E_{6,1} \) is connected, \(E_{7,1} \) is also connected. Thus the proof of Theorem 7 is completed.

4. Center \(z(E_{7,1}) \) of \(E_{7,1} \).

Theorem 8. The center \(z(E_{7,1}) \) of the group \(E_{7,1} \) is isomorphic to the cyclic group \(\mathbb{Z}_2 \) of order 2:
\[z(E_{7,1}) = \{1, -1\} \cong \mathbb{Z}_2 . \]

Proof. Let \(\alpha \in z(E_{7,1}) \). From the commutativity with \(\beta \in E_{6,1} \subset E_{7,1} \), we have
\[\beta \alpha = \alpha \beta = \alpha \beta = \beta \alpha . \]
If we denote \(\alpha \beta = M + N + \mu + \nu, \) then \(\beta M + (\beta^{-1} N) + \mu + \nu = M + N + \mu + \nu, \) hence
\[\beta M = M, \quad \beta^{-1} N = N \quad \text{for all } \beta \in E_{6,1} . \]

Therefore \(M = N = 0, \) so \(\alpha \beta = \mu + \nu, \) where \(\mu \nu = 0 \) (since \(\alpha \beta \in \mathcal{M} \)). Suppose that \(\mu = 0, \) i.e. \(\alpha \beta = \nu \neq 0, \) then from the commutativity with
\[r = \begin{pmatrix} r^{-1} & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & r^3 & 0 \\ 0 & 0 & 0 & r^{-3} & \end{pmatrix} \in \mathbb{R}^* \subset E_{7,1} , \]
we have
\[(r^{-3} \nu)^* = r \nu = r \alpha \beta = a r \beta = a r^3 = (r^3 \nu)^* \quad \text{for all } r \in \mathbb{R}^* . \]

This is contradiction. Hence \(\alpha \beta = \mu. \) Similarly \(\alpha \beta = \lambda. \) The condition \(\{ \alpha \beta, \alpha \beta \} = 1 \) implies \(\mu \lambda = 1, \) hence
\[\alpha \beta = \mu, \quad \alpha \beta = (\mu^{-1}) \cdot . \]

Next note that
belongs to $E_{7,i}$. Then the commutativity condition $t'\alpha = \alpha t'$ implies

$$\mu = t'\mu = t'\alpha 1 = \alpha t' 1 = \alpha 1 = (\mu^{-1}),$$

hence $\mu = \mu^{-1}$, i.e. $\mu = \pm 1$. In the case of $\mu = 1$, $\alpha \in E_{8,i}$ so $\alpha \in z(E_{8,i}) = \{1\}$ [5] i.e. $\alpha = 1$. In the case of $\mu = -1$, $-\alpha \in z(E_{8,i}) = \{1\}$, i.e. $\alpha = -1$. Thus we see that $z(E_{7,i}) = \{1, -1\}$.

5. Group $E_{7,i}$ and its Lie algebra $e_{7,i}$.

We construct another simple Lie group of type $E_{7(-25)}$. Let C denote the field of complex numbers and \mathbb{C} the complexification of \mathfrak{g}. In \mathbb{C} also, the inner product (X, Y), crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\det X$ are defined as similar in \mathfrak{g}. Let \mathfrak{g}^C be also the complexification of \mathfrak{g}:

$$\mathfrak{g}^C = \mathfrak{g}^C \oplus \mathfrak{g}^C \oplus C \oplus C.$$

We define a mapping $\times : \mathfrak{g}^C \times \mathfrak{g}^C \rightarrow \mathfrak{g}^C \oplus \mathfrak{g}^C \oplus C \oplus C$ as similar as the case \mathfrak{g} and a space \mathfrak{g}^C by

$$\mathfrak{g}^C = \{ L \in \mathfrak{g}^C \mid L \times L = 0, \ L \neq 0 \}.$$

Finally in \mathfrak{g}^C, \mathfrak{g}^C, positive definite Hermitian inner products $<X, Y>$, $<P, Q>$ and the inner product $<P, Q>$, the skew-symmetric inner product (P, Q) are defined respectively by

$$<X, Y> = (\tau X, Y) = (X, Y),$$

$$<P, Q> = <X, Z> + <Y, W> + \bar{\zeta} + \bar{\eta} \omega,$$

$$<P, Q> = <X, Z> - <Y, W> + \bar{\zeta} - \bar{\eta} \omega,$$

$$\{ P, Q \} = (X, W) - (Z, Y) + \bar{\xi} \omega - \bar{\zeta} \eta,$$

where $\tau : \mathfrak{g}^C \rightarrow \mathfrak{g}^C$ is the complex conjugate (τX is also denoted by \bar{X}) and $P = X + Y + \xi + \eta$, $Q = Z + W + \xi + \omega \in \mathfrak{g}^C$.

Now the group $E_{7,i}$ is defined to be the group of linear isomorphisms of \mathfrak{g}^C leaving the space \mathfrak{g}^C, some skew–symmetric inner product (P, Q) and the inner product $<P, Q>$ invariant:

$$E_{7,i} = \left\{ \alpha \in \text{Iso}(\mathfrak{g}^C, \mathfrak{g}^C) \mid \alpha \mathfrak{g}^C = \mathfrak{g}^C, \{ \alpha 1, \alpha \hat{1} \} = 1 \right\}.$$
Non-compact simple Lie group $E_{7(-20)}$ of type E_7

We define a subgroup E_6 of $E_{7,t}$ by

$$E_6 = \{ \alpha \in E_{7,t} \mid \alpha 1 = 1, \alpha i = i \}. $$

Proposition 9. The group E_6 is a simply connected compact simple Lie group of type E_6 and isomorphic to the group $E_6(-7s) = \{ \beta \in \text{Isoc}(\mathcal{G}, \mathcal{G}) \mid \text{det} \beta X = \text{det} X, \quad \langle \beta X, \beta Y \rangle = \langle X, Y \rangle \}

(see [7]) by the correspondence

$$E_{6(-7s)} \ni \beta \rightarrow \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \tau \beta \tau & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in E_{7,t}.$$

Proof. It is seen by the analogous proof of Proposition 1 (or see [4] Proposition 2).

The group $E_{7,t}$ contains also a subgroup

$$U(1) = \left\{ \theta = \begin{pmatrix} \theta^{-1} & 0 & 0 \\ 0 & \theta & 0 \\ 0 & 0 & \theta^{-1} \\ 0 & 0 & 0 \end{pmatrix} \mid \theta \in \mathbb{C}, \quad |\theta| = 1 \right\}$$

which is isomorphic to the unitary group $U(1) = \{ \theta \in \mathbb{C} \mid |\theta| = 1 \}.$

From now on, we identify these group $E_{6(-7s)}$ and $E_6,$ $U(1)$ and $U(1)$ under the above correspondences.

We consider the Lie algebra $\mathfrak{e}_{7,t}$ of the group $E_{7,t}:$

$$\mathfrak{e}_{7,t} = \left\{ \Phi \in \text{Hom}_c(\mathfrak{g}^c, \mathfrak{g}^c) \right\}
\begin{array}{c}
\Phi L \times L = 0 \quad \text{for} \quad L \in \mathfrak{g}^c \\
\{ \Phi_1, \; \Phi_2 \} + \{ 1, \; \Phi \} = 0 \\
\langle \Phi P, \; Q \rangle + \langle P, \; \Phi Q \rangle = 0 \quad \text{for} \quad P, \; Q \in \mathfrak{g}^c \end{array}.$$

Theorem 10. Any element Φ of the Lie algebra $\mathfrak{e}_{7,t}$ is represented by the form

$$\phi = \begin{pmatrix} \phi - \frac{1}{3} \rho 1 & 2A & 0 & \bar{A} \\ 2 \bar{A} & \tau \phi \tau + \frac{1}{3} \rho 1 & A & 0 \\ 0 & \bar{A} & \rho & 0 \\ A & 0 & 0 & -\rho \end{pmatrix}.$$
where \(\phi \in \mathfrak{e} = \{ \phi \in \text{Hom}_C(\mathfrak{g}, \mathfrak{g}) \mid \langle \phi X, X, X \rangle = 0, \langle \phi X, Y \rangle + \langle X, \phi Y \rangle = 0 \} \)
which is the Lie algebra of the group \(E_6 \), \(A \in \mathfrak{g}, \rho \in C \) such that \(\rho + \overline{\rho} = 0 \) and
the action of \(\Phi \) on \(\mathfrak{g} \) is defined by

\[
\phi \left(\begin{array}{c} X \\ Y \\ \xi \\ \eta \\ \tau \\ \gamma \\ \zeta \\ A \\ Y \\ X \end{array} \right) = \left(\begin{array}{c} \phi X - \frac{1}{3} \rho X + 2A \tau Y + 2X \eta \xi + 2A \xi A \\ 2A \tau X + \tau \phi \xi Y + \frac{1}{3} \rho Y + \xi A \\ \xi A, Y + \rho \xi \\ (A, X) - \rho \eta \\ \end{array} \right).
\]

In particular, the type of the Lie group \(E_7 \), is \(E_7 \). [2]

Proof. It is obtained by the analogous argument as Theorem 3 of [4].

6. Involutive automorphism \(\iota \) and subgroup \((U(1) \times E_6) / \mathbb{Z}_3 \).

We define an involutive linear isomorphism \(\iota \) of \(\mathfrak{g} \) by

\[
\iota = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \end{pmatrix}.
\]

Then two inner products \(<P, Q>, <P, Q>^\iota \) in \(\mathfrak{g} \) are combined with relations

\[
<P, Q>^\iota = <\iota P, Q> = <P, \iota Q>, \quad <P, Q> = <\iota P, Q>^\iota = <P, \iota Q>^\iota.
\]

The following Lemma is easily verified.

Lemma 11. For \(\alpha \in E_{7,t} \), we have \(\iota \alpha \in E_{7,t} \).

Therefore we can define an automorphism \(\iota : E_{7,t} \longrightarrow E_{7,t} \) by

\[
\alpha \iota = \iota \alpha \quad \alpha \in E_{7,t}.
\]

Proposition 12. The subgroup \(\{ \alpha \in E_{7,t} \mid \alpha \iota = \alpha \} \) of the group \(E_{7,t} \) is isomorphic to the group \((U(1) \times E_6) / \mathbb{Z}_3 \):

\[
\{ \alpha \in E_{7,t} \mid \alpha \iota = \alpha \} \cong (U(1) \times E_6) / \mathbb{Z}_3
\]

where \(\mathbb{Z}_3 = \{ (1, 1), (\omega, \omega^1), (\omega^2, \omega^3) \} \), \(\omega \in C, \omega^3 = 1, \omega^4 = 1 \) and

\[
\omega = \begin{pmatrix} \omega^{-1} & 0 & 0 & 0 \\
0 & \omega & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix} \in U(1), \quad \omega_1 = \begin{pmatrix} \omega & 0 & 0 & 0 \\
0 & \omega^{-1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix} \in E_6.
\]
Non-compact simple Lie group $E_{7(-25)}$ of type E_7

Proof. We define a mapping $\psi : U(1) \times E_{7(-25)} \rightarrow \{ \alpha \in E_{7}, \ alf = \alpha \}$ by

$$
\psi(\theta, \beta) = \begin{pmatrix}
\theta^{-1} & 0 & 0 & 0 \\
0 & \theta I & 0 & 0 \\
0 & 0 & \theta I & 0 \\
0 & 0 & 0 & \theta^{-3}
\end{pmatrix}
\begin{pmatrix}
\beta & 0 & 0 & 0 \\
0 & \beta \tau & 0 & 0 \\
0 & 0 & \beta \tau & 0 \\
0 & 0 & 0 & \beta \tau^{-1}
\end{pmatrix}
= \beta \theta.
$$

Then obviously ψ is a homomorphism. We shall prove that ψ is onto. If $\alpha \in E_{7}$, satisfies $\alpha \ell = \alpha$, then α has the form

$$
\alpha = \begin{pmatrix}
\beta & 0 & M & 0 \\
0 & \tau & 0 & N \\
a & 0 & \mu & 0 \\
b & 0 & \nu & 0
\end{pmatrix}
$$

where β, τ are linear transformations of \(C \), a, b linear functionals of \(C \), $M, N \in C$ and $\mu, \nu \in C$. The conditions $a \ell, a \in \mathfrak{g} \mathfrak{o}$ imply

$$
\mu M = 0, \quad \nu N = 0
$$

respectively. We shall show that $M = N = 0$. Assume $M \neq 0$, then $\mu = 0$, so α is not identically 0. And then from $\{ a \ell, a \} = 1$, we have

$$
(M, N) = 1,
$$

hence $N \neq 0$, so $\nu = 0$. Furthermore the condition

$$
\begin{pmatrix}
X \\
\frac{1}{\eta}(X \times X) \\
\frac{1}{\eta^2}\det X \\
\eta
\end{pmatrix}
= \begin{pmatrix}
\beta X + \frac{1}{\eta^2}(\det X)M \\
\frac{1}{\eta}\tau(X \times X) + \eta N \\
\frac{1}{\eta}a(X) \\
\frac{1}{\eta}b(X \times X)
\end{pmatrix}
\in \mathfrak{g} \mathfrak{o}
$$

implies

$$
\begin{cases}
\left(\frac{1}{\eta} \tau(X \times X) + \eta N \right) \times \left(\frac{1}{\eta^2} \tau(X \times X) + \eta N \right) = a(X)(\beta X + \frac{1}{\eta^2}(\det X)M), \\
(\beta X + \frac{1}{\eta^2}(\det X)M, \frac{1}{\eta} \tau(X \times X) + \eta N) = 3a(X)\frac{1}{\eta} - b(X \times X)
\end{cases}
$$

for all $0 \neq \eta \in C$. Hence we have
\[
\begin{align*}
2\gamma(X \times X) \times N &= a(X)\beta X, \\
\gamma(X \times X) \times r(X \times X) &= a(X)(\det X)M, \\
(\beta X, r(X \times X)) + \det X &= 3a(X)b(X \times X).
\end{align*}
\]

Therefore
\[
a(X)\det X = a(X)(\det X)(M, N) = (r(X \times X) \times \gamma(X \times X), N)
\]

\[
= (\gamma(X \times X), \gamma(X \times X) \times N) = \frac{1}{2}a(X)(\gamma(X \times X), \beta X)
\]

\[
= \frac{1}{2}a(X)(3a(X)b(X \times X) - \det X).
\]

Hence
\[
a(X)\det X = (a(X))^2b(X \times X).
\]

Thus we have
\[
\det X = a(X)b(X \times X)
\]
(since \(a : \mathbb{F} \rightarrow \mathbb{C}\) is a linear functional and \(\det X = a(X)b(X \times X)\) is continuous with respect to \(X\), even if for \(X\) such that \(a(X) = 0\). This contradicts to the irreducibility of the determinant \(\det X\) with respect to the variables of its components. Thus we have \(M = 0\). Similarly \(N = 0\). So
\[
\alpha_1 = \mu, \quad \alpha^*_1 = (\mu^{-1}), \quad \mu \in \mathbb{C}, |\mu| = 1.
\]

Choose \(\theta \in \mathbb{C}\) such that \(\theta^0 = \mu\) and put \(\beta = \theta^*\alpha\), then \(\beta_1 = 1\) and \(\beta^*_1 = \beta\), therefore \(\beta \in E_0\). Thus we have
\[
\alpha = \theta\beta \quad \theta \in U(1), \ \beta \in E_0.
\]

So \(\phi\) is onto. \(\text{Ker}\phi = \{(1, 1), (\omega, \omega_1), (\omega^2, \omega^2_1)\}, \ \omega \in \mathbb{C}, \ \omega^3 = 1, \ \omega \neq 1\), is easily obtained. Thus the proof of Proposition 12 is completed.

7. Polar decomposition of \(E_{7, \ell}\).

In order to give a polar decomposition of the group \(E_{7, \ell}\), we use the following

Lemma 13 ([3] p. 345). Let \(G\) be a pseudoalgebraic subgroup of the general linear group \(GL(n, \mathbb{C})\) such that the condition \(A \in G\) implies \(A^* \in G\). Then \(G\) is homeomorphic to the topological product of the group \(G \cap U(n)\) (which is a maximal compact subgroup of \(G\)) and a Euclidean space \(\mathbb{R}^d\):

\[
G \cong (G \cap U(n)) \times \mathbb{R}^d
\]

where \(U(n)\) is the unitary subgroup of \(GL(n, \mathbb{C})\).
Lemma 14. \(E_{7,\tau} \) is a pseudoalgebraic subgroup of the general linear group \(GL(56, C) = \text{Isoc}(\mathcal{R}^C, \mathcal{P}^C) \) and satisfies the condition \(\alpha \in E_{7,\tau} \) implies \(\alpha^* \in E_{7,\tau} \) where \(\alpha^* \) is the transpose of \(\alpha \) with respect to the inner product \(\langle P, Q \rangle : \langle \alpha P, Q \rangle = \langle P, \alpha^* Q \rangle \).

Proof. Since \(\langle \alpha^* P, Q \rangle = \langle P, \alpha Q \rangle = \langle \alpha P, Q \rangle \), we have

\[
\alpha^* = \alpha^{-1} \in E_{7,\tau} \quad \text{(Lemma 11)}.
\]

And it is obvious that \(E_{7,\tau} \) is pseudoalgebraic, because \(E_{7,\tau} \) is defined by pseudoalgebraic relations \(\alpha^C, \alpha^C, \{ \alpha 1, \alpha 1 \} = 1 \) and \(\langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \).

Let \(U(56) = U(\mathcal{R}^C) = \{ \alpha \in \text{Isoc}(\mathcal{R}^C, \mathcal{P}^C) | \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \} \) denote the unitary subgroup of the general linear group \(GL(56, C) = \text{Isoc}(\mathcal{R}^C, \mathcal{P}^C) \), then we have

\[
E_{7,\tau} \cap U(\mathcal{R}^C) = \{ \alpha \in E_{7,\tau} | \alpha \tau = \alpha \} \cong (U(1) \times E_6)/\mathbb{Z}_3 \quad \text{(Proposition 12)}.
\]

Since \(E_{7,\tau} \) is a simple Lie group of type \(E_7 \), the dimension of \(E_{7,\tau} \) is 133. Hence the dimension \(d \) of the Euclidean part of \(E_{7,\tau} \) and the Cartan index \(i \) are calculated as follows:

\[
d = \dim E_{7,\tau} - \dim (U(1) \times E_6) = 133 - (1 + 78) = 54,
\]

\[
i = \dim E_{7,\tau} - 2\dim (U(1) \times E_6) = 133 - 2(1 + 78) = -25.
\]

Thus we get the following

Theorem 15. The group \(E_{7,\tau} \) is homeomorphic to the topological product of the group \((U(1) \times E_6)/\mathbb{Z}_3 \) and a 54 dimensional Euclidean space \(\mathbb{R}^{54} \):

\[
E_{7,\tau} \cong (U(1) \times E_6)/\mathbb{Z}_3 \times \mathbb{R}^{54}.
\]

In particular, the group \(E_{7,\tau} \) is a connected non-compact simple Lie group of type \(E_{7,\text{-}2s} \).

8. Center \(z(E_{7,\tau}) \) of \(E_{7,\tau} \).

Lemma 16. For \(a \in C \), the transformation of \(\mathcal{R}^C \) defined by

\[
\alpha_1(a) = \begin{pmatrix}
1 + (\cosh |a| - 1)p_1 & 2\sinh |a| |E_1| & 0 & -\sinh |a| |E_1| \\
2\sinh |a| |E_1| & 1 + (\cosh |a| - 1)p_1 & a\sinh |a| |E_1| & 0 \\
0 & a\sinh |a| |E_1| & \cosh |a| & 0 \\
\sinh |a| |E_1| & 0 & 0 & \cosh |a|
\end{pmatrix}
\]
(if $a = 0$, then $a^\frac{\sinh |a|}{|a|}$ means 0) belongs to $E_{7,t}$, where $E_i = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbb{C}$,

the mapping $p_1: \mathbb{C} \to \mathbb{C}$ is defined by

$$p_1 \begin{pmatrix} \xi_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ 0 \\ x_1 \end{pmatrix}$$

and the action of $\alpha_1(a)$ on \mathbb{C} is defined as similar to that of Theorem 10.

Proof.

For $\Phi_1(a) = \begin{pmatrix} 0 & 2aE_1 & 0 & aE_1 \\ 2aE_1 & 0 & aE_1 & 0 \\ aE_1 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{E}_t$, we have $\alpha_1(a) = \exp \Phi_1(a)$, hence

$$\alpha_1(a) \in E_{7,t}.$$

Theorem 17. The center $z(\mathcal{E}_{7,t})$ of the group $\mathcal{E}_{7,t}$ is isomorphic to the cyclic group of order 2:

$$z(\mathcal{E}_{7,t}) = \{1, -1\}.$$

Proof. Let $a \in z(\mathcal{E}_{7,t})$. From the commutativity with $\beta \in E_6 \subset E_{7,t}$, we have $\beta \alpha_1 = \alpha_1 \beta = \alpha_1$. If we denote $\alpha_1 = M + \hat{N} + \mu + \nu$, then $\beta M + (\tau \beta \tau M) + \mu + \nu = M + \hat{N} + \mu + \nu$, hence we have

$$\beta M = M, \quad \tau \beta \tau N = N \quad \text{for all } \beta \in E_6.$$

Therefore $M = N = 0$, so $\alpha_1 = \mu + \nu$. Similarly $\hat{\alpha}_1 = \lambda + \hat{\nu}$. The conditions $\alpha_1 \hat{\alpha}_1 = \lambda + \hat{\nu}$ imply

$$\mu \nu = 0, \quad \lambda \nu = 0, \quad \mu \lambda + \mu = 1, \quad |\mu|^2 - |\nu|^2 = 1$$

respectively, hence

$$\alpha_1 = \mu, \quad \hat{\alpha}_1 = (\mu^{-1})^*, \quad \mu \in \mathbb{C}, |\mu|^2 = 1.$$

Choose $\theta \in \mathbb{C}$ such that $\theta^2 = \mu$ and then put $\beta = \theta^{-1} \alpha$, where

$$\theta = \begin{pmatrix} \theta^{-1} & 0 & 0 \\ 0 & \theta & 0 \\ 0 & 0 & \theta^2 \end{pmatrix} \in U(1),$$

Choose $\theta \in U(1)$ such that $\theta^2 = \mu$ and then put $\beta = \theta^{-1} \alpha$.
Then $\beta_1 = \theta^{-1}\alpha_1 = \theta^{-1}\mu = \theta^{-2}\beta_3 = 1$, similarly $\beta_1 = 1$, hence $\beta \in E_6$. Moreover $\beta \in z(E_6)$ (which denotes the center of E_6), in fact, $\beta\beta' = \theta^{-1}\alpha\beta' = \theta^{-1}\beta'\alpha = \beta'\theta^{-1}\alpha = \beta'\beta$ for all $\beta' \in E_6$. Thus we have

$$
\alpha = \theta \beta \quad \theta \in U(1), \quad \beta \in z(E_6).
$$

Since $z(E_6) = \{1, \omega, \omega^2\}$, $\omega \in C$, $\omega^3 = 1$, $\omega \neq 1$ [7], we have

$$
\alpha = \begin{pmatrix}
\theta^{-1}\omega & 0 & 0 & 0 \\
0 & \theta\omega^{-1} & 0 & 0 \\
0 & 0 & \theta^3 & 0 \\
0 & 0 & 0 & \theta^{-2}
\end{pmatrix} \quad \omega \in C, \quad \omega^3 = 1.
$$

Again from the commutativity with $\alpha(a)$ of Lemma 16 : $\alpha(1)a = \alpha(a)(1)$, we have

$$
\theta\omega^{-1}\cosh E_2 + \theta^{-1}\omega(\sinh E_3) = \alpha(1)(\theta^{-1}\omega E_2) = \alpha(1)\alpha E_2
$$

$$
= \alpha(1)(E_2 + (\sinh E_3)) = \theta^{-1}\omega\cosh E_2 + (\theta\omega^{-1}\sinh E_3)
$$

where $E_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, hence $\theta^{-1}\omega = \theta\omega^{-1}$, i.e. $\theta^{-1}\omega = \pm 1$.

Therefore $\alpha = \pm 1$, i.e. $z(E_{7,t}) = \{1, -1\}$. Thus the proof of Theorem 17 is completed.

9. Isomorphism $E_{7,t} \cong E_{7,s}$.

From Theorems 4, 7 and 15, we see that the groups $E_{7,t}$ and $E_{7,s}$ are both connected and their Lie algebras have the same type $E_{7(-23)}$. Therefore there exist central normal subgroups N_i, N_t of the simply connected simple Lie group $\bar{E}_{7(-23)}$ of type $E_{7(-23)}$ such that

$$
E_{7,t} \cong \bar{E}_{7(-23)}/N_i, \quad E_{7,s} \cong \bar{E}_{7(-23)}/N_t.
$$

We shall show $N_i = N_t$. From the general theory of Lie groups, we know that the center $z(\bar{E}_{7(-23)})$ of $\bar{E}_{7(-23)}$ is the infinite cyclic group Z [6]. Now assume that $N_1 \neq N_t$. Since the centers of $E_{7,t}$ and $E_{7,s}$ are both Z_1 (Theorems 8, 17), we may assume that $2Z = N_1 \subset N_t = Z$ without loss of generality. Consider the natural homomorphism

$$
f : E_{7,t} \cong \bar{E}_{7(-23)}/N_i \rightarrow E_{7(-23)}/N_t \cong E_{7,s}.
$$

Then $f^{-1}(z(E_{7,s})) = f^{-1}(Z_2)$ is a discrete (because $E_{7,s}$ is simple Lie group) normal subgroup, therefore $f^{-1}(z(E_{7,t}))$ is a central (because $E_{7,t}$ is connected) normal subgroup of $E_{7,t}$: $f^{-1}(z(E_{7,t})) \subset z(E_{7,t})$ and the order of $f^{-1}(z(E_{7,t}))$ is not less than 4. This contradicts to $z(E_{7,t}) = Z_2$. Therefore $N_1 = N_t$ and we see that the groups $E_{7,t}$ and $E_{7,s}$...
are isomorphic:

$$E_{7,1} \cong E_{7,\mu}.$$

Thus from the preceding arguments we have the following main

Theorem 18. The group $E_{7,1} = \{ \alpha \in \text{Iso}_R(\mathbb{R}, \mathbb{R}) | \alpha \mathbb{R} = \mathbb{R}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}$

is a connected non-compact simple Lie group of type E_7, its center $z(E_{7,1})$ is the cyclic group of order 2:

$$z(E_{7,1}) = \{ 1, -1 \}$$

and the polar decomposiion is given by

$$E_{7,1} \cong (U(1) \times E_6)/\mathbb{Z}_2 \times \mathbb{R}^{34}.$$

References

