A Note on Right Locally Finite Simple Ring Extensions

By MASAYUKI OHORI
Department of Mathematics, Faculty of Science, Shinshu University

and HISAO TOMINAGA
Department of Mathematics, Faculty of Science, Okayama University
(Received May 9, 1977)

Throughout A will represent an (Artinian) simple ring, B a simple subring of A containing 1 of A, and V the centralizer of B in A. A ring extension A'/B' is said to be right locally finite if for any finite subset F' of A' the subring $B'[F']$ is right finite over B'. In [1], S. Takamatsu and the second author dealt with a right locally finite extension A/B such that V is simple and $A = BN$ with the normalizer N of B in A, and proved that A/BV is right locally finite, which played an important role in the proof of [1, Theorem]. In this note, we shall prove the same without any restriction.

Theorem. If A/B is right locally finite, then so is A/BV.

Proof. Let F be an arbitrary finite subset of A, and choose an intermediate ring B' of $A/B[F]$ such that A/B' is irreducible and the right rank $[B':B]_R$ is finite. Then by [2, Proposition 5.4 (b)] the centralizer V' of B' in A is a division ring and $m = [V : V']_R \leq [B : B]_R$. Let $\{v_1, v_2, \ldots, v_m\}$ be a right V'-basis of V and set $B'' = B[F, v_1, \ldots, v_m] = \sum_{j=1}^{v} b_j B$. Since every element of V' commutes with all the elements of $B[F]$, we see that $B''V' \supset V'B''$, namely, $B''V'$ is a subring of A. Hence, $(BV)[F] = B''V' = \sum_{j=1}^{v} b'_j (BV)$, which proves the right local finiteness of A/BV.

References