On the Homotopy Groups of Rotation Groups R_n

By HIDEYUKI KACHI

Department of Mathematics, Faculty of Science, Shinshu University
(Received April 30, 1968)

1 Introduction

On the homotopy groups of rotation groups R_n, considerably many results have been obtained: In [7] and others, MIURA determined groups $\pi_i(R_n)$ and their generators for $i \leq 14$, and in [5] KERVAIRE determined the groups $\pi_i(R_n)$ for $i \geq n + 4$.

In the present paper, we shall determine the 2-primary components of groups $\pi_i(R_n)$, $i = 15, 16$ and 17, together with their generators. For this purpose, we consider the homotopy exact sequence

$$
i^* \rightarrow \pi_i(R_n) \xrightarrow{i_*} \pi_i(R_{n+1}) \xrightarrow{p_*} \pi_i(S^n) \xrightarrow{\partial} \pi_{i-1}(R_n) \rightarrow
$$

of bundle (R_{n+1}, p, S^n), and J-homomorphism

$$J : \pi_i(R_n) \rightarrow \pi_{n+i}(S^n).$$

Starting with R_3 which is homeomorphic to real projective 3-space, we obtain our results inductively. The author wishes to thank to S. Saito for his advice throughout the preparation of the paper.

2 Preliminaries

For any fibre space (X, p, B), we have the following homotopy exact sequence

$$(2.1) \quad \cdots \rightarrow \pi_i(F) \xrightarrow{i_*} \pi_i(X) \xrightarrow{p_*} \pi_i(B) \xrightarrow{\partial} \pi_{i-1}(F) \rightarrow \cdots,$$

where F is the fibre $p^{-1}(x_0)$ on a base point x_0 of B, $i : F \rightarrow X$ is the inclusion map and ∂ is the boundary homomorphism. Homomorphisms i_*, p_* and ∂ of (2.1) satisfy the following relation

$$(2.2) \quad \begin{align*}
i_*(\alpha\beta) &= i_*(\alpha)\beta \quad &\text{for } \alpha \in \pi_j(F), \beta \in \pi_i(S^j), \\
p_*(\alpha\beta) &= p_*(\alpha)\beta \quad &\text{for } \alpha \in \pi_j(X), \beta \in \pi_i(S^j), \\
\partial(\alpha E\beta) &= \partial(\alpha)\beta \quad &\text{for } \alpha \in \pi_j(B), \beta \in \pi_{i-1}(S^{j-1}).
\end{align*}$$
where \(E : \pi_i(S^l) \to \pi_{i+1}(S^{l+1}) \) is the suspension homomorphism.

Let \(R_{n+1} \) be the rotation group of euclidean \((n+1)\)-space, and \(i : R_n \to R_{n+1} \) be the inclusion map. Then \((R_{n+1}, \varphi, S^n)\) is a fibre space with fibre \(R_n \). Since the group \(R_n \) is topologically equivalent to real projective 3-space \(\text{P}^n \), \(\pi_3(R_n) \cong \mathbb{Z} \) with a generator \([\eta_2]\) (cf. [12]), and the correspondence \([\eta_2] \alpha \to \eta_2 \alpha, \alpha \in \pi_i(S^n)\), induces the homomorphism

\[
(2.3) \quad p_\# : \pi_i(R_n) \to \pi_i(S^n),
\]

which is an isomorphism for \(i \geq 2 \).

For \(n = 3 \) or 7, the bundle \((R_{n+1}, \varphi, S^n)\) is equivalent to product bundle \(S^n \times R_n \) over \(S^n \), and if we denote the homotopy class of the cross section of this bundle by \([\iota_n] \), the correspondence \((\alpha, \beta) \to i_{\#} \alpha + [\iota_n] \beta, \alpha \in \pi_i(R_n), \beta \in \pi_i(S^n)\), yields an isomorphism

\[
(2.4) \quad \pi_i(R_n) + \pi_i(S^n) \cong \pi_i(R_{n+1}).
\]

Now, the notations of this paper conform to those of [13]; in particular, \(\pi_i(X;2) \) denotes the 2-primary component of the group \(\pi_i(X) \), and a subgroup \(\pi_i^n \) of \(\pi_i(S^n) \) is defined by setting

\[
(2.5) \quad \pi_i^n = \begin{cases}
\pi_i(S^n) & \text{if } i = n, \\
E^{-1} \pi_{2n}(S^{n+1};2) & \text{if } i = 2n - 1, \\
\pi_i(S^n;2) & \text{if } i \neq n, 2n - 1.
\end{cases}
\]

Groups \(\pi_i^n \) and their generators are given in Table 1.

Applying (2.1) to the bundle \((R_{n+1}, \varphi, S^n)\), we have

\[
(2.6) \quad i_{\#} \to \pi_i(R_n;2) \to \pi_i(R_{n+1};2) \to \pi_i^n \to \pi_{i-1}(R_n;2) \to .
\]

Let \([\alpha]\) denote an element of \(\pi_i(R_{n+1};2) \) such that \(p_{\#}([\alpha]) = \alpha \in \pi_i^n \), and let \(j : R_{n+1} \to R_m, m > n + 1 \), be the inclusion map, and define \([\alpha]_m \in \pi_i(R_m;2) \) by setting \([\alpha]_m = j_{\#}([\alpha])\).

The groups \(\pi_i(R_i;2) \) and their generators are known for \(i \leq 14 \). We need them in the subsequent calculation, so we give them in the Table 2.

For the image of the boundary homomorphism \(j : \pi_i^n \to \pi_{i-1}(R_i;2) \), we have the results given in the Table 3.

The homomorphism

\[
J : \pi_i(R_n) \to \pi_{i+d}(S^n)
\]

of G. W. Whitehead was defined as follows:
Let $f : S^i \rightarrow R_n$ be a representative of an element $\pi_1(R_n)$. Define a mapping $F : S^i \times S^{n-1} \rightarrow S^{n-1}$ by setting

$$F(x, y) = f(x)y$$

for any $x \in S^i$ and $y \in S^{n-1}$.
Let $G(F): S^{n+i} \approx S^i \times S^{n-1} \longrightarrow S^n$ be the Hopf-construction of F, where $A \ast B$ denotes the join of A and B. Then, $G(F)$ represents an element $J(\alpha) \in \pi_{i+n}(S^n)$.

We have a diagram

\[
\begin{array}{ccccccc}
\cdots \cdots \cdots \pi_i(R_n;2) & \xrightarrow{i_0} & \pi_i(R_{n+1};2) & \xrightarrow{p_0} & \pi_{i+1}(R_n;2) & \longrightarrow \cdots \\
\downarrow J & & \downarrow J & & \downarrow E^{n+1} & & \downarrow J \\
\cdots \cdots \cdots \pi_{i+n} & \xrightarrow{e} & \pi_{i+n+1} & \xrightarrow{h} & \pi_{i+n+1} & \longrightarrow \cdots \\
\end{array}
\]

which is commutative up to sign, and its lower sequence is exact ([11], Proposition 4.2). Moreover, the homomorphism $J: \pi_i(R_n) \longrightarrow \pi_{i+n}(S^n)$ satisfies

\[(2.7) \quad J(\alpha \beta) = J(\alpha)J(\beta) \quad \text{for any } \alpha \in \pi_i(R_n) \text{ and } \beta \in \pi_i(S^n).
\]

Recall that

\[(2.8) \quad J([e^n]) = \alpha_n \quad \text{for } n > 8.
\]

\[(2.9) \quad J([\nu_n]) = \nu_n \quad \text{for } n > 8.
\]

3 Groups $\pi_{i+1}(R_n)$ and their generators

In this section, we shall determine the generators of the 2-primary components of $\pi_{i+1}(R_n)$.

In the sequel, we shall use the abbreviated notation $\pi_i(R_n)$ for $\pi_i(R_n;2)$.

The homotopy groups of spinor groups $Spin(n)$, $n \leq 9$, are given in [7] and [9], and we have isomorphisms

\[(3.1) \quad \pi_i(R_3) \approx \pi_i(Spin(5)) \approx \pi_i(Sp(2)),
\]

\[(3.2) \quad \pi_i(R_4) \approx \pi_i(Spin(6)) \approx \pi_i(SU(4)).
\]

The results for $\pi_{i+1}(R_n;2)$ are stated as follows:

Proposition 2.1. $\pi_{i+1}(R_n;2) = ([\gamma_i]_{p}^\theta) + ([\gamma_i]_{p}^\theta) \approx Z_2 + Z_2$

$\pi_{i+1}(R_3;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_4;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_5;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_6;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_7;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_8;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_9;2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{10};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{11};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{12};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{13};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{14};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$

$\pi_{i+1}(R_{15};2) = ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) + ([\gamma_2]_{p}^\theta) \approx Z_2 + Z_2 + Z_2 + Z_2$
\[\pi_{15}(R_{16}): 2 = \{ [\gamma_{12}]_{16} \} + [2_{15}] \approx \mathbb{Z} + \mathbb{Z} \]
\[\pi_{15}(R_{n}): 2 = \{ [\gamma_{12}]_{n} \} \approx \mathbb{Z} \quad \text{for } n \geq 17. \]

The following relation hold: \([8\sigma_{15}]_{15} = 2[\gamma_{12}].\]

Proof. The results for \(\pi_{15}(R_3)\) and \(\pi_{15}(R_4)\) follow directly from (2.3), (2.4) and Table 1.

\(R_3:\) Since \(\pi_1(R_3) \approx \mathbb{Z}\) and \(\pi_2(R_3)\) is finite,

\[(3, 3) \quad i_\circ : \pi_1(R_3) \longrightarrow \pi_1(R_3) \] is trivial, i.e., \(i_\circ([\gamma_2]\nu') = i_\circ([\gamma_2]\nu') = 0.\)

Therefore \(i_\circ : \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3)\) is trivial, too. From this and (2.6), we have the exact sequence

\[0 \longrightarrow \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3).\]

Using Table 2 and 3, we can prove that the kernel of \(J : \pi_{15} \longrightarrow \pi_{14}(R_4)\) is generated by \(\nu_4\epsilon'\gamma_{14}\).

In fact, from Table 1, \(\pi_1 = \{ \nu_4\epsilon'\gamma_{14} \} + \{ \nu_4\nu_4 \} + \{ \nu_4\gamma_7 \} + \{ \nu_4\nu_{12} \} + \{ E\nu'\nu_7 \} + \{ E\nu'\nu_7 \} \)
\(\approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2.\) Then we have

\[A(\nu_4\epsilon'\gamma_{14}) = A(\nu_4\epsilon'\gamma_{14}) \quad \text{by (2.2),} \]
\[= 2([\epsilon_5]_\nu'\gamma_{13}) \quad \text{by Table 3,} \]
\[= 2([\epsilon_5]_\nu'\gamma_{13}) = 0. \]

\[A(\nu_4\nu_4) = A(\nu_4)\nu_0 = [\epsilon_5]_\nu'\nu_0 + \alpha[\gamma_2]_{\nu'\nu_7}. \]

\[A(\nu_4\gamma_7) = A(\nu_4)\gamma_7 = [\epsilon_5]_\nu'\gamma_7 + \alpha[\gamma_2]_{\nu'\nu_7} + [\gamma_2]_{\nu'\nu_7} + [\gamma_2]_{\nu'\nu_7}. \]

\[A(E\nu'\nu_7) = A(\nu_4)\nu_0 = [\gamma_2]_{\nu'\nu_7}. \]

\[A(E\nu'\nu_7) = A(\nu_4)\nu_0 + [\gamma_2]_{\nu'\nu_7}. \]

Thus, from the above exact sequence and by definition of \([\nu_4\epsilon'\gamma_{14}]\), we have

\[\pi_{15}(R_3) = \{ [\nu_4\epsilon'\gamma_{14}] \} \approx \mathbb{Z}_2. \]

Let \((2.6)_n\) denote a part of the exact sequence (2.6) starting with \(\pi_{15}\) and ending in \(\pi_{14}(R_3)\), i.e.,

\[(2.6)_n \quad \pi_{15} \longrightarrow \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3) \longrightarrow \pi_{15}(R_3). \]

\(R_4:\) Consider \((2.6)_n\). Since \([\epsilon_5]_{3}\nu' = 4[2\nu_4\epsilon']\) in \(\pi_{15}(R_5)\), using Table 3 we have

\[A(\gamma_{12}\nu_4) = A(\gamma_{12}\nu_4) \quad \text{by (2.2),} \]
\[= [\epsilon_5]_{3}\gamma_3\gamma_5 \quad \text{by Table 3,} \]
\[= 2[\epsilon_5]_{3}\nu' \quad \text{by (7.7) of [13],} \]
\[= 8[2\nu_4\epsilon'] = 0. \]
Table 2 : $\pi_i (R_n; 2)$ for $3 \leq i \leq 14$

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_6 (R_n; 2)$</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi_4 (R_n; 2)$</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>$\pi_5 (R_n; 2)$</td>
<td>Z_3</td>
<td>Z_3</td>
<td>Z_3</td>
<td>Z_3</td>
<td>Z_3</td>
</tr>
<tr>
<td>$\pi_7 (R_n; 2)$</td>
<td>Z_4</td>
<td>Z_4</td>
<td>Z_4</td>
<td>Z_4</td>
<td>Z_4</td>
</tr>
<tr>
<td>$\pi_8 (R_n; 2)$</td>
<td>Z_5</td>
<td>Z_5</td>
<td>Z_5</td>
<td>Z_5</td>
<td>Z_5</td>
</tr>
<tr>
<td>$\pi_9 (R_n; 2)$</td>
<td>Z_6</td>
<td>Z_6</td>
<td>Z_6</td>
<td>Z_6</td>
<td>Z_6</td>
</tr>
<tr>
<td>$\pi_{10} (R_n; 2)$</td>
<td>Z_7</td>
<td>Z_7</td>
<td>Z_7</td>
<td>Z_7</td>
<td>Z_7</td>
</tr>
<tr>
<td>$\pi_{11} (R_n; 2)$</td>
<td>Z_8</td>
<td>Z_8</td>
<td>Z_8</td>
<td>Z_8</td>
<td>Z_8</td>
</tr>
<tr>
<td>$\pi_{12} (R_n; 2)$</td>
<td>Z_9</td>
<td>Z_9</td>
<td>Z_9</td>
<td>Z_9</td>
<td>Z_9</td>
</tr>
<tr>
<td>$\pi_{13} (R_n; 2)$</td>
<td>Z_{10}</td>
<td>Z_{10}</td>
<td>Z_{10}</td>
<td>Z_{10}</td>
<td>Z_{10}</td>
</tr>
<tr>
<td>$\pi_{14} (R_n; 2)$</td>
<td>Z_{11}</td>
<td>Z_{11}</td>
<td>Z_{11}</td>
<td>Z_{11}</td>
<td>Z_{11}</td>
</tr>
</tbody>
</table>
On the Homotopy Groups of Rotation Groups R_n

<table>
<thead>
<tr>
<th>$n = 3$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{11}(R_n; 2)$</td>
<td>Z$_2$</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^2]_{e_8}</td>
</tr>
<tr>
<td>$\pi_{12}(R_n; 2)$</td>
<td>Z$_2$</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^2]{e_8}, [\eta_2^3]{e_8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n = 5$</th>
<th>$n = 6$</th>
<th>$n = 7$</th>
<th>$n = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{11}(R_n; 2)$</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^2]{e_8}, [\eta_2^3]{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^3]_{e_8}</td>
<td>[\eta_2^4]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]{e_8}, [\eta_2^4]{e_8}</td>
</tr>
<tr>
<td>$\pi_{12}(R_n; 2)$</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^2]{e_8}, [\eta_2^3]{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^3]_{e_8}</td>
<td>[\eta_2^4]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]{e_8}, [\eta_2^4]{e_8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n = 9$</th>
<th>$n = 10$</th>
<th>$n = 11$</th>
<th>$n = 12$</th>
<th>$n = 13$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{11}(R_n; 2)$</td>
<td>Z$_2$</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
</tr>
<tr>
<td>$\pi_{12}(R_n; 2)$</td>
<td>0</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
<td>Z$_2$</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n = 14$</th>
<th>$n = 15$</th>
<th>$n = 16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{11}(R_n; 2)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>generators</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
<td>[\eta_2^3]{e_8}, [\eta_2^4]{e_8}, [\eta_2^5]_{e_8}</td>
</tr>
</tbody>
</table>

| $\pi_{12}(R_n; 2)$ | Z | 0 | 0 |
| generators | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} |

| $\pi_{13}(R_n; 2)$ | Z | Z | 0 |
| generators | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} |

| $\pi_{14}(R_n; 2)$ | Z | Z | Z |
| generators | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} | [\eta_2^3]_{e_8}, [\eta_2^4]_{e_8}, [\eta_2^5]_{e_8} |
From Table 2, there exists an element \([v_8]_a \in \pi_{18}(R_8)\) such that \(p_8([v_8]_a) = v_8a_3\).
Since \([v_8]_a\) is of order 8, \([v_8]_a\) is of order 8. On the other hand, by (3.2) and Theorem 6.1 of \([7]\), \(\pi_{18}(R_8) \approx \mathbb{Z}_8 + \mathbb{Z}_2\). Thus, from (2.6)_9, we have
\[
\pi_{18}(R_8) = \left(\left[v_8\right]_a\sigma_8\right) + \left(\left[v_8\sigma'\eta_1\right]_b\right) \approx \mathbb{Z}_8 + \mathbb{Z}_2
\]
and
\[
(3.4) \quad i_8 : \pi_{18}(R_3) \longrightarrow \pi_{18}(R_8) \text{ is a monomorphism.}
\]

\(R_7\) : Consider (2.6)_9. From Table 1 and 3, we have relations;
\[
\begin{align*}
\Delta(\eta_6v_7) &= \Delta(v_8 = \eta_6v_7) = 0 \quad \text{by Table 2,} \\
\Delta(\nu_6) &= 0 \quad \text{by Table 2.}
\end{align*}
\]

(3.5) \[\quad \Delta(\nu_6) = \Delta(v_6) = 2[v_8]_a = 2[v_8]_a \quad \text{by Table 3 and (2.2),}
\]

\[
\Delta(\eta_6v_7) = 0 \quad \text{by Table 3.}
\]

Therefore, from (2.6)_9, we have the following exact sequence
\[
0 \longrightarrow \left(\left[v_8\right]_a\sigma_8\right) + \left(\left[v_8\sigma'\eta_1\right]_b\right) \overset{i_8}{\longrightarrow} \pi_{18}(R_7) \overset{p_8}{\longrightarrow} \left[v_8\right]_a + \{\eta_6v_7\} \longrightarrow 0.
\]

From Table 2, there exist a element \([\eta_6]_e^7\) and \([\eta_6]_f^7\) in \(\pi_{18}(R_7)\) such that \(p_8([\eta_6]_e^7) = \eta_6^a\epsilon_7\) and \(p_8([\eta_6]_f^7) = \eta_6\nu_7 = v_8\) (by Lemma 6.3 of \([13]\)).
Since \(v_8\) and \(\epsilon_7\) are of order 2, \([\eta_6]_e^7\) and \([\eta_6]_f^7\) are of order 2. Thus we have
\[
\pi_{18}(R_7) = \left\{\left[\eta_6\right]_e^7 + \left[\eta_6\right]_f^7\right\} + \left\{\left[v_8\right]_a\sigma_8\right\} + \left\{\left[v_8\sigma'\eta_1\right]_b\right\} \approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2.
\]

\(R_8\) : The result for \(\pi_{18}(R_8)\) follows from the result for \(\pi_{18}(R_7)\), (2.4) and Table 1.
On the Homotopy Groups of Rotation Groups R_n

R_9 : From Table 3, we have following relations

$\begin{align*}
&\Delta(e_9) = \Delta(e_9)e_7 = [\gamma_9]e_7,
&\Delta(e_9) = \Delta(e_9)e_7 = [\gamma_9]e_7,
&\Delta(\sigma_9) = [\tau_5][\gamma_9],
&\Delta(E\sigma_9) = [\nu_9][\gamma_9].
\end{align*}$

From (2.6) and Table 3, we have the exact sequence

$$
0 \longrightarrow [\tau_5][\gamma_9] + [\tau_5][\gamma_9] + [\nu_9][\gamma_9] \longrightarrow \pi_{10}(R_9) \longrightarrow \{8\sigma_9\} \longrightarrow 0.
$$

Thus, from the fact that $8\sigma_9$ is of order infinite, we conclude

$$
\pi_{10}(R_9) = \{[8\sigma_9] \} + \{[\tau_5][\gamma_9] \} + \{[\nu_9][\gamma_9] \} \approx \mathbb{Z} + \mathbb{Z} + \mathbb{Z}.
$$

Moreover, from the exactness of the sequence (2.6), we have

$$(3.7) \quad i_9 : \pi_{10}(R_9) \longrightarrow \pi_{10}(R_9) \text{ is an epimorphism.}$$

R_{10} : Consider (2.6). Using Table 3, we have

$$
\begin{align*}
&\Delta(e_{10}) = \Delta(e_9)e_7 = [\gamma_9]e_7 \quad \text{by (2.2)}
&\Delta(e_{10}) = \Delta(e_9)e_7 = [\gamma_9]e_7 \quad \text{by Table 3}
&\Delta(\sigma_{10}) = [\tau_5][\gamma_9] \quad \text{by (7.4) of [13].}
\end{align*}
$$

Thus, from (2.6), we have the exact sequence

$$
\pi_{10} = \{\sigma_9\} \longrightarrow \pi_{10}(R_{10}) \longrightarrow \pi_{10}(R_{10}) \longrightarrow 0.
$$

For the homomorphism $\Delta : \pi_{10} \longrightarrow \pi_{10}(R_{10})$, we have

$$(3.8) \quad \Delta(\sigma_9) = \Delta(e_{10}) e_7 \quad \text{by (2.2)}
&\Delta(\sigma_9) = [\tau_5][\gamma_9] \quad \text{by Table 3}
&\Delta(\sigma_9) = [\tau_5][\gamma_9] + [\nu_9][\gamma_9] \quad \text{by (7.4) of [13].}
$$

Therefore, from the above exact sequence, we have

$$
\pi_{10}(R_{10}) = \{[8\sigma_9] \} + \{[\tau_5][\gamma_9] \} + \{[\nu_9][\gamma_9] \} \approx \mathbb{Z} + \mathbb{Z} + \mathbb{Z}.
$$

R_{11} : Consider the diagram (2.7)

$$
\begin{align*}
&\pi_{11} = \{v_{10}^2\} \longrightarrow \pi_{11}(R_{10}) \longrightarrow \pi_{11}(R_{11}) \longrightarrow \pi_{11} = 0
&\Delta \downarrow E^{11} \quad J \quad \downarrow E \quad J
&\pi_{11} = \{v_{11}^2\} \longrightarrow \pi_{11} \longrightarrow \pi_{11} \longrightarrow \pi_{11} = 0
\end{align*}
$$
Then we have
\[\Delta E^1_{10} = A(\nu_{10}) = \sigma_{10} \nu_{17} \cong 0 \] by (10.20) of [13].

Therefore, from the above diagram and \(\pi_{10} \approx \mathbb{Z}_2 \), we have that \(\Delta : \pi_{10} \to \pi_{10}(R_{10}) \) must be non-trivial. On the other hand, we have
\[
J([\nu_5]_{10} + \nu_8) = J([\nu_5]_{10} + \sigma_8) = \nu_8 \sigma_8 = 0
\]
by (2.9). From the above diagram we have
\[
A(\nu_{10}) = \sigma_{10} \nu_{17} + x[\nu_5]_{10} \sigma_8
\]
where \(x = 1 \) or 0. Therefore, the exactness of the upper row sequence of the above diagram, we have
\[
\pi_{10}(R_{11}) = ([8\sigma_8]_{11}) + ([\nu_5]_{11} \sigma_8) \cong \mathbb{Z} + \mathbb{Z}_2,
\]
and from the exact sequence (2.6) we have that
\[
\pi_{10}(R_{11}) \to \pi_{10}(R_{11}) \to \mathbb{Z} + \mathbb{Z}_2,
\]
where
\[
i_n : \pi_{10}(R_{10}) \to \pi_{10}(R_{11})
\]
is an epimorphism.

R_{12} : Since \(\pi_{10}^1 = \pi_{10}^2 = 0 \), we have the result for \(\pi_{10}(R_{12}) \) from (2.6). To show the result for \(\pi_{10}(R_{13}) \), we shall need the following

Lemma 3.10. (SUGAWARA [11]). Let \(\alpha \) be an element of \(\pi_{r+1}(S^n) \). Then We have
\[
E^{n+3}_0 d(\alpha) = \begin{cases} 0 & \text{if } n \text{ is odd}, \\ 2 E^{n+3}_0 & \text{if } n \text{ is even}, \end{cases}
\]
where \(\Delta : \pi_{r+1}(S^n) \to \pi_r(R_n) \) is boundary homomorphism and \(p : \pi_r(R_n) \to \pi_r(S^{n-1}) \) is a homomorphism induced by the bundle projection \(p : R_n \to S^{n-1} \).

R_{13} : From (3.10), \(E^{15}_0 p_0 d(\nu_{12}) = E^{15}(2\nu_{11}) \). Since \(E^{15} : \pi_1 \to \pi_2 \) is an isomorphism, we have \(p_0 d(\nu_{12}) = 2 \nu_{11} \). By definition of \([2\nu_{11}] \), \(d(\nu_{11}) = [2\nu_{11}] \). From the fact that order of \([2\nu_{11}] \) is equal to 4, we have that the kernel of \(\Delta : \pi_{13}^2 \to \pi_{14}(R_{12}) \) is generated by \(4\nu_{12} = \gamma_{12}^3 \). Thus there exists an element \([\gamma_{12}^3] \in \pi_{13}(R_{12}) \) such that \(p_0([\gamma_{12}^3]) = 4\nu_{12} \).

Consider the following diagram
\[
\begin{array}{cccccc}
0 & \to & \pi_{12}^2 & \to & \pi_{13}(R_{12}) & \to & \pi_{14}(R_{13}) & \to & \{\gamma_{12}^3\} & \to & 0 \\
& \downarrow J & & \downarrow E & & \downarrow J & & \downarrow H & & \downarrow E_{13} & & \\
0 & \to & \pi_{13}^2 & \to & \pi_{14}^3 & \to & \pi_{16}^3 & \to & \{\gamma_{15}^3\} & \to & 0
\end{array}
\]
of (2.7). The upper row sequence is exact by the above fact and the lower sequence is exact by (10.11) of [13]. We have

\[\pi^{(2)} = \{E^* \rho' \} + \{\varepsilon_{12} \} \cong \mathbb{Z}_{16} + \mathbb{Z}_2 \]

by Theorem 10.5 of [13],

\[\pi^{(1)} = \{\rho_{13} \} + \{\varepsilon_{11} \} \cong \mathbb{Z}_{32} + \mathbb{Z}_2 \]

by Theorem 10.10 of [13],

\[E^* \rho' = 2\rho_{13} \]

by Lemma 10.9 of [13],

and

\[H(\rho_{13}) = 4\nu_{25} = \gamma_{35}^3 \]

by (10.11) of [13].

Next we prove

Lemma 3.12 \(J[[8\sigma_8]] = E^* \rho' + x\varepsilon_{12} \) for \(x = 0 \) or \(1 \).

Proof. Consider the diagram

\[
\begin{array}{cccc}
\pi_{15}(R_0) & \longrightarrow & \pi_{15}(R_0) & \longrightarrow & \pi^{(1)} \\
J & \downarrow & J & \downarrow & J \\
\pi_{29} & \longrightarrow & \pi^{(2)} & \longrightarrow & \pi^{(3)} \\
\end{array}
\]

of (2.7). Then we have

\[H(J[[8\sigma_8]]) = \pm E^*(8\sigma_8) \]

\[= 8\sigma_{17} \]

\[= H(\rho') \]

by (10.2) of [13].

Thus, \(J[[8\sigma_8]] \equiv \rho' \mod E\pi_{23}^{(3)} \).

By definition of \([8\sigma_8]_{12}\) and the diagram (2.7),

\[J[[8\sigma_8]_{12}] = J[j_8[[8\sigma_8]](\rho_8)] \]

\[= E^*j_8[[8\sigma_8]] \]

\[= E^*\rho' \mod E^*\pi_{23} \]

\[= E^*\rho' + x\varepsilon_{12}, \]

where \(x = 0 \) or \(1 \) and \(j_8 : \pi_{15}(R_0) \longrightarrow \pi_{15}(R_{12}) \) is a homomorphism induced by the inclusion map \(j : R_0 \longrightarrow R_{12} \).

From the above diagram, we have

\[J[[\gamma_{12}]] \equiv \rho_{13} \mod E\pi_{23}^{(3)}. \]

Therefore, from (3.11),

\[[8\sigma_8]_{13} = 2[\gamma_{13}]. \]

Thus we have, from the exactness of the upper sequence of the diagram (3.11),

\[\pi_{15}(R_{13}) = [[\gamma_{13}]] + [[\nu_{25}]]_{12} \cong \mathbb{Z} + \mathbb{Z}_2. \]

R_{14} and R_{15} : Consider (2.6)_{13} and (2.6)_{14}. According to Theorem 3 of [5],
we have
\[d(v_{13}) \approx 0, \quad 2d(v_{13}) = 0 ; \quad d(\gamma_{14}) \approx 0, \quad d(\gamma_{14}) \approx 0. \]

Therefore we conclude
\[\pi_{16}(R_{n+1}) = \{[\gamma_{13}]_{n+1}\} \cong \mathbb{Z} \quad \text{for } n = 13 \text{ and } 14. \]

R_{15}: Consider (2.6)_{15}. From Theorem 23.4 of [12], we have
\[(3.14) \quad p_{6}d(v_{16}) = 2v_{16}. \]

On the other hand \(d : \pi_{16} \cong \mathbb{Z}_{2} \rightarrow \pi_{16}(R_{15}) \cong \mathbb{Z} \) is trivial. Thus we have the exact sequence
\[0 \rightarrow \pi_{16}(R_{15}) \rightarrow \pi_{16}(R_{16}) \rightarrow \{2v_{16}\} \cong \mathbb{Z} \rightarrow 0. \]

Therefore we obtain that
\[\pi_{16}(R_{16}) = \{[\gamma_{13}]_{16}\} + \{[2v_{16}]\} \cong \mathbb{Z} + \mathbb{Z}. \]

R_{n} for \(n \geq 17 \): From (3.12), (2.6)_{16} and the stability of \(\pi_{16}(R_{n}) \), we have
\[\pi_{16}(R_{n}) = \{[\gamma_{13}]_{n}\} \cong \mathbb{Z} \quad \text{for } n \geq 17. \]

4. **Groups \(\pi_{16}(R_{n}) \) and their generators**

The results for \(\pi_{16}(R_{n}:2) \) are stated as follows:

Proposition 4.1. \(\pi_{16}(R_{3}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} \cong \mathbb{Z}_{2} \)

\[\pi_{16}(R_{4}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{5}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{6}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{7}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{8}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{9}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{10}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{11}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{12}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{13}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]

\[\pi_{16}(R_{14}:2) = \{[v_{14}]^{\nu} \eta_{7} \mu_{7}\} + \{[v_{15}]^{\nu} \eta_{8} \mu_{8}\} \cong \mathbb{Z}_{2} + \mathbb{Z}_{2} \]
\[
\begin{align*}
\pi_{10}(R_5; 2) &= \{[\gamma_{16}] \} + \{[\gamma_{16}] \} \approx \mathbb{Z}_2 + \mathbb{Z}_2 \\
\pi_{10}(R_6; 2) &= \{[\gamma_{16}] \} + \{[\gamma_{16}] \} + \{[\gamma_{16}] \} \approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 \\
\pi_{10}(R_7; 2) &= \{[\gamma_{16}] \} + \{[\gamma_{16}] \} \approx \mathbb{Z}_2 + \mathbb{Z}_2 \\
\pi_{10}(R_n; 2) &= \{[\gamma_{16}] \} \quad \text{for } n > 17.
\end{align*}
\]

Proof. From (2.3), (2.4) and Table 1, we have the results for \(\pi_{10}(R_5)\) and \(\pi_{10}(R_6)\).

\(R_5\) : Consider the exact sequence

\[
i^*_6: \pi_{10}(R_6) \longrightarrow \pi_{10}(R_5) \longrightarrow \pi_{10}(R_5) \longrightarrow \pi_{10}(R_4).
\]

By the same argument as in the case of \(i^*: \pi_{10}(R_4) \longrightarrow \pi_{10}(R_5)\), we have that \(i^*: \pi_{10}(R_6) \longrightarrow \pi_{10}(R_5)\) is trivial. On the other hand from Table 3 we can prove that the kernel of \(\partial: \pi_{10}(R_5) \longrightarrow \pi_{10}(R_4)\) is generated by \(\nu_4\gamma_{16}\) and \(\nu_6\). Then, the exactness of the above sequence, we have an isomorphism

\[
p^*_6: \pi_{10}(R_5) \longrightarrow \{[\nu_4\gamma_{16}] \} + \{[\nu_6] \}.
\]

From Table 3 and the result for \(\pi_{10}(R_5)\), there exist elements \([\nu_4\gamma_{16}] \in \pi_{10}(R_5)\) and \([\nu_6] \in \pi_{10}(R_5)\) such that \(p^*_6([\nu_4\gamma_{16}]) = \nu_4\gamma_{16}\) and \(p^*_6([\nu_6]) = \nu_6\). Therefore we obtain from (2.2) that

\[
\pi_{10}(R_5) = \{[\nu_4\gamma_{16}] \} + \{[\nu_6] \} \approx \mathbb{Z}_2 + \mathbb{Z}_2.
\]

\(R_6\) : From Table 3 and (3.4), it follows that the sequence

\[
i^*_6: \pi_{10}(R_6) \longrightarrow \pi_{10}(R_5) \longrightarrow \pi_{10}(R_5) \longrightarrow 0
\]

is exact. From (3.2) and Theorem 6.1 of [7], the above sequence splits. From Table 3, there exists an element \([\nu_5] \in \pi_{10}(R_5)\) such that \(p^*_6([\nu_5]) = \nu_5\). Thus we have from (2.2)

\[
\pi_{10}(R_6) = \{[\nu_4\gamma_{16}] \} + \{[\nu_6] \} + \{[\nu_5] \} \approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2.
\]

\(R_7\) : From (3.5), the exact sequence (2.6) yields the following exact sequence

\[
i^*_7: \pi_{17}(R_7) \longrightarrow \pi_{16}(R_7) \longrightarrow \pi_{16}(R_7) \longrightarrow \{4\nu_0\gamma_{16}\} + \{[\gamma_6] \} \longrightarrow 0.
\]

Now we have following relations:

\[
A(\xi_6) = 2[\xi_6] + a[\nu_6] + b[\nu_5], \quad a, b = 0 \text{ or } 1,
\]

(4.1)

\[
A(\nu_6\gamma_{16}) = 0.
\]
In fact, since $E^p R_6 \cdot A(\zeta_6) = 2E^p \zeta_6$ by (3.10), we have $A(\zeta_6) = 2[\zeta_6] + a[\nu_6] + b[\nu_6] \zeta_6$ for some integers a, b. And

$$A(\nu_6 \nu_{14}) = A(\nu_6 + \varepsilon_0 \nu_{14})$$
$$= A(\nu_6 + \varepsilon_0 \nu_{14})$$
$$= 0$$

By (7.10) of [13], $A(\nu_6 \sigma_9 = \eta_9 \varepsilon_9$. From Table 2, there exist elements $[\eta_9], \eta_9 \varepsilon_9$ and $[\eta_9], \eta_9 \mu_7$ such that $\rho_9([\eta_9], \eta_9 \varepsilon_9) = \eta_9 \varepsilon_9$ and $\rho_9([\eta_9], \eta_9 \mu_7) = \eta_9 \mu_7$. Since $\eta_9 \varepsilon_9$ and μ_7 are of order 2, it follows that $[\eta_9], \eta_9 \varepsilon_9$ and $[\eta_9], \eta_9 \mu_7$ are of order 2. Thus, from the above exact sequence, we have

$$
\pi_{16}(R_7) = \{[\zeta_6] + [\nu_6] + [\nu_6] \varepsilon_9 + [\nu_6] \mu_7 + [\nu_6] \eta_9\varepsilon_9 + [\nu_6] \eta_9 \mu_7 \}
+ \{[\eta_9], \eta_9 \varepsilon_9 + [\eta_9], \eta_9 \mu_7 \} \cong Z_2 + Z_2 + Z_2 + Z_2 + Z_2 + Z_2 + Z_2.
$$

Moreover, by Lemma 6.7 of [13], we obtain that the kernel of

$$(4.2) \quad A: \pi_7 \to \pi_{16}(R_6)$$

is generated by $4 \zeta_6 = \eta_9 \varepsilon_9$ and $\nu_6 \nu_{16}$.

R_8: By (2.4) and Table 1, the results for $\pi_{16}(R_6)$ are given.

R_9: By (3.7), (2.6) yields the following exact sequence

$$A \quad \pi_7 \to \pi_{16}(R_9) \to \pi_{16}(R_9) \to 0.$$

For the homomorphism $A: \pi_7 \to \pi_{16}(R_9)$, making use of the Table 1 and 3 and the formula (2.2), we have that

$$A(\nu_6) = [\nu_6] \zeta_6,$$
$$A(\nu_6) = [\nu_6] \eta_9 \varepsilon_9,$$

$$(4.3) \quad A(\nu_6 \eta_9 \mu_7) = [\zeta_6] \eta_9 \varepsilon_9,$$
$$A(\nu_6 \eta_9 \varepsilon_9) = [\zeta_6] \eta_9 \varepsilon_9,$$
$$A(\nu_6 \eta_9 \mu_7) = [\zeta_6] \eta_9 \varepsilon_9.$$ (3.6),

$A(\nu_6 \eta_9 \varepsilon_9) = [\zeta_6] \eta_9 \varepsilon_9.$

Thus, from the exactness of the above sequence, we have

$$\pi_{16}(R_9) = \{[\zeta_6] + [\nu_6] + [\nu_6] \varepsilon_9 + [\nu_6] \mu_7 + [\nu_6] \eta_9 \varepsilon_9 + [\nu_6] \eta_9 \mu_7 \}
+ \{[\eta_9], \eta_9 \varepsilon_9 + [\eta_9], \eta_9 \mu_7 \} \cong Z_2 + Z_2 + Z_2 + Z_2 + Z_2 + Z_2 + Z_2.$$

From (4.3) and the exact sequence (2.6),

$$(4.4) \quad i_+: \pi_{16}(R_9) \to \pi_{16}(R_9) \text{ is an epimorphism.}$$

R_{10}: From (3.8) and (2.6), we obtain that the sequence
On the Homotopy Groups of Rotation Groups R_n

\[\pi^1_{12} \xrightarrow{\beta} \pi_{10}(R_9) \xrightarrow{i_6} \pi_{10}(R_{10}) \xrightarrow{p_6} \{2\sigma_0\} \longrightarrow 0 \]

is exact. By the use of (2.2), (3.8) and Tables 1 and 3, we have the following relations:

\[\text{by Lemma 6.3 of [13]}, \]

\[A(E_\tau) = d(\sigma_0) = [\iota_7]_9 + [\iota_7]_9 \tau_7 \tau_5, \]

(4.5) \[A(V_\tau) = d(\sigma_0) = [\iota_7]_9 + [\iota_7]_9 \tau_7 \tau_5 \]

\[= [\iota_7]_9 + [\iota_7]_9 \tau_7 \tau_5 \]

\[\text{Thus, from the above exact sequence, it follows that the sequence} \]

(4.6) \[0 \longrightarrow \{[\iota_7]_9 \tau_7 \} + \{[\iota_7]_9 \tau_5 \} \xrightarrow{i_6} \pi_{10}(R_{10}) \xrightarrow{d} \{2\sigma_0\} \xrightarrow{j} 0 \]

is exact. Consider the diagram

\[\begin{array}{ccc}
\pi^1_{10} &=& \{\sigma_{10}\} \\
\xrightarrow{d} \pi_{10}(R_{10}) \approx \downarrow E^{11} \xrightarrow{d} \pi_{10}(R_{10}) \approx \downarrow H \\
\pi^1_{12} &=& \{\sigma_{21}\} \\
\end{array} \]

\[\text{of (2.7). Then we have} \]

\[E^{13} \cdot p_6 \cdot d(\sigma_{10}) = 2E^{13} \cdot \sigma_0 \]

\[\text{by (3.10).} \]

Since $E^{13} : \pi^0_{10} \longrightarrow \pi^0_{12}$ is an isomorphism, $p_6 \cdot d(\sigma_{10}) = 2\sigma_0$.

Therefore, by definition of $[2\sigma_0]$, we have

(4.7) \[d(\sigma_{10}) = [2\sigma_0]. \]

By (12.19) of [13], the homomorphism $dE^{11} : \pi^0_{12} \longrightarrow \pi^0_{15}$ is a monomorphism.

On the other hand

\[H \cdot dE^{11}(\sigma_{10}) = \pm 2\sigma_{19} \]

by Proposition 2.5 and 2.7 of [13],

\[= \pm H \cdot d(\sigma_{10}) \]

Thus, from the exact sequence $\pi^0_{15} \xrightarrow{E} \pi^0_{18} \xrightarrow{H} \pi^0_{15}$ of [13] and (4.6), we have

(4.8) \[J([2\sigma_0]) = \pm d(\sigma_{21}) \mod E^{0}_{25}. \]

Therefore it follows that $[2\sigma_0]$ is of order 16. We have a relation:

\[J(2[2\sigma_0]) = Jd(2\sigma_{21}) \]

by (4.6),

\[= \pm dE^{11}(2\sigma_{10}); \]
Thus we have $\mathcal{J}[g_{2\sigma_0}] - [\tau_7]_{10} \mu_7 = 0$. From the exact sequence (4.6),

$$8[2\sigma_0] - [\tau_7]_{10} \mu_7 = x[\zeta_6]_{10} + y[\tau_7]_{10} \mu_7^2,$$

for some integers x, y ($x, y = 0$ or 1). On the other hand,

$$\mathcal{J}([\tau_7]_{10} \mu_7^2) = \mathcal{J}([\tau_7]_{10}) E^{10} \mu_7^3 \quad \text{by (2.8)},$$

$$= \sigma_{10} \mu_7^2 = 0 \quad \text{by (7.1) of [13] and (2.9)}.$$

Therefore we have $x = 1$ and $\mathcal{J}([\zeta_5]_{10}) = \mu_{10} \sigma_{19}$. Thus we have obtained a relation

$$8[2\sigma_0] = [\tau_7]_{10} \mu_7^2 + [\zeta_6]_{10} + y[\tau_7]_{10} \mu_7^2,$$

where $y = 0$ or 1. It follows from the exactness of the above sequence that

$$\pi_{10}(R_{10}) = \{[2\sigma_0]\} + \{[\tau_7]_{10} \mu_7^2\} + \{[\tau_7]_{10} \mu_7^3\} \approx \mathbb{Z}_1 + \mathbb{Z}_2 + \mathbb{Z}_2.$$

R_{11}: By (3.9), we have an exact sequence

$$\begin{array}{c}
\Delta \\
\pi_{11}^{10} \longrightarrow \pi_{10}(R_{10}) \longrightarrow \pi_{10}(R_{11}) \longrightarrow 0.
\end{array}$$

Then it follows from (4.7) that

(4.9) $\Delta : \pi_{11}^{10} \longrightarrow \pi_{10}(R_{10})$ is a monomorphism

and

$$\pi_{10}(R_{11}) = \{[\tau_7]_{11} \mu_7\} + \{[\tau_7]_{11} \mu_7^2\} \approx \mathbb{Z}_2 + \mathbb{Z}_2.$$

R_{12}: Consider the exact sequence

$$\begin{array}{c}
\Delta \\
\pi_{12}^{11} = \{\nu_{11}\} \longrightarrow \pi_{10}(R_{11}) \longrightarrow \pi_{10}(R_{12}) \longrightarrow \pi_{11}^{10} = 0
\end{array}$$

of (2.6). We have the relation;

$$\Delta(\nu_{11}) = \Delta(\nu_{11}) \nu_{12}^2 \quad \text{by (2.2)},$$

$$= [\tau_7]_{11} \mu_7^2 \quad \text{by Table 3}.$$

Then it follows from the exactness of the above sequence that

(4.10) $\Delta : \pi_{12}^{11} \longrightarrow \pi_{10}(R_{11})$ is a monomorphism

and
\[\pi_{10}(R_{12}) = \{[\tau_7]_{10}/\tau_7\} \cong \mathbb{Z}_2. \]

R_{13}: \(\pi_7^6 = \pi_8^6 = 0 \) by Table 1. Then, from the exactness of (2.6), it follows that
\[\pi_{10}(R_{13}) = \{[\tau_7]_{13}/\tau_7\} \cong \mathbb{Z}_2. \]

R_{14}: From (3.13) and (2.6), the following sequence
\[
0 = \pi_7^6 \rightarrow \pi_{10}(R_{14}) \xrightarrow{i_{10}} \pi_{10}(R_{14}) \xrightarrow{\partial_{10}} \{2\nu_{14}\} \rightarrow 0
\]
is exact. Consider the diagram
\[
\begin{array}{ccc}
\pi_7^6 = \{\nu_{14}\} & \xrightarrow{\partial} & \pi_{10}(R_{14}) \xrightarrow{i_{10}} \pi_{10}(R_{14}) = \{\nu_{13}\} \\
\cong E^{15} & \xrightarrow{d} & J \xrightarrow{H} \cong E^{14} \\
\pi_8^6 = \{\nu_{20}\} & \xrightarrow{\partial} & \pi_9^6 = \{\nu_{27}\}
\end{array}
\]
of (2.7). Then we have
\[E^{15}p_4d\nu_{14} = 2E^{14}\nu_{14} \quad \text{by (3.10).} \]

Since \(E^{17} : \pi_7^6 \rightarrow \pi_8^6 \) is an isomorphism, we have \(p_4d\nu_{14} = 2\nu_{13} \). Then, by definition of \([2\nu_{13}]\), we have
\[(4.11) \quad d\nu_{14} = [2\nu_{13}]. \]

On the other hand,
\[\pi_8^6 = \{w_{14}\} + \{\sigma_{14}/\theta_2\} \cong \mathbb{Z}_8 + \mathbb{Z}_2 \quad \text{by Theorem 12.16 of [13]}, \]
\[H(w_{14}) = \nu_{27} \quad \text{by Lemma 12.15 of [13]}, \]
and
\[d\nu_{20} = \pm 2w_{14} \quad \text{(cf. page 159 or [13])}. \]

Thus, from the above diagram
\[(4.12) \quad J([2\nu_{13}]) = Jd\nu_{14} \]
\[= \pm dE^{15}\nu_{14} \]
\[= \pm d\nu_{20} \]
\[= \pm 2w_{14}. \]

If \([2\nu_{13}]\) is of order 8, then, from the above exact sequence, we have
\[i_{10}([\tau_7]_{14}/\tau_7) = [\tau_7]_{14}/\tau_7 = 4[2\nu_{14}], \]
and
\[0 \neq \sigma_{14}/\theta_2 = J([\tau_7]_{14}/\tau_7) \quad \text{by (2.9)} \]
\[= Jd(2\nu_{14}) \]
\[= \pm 8w_{14} \quad \text{by (4.12)} \]
\[= 0. \]
This is a contradiction, and hence \([2\nu_{13}]\) must be of order 4. From the exactness of the above sequence, we have

\[\pi_{16}(R_{14}) = \{[2\nu_{13}]\} + \{[\tau_7]_{14}/\tau_7\} \approx \mathbb{Z}_4 + \mathbb{Z}_2. \]

Moreover,

\[\text{(4.13)} \quad \text{The kernel of } d : \pi_{17}^{14} \longrightarrow \pi_{16}(R_{14}) \text{ is } \{4\nu_{14}\} = \{\eta_{18}^4\}. \]

R_{15}: From (2.6), (4.10) and \(\pi_{15}(R_{14}) \approx \mathbb{Z}\), it follows that the sequence

\[0 \longrightarrow \{[\tau_7]_{15}/\tau_7\} \longrightarrow \pi_{16}(R_{15}) \longrightarrow \pi_{16}^{14} = \{\eta_{14}^4\} \longrightarrow 0 \]

is exact. Consider the diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & \{[\tau_7]_{15}/\tau_7\} \\
& \downarrow J & \downarrow J \\
0 & \longrightarrow & \{[\sigma_{15}]/\sigma_{22}\} + \{\omega_{15}\} \\
& \downarrow J & \downarrow H \\
& & \{\eta_{29}\} \\
& & 0
\end{array}
\]

of (2.7), where the lower sequence is exact by Lemma 12.14 and (12.20) of [13]. We have

\[J([\omega_{15}]) = \sigma_{15}/\sigma_{22} \quad \text{by (2.8) and (2.9).} \]

Thus, from the above diagram, we have

\[\text{(4.14)} \quad J : \pi_{16}(R_{15}) \longrightarrow \pi_{16}^{14} \text{ is a monomorphism.} \]

On the other hand,

\[\pi_{16}^{14} = \{\omega_{15}\} + \{\sigma_{15}/\sigma_{22}\} + \{\mu^a\} \approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 \quad \text{by Theorem 12.16 of [13]} \]

and

\[H(\gamma^a) = \eta_{29} \quad \text{by Lemma 12.14 of [13].} \]

Therefore, there exists an element \([\eta_{14}^7]\) \(\in \pi_{16}(R_{15})\) of order 2 such that \(p_{16}([\eta_{14}^7]) = \eta_{14}^7\). Thus, from the exactness of the above sequence, we have

\[\pi_{16}(R_{15}) = \{[\tau_7]_{15}/\tau_7\} + \{[\eta_{14}^7]\} \approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 \]

and

\[\text{(4.15)} \quad J([\eta_{14}^7]) = \eta^a. \]

R_{16}: Consider the diagram
On the Homotopy Groups of Rotation Groups R_n

\[\pi_{15}^i = \{ \gamma_{15}^i \} \xrightarrow{\Delta} \pi_{16}(R_{15}) \xrightarrow{i_*} \pi_{16}(R_{16}) \xrightarrow{p_*} \pi_{16}^i = \{ \gamma_{15}^i \} \]

\[\approx \xrightarrow{E_{16}} \xrightarrow{\Delta} \xrightarrow{J} \xrightarrow{E} \xrightarrow{J} \xrightarrow{H} \approx \xrightarrow{E_{16}} \]

\[\pi_{16}^o = \{ \gamma_{15}^o \} \xrightarrow{\Delta} \pi_{17}(R_{15}) \xrightarrow{i_*} \pi_{17}(R_{16}) \xrightarrow{p_*} \pi_{17}^o = \{ \gamma_{15}^o \} \]

for (2.7). From (4.14) and by five lemma, we have

\[\text{(4.16)} \quad J : \pi_{16}(R_{16}) \longrightarrow \pi_{16}^o \text { is a monomorphism.} \]

From Lemma 12.14 of [13], $\Delta : \pi_{16}^o \longrightarrow \pi_{17}^o$ is trivial. Thus, from (4.14) and the above diagram, it follows that

\[\text{(4.17)} \quad J : \pi_{17}^o \longrightarrow \pi_{16}(R_{16}) \text { is trivial.} \]

On the other hand, from Lemma 12.14 of [13], there exists an element $\gamma_{15}^o \in \pi_{16}^o$ such that $H(\gamma_{15}^o) = \gamma_{15}$ and $2\gamma_{15} = 0$. Moreover, from the above diagram, there exists an element $[\gamma_{15}] \in \pi_{16}(R_{16})$ such that

\[p_*[\gamma_{15}] = \gamma_{15}, \]

\[2[\gamma_{15}] = 0, \]

and

\[\text{(4.17)} \quad J([\gamma_{15}]) = \gamma_{15}^o. \]

Thus, from the exact sequence

\[0 \longrightarrow \pi_{16}(R_{15}) \xrightarrow{i_*} \pi_{16}(R_{16}) \xrightarrow{p_*} \pi_{16}^o \longrightarrow 0, \]

we have

\[\pi_{16}(R_{16}) = \{ [\gamma_{15}] \} + \{ [\gamma_{15}]_{16} \} + \{ [\gamma_{15}]_{16} \} \]

\[\approx \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2. \]

From the above diagram, we have also

\[\text{(4.18)} \quad J([\gamma_{15}]) = E[\gamma_{15}] = E[\gamma_{15}]. \]

\[\text{by (4.15)} \]

\[R_{17} : \text{Consider the diagram} \]

\[\pi_{16}^o = \{ \gamma_{15}^o \} \xrightarrow{\Delta} \pi_{16}(R_{16}) \xrightarrow{i_*} \pi_{16}(R_{17}) \xrightarrow{0} \]

\[\approx \xrightarrow{E_{17}} \xrightarrow{\Delta} \xrightarrow{J} \xrightarrow{E} \xrightarrow{J} \xrightarrow{H} \approx \xrightarrow{E_{17}} \]

\[\pi_{16}^o = \{ \gamma_{15}^o \} \xrightarrow{i_*} \pi_{17}^o \xrightarrow{p_*} \pi_{18}^o = \{ \gamma_{18} \} \]

of (2.7), where the upper sequence is exact by (3.14).
We have a relation
\[d(\gamma_{30}) \equiv E_{\eta^{q_3}} \mod E_{\pi^{14}_{30}} \] (cf. page 160 of [13]).

Thus, from (4.18) and (4.16), we have
\[d(\gamma_{16}) = [\gamma_{14}, \gamma_{16}], \]
and
\[\pi_{16}(R_{17}) = \{[\gamma_{15}]_{17}\} + \{[\tau_{7}]_{17}\}_{17} \approx \mathbb{Z}_2 + \mathbb{Z}_2. \]

Also, we obtain
\[\text{(4.20)} \quad J : \pi_{16}(R_{17}) \longrightarrow \pi^{14}_{17} \text{ is a monomorphism.} \]

\[R_n \text{ for } n \geq 18 : \text{Consider the diagram} \]
\[
\begin{array}{cccccc}
\pi^{14}_{17} & \longrightarrow & \pi_{16}(R_{17}) & \longrightarrow & \pi_{16}(R_{18}) & \longrightarrow & \pi^{16}_{17} = 0 \\
& \approx & & \downarrow & & \\
\pi^{14}_{18} & \longrightarrow & \pi^{14}_{17} & \longrightarrow & \pi^{14}_{16} & \longrightarrow & \pi^{14}_{13} = 0
\end{array}
\]
of (2.7). Then
\[JD(\tau_{17}) = d_{35} = \eta^{8}_{7} \]
\[= J([\gamma_{15}]_{17}) \quad \text{(cf. page 160 of [13])} \]
by (4.20).

Thus, from (4.20) and the stability of \(\pi_{1}(R_n) \), it follows that
\[\pi_{16}(R_n) = \{[\tau_{7}]_{17}\}_{n} \approx \mathbb{Z}_2 \quad \text{for } n \geq 18. \]

Reference

On the Homotopy Groups of Rotation Groups R_n

