Titania/CₙTAB Nanoskeleton as adsorbent and photocatalyst for removal of alkylphenols dissolved in water

Toshio Sakai,* Albar Da Loves, Tomohiko Okada, Shozi Mishima

Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

* To whom correspondence should be addressed.

phone : +81-26-269-5405
fax : +81-26-269-5424
e-mail : tsakai@shinshu-u.ac.jp
Abstract

We report here on the removal of alkylphenols (phenol, 4-n-propylphenol, 4-n-heptylphenol and 4-nonylphenol) dissolved in water using the composite particles of nanocrystalline titania and alkyltrimethylammonium bromide (CₙH₂ₙ₊₁N(CH₃)₃Br, CₙTAB; n = 12, 14, 16 and 18) (named as TiO₂/CₙTAB Nanoskeleton) as adsorbents and photocatalysts. In particular, the adsorption of alkylphenols onto TiO₂/CₙTAB Nanoskeleton in water was investigated in terms of hydrophobic interaction between alkylphenols and CₙTAB, surface area, pore structure and crystal size of TiO₂/CₙTAB Nanoskeleton. We revealed that CₙTAB incorporated in the TiO₂/CₙTAB Nanoskeleton promotes the adsorption of alkylphenols onto TiO₂/CₙTAB Nanoskeleton due to the hydrophobic interaction between alkylphenols and CₙTAB. On the other hand, the surface area, pore structure and crystal size of TiO₂/CₙTAB Nanoskeleton did not affect the adsorption of alkylphenols onto TiO₂/CₙTAB Nanoskeleton. We also found that the alkylphenols dissolved in water were completely removed by the combination of adsorption and photocatalytic degradation by the TiO₂/CₙTAB Nanoskeleton under UV irradiation. These results prove that the TiO₂/CₙTAB Nanoskeleton acts as in tandem an adsorbent and a photocatalyst for removal of alkylphenols dissolved in water.

Key Words : Adsorption, Photocatalysis, Titania Nanoskeleton, Alkyltrimethylammonium bromide, Alkylphenols
1. Introduction

Removal of chemical contaminants from wastewater continues to be a critical issue in environmental remediation. Several techniques such as adsorption, reverse osmosis, biological degradation, chemical oxidation, precipitation and electrodialysis are applied to remove the chemical contaminants from wastewater [1-29]. Adsorption is considered as one of the effective and versatile methods. For example, activated carbon is one the most popular sorbent materials to extract chemical contaminants from wastewater. In recent years, organic/inorganic hybrid porous materials such as organic molecules-grafted mesoporous materials have attracted attention as effective adsorbents for removal of organic contaminants from water [5-13]. In addition, several reports describe that mesoporous silica materials (MCM-41) containing surfactant template also act as effective adsorbents for the removal of organic contaminants from aqueous solutions [14-21]. In the organic/inorganic hybrid adsorbents, inorganic parts act as adsorption substrate and provide large surface area. Organic parts add the adsorption-ability and -selectivity to the inorganic substrates. Furthermore, combining of titania (TiO₂) with organic/inorganic hybrid porous materials is expected to enhance the removal of organic contaminants from water due to the synergistic effect of adsorption and photocatalytic degradation of organic contaminants [22-29].

Then, we considered to apply the composite particles of nanocrystalline titania (anatase) and alkyltrimethylammonium bromide (CₙH₂₄₃N(CH₃)₃Br, CₙTAB; n = 12, 14, 16 and 18) (named as TiO₂/CₙTAB Nanoskeleton) that we have recently developed [30-32] as adsorbents and photocatalysts for adsorption and degradation of organic contaminants. The TiO₂/CₙTAB Nanoskeleton should extract organic contaminants from water due to the solubilization of organic contaminants into
CₙTAB domain incorporated in the TiO₂/CₙTAB Nanoskeleton and to degrade organic contaminants due to the photocatalysis of nanocrystalline titania in TiO₂/CₙTAB Nanoskeleton.

In this paper, we examine the potential of the TiO₂/CₙTAB Nanoskeleton as adsorbent and photocatalyst for removal of organic contaminants dissolved in water. The TiO₂/CₙTAB Nanoskeleton was prepared through sol-gel reaction of titanium oxysulfate sulfuric acid hydrate (TiOSO₄·xH₂SO₄·xH₂O, TiOSAH) initiated by CₙTAB spherical micelles in an aqueous solution in the absence of any other additives such as acid and base [30-32]. Compared with the synthetic methods reported [33-35], our synthetic system involves benefits such as (i) spontaneous formation of hexagonally ordered pore-structure through simple procedure (mixing of aqueous solutions containing TiOSAH and CₙTAB but no other additives such as acid and base as reaction initiators required, (ii) crystallization of titania (anatase formation) in aqueous solutions under mild condition (e.g., at 60 °C for 24 h), (iii) no evaporation and calcination processes required for formation of ordered pore-structure and crystallization of titania and (iv) utilization of water as a solvent [30-32]. This matches with recent emerging environmental requirements on nanomaterial synthetic strategy such as a simplified procedure, minimized material use, low energy input and utilization of environmentally benign solvents.

2. Experimental

2.1. Preparation of TiO₂/CₙTAB Nanoskeleton

Hexagonal-structured TiO₂/CₙTAB Nanoskeleton (denoted as HX-TNS-n) was prepared through sol-gel reaction of a 3.0 mol L⁻¹ titanium oxysulfate sulfuric acid hydrate (TiOSO₄·xH₂SO₄·xH₂O, TiOSAH; Aldrich) aqueous solution (18.2 mΩ cm,
Millipore-filtered water) at 60 °C for 24 h initiated by mixing of an aqueous solution containing 60×10^{-3} mol L$^{-1}$ alkyltrimethylammonium bromide ($\text{CH}_3(\text{CH}_2)_nN^+ (\text{CH}_3)_3\text{Br}^-$, $C_n\text{TAB}$, $n = 12, 14, 16, 18$; Aldrich) (following the procedure that we have reported previously) [30-32]. Precipitates thus produced were filtrated and washed by water, and finally, the powder of the HX-TNS-n was obtained after drying at 120 °C for 10 h under air atmosphere. Alkyltrimethylammonium bromide ($C_n\text{TAB}$, $n = 12, 14, 16, 18$) was used to investigate the effect of hydrocarbon chain length of $C_n\text{TAB}$ on the adsorption of alkylphenols onto HX-TNS-n. Role of $C_n\text{TAB}$ on adsorption of alkylphenols onto TiO$_2/C_n\text{TAB}$ Nanoskeleton was also investigated by comparison with the adsorption of alkylphenols onto calcined HX-TNS-n at 450 °C for 2 h (denoted as CA-TNS-n), in which $C_n\text{TAB}$ was removed from HX-TNS-n by calcination. Moreover, TiO$_2/C_n\text{TAB}$ Nanoskeleton with higher specific surface area and lower content of $C_n\text{TAB}$ (denoted as SC-TNS-n) was prepared to check the connections between alkylphenol adsorption, surface area and $C_n\text{TAB}$ content in the TiO$_2/C_n\text{TAB}$ Nanoskeleton. The SC-TNS-n was prepared through sol-gel reaction of a 3.0 mol L$^{-1}$ TiOSAH aqueous solution mixed with a 60×10^{-3} mol L$^{-1}$ $C_n\text{TAB}$ aqueous solution at 100 °C for 72 h. Powder of the SC-TNS-n was obtained through same procedure with that of HX-TNS-n.

2.2 Characterization of HX-TNS-n, CA-TNS-n and SC-TNS-n

Pore structure, crystal type and crystallinity of the HX-TNS-n, CA-TNS-n and SC-TNS-n were characterized using powder X-ray diffraction (XRD) system (RINT-2200V PC, RIGAKU). For example, three peaks assigned to hexagonally ordered pore-structure ($d_{100} : d_{110} : d_{200} = 1:1/\sqrt{3}:1/2$)[32] in low-angle region (see Figure 1a) and a XRD pattern assigned to anatase titania ((101), (004), (200), (105) and
(211) facets of anatase)[36, 37] (see Figure 1a’). A broad peak of XRD assigned to (100) facet in low-angle region (see Figure 1b) and a XRD pattern assigned to anatase titania ((101), (004), (200), (105) and (211) facets of anatase) in wide-angle region (see Figure 1b’) were observed in CA-TNS-16 that was obtained after calcination of the HX-TNS-16. In the case of SC-TNS-16, no noticeable peak was observed in low-angle region of XRD pattern (see Figure 1c), indicating that there is no ordered pore-structure in the SC-TNS-16. The XRD pattern observed in wide-angle region for the SC-TNS-16 was assigned to anatase titania ((101), (004), (200), (105) and (211) facets of anatase) (see Figure 1c’). Pore structure and crystal type of HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) (\(n = 12, 14\) and 18) are same with those of HX-TNS-16, CA-TNS-16 and SC-TNS-16. Value of \(d\)-spacing estimated from XRD pattern of HX-TNS-\(n\) increased as the diameter of C\(_n\)TAB micelles (hydrocarbon chain length of C\(_n\)TAB), suggesting that C\(_n\)TAB micelles act as templates for the formation of hexagonally ordered pore-structure.

Pore structure, \(d\)-spacing, crystal type and crystal size of the HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) obtained from the XRD measurements were summarized in Table 1. Morphology and nanostructure of HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) were confirmed by scanning electron microscopy (SEM) (VE-9800, KEYENCE, 20 kV) and transmission electron microscopy (TEM) (JEM-2010, JEOL, 200 kV, 3.0 \(\mu\)A). For example, the HX-TNS-16 was micron-sized agglomerate (see Figures 2a and 3a) containing the honeycomb-like structure with the pore diameter of 2.9 nm (average diameter) and framework (wall) thickness of 1.2 nm (average thickness) (see Figure 3a’). Sum of the pore diameter and framework thickness was in good agreement with the value of \(d_{100}\)-spacing (3.97 nm) (distance between pores = pore diameter + framework thickness) estimated from the (100) peak of low-angle XRD (see Table 1).
Also pore diameter of HX-TNS-16 is consistent with micelle diameter (see Table 1). This supports that C16TAB micelles act as templates for the formation of hexagonally ordered pore-structure of HX-TNS-16. The CA-TNS-16 was micron-sized agglomerate (see Figures 2b and 3b) which was constructed by the aggregation of nanometer-sized particles (the diameter of ~5 nm) (see Figure 3b’). The SC-TNS-16 was submicron-sized particles (see Figures 2c and 3c) which were aggregates of nanometer-sized particles (the diameter of ~5 nm) (see Figure 3c’). Similar images were observed in HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) (\(n = 12, 14\) and 18). Specific surface areas of the TiO\(_2/C_n\)TAB Nanoskeleton and CA-TNS-\(n\) determined using Brunauer, Emmett, Teller (BET) method (BELSORP-miniII, BEL JAPAN) were listed in Table 1. Presence of C\(_n\)TAB in TiO\(_2/C_n\)TAB Nanoskeleton and CA-TNS-\(n\) was confirmed by measuring the absorption bands (2850-2950 cm\(^{-1}\)) originating from stretching vibration of CA-H with FT-IR spectrometer (FT/IR-4200, JASCO). Also contents of C\(_n\)TAB in the TiO\(_2/C_n\)TAB Nanoskeleton and CA-TNS-\(n\) determined from weight loss measured with the simultaneous thermogravimetry/differential thermal analysis (TG/DTA) measurements (DTG-50H, SHIMADZU) (heating rate of 1 °C min\(^{-1}\) under air atmosphere) were also listed in Table 1.

2.3 Adsorption properties of alkylphenols onto HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\)

Adsorption of alkylphenols (Phenol, C\(_6\)H\(_5\)OH; 4-\(n\)-propylphenol, CH\(_3(CH_2)_2C_6H_5OH\); 4-\(n\)-heptylphenol, CH\(_3(CH_2)_6C_6H_5OH\); 4-nonylphenol, CH\(_3(CH_2)_8C_6H_5OH\); Tokyo Chemical Industry Co., Ltd.) onto HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) was examined as follows: Powder (5 mg) of HX-TNS-\(n\), CA-TNS-\(n\)
and SC-TNS-\(n\) was dispersed in a \(1.5 \times 10^{-5}\) mol L\(^{-1}\) alkylphenol aqueous solution (50 mL) by ultrasonication (28 kHz). The dispersion was left standing under dark condition, and concentration of residual alkylphenol in water was estimated from absorbance (centered at \(\sim 190\) nm) originating from alkylphenol measured with UV-visible spectrophotometer (U-1900, HITACHI) after centrifugation of the powder. Solubility of phenol, 4-\(n\)-propylphenol, 4-\(n\)-heptylphenol and 4-nonylphenol at 25 °C is \(8.84 \times 10^{-1}\) g L\(^{-1}\), \(1.28\) g L\(^{-1}\), \(1.22 \times 10^{-2}\) g L\(^{-1}\) and \(5.43 \times 10^{-3}\) g L\(^{-1}\), respectively [38].

2.3 Photocatalytic activities of HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\)

Photocatalytic activities of HX-TNS-\(n\), CA-TNS-\(n\) and SC-TNS-\(n\) were determined in terms of 4-\(n\)-heptylphenol degradation under UV irradiation (LED-100UV365STND, 365 nm, 2 mW cm\(^{-2}\), OPTOCODE CORPORATION) after adsorption of 4-\(n\)-heptylphenol onto HX-TNS-16, CA-TNS-16 and SC-TNS-16 under dark condition for 24 h. Concentration of residual 4-\(n\)-heptylphenol in water was estimated from absorbance (centered at \(\sim 190\) nm) originating from 4-\(n\)-heptylphenol measured with UV-visible spectrophotometer (U-1900, HITACHI) after centrifugation of the powder.

3. Results and Discussion

3.1 Role of \(C_n\)TAB in TiO\(_2\)/\(C_n\)TAB Nanoskeleton on adsorption of alkylphenols

Surfactant micelles are small containers that can capture and store organic compounds dissolved in aqueous solutions [39]. Thus, surfactant micelles are one of the effective soft materials to extract the organic contaminants from aqueous solutions. However, it is not easy to separate the surfactant micelles solubilizing the organic contaminants from aqueous solutions due to the nanometer-sized and soft materials.
So, micron-sized inorganic materials combining with surfactants are considered as effective adsorbents to extract organic contaminants from aqueous solutions [14-21]. Then, we applied the TiO$_2$/C$_n$TAB Nanoskeleton [30-32] as adsorbent for removal of alkylphenols from aqueous solutions. Namely, we considered that alkylphenols dissolved in water would be removed by TiO$_2$/C$_n$TAB Nanoskeleton due to the solubilization of alkylphenols into TiO$_2$/C$_n$TAB Nanoskeleton. Indeed, the concentration of residual alkylphenols in water decreased with the elapsed time after mixing of HX-TNS-16 powder with aqueous alkylphenol solutions but not CA-TNS-16 (see Figure 4). That is, alkylphenols dissolved in water adsorbed onto HX-TNS-16 but not onto CA-TNS-16. This indicates that C$_{16}$TAB incorporated in HX-TNS-16 contributes to the removal of alkylphenols from water. This also implies that C$_{16}$TAB incorporated in HX-TNS-16 acts as adsorption sites for alkylphenols dissolved in water. We also noticed that amount of alkylphenols adsorbed onto HX-TNS-n increased with hydrophobicity of alkylphenols (with the order of phenol < 4-n-propylphenol < 4-n-heptylphenol < 4-nonylphenol). This supports that hydrophobic interaction between alkylphenols and adsorbents is a critical factor for adsorption of organic compounds onto adsorbents.

3.2 Selectivity of alkylphenols adsorbed onto TiO$_2$/C$_n$TAB Nanoskeleton

Now we realized that adsorption of alkylphenols onto HX-TNS-16 was caused by hydrophobic interaction between alkylphenols and C$_{16}$TAB in the HX-TNS-16. As mentioned in previous section (section 3.1), alkylphenols with higher hydrophobicity preferred to adsorb onto HX-TNS-16 (see Figure 4). This brings us an idea that different hydrophobicity of C$_n$TAB incorporated in HX-TNS-n should exhibit different adsorption-ability and -selectivity of alkylphenols. Then, HX-TNS-n
synthesized using C_nTAB with different hydrocarbon chain length was applied to elucidate the connection between hydrophobicity of C_nTAB in HX-TNS-n and adsorption of alkylphenols onto HX-TNS-n. In the case of HX-TNS-12, 4-n-heptylphenol and 4-nonylphenol adsorbed onto HX-TNS-12 but phenol and 4-n-propylphenol did not (see Figure 5a). Amount of 4-n-heptylphenol and 4-nonylphenol adsorbed onto HX-TNS-12 increased with hydrophobicity of alkylphenols (4-n-heptylphenol < 4-nonylphenol). Amount of 4-n-heptylphenol and 4-nonylphenol adsorbed onto HX-TNS-14 was larger than that onto HX-TNS-12 while phenol and 4-n-propylphenol did not adsorbed onto HX-TNS-14 as well as HX-TNS-12 (see Figure 5b). The HX-TNS-16 and HX-TNS-18 adsorbed 4-n-propylphenol, 4-n-heptylphenol and 4-nonylphenol but not phenol (see Figure 5c and d). Amount of 4-n-propylphenol, 4-n-heptylphenol and 4-nonylphenol adsorbed onto HX-TNS-18 was larger than those onto HX-TNS-16. These results obviously indicate that adsorption of alkylphenols onto HX-TNS-n was controlled by hydrophobicity of C_nTAB incorporated in HX-TNS-n. This also suggests that alkylphenols were selectively removed by tuning the hydrophobicity of HX-TNS-n.

3.3 Role of surface area of TiO$_2$/C$_n$TAB Nanoskeleton on adsorption of alkylphenols

Having established the role of C_nTAB in the HX-TNS-n on the adsorption of alkylphenols dissolved in water, our interest turns into the connection between surface area of TiO$_2$/C$_n$TAB Nanoskeleton and adsorption of alkylphenols, because, in general, mesoporous materials act as effective adsorbents and substrates for catalysts due to their high specific surface area [1-29]. Then, we examined the adsorption of alkylphenols onto SC-TNS-n which has higher specific surface area and lower C_nTAB
content than HX-TNS-\(n\) (see Table 1) to confirm the effect of surface area of TiO\(_2/C_n\)TAB Nanoskeleton on the adsorption of alkylphenols onto TiO\(_2/C_n\)TAB Nanoskeleton. Concentration of alkylphenols in water decreased with the elapsed time after mixing of SC-TNS-\(n\) powder with aqueous alkylphenol solutions (see Figure 6), indicating that SC-TNS-\(n\) enables to extract alkylphenols from water. Compared with the amounts of alkylphenols adsorbed onto HX-TNS-\(n\) (see Figures 5 and 6), the amounts of alkylphenols removed by the SC-TNS-\(n\) were smaller than those by HX-TNS-\(n\). This implies that amounts of alkylphenols adsorbed onto TiO\(_2/C_n\)TAB Nanoskeleton are determined by content of C\(_n\)TAB incorporated in the TiO\(_2/C_n\)TAB Nanoskeleton but not by surface area of TiO\(_2/C_n\)TAB Nanoskeleton (see Table 1). This result also suggests that pore structure of TiO\(_2/C_n\)TAB Nanoskeleton is not related to the adsorption of alkylphenols onto TiO\(_2/C_n\)TAB Nanoskeleton. Namely, the content of C\(_n\)TAB incorporated in the TiO\(_2/C_n\)TAB Nanoskeleton is an important factor for removal of alkylphenols dissolved in water rather than surface area and pore structure of the TiO\(_2/C_n\)TAB Nanoskeleton. This supports that the adsorption of organic compound onto inorganic material requires not only surface area of the inorganic material but also interaction between organic compound and inorganic material. We confirmed that MCM-41 with high specific surface area (~1000 m\(^2\) g\(^{-1}\)) did not capture the alkylphenols dissolved in water (the result is not reported here). Namely, if there is no significant interaction between organic compound and inorganic material, the organic compound would not adsorb onto the inorganic material even though the inorganic material has large surface area. We also confirmed that the crystal size of titania in the TiO\(_2/C_n\)TAB Nanoskeleton was not related to the adsorption of alkylphenols onto TiO\(_2/C_n\)TAB Nanoskeleton (see Table 1).
3.4 Photocatalytic degradation of alkylphenols by TiO$_2$/C$_n$TAB Nanoskeleton

Finally, photocatalytic activity of TiO$_2$/C$_n$TAB Nanoskeleton was checked in terms of alkylphenol degradation by TiO$_2$/C$_n$TAB Nanoskeleton. We expect that the organic contaminants adsorbed onto TiO$_2$/C$_n$TAB Nanoskeleton and residual organic contaminants in bulk solutions would be degraded by TiO$_2$/C$_n$TAB Nanoskeleton due to the photocatalysis of nanocrystalline titania. Indeed, every TiO$_2$/C$_n$TAB Nanoskeleton that we examined in this work enabled to degrade the alkylphenols dissolved in water, indicating that TiO$_2$/C$_n$TAB Nanoskeleton have photocatalytic activity. For example, 4-n-heptylphenols dissolved in water were degraded by HX-TNS-16, CA-TNS-16 and SC-TNS-16 under UV irradiation (see Figure 7). Then, kinetics of 4-n-heptylphenol degradation by TiO$_2$/C$_n$TAB Nanoskeleton was discussed to evaluate the connection between adsorption and photocatalysis of TiO$_2$/C$_n$TAB Nanoskeleton. The Langmuir-Hinshelwood kinetic model developed for quantitative analysis of gaseous-solid reactions is now the most commonly used method of expressing the heterogeneous catalytic process. This is simplified to a first-order reaction and given as follows [40]:

$$-\ln\left(\frac{C}{C_0}\right) = k_{app}t$$

(1)

where C_0 is the initial concentration of the organic molecule, C is the concentration at any time during degradation (mg L$^{-1}$), k_{app} is the apparent rate constant and t is the irradiation time.
The apparent rate constants, k_{app}, of 4-n-heptylphenol degradation determined from the slope of the line obtained by plotting $-\ln(C/C_0)$ vs. t (time) were 0.017, 0.011 and 0.014 h$^{-1}$ for HX-TNS-16, CA-TNS-16 and SC-TNS-16, respectively. Namely, the photocatalysis of TiO$_2$/C$_{16}$TAB Nanoskeleton for 4-n-heptylphenol degradation increases with the order of CA-TNS-16 < SC-TNS-16 < HX-TNS-16. This order is consistent with the amount of 4-n-heptylphenols adsorbed onto TiO$_2$/C$_{16}$TAB Nanoskeleton (CA-TNS-16 < SC-TNS-16 < HX-TNS-16) (see Figure 7). This supports that the photocatalysis of TiO$_2$/C$_{16}$TAB Nanoskeleton for the degradation of 4-n-heptylphenols is enhanced by the adsorption of 4-n-heptylphenols onto the TiO$_2$/C$_{16}$TAB Nanoskeleton. We also found that the photocatalysis of TiO$_2$/C$_{16}$TAB Nanoskeleton for the degradation of 4-n-heptylphenol was not related to the crystal size of titania (see Table 1) while larger crystal of titania generally enhances the photocatalytic activity. This also supports that the interaction between organic compound and titania material is required for the enhancement of titania photocatalysis.

4. Conclusions

We investigated the potential of TiO$_2$/C$_n$TAB Nanoskeleton as adsorbent and photocatalyst for removal of organic contaminants from water. The TiO$_2$/C$_n$TAB Nanoskeleton enabled to remove alkylphenols by adsorption and photocatalysis. Adsorption of alkylphenols by TiO$_2$/C$_n$TAB Nanoskeleton was dominated by hydrophobic interaction between alkylphenols and C$_n$TAB incorporated in the TiO$_2$/C$_n$TAB Nanoskeleton. Amounts of alkylphenols removed by TiO$_2$/C$_n$TAB Nanoskeleton were determined in terms of C$_n$TAB content incorporated in the TiO$_2$/C$_n$TAB Nanoskeleton rather than surface area, pore structure and crystal size of
TiO$_2$/C$_n$TAB Nanoskeleton. We also proved that combination of adsorption with photocatalysis promoted the removal of alkylphenols from water. These findings would provide better insight on the designing of adsorbents and development of environmental remediation systems by means of adsorption.

Acknowledgments

This study was performed through Program for Dissemination of Tenure Tracking System funded by the Ministry of Education and Science, Japan. We are grateful to the Japan Aerospace Exploration Agency (Grant JDX-2005185A) and Nippon Sheet Glass Foundation for Materials Science and Engineering for support of this research.
References

[17] K. Hanna, R. Denoyel, I. Beurroies, J.P. Dubes, Solubilization of

[33] A. Corma, From microporous to mesoporous molecular sieve materials and

<table>
<thead>
<tr>
<th>Sample</th>
<th>Micelle diameter (nm)</th>
<th>C, TAB content (wt%)</th>
<th>Pore structure</th>
<th>(d_{100}) (nm)</th>
<th>(d_{110}) (nm)</th>
<th>(d_{200}) (nm)</th>
<th>Crystal type</th>
<th>Crystal size (nm)</th>
<th>(N_2)-adsorption and desorption isotherm</th>
<th>BET surface area (m² g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HX-TNS-12</td>
<td>1.9</td>
<td>38</td>
<td>Hexagonal</td>
<td>3.44</td>
<td>2.08</td>
<td>1.69</td>
<td>Anatase</td>
<td>3.06</td>
<td>II</td>
<td>2.1</td>
</tr>
<tr>
<td>CA-TNS-12</td>
<td>3.6</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>5.06</td>
<td>IV</td>
<td>15.6</td>
</tr>
<tr>
<td>SC-TNS-12</td>
<td>10</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>18.3</td>
<td>II</td>
<td>187.7</td>
</tr>
<tr>
<td>HX-TNS-14</td>
<td>2.2</td>
<td>47</td>
<td>Hexagonal</td>
<td>3.69</td>
<td>2.21</td>
<td>1.89</td>
<td>Anatase</td>
<td>2.12</td>
<td>II</td>
<td>2.8</td>
</tr>
<tr>
<td>CA-TNS-14</td>
<td>2.0</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>1.50</td>
<td>IV</td>
<td>23.5</td>
</tr>
<tr>
<td>SC-TNS-14</td>
<td>11</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>19.2</td>
<td>II</td>
<td>104.3</td>
</tr>
<tr>
<td>HX-TNS-16</td>
<td>2.6</td>
<td>49</td>
<td>Hexagonal</td>
<td>3.97</td>
<td>2.31</td>
<td>1.99</td>
<td>Anatase</td>
<td>7.67</td>
<td>II</td>
<td>2.0</td>
</tr>
<tr>
<td>CA-TNS-16</td>
<td>2.7</td>
<td>No ordered structure</td>
<td>3.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>6.80</td>
<td>IV</td>
<td>65.4</td>
</tr>
<tr>
<td>SC-TNS-16</td>
<td>13</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>19.6</td>
<td>II</td>
<td>66.9</td>
</tr>
<tr>
<td>HX-TNS-18</td>
<td>3.1</td>
<td>55</td>
<td>Hexagonal</td>
<td>4.59</td>
<td>2.66</td>
<td>2.33</td>
<td>Anatase</td>
<td>0.44</td>
<td>II</td>
<td>2.3</td>
</tr>
<tr>
<td>CA-TNS-18</td>
<td>2.2</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>12.38</td>
<td>IV</td>
<td>23.0</td>
</tr>
<tr>
<td>SC-TNS-18</td>
<td>14</td>
<td>No ordered structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anatase</td>
<td>21.7</td>
<td>II</td>
<td>54.7</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1. Low-angle XRD and wide-angle XRD patterns of (Panels a and a’) HX-TNS-16, (Panels b and b’) CA-TNS-16 and (Panels c and c’) SC-TNS-16.

Figure 2. SEM images of (image a) HX-TNS-16, (image b) CA-TNS-16 and (image c) SC-TNS-16.

Figure 3. TEM images of (images a and a’) HX-TNS-16, (images b and b’) CA-TNS-16 and (images c and c’) SC-TNS-16.

Figure 4. Residual ratios (C/C_0) of alkylphenols (●: phenol, ○: 4-n-propylphenol, ■: 4-n-heptylphenol, □: 4-nonylphenol) in water plotted as a function of elapsed time. C_0 and C are concentrations of alkylphenols in water before and after mixing of Nanoskeleton powder with alkylphenols aqueous solutions, respectively. (Panel a) HX-TNS-16 and (Panel b) CA-TNS-16.

Figure 5. Residual ratios (C/C_0) of alkylphenols (●: phenol, ○: 4-n-propylphenol, ■: 4-n-heptylphenol, □: 4-nonylphenol) in water plotted as a function of elapsed time. C_0 and C are concentrations of alkylphenols in water before and after mixing of HX-TNS-n powder with alkylphenols aqueous solutions, respectively. (Panel a) HX-TNS-12, (Panel b) HX-TNS-14, (Panel c) HX-TNS-16 and (Panel d) HX-TNS-18.

Figure 6. Residual ratios (C/C_0) of alkylphenols (●: phenol, ○: 4-n-propylphenol, ■: 4-n-heptylphenol, □: 4-nonylphenol) in water plotted as a function of elapsed time.
C_0 and C are concentrations of alkylphenols in water before and after mixing of SC-TNS-n powder with alkylphenols aqueous solutions, respectively. (Panel a) SC-TNS-12, (Panel b) SC-TNS-14, (Panel c) SC-TNS-16 and (Panel d) SC-TNS-18.

Figure 7. Residual ratios (C/C_0) of 4-n-heptylphenol in water plotted as a function of elapsed time. C_0 and C are concentrations of 4-n-heptylphenol in water before and after mixing of Nanoskeleton powder with 4-n-heptylphenol aqueous solutions, respectively. Decreases in C/C_0 from 0 to 24 h and from 24 to 120 h represent the adsorption of 4-n-heptylphenol onto Nanoskeleton powder under dark condition and photocatalytic degradation of 4-n-heptylphenol by Nanoskeleton powder under UV irradiation. (■) HX-TNS-16, (●) SC-TNS-16, (□) CA-TNS-16 and (○) control solution (4-n-heptylphenol aqueous solution).
Figure 1. Sakai et al.
Figure 2. Sakai et al.
Figure 3. Sakai et al.
Figure 4. Sakai et al.
Figure 5. Sakai et al.
Figure 6. Sakai et al.
Figure 7. Sakai et al.