産業連関表を用いた長野県産業における環境影響物質（CO₂, NOₓ, SOₓ, SPM排出量）の推計

Estimation of Environmental Impact Substances (CO₂, NOₓ, SOₓ, SPM Emissions) in Nagano Prefecture Industry with an Input-Output Table

石坂和明*・藤井恒男**
Kazuaki Ishizaka ・ Tsuneo Fujii
（原稿受付日2005年8月8日、受理日2005年10月17日）

1. はじめに

経済活動の進展に伴い、社会におけるエネルギー消費量が増加し、地球温暖化の主な原因とされるCO₂をはじめとする環境影響物質の排出が増加してきた。2005年2月16日には「京都議定書」が発効し、CO₂などの温室効果ガスの削減に向けた取り組みが実行国において積極的に行われ始めた。日本は2006年から2012年5年間に1990年比6%の温室効果ガス削減を目指すこととなった。

長野県内では、県営が自らの温暖効果ガス排出量の削減に取り組むとともに、県民、事業者及び行政が一体となって地球温暖化防止への取り組みを推進することとなり、長野県地球温暖化防止条例の検討を始めると、地球温暖化防止に向けた取り組みが進められている。

こうした地域における取り組みが地球環境を守る上で極めて大きな役割を持つと考えられており、県営が自らの温室効果ガスの排出を抑制することに加え、県民及び事業者の自主的な活動の促進のために情報の提供することによって、長野県の自然・社会的条件に応じた地球温暖化防止対策を講じていくことが求められている。このような状況から、地域における産業活動が環境に対してどのような影響を与えているのかを細かく分析し、その結果を公表することによって地域社会に働きかけていくことが重要だと考えられる。

本研究では、長野県における産業活動と環境問題との関わりを考察するため、「長野県環境分析用産業連関表」を作成し、長野県の産業活動によって排出されるCO₂、NOₓ、SOₓ及びSPM（浮遊粒子状物質）の排出量を実態に即して推計した。また、全国の排出量と比較することで、長野県産業における環境影響の特徴を明らかにした。

2. 環境影響物質排出量の推計

2.1 推計条件

長野県の産業活動に伴って発生する環境影響物質の排出量について、長野県産業連関表を用いて「長野県環境分析用産業連関表」を作成し推計した。長野県産業連関表は最新データとして公表されている1995年版をベースに推計した。1995年版の部類分類は、大分類32部門、中分類93部門及び小分類186部門で構成されており、環境影響物質排出量は各分類の産業部門別に推計した。

排出量の推計は、独立行政法人国立環境研究所の"Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables (3EID)"を参考に図1に示す方法により行った。まず、原燃料種別の消費量を推計し、産業連関表の各部門に配分して、部門別の原燃料種別消費量を推計した。そこへ原燃料種別の単位物量あたりの発熱量を乗じることで部門別の原燃料種別エネルギー消費量を算出し、これに環境影響物質の原燃料種別排出係数を乗じて原燃料排出量を算出した。
消費に伴う各環境影響物質の排出量を推計した。また、燃料の消費とは別に各環境影響物質の排出に直接影響を与える原燃料についても推計し積算した。

推計する環境影響物質は、地球温暖化や大気汚染などへの影響度が大きいCO₂、NOₓ、SO₂及びSPMを対象とした。SPMは大气中を浮遊する粒子状物質で、粒径10μm以下を対象とした。各排出物質の排出係数は、日本国内における石炭や石油等の燃料や原料の性状に基づく土壌による違いはほとんどないと考えられるため、3EDと同じ係数を使用した。

2.2 部門別環境影響物質排出量の推計方法

(1) 部門別原料燃料種別消費量

部門別原料燃料種別消費量は、表1に示す統計指標を用いて計算した。燃料を、石炭系、石油系、天然ガス系及びその他燃料系に分類して推計した。そして、燃料消費量における産業廃棄物は、産業廃棄物排出量に対する影響度を目的として焼却される、廃棄物、廃油、廃油及び廃プラステック類及び汚泥を対象とした。それらの減量化率を焼却処理量として計上した。

また、各環境影響物質の排出に影響を与える物質として、CO₂排出では石炭、NOₓ排出では電気炉用電力消費量、SO₂排出では金属鉄鋼消費量、SPM排出では電気の活動量を計上した。

(2) 部門別原料燃料種別エネルギー消費量

部門別原料燃料種別エネルギー消費量は、式(1)のように部門別における原燃料の消費量に各々の単位あたりの発熱量を乗じて求めめた。

\[
 h_i = q_m \times m_i \tag{1}
\]

ここで、\(h_i \) は部門iにおける燃料kによるエネルギー消費量、\(q_m \) は原燃料kの単位あたりの発熱量である。\(m_i \) は部門iにおける原燃料kの消費量である。

(3) CO₂排出量

CO₂排出量の推計は、式(2)のように部門別原燃料種別エネルギー消費量に各々のCO₂排出係数を乗じて行った。また、非鉄金属燃料による排出として、セメント製造などの石炭石灰利用に伴うCO₂排出量を計上した。

\[
 D_i = \sum h_i \tag{2}
\]

ここで、\(D_i \) は部門iのCO₂排出量で、\(h_i \) は燃料kに関するCO₂排出係数である。

(4) NOₓ、SO₂、SPM排出量

固定発生源における燃料消費等に伴うNOₓ、SO₂及びSPM排出量は、式(3)のように燃料種別のエネルギー消費量に固定発生源に関する排出係数を乗じて求めた。

\[
 p_i = f_i \times h_i \tag{3}
\]

ここで、\(p_i \) は部門iにおける燃料kによる大気汚染物質排出量、\(f_i \) は部門iにおける燃料kに関する大気汚染物質排出係数である。

小規模の製鉄所やサクラ等の溶解に利用できる電気炉はサーマルNOₓを発生することから、通常の電力消費とは別に電気、非鉄金属燃料における電力消費をNOₓの排出量として計上した。鉄鉱石及び非鉄金属鉱石には硫黄分が含まれており、金属精錬時にSO₂が排出される。鉄鉱石を酸化するSO₂水素流量は高炉内で発生し高炉ガスに含まれることから、鉄鉱石の消費によるSO₂排出量は計上しなかった。非鉄金属鉱石の硫黄分は回収・利用されているが、SO₂として大気中でも排出されることがあり、金属鉱石消費量は、鉄、鉛及び亜鉛を計上した。

SPMの非鉄金属燃料起源の排出は、農業における野焼き活動量として、稲穂及びみがらの焼却量を計上した。

移動発生源からのNOₓ、SO₂及びSPM排出量については、
自動車、船舶、鉄道、航空機、農業機械及び建設機械を発生の対象とした。

3. 部門別環境影響物質排出量の推計結果

長野県の分類における部門別CO₂、NOₓ、SO₂及びSPM排出量の推計結果を表2に示す。また、各排出の内訳を比較した結果を図2に示す。

これらの結果から、長野県におけるCO₂、NOₓ、SO₂及びSPM排出は、いずれも社会消費支出を除いた産業部門でみると、「運輸」からの排出が最も大きく、さらに詳細な内訳では自動車輸送に起因する割合が大きく、このことから主な発生原因は自動車の燃料消費であると考えられる。長野県におけるNOₓ、SO₂及びSPM排出について、効果的な削減対策を図るために、各環境影響物質に共通して最も排出割合の大きい自動車の燃料消費に伴う環境負荷を低減していくことが重要であると考えられる。

<table>
<thead>
<tr>
<th>排出物質名</th>
<th>CO₂(Lt)</th>
<th>NOₓ(kg)</th>
<th>SO₂(kg)</th>
<th>SPM(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料産業</td>
<td>237,627</td>
<td>1,410,635</td>
<td>291,304</td>
<td>376,143</td>
</tr>
<tr>
<td>廃棄物</td>
<td>271,703</td>
<td>1,696,350</td>
<td>341,914</td>
<td>500,504</td>
</tr>
<tr>
<td>建設</td>
<td>128,158</td>
<td>263,332</td>
<td>116,260</td>
<td>244,675</td>
</tr>
<tr>
<td>機械製造</td>
<td>8,136</td>
<td>34,917</td>
<td>7,808</td>
<td>3,228</td>
</tr>
<tr>
<td>化学製品</td>
<td>28,776</td>
<td>121,739</td>
<td>53,923</td>
<td>23,669</td>
</tr>
<tr>
<td>金属製品</td>
<td>8,901</td>
<td>304,543</td>
<td>14,066</td>
<td>10,176</td>
</tr>
<tr>
<td>石油・石炭製品</td>
<td>99,629</td>
<td>185,157</td>
<td>46,000</td>
<td>31,444</td>
</tr>
<tr>
<td>建設・土木製品</td>
<td>572,632</td>
<td>436,925</td>
<td>80,903</td>
<td>32,574</td>
</tr>
<tr>
<td>金融</td>
<td>14,550</td>
<td>25,542</td>
<td>12,913</td>
<td>3,503</td>
</tr>
<tr>
<td>その他金銭金融</td>
<td>9,771</td>
<td>65,947</td>
<td>18,067</td>
<td>6,013</td>
</tr>
<tr>
<td>金銭製品</td>
<td>28,147</td>
<td>106,828</td>
<td>16,995</td>
<td>9,623</td>
</tr>
<tr>
<td>電気機械</td>
<td>49,202</td>
<td>204,175</td>
<td>41,624</td>
<td>20,741</td>
</tr>
<tr>
<td>電気機械</td>
<td>11,613</td>
<td>454,346</td>
<td>99,589</td>
<td>39,002</td>
</tr>
<tr>
<td>小売業</td>
<td>23,381</td>
<td>131,375</td>
<td>14,318</td>
<td>9,182</td>
</tr>
<tr>
<td>小売業</td>
<td>15,720</td>
<td>50,533</td>
<td>13,038</td>
<td>4,258</td>
</tr>
<tr>
<td>その他の製造業業</td>
<td>33,432</td>
<td>102,239</td>
<td>36,026</td>
<td>12,072</td>
</tr>
<tr>
<td>燃料</td>
<td>694,742</td>
<td>2,659,297</td>
<td>736,616</td>
<td>311,353</td>
</tr>
<tr>
<td>電気・ガス・熱供給</td>
<td>398,585</td>
<td>783,111</td>
<td>297,680</td>
<td>48,147</td>
</tr>
<tr>
<td>水道・廃棄物処理</td>
<td>1,251,253</td>
<td>559,035</td>
<td>20,777</td>
<td>222,706</td>
</tr>
<tr>
<td>消耗</td>
<td>90,063</td>
<td>309,111</td>
<td>99,384</td>
<td>27,658</td>
</tr>
<tr>
<td>金融・保険</td>
<td>9,601</td>
<td>29,990</td>
<td>9,346</td>
<td>2,604</td>
</tr>
<tr>
<td>不動産</td>
<td>20,049</td>
<td>38,056</td>
<td>21,920</td>
<td>4,376</td>
</tr>
<tr>
<td>通則</td>
<td>3,501,863</td>
<td>7,356,739</td>
<td>1,044,537</td>
<td>695,202</td>
</tr>
<tr>
<td>通則・無償</td>
<td>18,090</td>
<td>24,098</td>
<td>6,201</td>
<td>2,056</td>
</tr>
<tr>
<td>公共</td>
<td>82,888</td>
<td>253,632</td>
<td>95,373</td>
<td>26,556</td>
</tr>
<tr>
<td>教育・研究</td>
<td>102,453</td>
<td>256,056</td>
<td>67,432</td>
<td>26,299</td>
</tr>
<tr>
<td>医療・保険・社会福祉</td>
<td>181,403</td>
<td>559,039</td>
<td>98,118</td>
<td>26,009</td>
</tr>
<tr>
<td>その他の公共サービス</td>
<td>15,087</td>
<td>15,003</td>
<td>16,781</td>
<td>3,449</td>
</tr>
<tr>
<td>事業用サービス</td>
<td>67,475</td>
<td>135,745</td>
<td>37,875</td>
<td>13,672</td>
</tr>
<tr>
<td>住民サービス</td>
<td>132,029</td>
<td>445,722</td>
<td>135,929</td>
<td>132,029</td>
</tr>
<tr>
<td>分配不均</td>
<td>101,048</td>
<td>183,949</td>
<td>54,414</td>
<td>14,724</td>
</tr>
<tr>
<td>民間消費支出</td>
<td>4,082,881</td>
<td>2,688,882</td>
<td>1,283,083</td>
<td>424,183</td>
</tr>
</tbody>
</table>

また、CO₂及びSPM排出では、「運輸」に続いて「水道・廃棄物処理」による排出が大きかった。その内訳では廃棄物処理がほとんどで、主に廃棄物の減量化するための焼却による排出と、これからのCO₂及びSPM排出の低減には、産業廃棄物の減量化のための処理方法を改善していくことが有効であると考えられる。

次に、長野県産業における環境影響物質排出の特徴を明確化するため、長野県と全国の部門別環境影響物質排出量の内訳について比較した。なお、全国の排出量は30%の結果を利用した。

4. 長野県と全国の部門別環境影響物質排出量の特徴比較

長野県と全国の分類における部門別CO₂、NOₓ、SO₂及びSPM排出量の内訳を比較した結果を図3に示す。

CO₂排出は、長野県では「運輸」、「水道・廃棄物処理」及び「民間消費支出」の割合が全国に比べて大きく、「民間消費支出」は全国の約2倍の排出割合であった。「電気・ガス・熱供給」及び「鉄鋼」は全国より割合が小さかった。

NOₓ排出は、長野県では「建設」及び「民間消費支出」の割合が全国に比べて大きかった。「運輸」及び「電気・ガス・熱供給」は全国より割合が小さかった。

SPM排出は、長野県では「建設」及び「民間消費支出」の割合が全国に比べて大きかった。「運輸」及び「農林水産業」は全国より割合が大きかった。

「運輸」は、CO₂排出においてその内訳をさらに詳細な分類でと、と「自用産業自動車輸送」及び「自用産業自動車輸送」による割合が大きかった。これは長野県には公共交通機関が未整備のところが多く、全国に比べて自動車を移動手段として多く利用しているためと考えられる。

NOₓ、SO₂及びSPM排出では全国に比べて割合が小さかった。
さかれた。この理由としては、「運輸」の全国の内訳ではNOx排出で約5割、SOx排出で約8割、SPM排出で約3割が「外洋輸送」になっているが、長野県は「外洋輸送」がいため「運輸」の排出割合が全国に比べて小さいと考えられる。しかし、長野県全体の排出割合であると、NOx排出で約3割、SOx排出で約2割を占めており、さらに詳細な内訳でみると、NOx及びSPM排出では「自家用自動車排出」、「道路貨物輸送」、「自家用貨物自動車輸送」の順に多く、SOx排出では「道路貨物輸送」、「自家用旅客自動車輸送」、「自家用貨物自動車輸送」の順に多かった。これらのことから、長野県におけるNOx、SOx及びSPM排出は、全般的に自動車貨物輸送による影響が大きいことがわかった。

「水道・廃棄物処理」は、CO及びSPM排出で全国に比べて割合が大きかったが、これらの内訳を原燃料種別でみると、「水道」より「産業廃棄物」による影響が大きく、また、産業廃棄物の約半分は「汚泥」が占めていることから、「汚泥」の減量化のための焼却は長野県におけるCO及びSPM排出の主な原因の一つであると考えられる。

「建設」は、NOx、SOx及びSPM排出において全国に比べて割合が大きかったが、その内訳では土木関連の公共事業によるものが最も多く、建築関連はごくわずかであった。この要因として、「オーガニズム」は1995年を対象としてのものであるため、1996年開催の長野オリンピックに関連する道路交通調整等などの公共事業の大幅な増加したことが考えられる。また、「建設」の内訳を原燃料種別でみると、「軽油」、「揮発油」の順に多く、これらを燃料とする建設機械などから発生したと考えられる。

「民間消費支出」は、4排出物質の全てにおいて全国に比べて割合が大きく、これらの内訳を原燃料種別でみると、CO排出では「軽油」、「揮発油」、「軽油」の順に多く、NOx、SOx及びSPM排出では「軽油」、「揮発油」の順に多かった。「揮発油」、「軽油」は主に自動車用燃料と考えられ、長野県は自家用自動車の普及率が全国2位と高く、通勤や買物・レジャーなどの日常の移動手段として自動車を多く利用するため、これら自動車の排ガスによる影響が大きいと考えられる。また、「軽油」は主に寒冷地の長野県における冬季の暖房用燃料としての消費が多いためと考えられる。

「電力・ガス・熱供給」は、4排出物質の全てにおいて全国に比べて割合が小さかったが、これは長野県内の大規模な発電施設は水力発電所がほとんどで、化石燃料を大量に消費する火力発電所がないためである。また、鉄鋼」の割合も小さいが、これは長野県内には大量の地球エネルギーが生産に使われる鉄鋼所などの素材産業が少ないためである。

長野県におけるCOx、NOx、SOx及びSPM排出の特徴として、全国に比べて「運輸」での自動車貨物輸送の割合が大きいこと、「民間消費支出」における自動車からの排出が大きいことなどから、自動車の燃料消費に伴う発生する排ガスの影響が大きいことが明らかになった。このことから、長野県においてこれらの排出を削減するためには、自動車の燃料消費量の低減や排ガス対策に、全国以上に積極的に取り組んでいくことが重要である。また、廃棄物の焼却による影響も大きいことから、廃棄物の減量化プロセスを改善し、排出量の低減を図ることも重要である。

5. おわりに

本研究では、長野県の産業連関表及び各種統計指標に基づき、長野県環境分析用産業連関表を作成し、長野県の産業活動に伴って発生する環境影響物質の排出量を推計した。また、推計結果を全国の結果と比較することで、長野県産業の特徴と環境影響の実態を示した。

環境影響物質としてCOx、NOx、SOx及びSPMを対象に部門別の排出量を推計したが、これらの結果から部門別の環境負荷原単位を算出し、地域の実態に即したライフサイクルアセスメント（LCA）のイベントリードスタディとして活用することも期待できる。

また本研究により、各都道府県の産業連関表に基づく各種統計指標を活用することで、県地域レベルにおいても環境影響物質排出量の推計が可能であることが確認できた。

今後は長野県の産業における環境影響物質排出量の経時的推移についても調査・研究を進めると予定である。

謝辞 本研究の遂行にあたって、ご指導・助言を顶戴いたしましたителя大学 田中伸明助教授、小林光宏教授、錦織広昌助教授に深く感謝いたします。

参考文献
1）長野県企画局情報政策課、平成8年長野県産業連関表（2000）。
2）鳥取県統計研、森永伸一、東野達紀、産業連関表による環境負荷原単位データブック（3ED）－LCAのイベントリードスタディとして－（2000）。
3）国土交通省環境政策調査・計画審査室地球環境研究センター、長野県産業連関表情報政策課、平成15年版長野県年別主要指標調査（2004）。
4）長野県企画局情報統計課、平成10年長野県産業連関表（2002）。
5）長野県統計調査課統計部、平成15年版長野県産業統計 tearing 場面（2002）。
6）産業技術者協会、産業連関統計調査部、平成17年製造業生産統計年報（1999）。
7）通産産業技術者協会統計部、平成17年エネルギー消費統計年報（1999）。
8）国日本自動車技術協会、2003年版日本の自動車産業（2003）。
9）野村啓一郎、野村啓一郎、西村光男、中村明夫、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、野村啓一郎、西村光男、西村光男。