Decreasing Rearrangements of Non-Negative \((c_0)\) Sequences and Some Extensions of Hardy–Littlewood–Pólya’s Theorems

Yuji Sakai*

(Received October 31, 1980)

Decreasing rearrangements of non-negative \((c_0)\) sequences and three preorder relations which are extensions of Hardy–Littlewood–Pólya’s one are defined. Some generalizations of Hardy–Littlewood–Pólya’s inequalities for rearrangements and convex functions are given.

1 Introduction

In recent years a number of inequalities have appeared which involve rearrangements of vectors in \(\mathbb{R}^n\) or sequences in \((l^1)\) and of measurable functions on a finite measure space or non-negative \(L^1\) functions on an infinite measure space \([1; 6]\). These inequalities are not only interesting themselves, but also have many applications in probability theory, information theory, mathematical economics, and so on \([8]\). But many times we are forced to consider sequences which belong to \((c_0)\).

In this paper we define decreasing rearrangements of non-negative \((c_0)\) sequences and we introduce three preorder relations in the positive cone \((c_0)^+\), of, \((c_0)\), two of which are new and one is equivalent to that of Markus \([7, \text{p. 103}]\). Consequently, some generalizations of well-known results of Hardy–Littlewood–Pólya \([5, \text{Theorem 108, p. 89}]\) and Pólya \([9]\) are given. Moreover, two results of Chong \([3, \text{Theorem 2.7, p. 158}; 4, \text{Theorem 3.9, p. 434}]\) are generalized.

The author wishes to express his hearty thanks to Professor Yatsuka Nakamura and Mr. Yukio Takeuchi for their kind advice and suggestions in the course of preparing the present paper. Also he wishes to express his hearty thanks to Professors Hisaharu Umegaki and Tsuyoshi Ando for their constant encouragement.

2 Notations and Preliminaries

Let \(\mathbb{R}^n\) denote the set of all \(n\)-tuples of real numbers. For any \(n\)-tuple \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n\), we denote by

* Associate Professor, Institute of Mathematics
the \(n \)-tuple whose components are those of \(x \) arranged in decreasing order of magnitude. If \(a = (a_1, \ldots, a_n) \in \mathbb{R}^n \) and \(b = (b_1, \ldots, b_n) \in \mathbb{R}^n \), then \(a \prec b \) means that
\[
\sum_{i=1}^{k} a_i^* \leq \sum_{i=1}^{k} b_i^*
\]
for \(1 \leq k \leq n \), and we write \(a < b \) if, in addition to \(a \prec b \), there is equality in (2.1) for \(k = n \). These two preorder relations in \(\mathbb{R}^n \) were originally defined by Hardy–Littlewood–Pólya [5], and the following theorems give characterizations of \(< \) and \(\prec \) [5, Theorem 108, p. 89; 9].

Suppose \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) are \(n \)-tuples in \(\mathbb{R}^n \), then the following hold.

\((H_1)\) \(a < b \) is equivalent to
\[
\sum_{i=1}^{n} \phi(a_i) \leq \sum_{i=1}^{n} \phi(b_i)
\]
for all convex functions \(\phi: \left[b_n^*, b_1^* \right] \to \mathbb{R} \).

\((H_2)\) \(a \prec b \) is equivalent to
\[
\sum_{i=1}^{n} \phi(a_i) \leq \sum_{i=1}^{n} \phi(b_i)
\]
for all non-decreasing convex functions \(\phi: \left[b_n^*, b_1^* \right] \to \mathbb{R} \), and this is equivalent to
\[
\sum_{i=1}^{n} (a_i - u)^+ \leq \sum_{i=1}^{n} (b_i - u)^+
\]
for all real numbers \(u \), where \(x^* = \max\{x, 0\} \) for any \(x \in \mathbb{R} \).

If \(f(x) \) is non-increasing and right continuous on \([0, \infty)\),
\[
f^*(x) = \sup \{ \lambda : f(\lambda) > x \} \quad (x \geq 0)
\]
is called the right continuous inverse of \(f \) on \([0, \infty)\), and the following are well known [1, p. 24].

\((R_1)\) \(f^*(x) \) is right continuous and decreasing.

\((R_2)\) \(f^*(x) \geq \lambda \) is equivalent to \(f(\lambda) > x \).

\((R_3)\) \(d_{f^*}(\lambda) = \mu\{ x \in \mathbb{R} : f^*(x) > \lambda \} = f(\lambda) \),

where \(\mu \) is the Lebesgue measure on \([0, \infty)\).

Throughout this paper, we write \(N \) in place of the set of all positive integers, and \(\mathbb{Z}_+ \) denotes the set of all non-negative integers. Also \(R_+ \) stands for the
positive cone of R, and \bar{R}, for the set of all non-negative extended real numbers, while $(P)_+$ denotes the positive cone of $(P) (1 \leq p)$. Moreover, if $a = (a_1, a_2, \ldots) \in (c_0)_+$, we write $a_i = a(i)$ for any integer $i \in N$, and S_+ stands for a set \{a: a \in (c_0)_+, there exists an $m \in N$ so that $i > m$ implies $a(i) = 0$\}. $d_\phi(\lambda) = \text{Card} \{i: a(i) > \lambda\}$ is called the distribution of a. Then $(c_0)_+$ is characterized by a set such that \{a: a = (a_1, a_2, \ldots) \geq 0, \ d_\phi(\lambda) < \infty \text{ for any } \lambda > 0\}.

In the sequel, we use the term "convex" in a narrow meaning: a convex function is a function ϕ such that $R_1, R_2 \leq 0$ and $z_1 + z_2 = 1$ imply $\phi(z_1x + z_2y) \leq z_1\phi(x) + z_2\phi(y)$ for any x and y in the domain of ϕ.

3 Decreasing Rearrangements of Non-Negative $(c_0)_+$ Sequences and Some Extensions of H-L-P's Theorems

Our results are based on the next existence theorem for rearrangements of sequences in $(c_0)_+$.

Theorem 1. If a belongs to $(c_0)_+$, then we can rearrange all the components $a_i > 0$ of a in a non-increasing order of magnitude so that $a_1^* \geq a_2^* \geq \cdots$ holds.

Proof. If $a \in S_+$, then the statement in our theorem is evident, therefore we may assume $a \notin S_+$ and $a \in (c_0)_+$. Then there exists a component $a_j > 0$ of a. Put $A_1 = N$, and then $d_\phi(\frac{a_j}{2}) = \text{Card} \{i: a(i) > \frac{a_j}{2}\}$ is finite, which insures the existence of $i_1 \in N$ so that $a_{i_1} = \max \{a_i: i \in A_1\}$. Define A_n and a_{i_n} ($n = 2, 3, \ldots$) by induction as follows:

$$a_{i_n} = \max \{a_i: i \in A_n\}, \ A_{n+1} = A_n - \{i_n\}. \quad (3.1)$$

If we set $A_+ = \{i: a_i > 0\}$, we can define a single valued mapping

$$\phi: N \rightarrow A_+, \ \phi(i) = i_j \quad (3.2)$$

by means of (3.1). It is easy to see that ϕ is one-to-one; for any $a_k \in A_+$ there exists one coordinate i_j such that $a_k = a_{i_j}$, since $d_\phi(\frac{a_k}{2}) = \text{Card} \{i: a_i > \frac{a_k}{2}\}$ is finite. That is, $\phi: N \rightarrow A_+$ is a one-to-one and onto mapping, and if we put

$$a^*(j) = a(\phi(j)), \quad (3.3)$$

a_i^* ($i \in N$) is the desired one.

Definition 1. If $a \in (c_0)_+$ and $a \notin S_+$, then we define $a^* = (a(\phi(1)), a(\phi(2)), \ldots)$, where ϕ is the mapping defined by (3.2). If $a \in S_+$, assume $\text{Card} \{i: a_i > 0\} = m$, and denote by a_i^* ($i = 1, \ldots, m$) the positive components of a rearranged in non-increasing order of magnitude. In this case, we define $a^* = (a_1^*, \ldots, a_m^*, 0, \ldots, 0)$.

* This easy but important fact is suggested by Mr. Yukio Takeuchi.
we call a^* the decreasing rearrangement of $a \in (c_0)^+$. It is easy to see that $d_a(\lambda) = d_{a^*}(\lambda)$ for any $\lambda \in R$. Therefore $a^* \in (c_0)^+$ if $a \in (c_0)^+$.

Definition 2. If $a, b \in (c_0)^+$, we write

$$a \sim b \text{ if and only if } d_a(\lambda) = d_b(\lambda)$$

for any $\lambda \in R$, and we say that a and b are *equidistributed* if $a \sim b$.

It is easy to see that \sim is a preorder relation in $(c_0)^+$, and that $a \sim a^*$.

Proposition 1. If $a, b \in (c_0)^+$, then

$$a \sim b \text{ if and only if } a^* = b^*.$$

(3.4)

Proof. Both $a \sim a^*$ and $b \sim b^*$ with $a \sim b$ imply $a^* \sim b^*$; hence $a^* = b^*$ is clear. The proof of the converse implication is clear from Definition 1.

In the sequel, we regard κ_0 as ∞, an element of \overline{R}_+, and we consider $d_a(\cdot)$ as a mapping from R to \overline{R}_+.

Theorem 2. A mapping $f(\cdot)$ from R to \overline{R}_+ is a *distribution* $d_a(\cdot)$ for some $a \in (c_0)^+$, if and only if, $f(\cdot)$ satisfies the following three conditions $D_1, D_2,$ and D_3.

(D1) $f(\lambda) \in Z_+$ for any $\lambda > 0$ and $f(\lambda) = \infty$ for any $\lambda < 0$.

(D2) There exists a $\lambda_0 \in R_+$ such that $f(\lambda) = 0$ for any $\lambda > \lambda_0$.

(D3) $f(\lambda)$ is a non-increasing and right continuous function on R.

Proof. If $f(\cdot) = d_a(\cdot)$ for some $a \in (c_0)^+$, then we have an alternative expression $f(\cdot) = d_{a^*}(\cdot)$; hence D_1 and D_2 are clear. D_3 is a consequence of the continuity of a measure $\text{Card} \{\cdot\}$.

To prove the converse implication, consider the right continuous inverse f^* of f. Then, as mentioned already, (2.6), (2.7), and (2.8) hold. Moreover, if $f^*(0) = \infty$, then $f^*(0) > K$ for any $K > 0$, which is equivalent to $f(K) > 0$ for any $K > 0$ by (2.7), contradictory to D_2; hence $f^*(0) < \infty$. Now, define $\tilde{a}(s) = f^*(s-1)$ for any $s \in N$. Then,

$$\tilde{a}(s) \geq 0 \text{ is non-increasing for any } s \in N, \text{ and } \tilde{a}(1) = f^*(0) < \infty.$$

(3.6)

It is clear that $d_{\tilde{a}}(\lambda) = f(\lambda) = \infty$ holds for any $\lambda < 0$. Assume $0 \leq \lambda < \tilde{a}(1) = f^*(0)$, then

$$d_{\tilde{a}}(\lambda) = \max \{s: s \in N, \tilde{a}(s) > \lambda\}$$

$$= \max \{s: s \in N, f^*(s-1) > \lambda\}$$

$$= \max \{s: s \in N, f(\lambda) > s-1\}$$

$$= f(\lambda).$$
Next, assume $\lambda \geq a(1) = f^*(0)$, then (3.6) implies $d_\lambda(\lambda) = 0$, while $f(\lambda) \leq 0$ follows from (2.7); hence $f(\lambda) = 0$. Thus we have proved that $d_\lambda(\lambda) = f(\lambda)$ for any $\lambda \in R$, and $d_\lambda(\lambda) = f(\lambda) < \infty$ for any $\lambda > 0$. Therefore \bar{a} belongs to $(c_0)_+$, and $f(\cdot) = d_\bar{a}(\cdot)$: the proof is completed.

Corollary 1. If a belongs to $(c_0)_+$, then

$$a^*(s) > \lambda \text{ if and only if } d_a(\lambda) > s - 1 \tag{3.7}$$

for any $s \in N$.

Proof. Suppose $a \in (c_0)_+$, and put $f = d_a = d_\bar{a}$. Then $f = d_\bar{a}$, where \bar{a} is the element in $(c_0)_+$ defined in the proof of Theorem 2. Hence,

$$d_a(\lambda) > s - 1 \iff f(\lambda) > s - 1 \iff f^*(s - 1) > \lambda \iff a^*(s) > \lambda$$

is clear from (2.7).

Corollary 2. If $a \in (c_0)_+$, then

$$a^*(s) = \sup \{\lambda: d_a(\lambda) > s - 1\} = \inf \{\lambda: d_a(\lambda) \leq s - 1\}$$

necessarily holds for any $s \in N$.

Proof. Both $a^*(s) = \sup \{\lambda: a^*(s) > \lambda\} = \sup \{\lambda: d_a(\lambda) > s - 1\}$ and $a^*(s) = \inf \{\lambda: a^*(s) \leq \lambda\} = \inf \{\lambda: d_a(\lambda) \leq s - 1\}$ are immediate consequences of (3.7).

By virtue of Corollary 1 and Corollary 2, we can easily obtain the next convergence theorem for rearrangement.

Theorem 3. If a_n and $a \in (c_0)_+$, then

$$a_n \uparrow a \text{ implies both } d_{a_n} \uparrow d_a \text{ and } a_n^* \uparrow a^*. \tag{3.8}$$

Proof. It is easy to see that $a_n \uparrow a$ implies $d_{a_n}(\lambda) \leq d_{a_{n+1}}(\lambda) \leq d_a(\lambda)$ for any $\lambda \in R$. Then $a_n^* \leq a_{n+1}^* \leq a^*$ is immediate by Corollary 2, and $d_{a_n} \uparrow d_a$ is a mere consequence of the continuity of a measure. Hence $\lim_{n \to \infty} a_n^*(s) \leq a^*(s) (s \in N)$ is immediate. To obtain the opposite side inequality, assume $a^*(s) > \lambda$. Then we have $d_a(\lambda) = \lim d_{a_n}(\lambda) > s - 1$ by (3.7), which implies the existence of an integer m so that $d_{a_n}(\lambda) > s - 1$ holds for any $n > m$. Hence $a_n^*(s) > \lambda$ for any $n > m$ and $\lim_{n \to \infty} a_n^*(s) \geq \lambda$ hold. That is $\lim_{n \to \infty} a_n^* \geq a^*$. Thus we have completed the proof.

Now we shall extend the preorders of Hardy–Littlewood–Pólya in R^n to the sequences belonging to $(c_0)_+$.

Definition 3. If $a, b \in (c_0)_+$, then we write

$$a \ll b \text{ if and only if } \sum_{i=1}^k a_i^* \leq \sum_{i=1}^k b_i^* \tag{3.9}$$

for any $k \in N$, and
Here we write $\sum_{i=1}^{\infty} b_i = \infty$, whenever $\sum_{i=1}^{\infty} b_i$ is divergent. We say a is weakly (strongly) majorized by b if $a \ll b$ ($a \gg b$).

It should be noted that (3.9) is a generalization of the preorder of Markus [7, p. 103]. It is clear that $a \sim b$ is equivalent to $a \ll b$ and $b \ll a$, and that $a \ll b$ ($a < b$) is equivalent to $a^* \ll b^*$ ($a^* < b^*$).

Proposition 2. If $0 \leq a_n \uparrow a \in (c_0)_+$ and $0 \leq b_n \uparrow b \in (c_0)_+$ with $a_n \ll b_n$ ($a_n < b_n$) for any $n \in N$, then $a \ll b$ ($a < b$) necessarily holds.

Proof. $a_n \ll b_n$ ($a_n < b_n$) is equivalent to $a^*_n \ll b^*_n$ ($a^*_n < b^*_n$). Hence $a^* \ll b^*$ ($a^* < b^*$) is readily seen.

Lemma 1. If $a \ll b$ ($a < b$), then there exist two sequences $\{a_n\} \subset S_+$ and $\{b_n\} \subset S_+$ such that $a_n < b_n$ and $a_n \uparrow a$, $b_n \downarrow b$ hold.

Proof. If a, $b \in S_+$, then our theorem is clear. In the other case, firstly we shall prove that there are two sequences $\{a_n^*\} \subset S_+$ and $\{b_n^*\} \subset S_+$ such that $a_n^* \uparrow a^*$, $b_n^* \uparrow b^*$, and $a_n^* < b_n^*$ ($n \in N$) hold. If $b \neq 0$ and $b \in S_+$, then there exists a unique $k \in N$ so that $b_k^* > 0$, and $b_{k+1}^* = 0$ hold. For this k, choose any $j \in N$ so that $a_i^* + \cdots + a_j^* > b_i^* + \cdots + b_{j-k+1}^*$ holds, and put $j_0 = j$, $a_n^* = (a_1^*, \ldots, a_{j_0}^*, \ldots, a_{j_0+k}^* \ldots, 0, 0, \ldots)$ and $b_n^* = (b_1^*, \ldots, b_{k-1}^*, \sum_{i=1}^{j_0+k} a_i^* - \sum_{i=1}^{k} b_i^*, 0, 0, \ldots)$. On the other hand, if $b \in S_+$, then there exists an unique $k_n \in N$ so that $a_1^* + \cdots + a_{k_1}^* \leq b_1^* + \cdots + b_{k_1}^*$ and $a_1^* + \cdots + a_{k_{n+1}}^* > b_1^* + \cdots + b_{k_{n+1}}^*$ hold. For any $n \in N$, and set $b_n^* = (b_1^*, \ldots, b_{k_n}^*, 0, 0, \ldots)$ and $a_n^* = (a_1^*, \ldots, a_{k_n}^* = \sum_{i=1}^{k_n} b_i^* - \sum_{i=1}^{k_n} a_i^*, 0, 0, \ldots)$. Then $\{a_n^*\}$ and $\{b_n^*\}$ satisfy our requirements. Secondly, according to Definition 1, if $a \in S_+$, then there exists a one–to–one mapping $\phi : N \rightrightarrows A_+$ which satisfies (3.2), and we define $\tilde{a}_n(i) = a_n(\phi(i)) = a_n^*(i)$ for any $i \in A_+$, and $\tilde{a}_n(i) = 0$ for any $i \in A_+$, where n is any positive integer. On the other hand, if a belong to S_+, then there exists a permutation Π over N such that $\phi(\Pi(j)) = a^*(j)$ holds. For this case, set $\tilde{a}_n(i) = \tilde{a}_n(\Pi(j)) = a_n^*(j)$. If we define \tilde{b}_n similarly as above, $\{\tilde{a}_n\}$ and $\{\tilde{b}_n\}$ satisfy the whole requirements in our theorem. Finally, if $a \ll b$, then a proof of our theorem is obtained similarly as above.

Lemma 2. If $\phi : R_+ \rightrightarrows R$ is convex with $\phi(0) = 0$, then $\sum_{i=1}^{\infty} \phi(a_i)$ is defined for any $a \in (c_0)_+$, and the next holds:

$$0 \leq a_n \uparrow a \in (c_0)_+ \text{ implies } \lim_{n \to \infty} \sum_{i=1}^{\infty} \phi(a_n(i)) = \sum_{i=1}^{\infty} \phi(a(i)).$$

(3.11)
Proof. If $\phi: R_+ \rightarrow R$ is convex with $\phi(0) = 0$, then the next four cases occur:

1. $\phi(t)$ is non-decreasing on R_+, and hence continuous at $t = 0$,
2. $\phi(t)$ is non-increasing on R_+,
3. there exist $t_1, t_2 > 0$ so that $\phi(t_1) \phi(t_2) < 0$,

and

4. $\phi(t)$ is non-decreasing on $(0, \infty)$ and non-continuous at $t = 0$.

We recall that

$$a \in (c_0), \text{ is equivalent to } d_a(\lambda) = \text{Card } \{i: a(i) > \lambda\} < \infty \quad (3.12)$$

for any $\lambda > 0$; hence $\sum_{i=1}^{\infty} \phi(a(i))$ is defined for all convex functions ϕ with $\phi(0) = 0$, which may be $+\infty$ or $-\infty$. Besides, $\phi(\cdot)$ is necessarily continuous at any $t > 0$, therefore it is easy to see that

$$0 \leq a_n \uparrow a \in (c_0)_+ \text{ implies } \lim_{n \rightarrow \infty} \phi(a_n(i)) = \phi(a(i)) \quad (3.13)$$

for any $i \in N$. In the case C_1 or C_2, (3.11) follows from Levi's Monotone Convergence Theorem with (3.13), and in the case C_3, there exists an $\alpha > 0$ such that $\phi(t)$ is non-increasing on $[0, \alpha]$, and non-decreasing on $[\alpha, \infty)$, Set $A_1 = \{i: a(i) \leq \alpha\}$ and $A_2 = \{i: a(i) > \alpha\}$. Then A_2 is a finite set of indices; hence follows

$$\lim_{n \rightarrow \infty} \sum_{i \in A_1} \phi(a_n(i)) = \sum_{i \in A_2} \phi(a(i)). \quad (3.14)$$

On the other hand, if $i \in A_1$, then

$$\phi(a(i)) \leq \phi(a_{n+1}(i)) \leq \phi(a_n(i)) \leq 0 \quad (n \in N)$$

holds, and we have

$$\lim_{n \rightarrow \infty} \sum_{i \in A_1} \phi(a_n(i)) = \sum_{i \in A_1} \phi(a(i)), \quad (3.15)$$

again by Levi's theorem. Consequently, (3.11) follows from (3.14) and (3.15).

Finally, in the case C_4, there exists an $a_0 > 0$ so that $\phi(a_0) = 0$, set $B_1 = \{i : 0 < a(i) \leq a_0\}$ and $B_2 = \{i : a(i) > a_0\}$, where B_2 is also a finite set of indices. If we note that $\phi(a_n(i)) \leq \phi(a_{n+1}(i)) \leq \phi(a(i)) \leq 0$ holds for any $i \in B_1$, it is easy to see that

$$\sum_{i \in B_1} \phi(a_n(i)) = -\infty \text{ follows from } \sum_{i \in B_1} \phi(a(i)) = -\infty.$$

Moreover,
\[\phi(t) \leq -\frac{\phi(0_+)}{\alpha_0} t + \phi(0_+) \leq 0 \]

(3.16)

holds for any \(t \in (0, \alpha_0] \), so we can claim that \(B_i \) is again a finite set of indices, provided \(\sum \phi(a(i)) \neq -\infty \). The rest of the proof is easy.

Theorem 4. Suppose \(a, b \in (c_0)_+ \), then,

\[
\begin{align*}
(1) \quad & a \ll b \text{ is equivalent to } \sum_{i=1}^{\infty} \phi(a) \leq \sum_{i=1}^{\infty} \phi(b) \\
(2) \quad & a \ll b \text{ is equivalent to } \sum_{i=1}^{\infty} (a_i - u)^+ \leq \sum_{i=1}^{\infty} (b_i - u)^+ \\
(3) \quad & a \ll b \text{ is equivalent to } \sum_{i=1}^{\infty} \phi(a_i) \leq \sum_{i=1}^{\infty} \phi(b_i)
\end{align*}
\]

(3.17, 3.18, 3.19)

for all non-decreasing convex functions \(\phi : R_+ \rightarrow R \) with \(\phi(0) = 0 \). In particular,

\[
\begin{align*}
(2) \quad & a \ll b \text{ is equivalent to } \sum_{i=1}^{\infty} (a_i - u)^+ \leq \sum_{i=1}^{\infty} (b_i - u)^+ \\
& \text{for all positive real numbers } u.
\end{align*}
\]

(3.18)

Proof. According to Lemma 1, if \(a, b \in (c_0)_+ \) satisfy \(a \ll b \), then there exist two sequences \(\{a_n\} \) and \(\{b_n\} \subset S_+ \) which satisfy

\[
a_n \uparrow a, \ b_n \uparrow b, \text{ and } a_n \ll b_n.
\]

Then \(\sum_{i=1}^{\infty} \phi(a_n(i)) \leq \sum_{i=1}^{\infty} \phi(b_n(i)) \) follows from (2.3), where \(\phi \) is any non-decreasing convex function on \(R_+ \), and the necessary conditions in (3.17), and in (3.18) follow from Lemma 2. Now we recall that

\[
(x - u - v)^+ = ((x - u)^+ - v)^+
\]

holds for any \(u, v > 0 \). If \(\sum_{i=1}^{\infty} (a_i - u)^+ \leq \sum_{i=1}^{\infty} (b_i - u)^+ \) is valid for any \(u > 0 \), then

\[
\sum_{i=1}^{\infty} ((a_i - u)^+ - v)^+ \leq \sum_{i=1}^{\infty} ((b_i - u)^+ - v))^+
\]

(3.20)

is so, for any \(u, v > 0 \). Since \((a-u)^+ = ((a_1-u)^+, \ldots) \) and \((b-u)^+ = ((b_1-u)^+, \ldots) \) belong to \(S_+ \), \((a-u)^+ \ll (b-u)^+ \) follows from (2.4) and
(3.20), and Proposition 2 implies $a \ll b$. Thus (3.17) and (3.18) are obtained. The sufficient condition in (3.19) is easily obtained if we put $\phi(t) = -t$, and the converse implication is also obtained similarly as above.

Corollary 3. If $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ is non-decreasing and convex, with $\phi(0) = 0$, then

$$a \ll b \implies (\phi(a_1), \phi(a_2), \ldots) \ll (\phi(b_1), \phi(b_2), \ldots).$$

Proof. If we put $\phi(t) = (t - u)^* \phi(t)$, then ϕ is again a non-decreasing convex function with $\phi(0) = 0$, and (3.17) and (3.18) imply

$$(\phi(a_1), \phi(a_2), \ldots) \ll (\phi(b_1), \phi(b_2), \ldots)^*.$$

Example 1.

(1) If $a \ll b$, then $||a||_p \leq ||b||^*_p$$

necessarily holds for any $p \geq 1$, where $||\cdot||_p$ denotes the (l^p) norm, whether the right side is finite or infinite.

(2) If $a < b$, then $||b||_q \leq ||a||_q$

necessarily holds for any $0 < q \leq 1$, where $||\cdot||_q$ denotes the formal (l^q) norm, whether the right side is finite or infinite.

Example 2. Suppose $a < b$, then $h(b) \leq h(a)$ necessarily holds, where $h(a) = - \sum_{i=1}^{\infty} a_i \log a_i$ denotes an entropy of $a \in (c_0)_+$, provided $0 \cdot \log 0 = 0$.

References

* This argument is borrowed from Chong [2, P. 1330].

** If $a \in l^1$, then our example is easily obtained from [10, Examples (1), p. 19].
Papers in Pure and Applied Mathematics 10 (1967), 83-144.

