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1. SYNOPSIS

As a further development of the operational method for continuous beams,
the authors extended it to the analysis of the plane network systems such as
plane rigid frames and grid frames. In the present paper, a structure is divided
into several constituent units.® Defining the perfectly classified displacement
and force vectors, and treating all physical conditions consisting of equilibri-
um and compatibility at nodal points common between two consecutive units,
a recurrence formula is obtained. Then the analysis can be simplified in both
philosophy and computation.

Several formulas are presented in generalized forms.

2. INTRODUCTION

Notation. —The symbols adopted for use in this paper are defined where
they first appear and are listed alphabetically in the Appendix.

The physical behavior of a constituent member of a plane network system
is governed by the following differential equations:

1. for the flexural behavior:

=——= or —— =20, (1)

2. for the extensional behavior:

du F du 0 @
—_— = s QY — =
dx EA dx? ’
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3. for the torsional behavior:
2
Z—g = -GZ:—]’ or Z—xg; =0 (3)
Here w = the flexural deflection, x = the current abscissa, # = the axial
displacement, ¢ == the angle of torsion, F = the axial force, T = the torsional
moment, E/[= the flexural rigidity, EA = the extensional rigidity, and GJ
= the torsional rigidity.

The behavior of each constituent member can be represented by combi-
nation of Eq.2 or 3 with Eq.1. Then the constituent member has six
degrees of freedom composed of integration constants of basic differential
equations. They are arranged in the 6-by-1 column vector and are designated
as the “eigenmatrix” of the member.

The physical quantities of a constituent member can be completely repre-
sented by the eigenmatrix which should be determined so as to satisfy the
given boundary conditions.

In accordance with the substantial difference in respective physical quan-
tities, two kinds of state vectors, the displacement and force vectors, are
to be defined. FEach of them consists of a 3-by-1 column vector of physical
quantities, or of the product form of a third-order diagonal matrix, a 3-by-6
abscissa matrix, and the 6-by-1 eigenmatrix. The assemblage of the two state
vectors above has the complete correspondence to the member eigenmatrix.

The connection chart at a nodal point can be composed of treating all
compatibility conditions of displacement vectors and the equilibrium condi-
tions of force vectors.

By suitable selection of several members in a structural system, the con-
stituent unit is defined. Treating the physical conditions at the nodal points
between two consecutive units, the recurrence formula for these unit-
eigenmatrices can be obtained, in which only an inverse of small size is
necessary.

The first unit-eigenmatrix will be reduced to a half size column vector
in virtue of the boundary conditions of the first unit, and the reduced column
vector will become current to all the units or the entire structural system
by the repeated use of the recurrence formula.

In the last step of analysis, the current-matrix can be determined by the
boundary conditions at the last unit where an inverse of moderate size is
required.



No. 21 Operational Method for Structural Networks 23

3. BASIC CONCEPTS

The plane network systems with rigid connection can be classified into
two kinds: one being the rigid frames and the other the grid frames. Egs.
1 and 2 are referred to the rigid frames, while Egs. 1 and 3 to the grid
frames. ‘The behavior of a constituent member can be completed by those
equations respectively. The physical quantities to be treated in the analysis
of plane network systems are classified as shown in Table 1.

Table 1. Physical Quantities of Plane Network Systems.

Displacement Factor Force Factor
Rigid Frames ” w 0 F } S M
Grid Frames ] 0 w M . T S
Notation:

» = axial displacement, F = axial force,

w = flexural deflection, S = shearing force,

g = angle of deflection, M = bending moment,

¢ = angle of torsion, T = torsional moment.

The respective quantities in Table 1 can be given by the equations shown

in Table 2.

Table 2. Basic Equations for Plane Network Systems.

u= i1 o m r = Eade
’”:gl;;‘ltl o 0° P IN s=_%‘%‘,’;
p=Collolm r - Gl

Notation:
EI = flexural rigidity,

EA = extensional rigidity,

z2 T -

GJ = torsional rigidity,

| = member length,

= dimensionless current abscissa = 7,
= integral constants arranged in 2-by-1 column vector,

= integral constants arranged in 4-by-1 column vector.
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Combining the column vector M with another vector N, the following
6-by-1 eigenmatrix of the constituent member can be composed:

X={MNY={a b c d e fI. (4)

In virtue of substantial difference in physical characteristics, the physical
quantities are classified into two kinds of vectors, the generalized displace-
ment vector U(p), and the generalized force vector V(p), or simply the
“displacement vector” and the “force vector.”

They are defined as follows:

1. for the rigid frames: U(p)={u# w 0}, Vipy={F S M3, (5)
2. for the grid frames: U(p)={¢ 0 w},, Vip)={M T S3,. (6)

These vectors can be decomposed into the product forms
U(p) = DP(0) X, V(o) = 4Q(o) X, (7)

in which the respective matrices on the right sides are given as follows:
1. diagonal matrices:

(i) for the rigid frames:

T I _ g 2]
D = diag EA GEI GE_I:l’ 4= d1agl:1 -1 - 3 | (8)
(ii) for the grid frames:
e e B . ! ]
D= dlag TJ "6"1';:7 m], 4= dlag[‘—‘é“ I —1 s (9)

2. abscissa matrices:

(i) for the rigid frames:

"1 o 0 0 0 07 o 1 0 0 0 ¢
Plo)=]0 0 1 p o® p% Q=10 0 0 0 0 14| @O
0 0 0 1 2p 3p% _ 0 0 0 0 1 3p

(ii) for the grid frames:

"1 o 0 0 0 07 "0 0 0 0 1 3p7
Plo)=|0 0 0 1 2 30|, Q@=[0 1 0 0 0 0] (11
0 0 1 p o* pb 0 0 0 0 0 1

The complete state vector W(p) of the constituent member is given by
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V(o) D 0T P
W(p) = = X. (12)
Vo) 0 4]l Q)
The values of displacement and force vectors at both member ends will
be referred to, and they are denoted by

ol Lo alleok = L[5 WIE]
= X, or = X, (13)
v (0) 0 4] Q) v 0 4lla

Col-L nde = D0 o)
= X', or = X', (14)
V() 0 4ila( v 0 4lla

in which

and

X =X+ K. (15)
Here K represents the load term of the member which is given by the
formula :

K = Z(Ioad-matrices on the member). (16)

4. LOAD-MATRICES

Definition, —The terminology “domain” is meant by a portion cut out
from a member at loaded points. The subscript i is referred to the i-th
intermediate domain. But the first extreme left domain will have no sub-
script nor superscript, and the last extreme right domain will be primed.

(i)-th domain (i+1)-th domain

g i [
: 4 Foo .
F’” !
i Sier

1

Fig. 1. Loaded Point of Rigid Frames,
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4.1. Rigid Frames.

In Fig. 1 is shown a small portion of the i-th loaded point of a rigid
frame. The physical conditions at this point are given as follows:
1. compatibility conditions: U,y —U; =0, 17)
2. equilibrium conditions: Vi —V, =k (18)
in which k; = the “load-vector” given by
k;=~{H P R},. (19)

Using the complete state vector, Egs. 17 and 18 are written in the assem-
bled form:

W —W,={0 kh={0 0 0 —H —P —R}, (20)
or
P(x
e gy dr gy 1 L || L [P xa
={0 0 0 —-H —P —R}. (21)
From Eq. 21, we obtain the formula at the loaded point
X=X, + K, (22)

Here K; = the “load-matrix” at the i-th loaded point. Its derivation is given

in the following :

P () -1
Ki=Xi— X; = diag[D 4] E{O 0 0 —H —P —R};

Q(“) i
"1 0 0 —+ 0 0071 [ Hx -
0 0 0 1 0 © 0 —H
_P3 -R2

_ 0 1 —x 0 —& ;2 0 g +l E
= = , 6 . (23)

0 0 1 0 3¢ —2%|| —H 3Pw* — —Re

0 0 0 0 —3 1 P —3P/c+%R

3R
00 0 0 1 o Tl L P 1
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4.2. Grid Frames.

Fig. 2 shows a small portion of a grid frame subjected to external loads.
In this case, the following physical conditions must be satisfied :

1. compatibility conditions: Ui — U, =0, (24)
2. equilibrium conditions: Vi —V, =k, (25)

in which the load-vector is given by

k,=—{R @ PF}. (26)

(i)-th domain P (i+1)-th domain

R, s%u
M) TD

Ty My

Fig. 2. Loaded Point of Grid Frams.

Using the complete state vector, Egs. 24 and 25 are consolidated as

follows:
Wi+1_wi:{0 k}i:{o 0 0 —Rk @ —P}h (27)
or
"1 « 0 0 0 0 7 - 0 T
0 0 0 1 2k 32 0
d [12 o ll ]001AE2L3[ 0 (28)
iag| A ooy mpr — = 1 —1 Xy — X = . (@
GJ BEI 6EI ~ 3 loooo 13 | 7 —R
010000 —Q
0 0 0 0 0 1 j _ P
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Eq. 28 also results in Eq. 22. In this case, the load-matrix is given by

1
7‘ Qh

5. CONNECTION CONDITIONS AT NODAL POINT

A nodal point at which four members intersect with an arbitrary angle is
to be treated.

The symbols adopted for use at this point are shown in Table 3. In this
table, the following definitions are given:

1. The subscript “h” denotes horizontal-like members, and ‘“o” vertical-
like members.

2. Each symbol is attached with prime () at end p =1, while no super-
script is added at end p = 0.

3. The physical quantity attached with vinculum (7) denotes its projec-
tion into the orthogonal coordinates.

The projection formula for physical quantities into the global coordinates
is given by

U =py, V= pV, W =diag[p pIW, (30)

in which p = the projection matrix or briefly the “projector” given by

“cosa —sina 07
p=|sina cosa 0 |. (31)

Y 0 1

The inverse of Eq. 31 can be readily given by its transpose. In Eq. 30, the
following quantities should be used:
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Table 3.

Operational Method for Structural Networks

Symbols at Nodal Point.

29

Rigid Frames

Grid Frames

Member symbol, abscissa, and angle

2,
A
I
)
(245
&y
h
l: I3
[l/lu
Displacements on global coordinate
.

U,

.

g Uy -

B i
Wy = —o— Up _
= L ?

_v -»-vw/. ' ‘ * B
Wiy Qw'f ! 8

_ wﬂ* wy,

7, al h

W

Forces on global coordinate
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1. for the rigid frames:

U={u w 0}, U={u w 03}, (32)

V={F § M}, Vv={F S M}, (33)
2. for the grid frames:

U={g ¢ w}, U={g 0 wuj, (34)

Vv={M T S}, v={M T S} (35)

The Fcompatibility conditions of the displacement vectors at the nodal

point become
l—llh' - ‘.‘i}z B Rmv’ = R(—J—U, (36)

in which R = the “rearrangement matrix” given by

"0 1 07
R=|—-1 0 0| (37)
0 0 1

The equilibrium conditions of the force vectors at the nodal point become
Vip —V¥n=—R[V'y — V¥, (38)

Substitution from Egs. 30 into Egs. 36 and 38 yields

pU' ne = pUy = RpU'y = Rply, (39)
lp —plH{V'» Vi}=-—Rlp —pl{V'e Vu}. (40)
From Eqg. 39,
U T " Loan T Lo Uy B LUy T
Ur LpnW g Liw ' e LUy
Yy Lyrpld pr Ly ilUp Ly oy
_ Uy | N l-v/z’U'/z’__ | LopUn _ va’ulv’_
From Eq. 40,
R B 0 Lpep —Lprw Loy TV n7]
Vi Lnne 0 Lhy Ly Vi
= . (42)
V'y —Lynr Lyn 0 Lyry V'y

_ Ve 4 L R —Lon koo 0 _ Vo
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In the above equations L = the “relative operators.” They are given in

consolidated form as follows:
1. for the rectilinearly arranged members:

write
l: i jl [hj| [: v J
= , or )
! h' !
and then
Lig = Lii™?,
"cosdé -—sind 07
Lii ={sind cosé O |, d=a —ap,
0 0 1
and

" cosd  sind 07
Lii» = | —sind cosé O |, d=a; — aj,

0 0 1

2. for the orthogonally arranged members:

write
1 h h A R
= , , , Or ,
j v v v v’
and then
L =L
~ sind  cosd O]
L;;=| —cosd sinéd 0|, Oo=a;—a,
0 0 1]
and

“sind  —cosd 07
Lji= cos 0 Sin5 0 N 5=a:j—a,-.

0 0 1

(43)

(44)

(45)

(47)

(48)

(49)

(50)
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From Eqgs. 41 and 42, a connection chart at a nodal point can be composed

as shown in Table 4.

Table 4. Connection Chart.

Dislacement

vector U i

Force

vector V

Case 1. Connection with

— V),

member A’ vy

<

/”‘\’4

3

Case 3. Connection with member .

12
%\%
-

¥

=z =
g U/: vi® V. v
i i
N | ¢ Case 4. Connection with member . I
o . ; v ~
v 4 L ¢ £,
Lo\ [ AN

For the orthogonal systems, the preceding equations reduce to the

ing:
"1 0 07
Lii=Ly=|0 1 01l=E,
_0 0 1]
~ 0 1 07 "0 —1 0
L;={—-1 0 0|=R, L;=|1 0 0
_ 0 0 1 _ 0 0 1
U Up ~ " RU'y T RY,
U, Uy RU' . RU,
Uy B R™W pr - R™Y, N U,
U, | LRWy | [LRWL] U

follow-

(53)
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and
vl T 0 E —R ORIV
\"43 E 0 R —R Vi
= ) (54)
Vi, —R™! R 0 E V!
v, | | R —R! E 0 I v, _

6. BOUNDARY CONDITIONS
The generalized boundary conditions® for rigid and grid frames are illus-

trated in Figs. 3 and 4, where the displacement and force vectors are
related with each other by the following equations:
1. for the rigid frames:

Fig. 3. Boundary Conditions for Rigid Frames.

1 0 07
U=adiaglf £ wm]] 0 1 0 v, (55)
0 0 -1
—1 0 07
U =diag[f & m)] 0 -1 0 v/, (56)
_ 0 0 1

2. for the grid frames:

Fig. 4. Boundary Conditions for Grid Frames.
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-0 1 0

U=diag[n m k)] -1 0 0 |v, (57)
.0 0 1
"0 —1 07

U =diag{ln m k] 1 0 0 wv'. (58)
0 0 -1

Here f, k, m, and n = constants between the displacement and force vectors.

By virtue of Eqs. 5 through 11, the above boundary conditions will result
in the following consolidated equations:

BX=0 atp=0, (59)
B'X' =0 atp=1 (60)

Here B, B' = the “boundary matrices” at p =0 and p =1, which are given
respectively by

B=|/0 0 1 0 0 2} (61)

B = 0 1 1 1 1—4 | (62)

0
0 0 0 1 2+4px 343

In the above boundary matrices, the following ratios have been introduced:

6EI 2ET
A==k, p= o, (63)

and

y= -E-;ilf for the rigid frames,

(64)

v = glgn for the grid frames.

All the possible boundary conditions will be expressible by assigning due
values for the above elastic constants. A simple example thereof is shown
in Table 5.
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Table 5. Support Constants.

f, o n, or v kor 2 m or p
Elastic support f,on v k, 2 m, p
Fixed end 0 0 ) 0
Free end oo oo oo
Simple support 0 0 o

7. APPLICATION

As a simple application of the preceding developments, an illustrative
example will be referred to the portal frame shown in Fig. 5.

T O ) T —

. e X®

|

| 2
X, =8 X (6)

3 | _

A ® | 1 3 Xa=FsQ+ [1Ki+ Ko [:K:
(a)

i

-

e
S
LEILA
® 6 3
/ :‘ - /
\fl [ (b) -/

Fig. 5. Operation Chart for Portal Frame,
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7. 1. Operation Chart.

A computational procedure of the portal frame is illustrated in Fig. 5a.
Starting from the lower end of the left vertical member, the operation will
be carried out. The working out of the current-matrix £, its currency,
and its determination are shown symbolically in Figs. 5a and 5b. In both
figures are also shown the degradation of the order of unknown eigenma-
trices. Numbers in small circles denote the order of member-eigenmatrices,
while those in small squares represent the number of physical conditions.

Respective members are numbered as shown in Fig. 5a. Their state
vectors are given by the following consolidated forms:

U(p); = B;P(0)X(p);, (65)
V(p); = 4,;@(0)X(p),, (66)
T { Iks 2 .
Dj == dlag[m 6—E‘7 mil -, (6/)
y
. )
7
take at p=0:
"1 0 0 0 0 07
PO)=pP=]{0 0 1 0 0O 04 (69)
0 0 0 1 0 0
"0 1 0 0 0 07
Q0)=@={0 0 0 0 0 1} (70)
0 0 0 0 1 0
X0,=X;={a b ¢ d e [} (71)
take at p=1:
"1 1 0 0 0 0°
p)=p =10 0 1 1 1 1} (72)
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61 0 0 0 0
Qly=@'={0 0 0 0 0 1]} (73)
.0 0 0 0 1 3]
providing
j=1, 2, 3. (75)

7.2. Operators.

In the present example, the following operators are introduced:
(i) relative operators at the upper nodal points:

"0 1 0
L21 =R = —1 0 O 3 (76)
0 0 1]
"0 —1 07
Lp=R'=|1 0 0|, (77)
0 0 1_
(ii) boundary matrix for the simple support:
"1 0 0 0 0 07
B=10 0 1 0 0 0| (78)
0 0 o 0 1 0_
7.3. Operations.
1. Support conditions at left lower end.
The boundary conditions at the left lower end are given by
Then X, becomes
X1 = 5119, (80)
in which
"0 0 07
1 0 0
- -
0 0 0
51 = ’ ‘Q = (81)
0 1 0
_ S
0 0 0
0 0 1_
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Here £ = the current-matrix to be shifted to other members.

2. Connection conditions at left node.
At the left nodal point, the connection conditons are given by

U, = LyU'y, Vo= LyV'y,
or
DzPXg = RDIP/ [X + K]l,

AzQXZ = RAlQ’[X + K:Il

Putting Eqgs. 83 and 84 together yields

o M A M

X2 = Sg[x + K]1 = stl‘Q + 52’(1.

or

The physical properties of the three members are assumed for
to be the same, and then

i

FPTD OT[R O0T[D 0[P
sg:..c] |:o A] [o R][o A][J
0 0 9 1 1 g7
0O 0 0 0 0 —1
:~%—%o 00 0
0O 0 0 1 2 3
0o 0 0 0 1 3
0 1 0 0 0 0.
and
oy -
0 0 -1
8.8, = ﬁ%o 01
o 1 3
o 0 3
1 0 o

No. 21

(83)
(84)

(85)

(86)

simplicity

(87)
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in which
Al

1= %I (89)

Here §, is designated as the shift operator or briefly the “shiftor” at this
nodal point, and hence $,8; may be taken as the shiftor for the current-
matrix £2.

3. Connection conditions at right node.

At the right nodal point, the following connection conditions are to be
given:

U'y = R/, Vi, = —RIV,, (90)
These equations readily yield

P-TD OTTR 0 p oreT
xa—f-Ka:[ ] [ ] { J[ }[ ][xwf]z, 91)
Q 0 4 o —rjlo0 4]l a

Xy = 53X + 83K — K, (92)
in which the shiftor §; is given by

or

0 0 —n —5 -7 1—=12"
0 0o 0 0 -1
Ll 4y 9 -1 -3 -6
0 3 0 1 4 9
0 -3 0 0o -1 -3
_0 1 0 0 0 0 _
4. Suppbrt conditions at right lower end.
The boundary conditions at the right lower end are given by

Substituting from Eq. 92 to Eq. 94, the current-matrix £ is obtained as
follows :
K,
2 = —[BS;8:5,17' B[S:5, 53 —E] K |, {95)

_Ks

or, taking B = §,,
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K,
2 = —[5:5:8:5,171[8:8:5: 8,85 —S4]| Kz |. (96)
K3
The inverse in this case becomes
[ 2—y —7 =6y !
[8535251]_1 - [54535251]_1 = —6 0 —10 — "}/—
=3 0 0 i
- 0 0 —10p—1 7
_ 1 1 , . 2
= S0, 71 3(101— 7/) 18y —26— 10— 2. 97)
_ 0 —37 67 i
Then the solution of the current-matrix £ is given as follows:
"~ 0 0 0 0 109 4 1 0"
[ p—— 3104 =) 0 —18 0 2 +19+2 o
= 3(107 + 1) 7 g 7 7
_ 0 0 3y 0 —67 0_
1T 22— 0 -y =3 —6p 7| [0 0 -7 —p —p 1—7y]
0 —1 0 0 0 0 0 0 0 0 0 —1
0o -6 1 0 -4 —10-1| L L 1 o -1 -3 _s
X 7 ) 77 ,
0 9 0 1 6 12 0 3 0 1 4 9
0 —3 0 0 -1 0 0 —3 0 60 —1 -3
1.0 0 0 0 0 -1 1 Lo 1 0 0 0 0 _
-1 0 0 0 0 017
0 -1 0 0 0 0 ) _
K, 0
0O 0 —-1 0 0 0 1 1
Ky |= e 3(10 + ——)
0 0 0 —-1 0 0 3(10p + 1) 7
_K_| 8 0
0 0 0 0O —1 0
_ 0 0 0 0 0 —14
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—310p+1) 0 0 107 — 1 0
0 —18) —3(107+ 1) —4dy— 28 — f/. 0 ,
0 3y 0 —6y —3(109 + 1) _|
T 0 —310p+1) 0 0 105 -1 —3(10p + 1)
~18 —60p — 75 — % 3107+ 1) —12)—3 —2p— 22— i_ —3<10 . _71)> ,
3 159 4+ 3 0 —3y —3 0 _

0 0 0 0 —10p — 1

7

0K

1 2

—3(10 + _-) 0 18 0 —2y-19-2 0| K| (©8)
0 0 —3» 0 67 0| J K |

22=16; G G:l{K: Ky Ky} (99)

In Eq. 99, the matrices 6; (= 1,2,3) correspond to the respective load-
matrices K; and therefore the current-matrix £ can be evaluated for
arbitrary loading conditions. Thus, the present system can be solved.
Note that the & matrix is determined only from geometrical and physical
properties of members. They are designated as the “geometry matrix.”
Substituting Eq. 98 into Egs. 80, 86, and 92, and rearranging a little, the
complete eigenmatrix of the present portal frame is obtained in the
following form:

X [Gu G Gl Ky
Xg = Ggl Ggg Ggg Kg s (100)
sl LGs1 Gap Gag || Ks_
or
[(X]=[61{K]. (101)

Here, the first factor on the right side of Eq. 100 or 101 is the complete
geometry matrix of the system considered, and is given in Table 6.

Using the complete geometry matrix, the physical quantities for given
loading conditions can at once be obtained by Eqs. 7, 22, 23, 29, and 100.
Some typical examples are illustrated in Table 7, where the solutions by the
operational method and by other prevailing methods are shown. In every
solution by the latter methods, the effect of the axial displacement of mem-
ber is neglected as is ordinarily the case, so that it corresponds to the
solution by the operational method as a particular case in which 7 = co.



Table 6. Geometry Matrix of Portal Frame(x

310y + 1)
K K K
0 0 0 0 0 0 0 0 0 0 0 0 0 o o0 ¢ 0 0
0 ~30p+1, 0 0 ~107-1, © 0 -3+, 0 0 ~10p -1, =31y ¥ D o 0 0 .0  —loy-1, 0
0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0
Gij 1 2 3 2 1 1 2
S— — -3 A1) 44 — 08 — — —TH e = 3 N - —_ — PO, 1 JE . —_— — oo w— —_— . ——
3(10 4 . ). 0 187, ~3107 +2), —tty =28 -2, 0 18, 607~ 75~ 0, =310 1) -2y =8, ~2y 22—, 310 + 5 ) 3{10 4 v)' o 1, 0 -2y -19-2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0
L o 0 3, 0 6y, —30107 4 1) 3, 1543 0 ~35 ~3y, 0 0 0 —3, 0 69, 0
B0p+ 1, 0 Bylsy 1, 0 —20-2p~2 0 18y, Byt Top— 6, —3yll0p + 1), ~3yy+ 1) —5yF — 22 — 2, —310p + Iy ~3l0p 41, 0 182 0 ~20-19-2, ©
0 a0 6. 0 -3, ~35p + 1), 0 35, 3, 0 0 0 3, © e 0
1
~3(10 + ) 0 10+ 1, 0 0 310+ i), 0 0 o+l 30+ 7) 0 0o o o w+d o
o 7 7 3 7 %
A 1 2 [ ; 2 1 1 2
soe ) 0 w0 -zm-m-Z o -8, ~Ip-66—S _3loy41), -21p-3, ~lly—22- 2, ~310 + - —3f0+ ) 0 e 0 —g-19-2 o
v) g 7 7 7 " 7 + 1) 7 7 Py ( + ,]) + ”) 7 7~ 19~
0 0 9, o 12743, 0 9, 5749, ) ~9, —9y, 0 0 0 -9, o© 185, 0
A o0 0 —10p-1, 0 0 -300y+ 1, 0 0 10y -1, —310y + 1) 0 o o o —10p-1, 0
0 0 o o 0 0 0 0 0 0 0 0 0 0 o 0 0 0]
0 0 0 0 10p+1, 0 0 30y + 1), 0 0 107 +1, 0 0 3107 + 1), 0 0 109 +1, 0
0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0
G 018, 0 -26p-19—=, o0 18, 60y 57— L 310y 1), —18;, 8y — 19— = =310 + &y ~310+2), 0 —18p ~800g 41, —ddy - 28— 2 9
7 7 N 7 7 y N ’ 7
0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0
o 0 -3 0 67, 0 -3, 18y, 0 39, 35, 0 0 0 3y, 0 —67, ~ 3107 + 1)]
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Table 7. Examples of Portal Frame.

Loading conditions Solution by Solution by other methods
and quanti_ties to operational
be required method Solution Method used | Author
» Area-moment 4)
{ " 3 3 method| Timoshenko
H:WP(I{“IC“) H = TGP(I{'—IC“)
1.7 _ Slope-
(y = ) deflection| % k'5
. method uxl
3 3 .
_3_7 p H= @P Strain-energy 6)
T 410p + 1 method Szabé
{ = o0)
3
.3 9 M= —-=Pl Area-moment 4)
M= -7 107 + 1 2L 40 method | Timoshenko
(g = o0}
H=—P H= -—P Slope-
7)
y 3 + 109 — 6yx + 7a? % 10 — 6k + #° deflection
10p +1 10 Mogami
method
Slope-
7 =al. : 5)
H=3a5, 374 |[H=50= deflection gy
N S __q Strain-energy 8)
M= =g, 779" M= 55 =0) method | Hayashi
!
H= k4 Area-moment|
I 40 4
T 4104 + 17 method |Timoshenko
(y = o)
H= 31 ql Area-moment
31y + 5 =~ 7100 ) .
H = —————gql method |Timoshenko
10(10% + 1) (n = )
75— 5 M= —3—’8—0(1[2 Area-moment | 4)
M = —m@—_—{_—l}—ql“ (5 = 00) method |Timoshenko
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8. ADDITIONAL NOTES

In addition, the following notes are given:
1. Numbers of physical conditions at a nodal point are classified in Table 8.

Table 8. Nodal Conditions.

: Equilibrium Continuity Connection
Kind of Node condition condition condition
L-type Node
’ 3 3 6

T-type Node
3 343 9
3 3+3+3 12

2. If the external restraint conditions are given at a nodal point, the
corresponding physical conditions will be introduced in place of the given
conditions. In consequence of such an interchange of conditions the total
number of physical conditions at a nodal point always remains constant.
Several illustrative examples are given below.

(i) For free L-type node of a rigid frame (Fig. 6):

_.u__! _.O —_1
w | =| 1 0

(102)

o-
0

oL Lo o 1.0
o-
0

Fig. 6. ML Lo o 1My

(ii) For simply supported L-type node of a rigid frame. (Fig. 7):
u ’ -1 0 w
[01{0 1]{:01’
F7 =1 07TS (103)

[Ml B [ 0 1 ] [M]
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(iit) For elastically supported L

!

u 0
w ] =1
N2 ' )
—f

=i 0

0

Fig. 8.

(iv) For free T-type node of a

!

Fig. 9.

(v) For elastically supported T-

¢
0

-~ @

¢

{
L’"i
(2]

Fig. 10.

3. The number of unknown elements in a given structural
to the number of physical conditions.

Operational Method for Structural Networks

2]

W'y = wy = wy = k(=S"y + Sy + Sy).

45
-type node of a rigid frame (Fig. 8):
~1 07 %"
0 0 w
0 11101
0 OT[FY [o f o7[F
~k 0 S{+1%& 0 0 S (104)
0 milLMiy Lo 0 —m || M
grid frame (Fig. 9):
"0 1 071 ¢
-1 0 0 R
_ 0 0 1w
- 0 1 077 ¢
-1 0 0 , v (105)
0 0 14iLw./
"M " 0 1 07 M7
Tl —1-1 0 0 T =0
Sk L0 0 11LS.k
type node of a grid frame (Fig. 10):
0 17[¢
[—4 OJ[OJ;
2
[0] (106)

0 1

:O,

17

—1 0

system is equal
For example, in the case of the m-

span by n-story frame shown in Fig. 11, it follows that
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A
|
I
A
t..,‘w e 7L = SPARS e g
Fig. 11, Plane Frame,
Number of constituent member = (2mu + m + n), (107)
Number of cross-type node = (m — 1)(n —1), (108)
Number of T-type node = 2(m + n — 2), (109)
Number of L-type node = 4. (110)
Then,
Number of unknown elements = 6(2mn + m +n) = 12mn + 6(m + n), (111)

Number of connection conditions
=12m — 1jn — 1)+ 9 X 2m + 1 — 2) + 6 X 4 = 12mn + 6(m + n). (112)

4. At a member end independent of any other members, three bound-
ary conditions are to be prescribed. Then the eigenmatrix of the member
is degraded to the third order.

5. Two kinds of compatibility conditions at both ends of a member can
completely correspond to the eigenmatrix of the member. Its verification
is given as follows:

The compatibility conditions at both ends are written

DPX = F, (113)
DP'X' =DP'[X + K] =H, (114)

in which F and H are considered as displacement quantities of some adjacent
member. Writing Eqs. 113 and 114 together

DP 0 F
CRLRL -
DP’ pp’ H

Then the eigenmatrix can be represented by

Gt FO | M S
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The above inverses are nonsingular as shown below, and hence the above
statement has been verified.

(1) for the rigid frames:

1 0 0 0 0 0
-1 0 0 1 0 0
PT: |0 1 0 0 0 0
= ) (117)
P’ 0 0 1 0 0 0
0 -3 —2 0 3 -1
0 2 1 0 —2 1
b 0 ['E4 6EI 6EI EA 6EI 6EI
=diag =~ m T p B (118)
0 D
(i) for the grid frames:
-1 0 0 0 0 07l
—1 0 0 1 0 0
P! 0 0 1 0 0 0
_ , (119)
P’ 0O 1 0 0 0 0
0 -2 —3 0 -1 3
0 1 2 0 1 —2]
b 071"  T'GJ 6EI 6EI GJ 6EI 6EI
N e e e e (120)

6. The combined abscissa matrix {P(x) Q(x)}, as well as the diagonal

(i j+1) , ](i+1 j+1)
1 T

W’ / \w"" jr1y w//L'i N

JY\ w

\L. W/. » w / LR R
7 Tk i j i L

e B VA )

tj)

Fig. 12. Symbols for Complete State Vector at Member Ends,
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matrix diag [P 47, is square and nonsingular, and hence the assembled
state vector W(x) completely corresponds to the mathematical generality
of the eigenmatrix X.

7. Conventional symbols for analysis of structure are given in Fig. 12.

9. CONCLUSIONS

In conclusion, the following notes are given:

1. In the present procedure, a network is taken as an assemblage of
contistuent units.

2. A unit is characterized by its eigenmatrix, called the unit eigenmatrix.

3. The eigenmatrix of a member consists of integration constants of
differential equations governing member behaviors.

4. Two consecutive units produce a recurrence formula for the unit eigen-
matrix.

5. The boundary conditions at the left end of the network result in a
definite degradation of the first unit eigenmatrix, which is referred to as the
current-matrix.

6. The repeated use of the recurrence formula permits the currency of
the current-matrix to all the units or the entire network.

7. The boundary conditions at the right end enables to determine the
value of the current-matrix.

8. In statical problems, the geometry matrix can be obtained independently
of the external loading conditions, which can save time and labor. An illus-
trative example is given for the portal frame.

9. Both of plane rigid frames and grid frames can be reduced to the same

matrix analysis.
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APPENDIX. —NOTATION

The following symbols are used in this paper:

A = cross-sectional area;

B, B’ = boundary matrices;
D = diagonal matrix, see Eys. 8 and 9;
ET = flexural rigidity;
E = unit matrix;
F = axial force;
F, = resisting axial force for elastic support ;

GJ = torsional rigidity;

G = geometry matrix;
H = external axial force;

h, k' = symbols representing the horizontal-like member ;
K = load term of a member see Eq. 16;
k = external load matrix;

L = relative operator;
= member length;
M = bending moment ;

M, = resisting moment for elastic support;

M = 2-by-1 eigenmatrix;
N = 4-by-1 eigenmatrix;
P = external lateral load;

F(p) = 3-by-6 abscissa matrix see Egs. 10 and 11;
p = projection matrix, or briefly projector;
Q= external torsional moment;

G(p) = 3-by-6 abscissa matrix, see Eqs. 10 and 11;
R = external bending moment;

R = rearrangement matrix;



50 Operational Method for Structural Networks

= shearing force;

S
S, = resisting lateral force of elastic support;
§; = shift operator;
T = torsional moment ;
u = axial displacement;
U(p) = displacement vector at p;
U = displacement vector at p = 0;
U’ = displacement vector at p = 1;
V{p) = force vector at p;
Vv = force vector at p=0;

V' = force vector at p=1;

v, v' = symbols representing vertical-like members;

W(p) = state vector at pg;
= state vector at o= 0;
W' = state vector at p =1;
w = flexural deflection;
X = 6-by-1 eigenmatrix, X ={M N3};

No. 21

a = direction angle of member taken clockwise from the standard

axis;
4 = diagonal matrix, see Egs. 8 and 9;

0 = difference angle, see Eqgs. 45, 46, 49, and 50;

0 = angle of deflection;
£« = non-dimensional load abscissa ;
2, p, v = constants attatched to elastic support;
o = non-dimensional current abscissa;
¢ = angle of torsion;
£2 = current-matrix;

—(vinculum) = symbol representing the transposed matrix, or physical
quantities projected to its standard co-ordinates;

L | = row vector; and
{ 1 = column vector.



