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                         1. syNopsgs

 As a furtker development of the operationai method for continuous beams, i)

the authors extended it to the analysis of the plane network systems such as

plane rigid frames and grid frames. In the present paper, a structure is divided

into several constituent units.2) Defining the perfectly classified displacement

and force vectors, aRcl treatiRg all physical conditioRs consisting of equilibri-

um and compatibility at nodal points common between two consecutive units,

a recurrence formula is obtained. Then the analysis can be simplified in both

philosophy and computation.

 Several formulas are presented in geReralized forms.

                      2. ENTRODUCTieN

 Nbtation.-The symbols adopted for use in this paper are defined

they first appear and are listed alphabetically in the Appendix.

 The physical behavior of a constituent member of a plane network

is governed by the following differential equations:

   1. for the fiexural behavior:

                       d2w M d4w
                       dx2 = - El' Or dx4 = O,

   2. for the exteRsional behavior:

                         du F d2u
                         -= ,or ==O                             EA dx2 '                         dx

where

system
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    3. for the torsional behavior:

                        dip T                                     d2ip
                                        == O. <3)                        ---- =-) or                        dx                                    dx2                             GJ

Here w==the fiexural deflection, x=:the current abscissa, u=the axial

displacement, ip = the angle of torsion, F == the axial ferce, T = the torsional

moment, Ef= the flexural rigidity, EA = the extensional rigidity, and GJ

= the torsional rigidity.

  The behavior of each constituent member can be represented by combi-

nation of Eq2 or 3 with Eq.1. Then the constituent member has six

degrees of freedom composed of integration constants of basic differential

equations. They are arranged in the 6-by-1 column vector and are designated

as the "eigenmatrix" of the member.

  The physical quantities of a constituent rnember can be completely repre-

sented by the eigenmatrix which should be determined so as to satisfy the

given boundary conditions.

  In accordance with the substantial difference in respective physical quan-

tities, two kinds of state vectors, the displacement and force vectors, are

to be defined. Each of thern consists of a 3-by-1 column vector of physical

quantities, or of the product form of a third-order diagonal matrix, a 3-by-6

abscissa matrix, and the 6-by-1 eigenmatrix. The assemblage of the two state

vectors above has the complete correspondence to the member eigenmatrix.

  The connection chart at a nodal point can be composed of treating all

compatibility conditions of displacement vectors and the equilibrium condi-

tions of force vectors.

  By suitable selection of several members in a structural system, the con-

stituent unit is defined. Treating the physical conditions at the nodal points

between two consecutive units the recurrence formula for these unit-
                             '
eigenmatrices can be obtained, in which only an inVerse of small size is

necessary.

  The first unit-eigenmatrix will be reduced to a half size column vector

in virtue of the boundary conditions of the first unit, and the reduced column

vector will become current to all the units or the entire structural system

by the repeated use of the recurrence formula.

  In the last step of analysis, the current-matrix can be determined by the

boundary conditions at the iast unit where an inverse of moderate size is

required.
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                       3. BASICCONCEPTS

  The plane network systerns with rigid connection can be classified into

two kinds: one being the rigid frames and the other the grid frames. Eqs.

1 and 2 are referred to the rigid frames, while Eqs. 1 and 3 to the grid

frames. The behavior of a constituent member can be completed by those

equations respectively. The physical quantities to be treated in the analysis

of plane network systerns are classined as shown in Table 1.

            Table l. Pltysical Quantities of Plane Network Systen!s.

Rigid Frames

Grid Frames

Displacement Factor

u

t

O

w

0

0

w

Force Factor

.F

M
s

T

M
s

Notation:

u = axial displacement,

w == fiexural deflection,

e = angle of defiection,

ip = angle ef torsion,

F" axial force,

S = shearing force,

M = bending moment,

T == torsional moment.

  The respective

in Table 2.

quantltles ln Table I can be given by the equatlons shown

Table 2. Basic Equations for Plane Network Systems.

u =: ti-AL1
pjM

zv :6fu3 Ll p p2
R3 ]N

F .., t!lfftdu

    l d,o

     Eld3zv
S == - 7, dp3

e:
mlmdw
l dp

     Eid2zv
M==- l-,dpr,

di-t/ilJlL1
p]M

l

T..G..JLdp..

    I dp

Notation:

   .El= flexural rigidity, GJ :torsional rigidity,

   EA =extensional rigidity, l == rnember length,

                            aX    p = dimensionless current abscissa =: 7-,

   M = integralconstants arranged in 2-by-1 column vector,

   N = integral constants arranged in 4-by-1 column vector.
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  Combining the column vector M with another vector N, the following

6-by-1 eigenmatrix of the constituent member can be composed:

                 x== {M ew}={a bcde f}. (4)
  In virtue of substantial difference in physical characteristics, the physical

quantities are classified into two kinds of vectors, the generalized displace-

ment vector U(p>, and the generalized force vector Y(p), or simply the

"displacement vector" and the "force vector. "

  They are defined as follows:

  1. for the rigid frames: U(p) == {u w 0},, Y<p) == {F S

  2. for the grid frames: U(p) =={ip e w},, y(p>={M T

These vectors can be decomposed into the product forms

                   U(p) == avP(p)X, V(p) m= dQ(p)X,

in which the respective matrices on the right sides are given as

  1. diagonal matrices:

   (i) for the rigid frames:

(ii) for

D=: diag[ i i21EA 6El 6EIJ'

the grid frames

D = diag [ (S} .l2- ,S',]･

2. abscissa matrices:

 (i) for the rigid frames :

       -l pOOO
 P(p) m O O 1 p p2

       -O O O 1 2p

 (ii) for the grid frames :

       "-1 pOOO
 P(p) = O O O 1 2p

       -.O O 1 p ik

The complete state vector

 o-

 p3

3p2-

  o-

 3p2

 P3-

W(p)

'

'

A=:diag
[1 -1

A = diag[ l
3

l

3

]
･

l -1],

M}p ,

S},.

follows

Q(p) =

of the

-O 1

 oo
 oo

      -o o

Q(p)= O 1

        oo

  constltuent

o

o

o

o

o

o

o

o

o

o

o

o

member

o

o

1

o-

1

3p.

  1 3p-

  oo
  Ol

ls glven

'

by

(5)

(6>

(7>

(8)

(9)

(10)

(11)
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                  w(p)-[v[:l]-=[g 2][ai:l]x ,,,,

  The values of displacement and force vectors at both member ends wil}

be referred to, and they are denoted by

       [v[g',]=-[g ;][g[s,']x, ., [v]-[g z][g]x, ,3,

and

                           'tt       [:[i,l]..[g 1][g:i].r, ., [U].=:[e Z][:]x･, a4)

in which

                           Xt =X -i- K. (15)
Here K represents the load term of the member which is gi'ven by the

formula :
                       '
                K i== iZ] (load-matrices on the member). (16)

                       4. LOAD-MATRICES

  DeYinition,-Tke terminology "domain" is rneant by a portion cut out

from a rnember at loaded points. The subscript i i's referred to the i-th

intermediate domain. But the first extrerne le'Et domain will have no sub-

script Ror superscript, and the last extreme right domain will be primed.

(i>-th domain

5

i

I

Fig.

e
t

1
.

         1)i

   Rr
      "Hi,i,,zaiiii4,k D

rc,l J iv, t

 Loaded Point

 1;,.ic
t
'
"

(i+1)-tii domain

E

of Rigid Frames.
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  4.1, Rigrd Frames.

  In Fig. 1is showna srnall portioR of the i-th loaded point of a rigid

frame. The physical conditions at this point are given as follows:

  1. compatibility conditions: ifi+i-Yi=O, (17>

  2. equilibrium conditions: Vi+i-Vi -- ki, (18)
in which ki = the "load-vector" gi'ven by

                        k,=-{H P R},. (19>
  Using the complete state vector, Eqs. 17 and 18 are written in the assem-

bled form :

         ltwi.,-kAl,={O k},:-{O O O -H' -P -R},, (20)

or

     diag[E-IA 61E'f 61ii}t i -i --ii-],[g[:l],[xi+i-xi]

                           ={O O O -H -P -R},. (21)

From Eq. 21, we obtain the formttla at the loaded point

                           Xi+1 =: Xi Ti Ki. (22)

Here Ki = the "Ioad-matrix" at the i-th loaded point. Its derivation is given

in the following :

    Ki -- xi+i - x, == [: [1)) ]i 'diag[D a]-ik{ o o o -H -p -R},

        -1 o o -rc o o--o -- " H)g -
                                            -H
         OOOIOO O
                                               3
                                        -Prc3 + deRrc2
         O1 -rc O-ii3 "2 O l
                                     -M 6. <23)
         O o 1 o 3rc2 -2tg nvH 3Prc2--z-Rrc

         O O O O -3m 1 P -3Prc+-{l-R
                                       ･l
                                -{LR
        -o o o O 1 O-,-l .., P -.,
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  4.2. Grid Fraxries.

  Fig. 2 shows a small portion of a grid frame subjected to external loads.

In this case, the following physical conditions must be satisfied:

  1. compatibility conditions: esi+i-Vi=O, <24)

  2. equilibrium conditions: Yi+i-Vi=ki, (25)

in which the load-vector is given by

                          k, -- -{R Q P},. (26)

                  (i,)"th domain

                    S,}iii(iZib

                        si

                   Fig. 2. Loaded

  Using tke complete state vector,

follows ;

            Wi+t - llVi = {e k}i x

or

&R

   Ri

Q,

Point

  Eqs.

{o

    (i. -t- 1)-th

  Si-l-l

Ti.1 M,-,.I

of Grid Frams'
.

  24 and 25

O O -R

1 ,g oooo
O O O 1 2rc 3ig2

O O 1 rc rc2 rc3

OOOO1 3rc
O I O O O O

OOOOOI

domain

diag
[tli'7J 6iii 6iif --g' i mi],

 are

-Q

 consolidated as

-P},, (27)

[Xi+i - Xi] =:

i

o

o

o

-R
-Q

-P

. (28)

i
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  Eq. 28 also results in Eq. 22. In this case, the load-matrix is given by

eci =

    1    7LQig

   -IQ

-Pre3 + ' -iil-Rrc2

3p.2 - -9-Rrc

-3p. + -iiLR

     P i

(29)

         5. CONNECTION CONDITIeNS AT N(])DAL POINT

 A nodal point at which four members intersect with an arbitrary angle is

to be treated.

 The symbols adopted for use at this point are shown in Table 3. In this

table, the following definitions are given:

  1. The subscript "h" denotes horizontal-like members, and "v" vertical-

like members.

  2. Each symbol is attached with prime (') at end p =1, while no super-
sc'ript is added at end p == O.

  3. The physical quantity attached with vinculum (-) denotes its ･projec-

tion into the orthogonal coordinates.

  The projection formula for physical quantities into the global coordinates

is given by

             U=pU, Y=pY, W==diag[p p]YV, (30)

in which p = the projection matrix or briefiy the "projector" given by

p ==

The inverse of Eq. 31 can be

following quantities should be

Mcosa -sina O

 sina cosa O.

readily given by its transpose.

used:

(31)

In Eq. 30, the
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Table 3. Symbols at Nodal PoiRt.

Rigid Frames Gricl Frames

Member

l
/
c
r
"

symbol,ab .sclssa, ancl angle

lt'

v
t
t

,ax 2'

v

'
c
r
h
'

r
c
r
f
i
'

h'

tuXs
ttt

ah -..
t' /
/crh

i
t '

1
.
t

i
t $wh

' 'xv' ' '

crt'

:

ev"

Displacementson global coordinate
i
l
l

e'
,･

/

fi'v

- t.

'
)
g
'
,
,"- zv,, fs,

-.zelv - L
lt'

"
- -

oz･ ez･ T
･ltl, 9,･

-
･ibV,'-"'-

i -"r.,, 0h E t
'
'
:

timvit,･
"1rmtl･･

" , ema

i
,

nd rm

-

w'l,･"

IVh
r

t:t

e･i,
'tt't"

-
el-

nve',･･ w:,

Forcesonglobal coordlnate
F
i
v

l･ii,.

t.tt.

-
T,･

Sv

g,
iv,./Sr`:'x nes'

,･ Z
if'

.. .t. nv'

i-i:'

--dtuN

ifL･ i,Ii,

ptpii, Y
-

tll
h'

s';
i
i
'

MJ,

A T-
,

-
"t 'Tnv it'

M[,･ - ...

xor
S1,

sitt'/'
Sh

--si." m '
il/i' l
-

T,･･

-tt
'E tt
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  1. f6r the rigid frames:

               u=={u w e}, v={u zv e},

               V={F S M}, V=={F S M},

  2. for the grid frames:

               u :== {ip e w}, y= {o o w},

               y == {M T S}, V =: {M T S}.

  ThelScompatibility conditions of the displacement vectors

point become

                      estlt, = Wh r- RWv, = Rgev,

in which re = the "rearrangement matrix" given by

                           O 10

                      R := -l O O.

                           0 Ol

  The equilibrium cenditions of the force vectors at the nodal

                    Y'h, - Vh m -R[Vtv, - Vv].

  Substitution from Eqs. 30 into Eqs. 36 and 38 yields

                    pes'h, = pifk == RpU'v, = Rpifv,

              Lp -pj{Y'h, Vh}==-RLp -p]{V'vt Vv}.

From Eq. 39,

             -Yt.tz,"" "" LhJhifh - -'£htv,Vlv,- -eh'vifv -

              uh ahk,evth, £hv,utvt xhvvv
                                                  .             astvi LvthtYtht SvthUh ecv,vVv

              Vv ecvh,iftlt, £vhUh LvviUtvt
From Eq. 40,

            -"V'h,' - O gh,h -Lh,v, Lh,, "- -Vth,-

                     Lhlz' O thv' -thv             Yh                                             Yh

             Vtv,                                             Vtvt                     -Lv'h' Lv'h O thv'v

                     avh' 'Lvh Lvv' O             Vv                                             Yv

       No. 21

        (32>

        (33)

        (34)

        (35)

at the nodal

        (36)

        <37)

point become

        (38)

        (39)

        (40)

        (41)

(42)
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In the above equations L == the "relative operators." They

consolidated form as follows:

  1. for the rectllinearly arranged members:

wrlte

                      [,t, ]- [,h, ], or [,", ],

and then

                            Li,i -- Lii,-1,

and

  2. for the

wnte

and then

and

Li,i ww-

cos 6

sin o"

 o

-sin6 O"

coso" O

 OI
'

         "- cos6 sin6 O-"

    Liit = -sina cosb O ,

            O OI

orthogonally arranged members :

   [l]=[ij]' [#,]･ [h.'], or

LiJ' =:

Lj･i =

-. " s!no
 -cos6

   o

sin 6

cos6

 o

LiJ･ == tJ･i-1

cos6 O-

sin6 O

 OI

-cos6 O-

 sinS O

  OI

'

'

'

b= ai - evi,,

o" -- ai - ai,,

[ig1],

o" -- crj - ai,

a= crj - ai.

are gwen

31

in

(43)

(44>

(45)

(46)

(47)

(48)

(49)

(50)
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 From Eqs.
as shown in

       N.

41 and 42,

Table 4.
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a connection chart at a nodal point can be composed

 Table 4. Connection Chart.

Dislacement vecter U
l

Force vector V
v.Ak,zptt,

 L,.

Case 1. Connection with member h.･ra&
 xXe
  c.
   t''

      <･

       UnsNV.･･

tf.U)ttVL

    l

Case 2,

Case 3.

Connection

Connection

xvith

with

member

member

h

r'

N<
 1-ij

k

.-e(

4.

Yh

I

<wt
    yf
  ii,'

killl,lli.,,iK

l
VT' <

Case 4. Connection with member t'
tlf .2ktlL,u

   t L.･K

l
Yr X<rJ

 For the

ing:

orthogonal systems, the

          Liti. = gii, =:

       O10
 Lij= -1 O O == R

       OOI

      -U'h,- - Uh

               Vht       Uh

       Utv'              ew-1ifth,

              ew-IUth,       ifv

preceding equations reduce to

 1 0 0
 O 1 O'= E,

 OOI

        O -1 O

, Lji = 1 O O =R-i,

        OOI

- M RU'v,M - RVv-
     Rif'vt.             RUv
                 '    R'IUh              Uv

    R-IUh            -- U'v,.-

the follow-

      (51)

      (52)

      (53)
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and

              --Y'ht' '- O E -R Rh-Vth,--

               vh goR -R vh
                    -= . (54)               vt., -･R-1 R-1 O E vtv,

              -. v.- -R-1 -wl E O-.. v,-

                 6. BOUNDARYCONDITXONS
 The generalized boundary conditions3) for rigid aRd grid frames are illus-

trated in Figs. 3 and 4, where the displacement and force vectors are

related with each ether by the folloviiing equations :

  1. for the rigid frames:

                                              '        ll,t`I.:.l ?, w unfitwcii(11i-ll-',"-'rm"'ua'Tnv-Li,

    1-,..-l, --:v:)t'( r-;'l'ixiS. i, '.'`'{'･-･ .'.. 'T,sl.i'>sll --J.T,.li

2. for

   x

   SI AtoO AtSoii

       Fig. 3. BouRdary Conditions for Rigid Frames

                        -1 O O-

       U== diag[f h m] O 1 O V,

                         O O -1

                         -l OO

       U' =: diag[f k m] O -1 o y',

                          OOI
the grid frames :

 v- -･----- p------- -------- spt',･/-O

>,;ii`7)

'y' ,,.l es

     At ,o･O

      Fig. 4.

.-4
lsi.

t/zg,,J,,, pmk C==:ii">?/ ,l ,.,.-llx)'<'(F.ofs;rll

                   X/ lsl
                    At ,O 1

Boundary Conditions for Grid Frames.

(55)

(56)
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                U = diag[n m

               U' = diag[n m k]

Here L h, m, and

  By virtue of Eqs. 5 through 11, the

in the following consolidated equations :

                         BX == O

                         Brxt = o

Here B, B' == the "boundary matrices"

respectively by

                       -l -v O

                   B= O O 1.

                        ooo

                    ""l 1+v O O

               B' =: O O 1 1

                     OO OI
In the above boundary matrices, the

                         6EI
                      2== l, k, pt

and

                    EA                 v= -l-f for the

and B. TANiMoTo No. 21

    O1 O-

   -1 OO Y, (57)k]

    OOI

   O -1 OM

   1O O V'. (58)
   O O -1
                     force vectors.

       boundary conditions will result

    p=O, (59)
    p==L (60)
    p=Oandp= 1, which are given

  o o o-
             , <61)  ooz

n = constants between the displacement and

                  above

                  at

                  at

                  at

                    GJ
                 P == 7n

 Ali the possible boundary

values for the above elastic

in Table 5. '

           1 -pt O-

              o o-

              1 l-2. (62)
            2+ st 3+ 3st.

        fo!lowing ratios have been introduced:

             2EI           =I M, (63)

        rigid frames,

                                       <64>

for the grid frames.

conditions will be expressib!e by assigning due

constants. A simple example thereof is skown
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     Table 5. Support ConstaRts.

35

Elastic sllpport

Fixed end

Free end

Simple support

L n, or v

Ln,v
o

oo

o

fe or 2
E
I Jn or pt

k, 2

o

co

o

"z, pt

o

oo

co

                     7. APPLECA[YION

 As a simple application of the preceding developments, an

example will be referred to the portal frame shown in Fig. 5.

     ,,.....,///--,,,i}S,,,;,.I-I･I!:....,.I..lilli'l'k,E,il"i'K'T""ny'""'i/Illlll/l'111,･tLlllf,t･;E,i/u;'eJ,;"Lt6i

l
i

XJ t-, I,'i2

A CI)

I
L..ua...ww. I,'-il,

  xt@
  I  i
  l･
  i
- ...jil

es. .x.t.ll '

9
1
i
,

1

IZl

2

     (a)

     l"----       '     ,1.,,}

ixn-= @

illustrative

   !l
3 xll,il/i';,,Vli16f,K,.iJL･ec,･,.L,･K,`

   ny"---..Y-....i･.3]

 .I Bxt-- oll
w. ue"'mrr'n' ]"""'
      v
    n ･- LG, G,G,,j {Ki K, K,i }･

Ni'"'6i--aj------- @ i'tt'l
yij' 'AWX,,

l,E,J,Adip- I,

l@(6)

il･
i
x
i
-
3

K
N
"
R
･
i
-
N
-
i
(
b
)
v
.
.

I
･
,
,
,
L
/
l
(
G
,
c
D
-
/
f
r
/
i
=
N

:n va.-- z

Fig. 5. 0peration Chart fer Portal Frame.
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  7. f. Operation Chart.

  A computational procedure of the portal frame is illustrated in Fig. 5a.

Starting from the lower end of the left vertical member, the operation will

be carried out. The working out of the current-matrix 2, its currency,

and its determination are shown symbolically in Figs. 5a and 5b. In both

figures are also shown the degradation of the order of unknown eigeRma-

trices. Numbers in small circles denote the order of member-eigenmatrices,

while those in sinall squares represent the number of physical conditions.

  Respective members are numbered as shown in Fig. 5a. Their state

vectors are given by the following consolidated forms:

                          U(p)j -- gejP(p)X(p)j, (65)

                          Y(p)j -- AjQ<p)X(p)b (66>

                      Dj m- diag[E-iA- 6il'ii 6iif]; (67)

                       Aj -- diag[1 -1 --g-]; (68)

take at p -- O:

                              1 0 0 0 0 0

                   P(O) =:: ge= O O 1 O O O, (69>
                              O O O I O O

                               O I O O O O

                   Q(O)=es =- O O O O O 1, (70)
                               O O O O I O

                    x(O)j -- xj={a bcde f}j, (71>

 take at p =: 1:

                               1 1 0 0 0 0

                   P(1) =: ge' == O O 1 1 1 1, (72)

                               OOO123



No. 21 Operational Method for Structural Networks

                              O I O O O O

                  Q(1) =: Qt -! O O O O O 1,

                              O O O O I 3

                         X(1>j =: Mtj -- Xj + scj,

providing

                            1 == 1, 2, 3.

  7.2. 0perators.

  In the present example, the following operators are introduced

  (i) relative operators at the upper nodal points :

                                  O10

                        a21==R= -1 O O,

                                  OOI

                                  O -1 O

                      k32 =r R-i == 1 o o ,

                                  OOI

  (ii) boundary matrix for the simple support:

                           1 0 0 0 0 0

                     B= OO1OOO.
                           O O O O I O
  T.3. 0peratgons.

  1. SztPPort conditions at lex lower end.

  The boundary conditioiis at the left Iower end are given by

                               BXi =.T O.

Then Xi becomes

                               Xi == $1£,

in which

                         ooo

                         100
                                            '-' b -

                            oo .                         o
                                            '                                   , 9== d.                   $1 Lnv
                                            '                         OIO
                                            -f-
                         ooo

                         O O I
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Here a = the current-matrix to be shifted to other members.

  2. Connection conditions at left node.

  At the left nodal point, the connection conditons are given

                      U2 = L21Utl, V2 = L21Vtl,

or

                     D2PX2 = RDiPt[X + K]i,

                      A2QX, :; RA,Qt[X + K],.

Putting Eqs. 83 and 84 together yields

                                            t       .,=[g]-i[g %];[,: R][zz],[g][X+K]b

or

                   X, == S,[X -l- K], =: S2S,2 + S2Ki.

  The physical properties of the three members are assumed

to be the same, and then

                                          t      ,,=[:]ww'[g z]xs :][g z][a]

           o O rp qv rp

           O OOOO -1
             11               --o o o o
        ., n ?
                                '           OOO123
           OOOOI3
           OlOOOO
and

                              o rp ny

                              O O -1
                             nvl o o
                      $o.Sl =: rp '
                              O13

                              O03

                              1OO

by

for
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in which

                                 Al2
                              q = '6rt' <89)

  Here $2 is designated as the shift operator or briefly the "shiftor" at this

nodal point, and heRce S2Si may be tal<en as the shiftor for the current-

matrix 2.

  3. Connection conditions at ri,Etht node.

  At the right nodal point, tke following connectioR conditions are to be

glven:

                    Ut3=R-1ev2, Yt3=-R-IVt2. (90)
These equations readily yield

                 tt     x,+K,=[:l]-i[[I 2f]-'[R-oi -OR-,][: Od][il][x+K],, (gl)

or

                       X3=S3X2 g} S3K2-K3, (92)
 in which the shiftor $3 is given by

                       O O -v -q -ry 1- ty

                       OO OOO -1
                      h.1- 1-1 o -1 -3 -6

                 $3= tyq . (93)                       O3 O14 9
                       O -3 O O -l -3

                       O1 OOO O
          '  4. SztPPort conditions at right lower end.

  The boundary conditions at the right lower end are given by

                              BX3 == O. (94)
 Substituting from Eq. 92 to Eq. 94, the current-matrix 2 is obtained as

 follows :

                                                -Kl-

                    £==-[BS3S2Si]-iB[S3S2 S3 -E] K2, <95)
                                                -K3-

 or, taking B=:S4,
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The

Then

a ==

                N. YosHizAwA and B. TANiMoTo

                                          Kl

           2= -[S4$3$2$i]-i[S4S3$2 S4$3 -$4] sc2

                                          K3

inverse in this case becomes

                        -2-q -v -6rp --i
 [BS3S,S,]'i =: [s,s,s,s,]-i = -6 o -lo nv hlzrm

                                        rp
                          -3 O O

                    - O O -10?-1
          == 3(lorp1 +--1-s -3 (10 + -il)-) lsny -26rp - lg . ;

                    - O -3v 6ny

 the solution of the current-matrix 2 is given as follows:

         - o o o o loq +1 o
 3aorp1 th, i) 3(iO -- -il-) O -18rp o 26 rp + lg + -;- o

         -O O 3o O -6rp O

No. 21

(96)

(97)

×

1

o

o

o

o

o

2-O
 -1

 -6

 9

 -3

 o

o

o

1

o

o

o

- rp

o

o

1

o

o

-3T

o

-4

6

-1

o

  -6v

   o

-10 -

   12

   o

  -1

1

J
? '

o

o

1

r
p
o

o

o

  o

  o

lm -1
r
p

  3

 -3

  1

-q
o

o

o

o

o

-rp

o

--
 1

 1

o

o

-rp

o

-3

4

-1

o

1- rp-

 -1

 -6

 9

-3

 o

'

nv" -1

 o

 o

 o

 o

 o

o

-1

o

o

o

o

o

o

-1

o

o

o

o

o

o

-
o

o

o

o

o

o

-1

o

o

o

o

o

o

-1

Kl

 K2

-K3-.

   1
3(10rp + 1>

-o       1 
3
(
  10 +-
       ?1)

    o

)



No. 21 Operational Method for Structural Networks 41

 -3(10rp+1) O O -10rr-1 O -
      O -18v -3(10ij di 1) -447-28-g O ,
                                           ny

       O 3v O -6rp -3(10n+1)-
iM O -3(10o+1) O O -10)7-1 -3(107;)+1)-
 -18 -60)7 - 75 - -S -3(107;) -F 1) -1277 -3 -277 - 22--l-ll -3(10 -l- -,17-)

-3 15rp +3 O -3v -3rp O
              M o O O O -10rp-1 O-1-K,-
               -3(lo+-l;-) o 18v o -26q-lg--2i･ o jl K2, (98>

              - O O -3rp O 6ny O-.S-K3-
or

                     se=L6i ca2 G3j{K, K, sc,}. (99)

  In Eq. 99, the matrices 6j (1' nd- 1,2,3) correspond to the respective load-

matrices ag, and therefere the curren't-matrix 2 can be evaluated for

arbitrary loading conditions. Thus, the present system can be solved.

Note that the Gjmatrix is determined only from geometrical and physical

properties of members. They are designated as the "geometry matrix."

Substituting Eq. 98 into Eqs. 80, 86, and 92, and rearranging a little, the

complete eigenmatrix of the present portal frame is obtained in the

followiBg form :

                       Xl 6n e12 ca13 ec1

                       X2 = e21 ca22 ca23 X2, (100)
                      -X3.- p.ee3i 632 G33- -.sc3-

or

                           [X] =[G]{sc}. <101>
Here, the first factor on the right side of Eq. 100 or 101 is the complete

geoinetry matrix of the system considered, and is gi'veR in Table 6.

  Using the complete geometry matrix, the physical quantities 'for gi'ven

loading conditions can at once be obtained by Eqs. 7, 22, 23, 29, and 100.

Some typical examples are illustrated in Table 7, where the solutioiis by the

operational method aRd by other prevailing methods are shown. In every

solution by the Ia"tter methods, the effect of the axial displacement of mem-

ber is neglected as is ordinarily the case, so that it corresponds to the

solution by the operational method as a particular case in which v == oo.
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Table 7. Exainples of Portal Frame.

Loading conditions
and quantities to
   be required

  iL'

  ll. `)
     '
TTI.t/･'./-'-.',' Vlt.tir,

    PN=,:?

 ?" -e,s
K
,
i
,
,
 " /'//"' 'ttttJtit

P
r
c

,rxtf･･･

II ?,

 ' 'ti' t.lfl,

/gl.I･.iTi ,?rTr7

  ll.,1
TtSt-, " ･ '' ']]], ttll

   ,(l

  ll ･?
     .
    ''lrJh '･ t.' 'nntJttt

    .t/ ,,11,lsti}II ?.fl',,,.l' liil/l,,,.,

Solution by
operational
  method

      3vH=    10V + 1 P(N - .2)

H=-{}--- rp P
     4 10rp +1

       3oM = '-if lorp + 1 Pl

H
×

= -P

3+10rp- 6rpm + rprc3
10rp + 1

H == 2(lorprp + 1> ql

M = - ww2' k'ibmu
rprpm

+ i) qi2

H= O    4(10rp + 1)
ql

        31rp + 5
H==-                el       10(10rp + 1)

M =" ' 3ofti+5 i>rmal2

Solution by other methods

Solution

H" iiiltTP(ic - ,g"-)

       (rp == oo)

ff = sp
    40

(rp : oo)

M== -i6Pl

       (lj == oo)

H= -P
  10 - 6N + rc3
 ×       10

       (rp = oo)

Method used

Area-moment
      method

Slope-
    deflection
     method

Strain-energy
     method

Area-moment
     method

Slope-

   deflection

     method

    qlH : 2Tt (rp tr oo)

l
i

      el2
M= wu 2To (q = oo)

    ql
H=-    40

(rp = co)

      31
H == - lbTo' ql

       (lj == oo)

M = -iillTtql2

        (v == oo)

Slope-
    deflection
     method

Strain-energy
    method

Area-moment

    methocl

Area-moment
     method

Area-moment
     method

Author

        4)
Timoshenko

   5)
Yuki

    6)
Szab6

        4)
Timoshenko

      7>

Mogami

   5)
Yul<i

      8)
Hayashi

        4>
Timoshenko

        4)
Timoshenl<o

        4)
Timoshenko
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In addition,

1. Numbers

         8. ADDITIONAL NOTES

the following notes are given :

of physical conditions at a nodal point are classified in

          Table 8. Nodal CoRditions.

Table 8.

Kind of Node

L-type Node

    ec

         b
T-type

I

Node

i

Cross Node

Equilibrium
 condition

3

3

Continuity
condition

3

1
L

3+3

3 3+3+3

Connection
 condition

6

9

l
l
l
I

12

  2. If the external restraiRt conditions are given at a nodal

corresponding physical conditions will be introduced in place of

conditions. In consequence of such aR interchange of conditions

number of physical conditions at a nodal point always remains

SeveraHllttstrative examples are given below.

 <i) For free L-type Rode of a rigid frame (Fig. 6):

                     -. -r - -.. ..
x
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  Fig.
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Fig. 7.
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 the total

 constant.
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  (iii) For elastically supported L-type node of a rigid frame (Fig.

                      '                   -uh -O -1 O-' -u-
     ua z                    zv == 1 O O w
  Z"V .i'Y -0-i -.O O 1.- -0-.2

     sX
      i --f O O- --F-' -O f O- rm
                      == O -fe O S +k O o

                        -o o m- -.M-, -o o -m.- -.
   Fig. 8.

  (iv) For free T-type node of a grid frame (Fig. 9):

                         t
                      -"Q-r mo 1 o-- --¢-

                       0w -1 OO 0,
                      in w-1 -O O 1- -. zv-3

         3 Mip- -O 1 O'h -ip -'

                      -zv-.2 -O O 1--w-3
                         ,                                                -M-                            -'M-                     -M-                                     O10

                      T-T-                                    -1 Oo T                                                    = o.

                     -S-i -S-2 -.O O i- -.S3
   Fig. 9.

 (v) For elastically supported T-type node of a grid frame (Fig.

                     [2],--[e, g][:],･

                         '

,-.･,･:.-

:.2..,ni,X [:'],==[2],

    p$-' vg} [¥],-u s][y], == o･

                      W'1 = W2 =: W4 == le(-S'i + S2 + S4)

   Fig. le. '
  3. The number of unknown elements in a given structural

to the number of physical conditions. For example, in the

span by n-story frame shown in Fig 11, it follows that

 8)

F-

s

M-

:

2

10):

45

(104)

(105)

<106>

system is equal

case of the m-
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                 A
                  l
                 z
                 'c
                 s
                 T
                 -s                  l
                 .Lnv
                     Fptt--- -------- nt-spans .-･

                         Fig. Il. Plane Frame.

            Number of constituent rnember == (2mn+m+n), (I07)

            Number of cross-type node == (m-1)(n-1), (108)

            Number of T-type node == 2(m+n-2), (109)

            Number of L-type node == 4. (110)
Tken,

  Number of unknown elements = 6(2mn + m +n) = 12mn + 6(m + n), (111)

  Number of connection coRditions

     == 12(m - 1)'<n - 1) +9 × 2<m +n- 2) +6 × 4 == 12mn + 6(m + n). (112)

  4. Atamember end independent of any other members, three bound-

ary conditions are to be prescribed. Then the eigenmatrix of the member

is degraded to the third order.

  5. Two kinds of compatibility coRditions at both ends of a member can

completely correspond to the eigenmatrix of the member. Its verification

is given as follows:

  The compatibility conditions at both ends are written

                             DPX := F, (113)

                      DP'X' =DPt[X+K]=H, (114>

in which pt and Y are considered as displacement quantities of some adjacent

member. Wrlting Eqs. 113 and 114 together

                       [g:,]x+[.;,]K == [A]･ ais)

Then the eigenmatrix can be represented by

                ...[:,]-'[g g]-i[[a]e[.;,]K] (ii6>
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The above lnverses are nonsingular as shown below, and hence

statement has been verified.

  (i) 'for the rigid frames:

                           1oeooo
                          -1 OO1OO
                 [:,]-i-: gs?g o, g･

                           O -3 -2 O 3 -1

                           O21O-21

          [g g]Mi-ved,.,[E,A 6,E,i 6,E,i E,A 617,C g9],

  (ii) for the grid frames :

                         1OOO OO
                        -1 O O1 OO
               [:,]-i- g ? s g g g,

                         O -2 -3 O -1 3

                         O 1 2 O 1 -2

          [g g]-i .. di.,[{il 62,( 6f,i tleJ 6E,i 6f,l].

  6. The combined abscissa matrix {P(x) Q(x)}, as weil as the

Fig.
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(iJ') 1
･

i2. Symbols fer Complete State Vector

･1 i)
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(117)

(118)

(119>

(120)

diagonal
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matrix diag[D a], is square and nonsingular, and hence the assembled

state vector W(x) completely corresponds to the mathematical generality

of the eigenmatrix X.

  7. Conventional symbols for analysis of structure are given in Fig. 12.

                         g. cgNcLvsgoNs

  In conclusion, the following notes are given:

  1. In the present procedure, a network is taken as an assemblage of

contlstuent unlts.

  2. A unit is characterized by its eigenmatrix, called the unit eigenmatrix.

  3. The eigenmatrix of a member consists of integration constants of

differential equations governing member behaviors.

  4. Two consecutive units produce a recurrence formula for the unit eigeR-

matrlx.

  5. The boundary conditions at the left end of the network result iR a

definite degradation of the first unit eigenmatrix, which is referred to as the

current-matrlx.

  6. The repeated use of the recurrence formula permits the currency of

the current-matrix to all the units or the entire network.

  7. The boundary conditions at the right end enables to determine the

value of the current-matrix.

  8. In statical problems, the g.eometry matrix can be obtained independently

of the external loading conditions, which can save time and labor. An illus-

trative example is given for the portal frame.

  9. Both of plane rigid frames and grid frames can be reduced to the same

matrix analysis.
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                       APPENDIX. -NOTATION

  Tlte fol}owing symbols are used in this paper :

          A == cross-sectional area;

       ss, B' == boundary matrices;

          D == diagonal matrix, see Egs. 8 and 9;

          Ef = flexural rigidity ;

           E= unlt matrlx;

          F == axial force '
                         ,
          F, = resisting axial force for elastic support ;

          GJ =: torsional rigidity ;

           G ::= geometry rnatrlx ;

          ff = external axial force;

       k, h' ==: symbols representing the horizontal-like member ;

           K =load term of a member see Eq. 16;

           k == exterRal load matrix '
                                  '
           k == relative operator;

           l n- member length;

          M == bending moment ;

         M, == resisting moment for elastic support ;

          M == 2-by-1 eigenmatrix ;

          N = 4-by-1 eigenmatrix ;

           P == externaHateral load '
                                  '
         ge(p) =3-by-6 abscissa matrix see Eqs. 10 and 11;

           ge =: projection matrix, or briefiy projector;

           Q::'A external torsional moment ;

         Q(p> :=-L 3-by-6 abscissa matrix, see Eqs. 10 and 11;

           R =:-. external bending moment ;

           R == rearrangement matrix;

                                       t
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          S == shearing force;

          S, == resisting lateral force of elastic support;

          Si = shift operator J

          T = torsional moment ;

          u := axial displacement ;

        U<p> == displacement vector at p;

          U == displacement vector at p=O;

          u' =:; displacemeRt vector at p= 1;

        V<p) == force vector at p;

          v= force vector at p == O;

          y' = force vector at p == 1;

       v, v' = symbols representing vertical-like members;

        W(p) == state vector at p;

          W =: state vector at p == O;

         vvt = state vector at p =1;

          w == flexural defiection '
                               '
          X =6-by-1 eigenmatrix, X=={iVl N};

          a == direction angle of member taken clockwise from the standard

              axis;

          A= diagonal matrix, see Eqs. 8 and 9;

          o" -- difference aRgle, see Egs. 45, 46, 49, and 50;

          0 =: angle of defiection ;

          rc = non-dimensional load abscissa'
                                         '
      2, y, v = coRstants attatched to elastic support;

          p == non-dimensional current abscissa;

          di = angle of torsiofl;

          2 == current-matrix '
                            '
-(vinculum) = symbol representing the transposed matrix, or physical

              quantities projected to its standard co-ordinates;

    L J= row vector; and
    { } = column vectoy.


