Catalytic N-oxidation of tertiary amines on RuO$_2$NPs anchored graphene nanplatelets

Mayakrishnan Gopiraman,a Hyunsik Bang,a Sundaram Ganesh Babu,a,b Kai Wei,a,c* Ramasamy Karvembu*a,d and Ick Soo Kim*$^{a,*} $

Received (in XXX, XXX) Xth XXXXXX 20XX, Accepted Xth XXXXXXXX 20XX
DOI: 10.1039/b000000x

Ultrafine ruthenium oxide nanoparticles (RuO$_2$NPs) of an average diameter of 1.3 nm were anchored on graphene nanplatelets (GNPs) using Ru(acac)$_3$ precursor by a very simple dry synthesis method. The resultant material (GNPs-RuO$_2$NPs) was used as a heterogeneous catalyst for the N-oxidation of tertiary amines for the first time. The transmission electron microscopic (TEM) images of the GNP-RuO$_2$NPs showed an excellent attachment of RuO$_2$NPs on GNPs. The loading of Ru in GNP-RuO$_2$NPs was 2.68 wt%, as confirmed by scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). X-ray photoelectron spectrum (XPS) and X-ray diffraction pattern (XRD) of GNP-RuO$_2$NPs revealed that the chemical state of Ru on GNPs was +4. After the optimization of reaction conditions for N-oxidation of triethylamine, the scope of the reaction was extended with a various aliphatic, alicyclic and aromatic tertiary amines. The GNP-RuO$_2$NPs showed an excellent catalytic activity in terms of yields even at a very low amount of Ru catalyst (0.13 mol%). The GNP-RuO$_2$NPs was heterogeneous in nature, chemically as well as physically very stable and reused for up to 5 times.

Introduction

Aliphatic and aromatic tert-amino oxides (amine N-oxides) are essential and key components in the formulation of several cosmetic products as well as in biomedical applications.1,2 Particularly, N-oxides of aromatic amines are extensively used as protecting groups, auxiliary agents, and oxidants in various organic reactions.$^{3-4}$ They often used as potential cytostatins for the treatment of solid tumors and also as ligands for the preparation of useful transition metal complexes.5,6 As a catalyst, especially in epoxidation reactions, amine N-oxides displayed a wide range of advantages in chemical industries.7 Notably, enantiopure chiral N-oxides, found to play a substantial role as a Lewis base catalyst in asymmetric transformation.8 However, traditionally, these amine N-oxides are prepared via a noncatalytic oxidation processes using α-azo hydroperoxides,9 activated H$_2$O$_2,$10 Caro’s acid (H$_2$SO$_4$),11 dioxiranes,12 peracids,13 and magnesium monophthalate.14 These reagents are not only expensive and toxic, but also produce a large amount of effluents during the reaction, which often lead to the environmental problem of waste disposal. To prevent this issue, catalytic oxidation processes using environmentally friendly oxidants such as air, O$_2$ and H$_2$O$_2$ have been developed. Silica supported vanadium,15 bimetallic methyltrioxorhenium(VII) or manganese porphin,16 titanium molecular sieves [TiMCM-41 and TiZSM-5(30)],17 tungsten-based polyoxometalates,18 tungstate-exchanged Mg/Al-layered double hydroxide acid (LDH-WO$_3$),19 vanadium-silicate molecular sieve,20 and titanium silicalite (TS-1) materials21 have been proposed as heterogeneous catalysts for the oxidation of tertiary amines to their corresponding N-oxides using H$_2$O$_2$ as an oxidant. Owing to the recyclability and easy separation from the reaction mixture, metal nanoparticles (MNPs), particularly supported MNPs, played a tremendous role in heterogeneous catalysis. There are very few MNPs supported on carbon materials, particularly carbon black, employed as a catalyst for this oxidation reaction. Unfortunately, most of them have shown less activity in N-oxidation of tertiary amines.22 Pina et al., investigated the activity of gold-based mono- and bimetallic catalysts in the oxidation of tertiary amines to afford the corresponding N-oxides.23 They found that Au/C catalyst showed an excellent catalytic activity for the oxidation of tertiary amines to the corresponding N-oxides; however, other catalysts namely Rh/C, Pt/C, AuRh/C and AuPt/C are less effective and often require alkali as a promoter to improve the activity of the catalysts.24 In addition to the high cost of the Au, Pt and Rh catalysts, they often require higher stoichiometric amount of catalyst for the N-oxidation reaction. Therefore, developing an efficient and recyclable catalytic system with the use of lower amount of catalyst remains a challenging task.

Among the noble metal catalysts, ruthenium has shown high catalytic activity mainly in oxidation reactions.$^{24-27}$ Very recently, due to the astounding properties of graphene such as high surface area and chemical inertness, it has been receiving a great deal of attention as a support for active metal catalysts including RuNPs in heterogeneous catalysis.28 According to Krasheninnikov et al., the inert graphene can be transformed into a very active catalyst through the interactions between the active metal clusters and carbon vacancies.29 In our previous work on the aerial oxidation...
of alcohols, we found that RuNPs decorated graphene nanosheets (GNSSs) catalyst is efficient, reusable, chemically as well as physically very stable and the catalytic system required a low amount of Ru (0.036 mol%). Similarly, GNP-RuO₂NPs composite was prepared by a simple dry synthesis method and was used as an efficient nanocatalyst for the transfer hydrogenation of carbonyl compounds. Inspired by these results, we have used GNP-RuO₂NPs composite as catalyst in N-oxidation reactions too. However, the GNP-RuO₂NPs showed less catalytic activity in the N-oxidation reactions. Hence, herein, we report the simple preparation of graphene nanoplatelets (GNPs) supported ultrafine RuO₂NPs catalyst and its activity towards N-oxidation of tertiary amines.

Experimental

Materials and characterization

GNPs (purity: >99 wt%, surface area: >750 m²/g, average thickness: 3 nm, layers: <5, diameter: 1-2 µm) were purchased from Cheap Tubes Inc., VT, US. Ru(acac)₃ (97%) and all other chemicals were purchased form Aldrich and used as received.

The morphology of the prepared nanocatalysts (GNP-RuO₂NPs) was investigated by TEM (JEM-2100 JEOL Japan) with accelerating voltage of 200 kV. The weight percentage and homogeneous decoration of RuO₂NPs on GNP were confirmed by SEM-EDS (Hitachi 3000H). The same field of view was then scanned using an EDS spectrometer to acquire a set of X-ray maps at 1 ms point acquisition for approximately one million counts. The interaction of RuO₂NPs with GNP was examined by Raman spectrometer (Hololab 5000, Kaiser Optical Systems Inc., USA) using argon laser at 532 nm with a Kaiser holographic edge filter. Wide angle XRD experiments were performed at room temperature using a Rotaflex RTP300 (Rigaku Co., Japan) instrument at 50 kV and 200 mA. Nickel-filtered Cu Kα radiation (5° > 20 < 80°) was used for the XRD measurements. To confirm the chemical state of Ru, XPS spectrum was recorded in Kratos Axis-Ultra DLD instrument. The samples were irradiated under Mg Kα ray source before XPS analysis. NMR spectra were recorded on a 400 MHz Bruker spectrometer in CDCl₃ using tetramethylsilane as a standard. FT-IR spectra were recorded using a Horiba FT-720 IR spectrophotometer.

Dry synthesis of nanocatalyst (GNP-RuO₂NPs)

In order to introduce oxygen functional groups on GNP, initially, it was subjected to chemical treatment according to the literature procedure. In a typical procedure, the GNP (1.0 g) was chemically treated with a 3:1 ratio mixture of concentrated H₂SO₄ and HNO₃. Subsequently, the resulting mixture was sonicated at 40°C for 3 h in an ultrasonic bath. After cooling to room temperature, the mixture was diluted with 750 mL of double distilled water and then vacuum-filtered. The resultant solid (f-GNP) was repeatedly washed with double distilled water until the pH reached neutral and then vacuum dried at 60°C. After that, 50 mg of Ru(acac)₃ was added into 500 mg of f-GNP and mixed well by a mortar and pestle under ambient condition. The homogeneous mixture of f-GNPs and Ru(acac)₃ was obtained within 10-15 minutes. Finally, the impregnated Ru(acac)₃ was thermally decomposed into RuO₂NPs by calcining at 350°C for 6 h under nitrogen atmosphere. Fig. 1 shows a schematic illustration of the procedure for preparation of the GNP-RuO₂NPs.

Oxidation of tertiary amines

10 mg of GNP-RuO₂NPs (0.13 mol%) was stirred with 3 mL of CH₃CN taken in a round-bottomed flask equipped with a condenser and a stirring bar. To the above mixture, substrate (2 mmol) was added followed by a slow dropwise addition of 30% H₂O₂ (5 mmol). Then the solution mixture was heated at 80°C under atmospheric pressure of air. The completion of the N-oxidation reaction was monitored by TLC. Once the reaction completed, the nanocatalyst was separated out from the reaction mixture by simple centrifugation, washed well with diethyl ether followed by drying in an oven at 80°C for 3 h and was reused for the subsequent N-oxidation of tertiary amines. In other hand, the centrifugate was dried over anhydrous MgSO₄ to afford the product which was purified by passing through a column of silica gel using dichloromethane-MeOH (90:10) as an eluent. The products (amine N-oxides) were identified by NMR and FT-IR spectral data. Some of the products (Table 1, entries 4, 5, 8, 12, 13, 15 and 17) are known compounds and were identified by the comparison of their spectral features with the respective reported data.

Triethylamine N-oxide (Table 1, entry 1): Yellow liquid; ¹H-NMR (400 MHz, DMSO-d₆): δ 1.10-1.14 (t, 9H), 2.99-3.05 (m, 6H); ¹³C-NMR (400 MHz, DMSO-d₆): δ 84.8, 58.8; FT-IR (cm⁻¹): 3145, 1652, 1392, 1150, 825.

N,N-Dimethyl aniline N-oxide (Table 1, entry 2): Yellow solid; ¹H-NMR (400 MHz, DMSO-d₆): δ 2.65 (s, 6H), 6.62-6.64 (m, 1H), 6.61-7.53 (m, 3H), 7.15-7.19 (m, 2H); ¹³C-NMR (400 MHz, DMSO-d₆): δ 40.5, 111.9, 112.7, 116.4, 129.2, 150.8; FT-IR (cm⁻¹): 2933, 1591, 1500, 1341, 1223, 1190, 1164, 1063, 1030, 1000, 943, 750, 689.

N,N-Dimethyl p-toluidine N-oxide (Table 1, entry 3): Yellow solid; ¹H-NMR (400 MHz, DMSO-d₆): δ 2.25 (s, 3H), 2.89 (s, 6H), 6.68-6.70 (d, J = 8 Hz, 2H), 7.04-7.06 (d, J = 8 Hz, 2H); ¹³C-NMR (400 MHz, DMSO-d₆): δ 20.3, 113.1, 125.0, 129.7, 148.1; FT-IR (cm⁻¹): 3389, 2932, 2879, 2868, 1676, 1623, 1523, 1330, 1154, 1050, 952, 799, 713, 687.

N,N-Dimethyl o-toluidine N-oxide (Table 1, entry 4): Yellow solid; ¹H-NMR (400 MHz, DMSO-d₆): δ 2.25 (s, 3H), 2.61 (s, 6H), 6.91-7.14 (m, 4H); FT-IR (cm⁻¹): 2967, 1569, 1493, 1450, 1310, 1185, 1155, 1117, 1050, 950, 760, 723.

N,N-Dimethyl m-toluidine N-oxide (Table 1, entry 5): Yellow solid; ¹H-NMR (400 MHz, DMSO-d₆): δ 2.24 (s, 3H), 2.86 (s, 6H), 6.46-6.48 (m, 1H), 6.48-6.51 (m, 1H), 6.53 (s, 1H), 7.03-
Results and discussion

Characterization of GNP-RuO₂NPs

To investigate the morphology of GNP-RuO₂NPs, TEM images were taken for pure GNP and GNP-RuO₂NPs [Fig. 2(i–v)]. The TEM image of pure GNP confirmed the presence of irregular ultra thin sheets of size ranging from 0.5 to 2 μm. GNP also has multi layers with an average thickness of about 7-9 nm. As can be seen from the TEM images of GNP-RuO₂NPs, an ultra-fine RuO₂NPs were homogeneously dispersed on the surface of GNP.

High magnified TEM images of GNP-RuO₂NPs showed good adhesion of RuO₂NPs on anchoring sites of GNP with very narrow particle size distribution. The histogram of RuO₂NPs reveals that the RuO₂NPs have a very narrow size distribution ranging from 0.5 to 3.0 nm with a peak centered at ca. 1.3 nm [Fig. 2(ii)]. It is worth to mention that there was no free RuO₂NPs were observed in the background of the TEM images, which confirmed the complete utilization of the RuO₂NPs by the GNP.

In addition, the surface area per unit mass (S) of RuO₂NPs was calculated by using the equation, \(S = \frac{6000/(\rho \times d)}{d} \) where \(d \) is the mean diameter of RuO₂NPs (1.3 nm), and \(\rho \) is the density of RuO₂ (6.97 g cm⁻³) and it was found to be 1119.40 m² g⁻¹. Fig. 3 shows the SEM-EDS and corresponding elemental mapping images of GNP-RuO₂NPs. The weight percentage of Ru in GNP-RuO₂NPs was 2.68 as determined by EDS analysis [Fig. 3(ii)]. As expected, EDS mapping analysis confirms the homogeneous distribution of RuO₂NPs in GNP-RuO₂NPs. The credibility of the proposed method can be understood from the purity of GNP-RuO₂NPs that contains only carbon, ruthenium and oxygen elements as confirmed by EDS analysis.

XPS spectra were recorded for f-GNPs and GNP-RuO₂NPs in order to confirm the functionalization of GNP and the chemical state of Ru in GNP-RuO₂NPs; the results are shown in Fig. 4(i and ii) and Fig. 5(i and ii). As expected, both f-GNPs and
roscopy is a precise and quick method to investigate the nature of interaction between various MNPs and graphene. Therefore, Raman spectrum was recorded for GNPs-RuO₂NPs under 514.5 nm excitation over the Raman shift interval of 250-4000 cm⁻¹ [Fig. 6(ii)]. As expected, both f-GNPs and GNPs-RuO₂NPs exhibited two main Raman features, corresponding to the well-defined D-band line at ~1345 cm⁻¹ and G-band line at ~1570 cm⁻¹. The G-band line is originated from in-plane vibration of sp² carbon atoms, which represents the relative degree of graphitization.²⁹ The D-band line is related to the amount of disorder which arises only in the presence of defects, indicating the presence of sp² carbon atoms or defect sites in GNPs.³⁰ Since the ratio of D and G band (ID/IG) intensities is often used as a diagnostic tool to evaluate the defects concentration in graphene, it was calculated for f-GNPs and GNPs-RuO₂NPs. It is noteworthy that the ID/IG (0.1801) ratio of GNPs-RuO₂NPs was higher than that of f-GNPs (0.1515), which confirmed that the RuO₂NPs are attached on the surface of GNPs with good adhesion. In the XPS spectrum [Fig. 5(ii)], a significant positive shift in C 1s peak was observed for GNPs-RuO₂NPs when compared to that of the f-GNPs; this too confirms there has been a very strong interaction between GNPs and RuO₂NPs.³⁹,⁴⁰

Optimization of reaction condition for the N-oxidation of triethylamine

To find out the most effective reaction condition for the N-oxidation of tertiary amines, in a preliminary study, we used triethylamine as a substrate and varied the solvent, amount of catalyst, time, amount of oxidant and temperature [Fig. 7(i-iv)]. In solvent optimization, various solvents such as toluene, CHCl₃ and CH₃OH were used but they were less effective compared to CH₃CN [Fig. 7(i)]. As expected, only a very less amount of triethylamine N-oxide was obtained in the absence of the catalyst. 10 mg of the catalyst (0.13 mol% of Ru) was enough for the N-oxidation of triethylamine; this is the lowest amount of Ru catalyst reported for the N-oxidation of tertiary amines till to date. In temperature optimization, a maximum yield of 98% was obtained when the reaction was stirred at 80°C [Fig. 7(ii)].

![Fig. 5 XPS spectrum of GNPs-RuO₂NPs; magnified (i) C 1s and (ii) Ru 3p peaks.](image)

GNPs-RuO₂NPs showed a C 1s peak and O 1s peak at 284.5 and 532.5 eV respectively [Fig. 4(i and ii) and Fig. 5(i)]. The binding energy of C–C, C–O–C, C=O and –COOH groups is assigned at 285.2, 285.6, 286.8 and 288.7 eV respectively.³³ Deconvolution of the O 1s spectrum of f-GNPs [Fig. 5(ii)] resulted in five peaks located at 530.1, 531.2, 531.7, 532.6 and 533.5 eV, which were assigned to the C=O, –COOH, C=OH, –C–O–C– and H₂O respectively.³⁴ According to Gil et al.,³⁵ oxygen functional groups on graphene act as effective nucleation centers for MNPs, which assist homogeneous decoration as well as better adhesion of MNPs on graphene. Likewise in the present case, the homogeneous as well as better adhesion of RuO₂NPs on GNPs [Fig. 2(i-v)] are due to the presence of oxygen functional groups on GNP. Particularly, –COOH group assists good adhesion of RuO₂NPs on GNPs by replacing the proton of –COOH.³⁶ The XPS spectrum of GNPs-RuO₂NPs [Fig. 5(i) and ii] showed binding energy (BE) of Ru 3p½ at 462.5 eV, Ru 3p½ at 485.0 eV and Ru 3d½ at 280.8 eV, which correspond to the photoemission from RuO₂.³⁷ The overlapping of the C 1s and the Ru 3d½ peaks at ~285 eV makes it difficult to assign BE of Ru 3d½. The chemical state of Ru was also confirmed by XRD [Fig. 6(i)]. The diffraction peaks at 26.5, 44.2 and 54.8°, corresponding to the (002), (100), and (004) crystal planes of graphite respectively, attributed to the hexagonal graphite structures of GNPs.³⁸ The very weak XRD peaks at 27.5, 34.9, 39.9 and 57.5° correspond to the typical crystal faces (110), (101), (200) and (220) of RuO₂ (JCPDS 21-1172) respectively, confirmed the nano-crystalline nature of RuO₂.³⁸

![Fig. 6 (i) XRD pattern of GNPs-RuO₂NPs and (ii) Raman spectra of f-GNPs and GNPs-RuO₂NPs.](image)

The Raman spectroscopy is a precise and quick analysis method to investigate the nature of interaction between various MNPs and graphene. Therefore, Raman spectrum was recorded for GNPs-RuO₂NPs under 514.5 nm excitation over the Raman shift interval of 250-4000 cm⁻¹ [Fig. 6(ii)]. As expected, both f-GNPs and GNPs-RuO₂NPs exhibited two main Raman features, corresponding to the well-defined D-band line at ~1345 cm⁻¹ and G-band line at ~1570 cm⁻¹. The G-band line is originated from in-plane vibration of sp² carbon atoms, which represents the relative degree of graphitization.²⁹ The D-band line is related to the amount of disorder which arises only in the presence of defects, indicating the presence of sp² carbon atoms or defect sites in GNPs.³⁰ Since the ratio of D and G band (ID/IG) intensities is often used as a diagnostic tool to evaluate the defects concentration in graphene, it was calculated for f-GNPs and GNPs-RuO₂NPs. It is noteworthy that the ID/IG (0.1801) ratio of GNPs-RuO₂NPs was higher than that of f-GNPs (0.1515), which confirmed that the RuO₂NPs are attached on the surface of GNPs with good adhesion. In the XPS spectrum [Fig. 5(ii)], a significant positive shift in C 1s peak was observed for GNPs-RuO₂NPs when compared to that of the f-GNPs; this too confirms there has been a very strong interaction between GNPs and RuO₂NPs.³⁹,⁴⁰

![Fig. 7 Effect of (i) solvent, (ii) temperature, (iii) amount of oxidant and (iv) time on the N-oxidation of triethylamine.](image)
Amount of oxidant played a significant role in the N-oxidation process. It was found that 5 mmol of H$_2$O$_2$ was an optimum amount of oxidant [Fig. 7(iii)]. An excellent yield of 98% was obtained when the reaction mixture was stirred for 4 h [Fig. 7(iv)]. The optimized reaction condition was opted to extend the scope of the N-oxidation of tertiary amines.

Extension of scope

Table 1 shows a variety of tertiary amines which were oxidized to their corresponding N-oxides in good to excellent yields. The yield of products was moderately affected by the substituent in the substrate. Aliphatic tertiary amine, triethylamine, was oxidized to triethylamine N-oxide in excellent yield of 98% (Table 1, entry 1) whereas Pt/C gave a lower yield of 66%.23 However, under the same reaction condition, the GNP-RuO$_2$NRs composite31 gave the product (triethylamine N-oxide) in a moderate yield of 72%. The better activity of the present catalyst is due to the ultrafine nature of the RuO$_2$NPs compared to the RuO$_2$NRs. Similarly, N,N-dimethyl aniline (DMA) gave the corresponding N-oxide in a better yield of 98% (Table 1, entry 2) in comparison to the Ti–MCM-41 system.41 It was found that the DMA containing electron donating group such as methyl (–CH$_3$), reacted faster whereas DMA with electron withdrawing group (–CN or –COOH) required extended reaction time to afford even the less amount of corresponding N-oxide, which may be due to the mesomeric effect (Table 1, entries 3-7). The present catalytic system showed a better yield for these substrates in comparison to the Pd catalytic system.42

Very recently, pyridine N-oxides have been recognized as a new class of anti-HIV compounds.43 Therefore, the present catalytic system was adopted to prepare some pyridine N-oxide derivatives. Interestingly, pyridine containing electron withdrawing group such as –Br at para position gave the corresponding N-oxide in excellent yield of 93% (Table 1, entry 8) whereas H$_2$P$_2$Mo system afforded only a trace amount of the same product.33 Alike, 2-bromopyridine was also oxidized to the corresponding N-oxide in a good yield of 87% (Table 1, entry 9). In the oxidation of 6-(dimethylamino)fulvene, the present catalytic system gave an excellent yield of 92% after stirring for 6 h (Table 1, entry 10). For the transformation of quinoline to quinoline N-oxide (Table 1, entry 11), the present GNP-RuO$_2$NPs catalyst is very effective (yielded 82 % after 4.5 h) compared to the V$_5$Si$_8$O$_{6.5}$ system which gave 71% of the desired product after 8 h.15 It was found that the present catalytic system gave a moderate yield of 62% in the oxidation of quinoline to quinoxaline N-dioxide (Table 1, entry 12). A good yield of 91% was obtained from the oxidation of 2,2’-bipyridine after stirring for 4 h (Table 1, entry 13). The present catalytic system is less effective for the oxidation of sterically hindered heterocyclic amine. 2,2’-Biquinoline was oxidized to the corresponding N-dioxide in lower yield of 68% after stirring for 7 h (Table 1, entry 14). On contrary, in the oxidation of phenazine to the corresponding N-dioxide, the present catalytic system afforded a good yield of 86% (Table 1, entry 15). Alicyclic tertiary amine, quinuclidine, was oxidized to the corresponding amine oxide in an excellent yield of 94% (Table 1, entry 16). A good yield of 80% was obtained from the oxidation of 4- (dimethylamino)pyridine to the corresponding amine oxide after

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>4.0</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4.0</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>5.0</td>
<td>97</td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td>4.5</td>
<td>89</td>
</tr>
<tr>
<td>540</td>
<td></td>
<td></td>
<td>4.5</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>8.0</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>5.0</td>
<td>66</td>
</tr>
<tr>
<td>840</td>
<td></td>
<td></td>
<td>8.0</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>9.0</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>6.0</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>4.5</td>
<td>82</td>
</tr>
<tr>
<td>1223</td>
<td></td>
<td></td>
<td>4.0</td>
<td>62</td>
</tr>
<tr>
<td>1323</td>
<td></td>
<td></td>
<td>4.0</td>
<td>91</td>
</tr>
</tbody>
</table>
stirring for 6 h (Table 1, entry 17). Interestingly, the present catalytic system is highly selective towards the tertiary amine than the secondary one. In the oxidation of 1-phenylpiperazine (Table 1, entry 18), the catalytic system selectively oxidized the tertiary amine (56%). The excellent catalytic activity of the GNP-RuO$_2$ NPs with lower amount of Ru catalyst (0.13 mol%) is due to three most obvious reasons: (i) the smaller size of the RuO$_2$ NPs, (ii) higher surface area of the GNP-RuO$_2$ NPs and (iii) an effective dispersion of the GNP-RuO$_2$ NPs in the reaction medium.

Heterogeneity and reusability of GNP-RuO$_2$ NPs

To study the heterogeneity of the GNP-RuO$_2$ NPs, the nanocatalyst was separated out from the reaction mixture by a simple centrifugation and then the filtrate was analyzed by ICP-MS; no Ru content confirmed the heterogeneous nature of the GNP-RuO$_2$ NPs. Since the reusability of nanocatalyst is an important advantage, the separated GNP-RuO$_2$ NPs were washed with diethyl ether and dried in vacuo at 80°C. Then the recovered GNP-RuO$_2$ NPs were reused for the oxidation of triethylamine [Fig. 8(ii)]. Interestingly, the present catalytic system afforded 94% of triethylamine N-oxide even at the 5th cycle, which confirmed its excellent reusability. Additionally, used nanocatalyst (u-GNP-RuO$_2$ NPs) was characterized by TEM, SEM-EDS and XPS analysis. The TEM image [Fig. 8(ii)] showed that the morphology of u-GNP-RuO$_2$ NPs remains unchanged. SEM-EDS result [Fig. 8(iii)] revealed that the weight percentage of Ru in u-GNP-RuO$_2$ NPs was 2.24. The chemical state of Ru in u-GNP-RuO$_2$ NPs was +4, as confirmed by XPS analysis [Fig. 8(iv)]. Therefore, GNP-RuO$_2$ NPs are physically as well as chemically stable and reusable.

Proposed mechanism

In order to understand the mechanism of GNP-RuO$_2$ NPs-catalyzed N-oxidation of tertiary amines, FT-IR (see Fig. S1 in ESI) and XPS spectra were recorded for pure GNP-RuO$_2$ NPs and o-GNP-RuO$_2$ NPs (the catalyst after stirring with H$_2$O$_2$ in CH$_3$CN at 80°C for 4 h); results are shown in Fig. 9. In the FT-IR spectra, the peak at 1600 cm$^{-1}$ was attributed to C=C stretching of GNP$_2$. Further, a new peak at 850 cm$^{-1}$ was observed for o-GNP-RuO$_2$ NPs when compared to GNP-RuO$_2$ NPs, which proves the formation of Ru-oxo species.44,45 Moreover, in comparison to pure GNP-RuO$_2$ NPs, O1s spectrum of o-GNP-RuO$_2$ NPs showed a dramatic increase in the peak intensity at 531.0 eV; this too clearly confirmed the formation of oxygen species on the RuO$_2$ NPs during the N-oxidation reaction.46 Kim et al.47 investigated the formation of various oxygen species on the RuO$_2$ surface under various conditions. They found that the oxygen species formed on the RuO$_2$ surface can play a very effective role in oxidation reactions. The results concluded that the mechanism for the N-oxidation of tertiary amines might be involving the oxygen species, possibly Ru-oxo species, as an

![Fig. 8](image1.png)

Fig. 8 (i) Reusability of GNP-RuO$_2$ NPs, (ii) TEM image, (iii) EDS and (iv) XPS of u-GNP-RuO$_2$ NPs.

![Fig. 9](image2.png)

Fig. 9 Proposed catalytic mechanism for the N-oxidation of triethylamine using GNP-RuO$_2$ NPs.
intermediate (Fig. 9). In step (i), H_2O_2 helps for the formation Ru-oxo species by transferring its oxygen. Subsequently, in step (ii), the formed Ru-oxo species assists the formation of triethylamine N-oxide from triethylamine. Finally, GNP-Ru$_2$O$_5$NPs were regenerated for the further N-oxidation process.

Conclusions

Ru$_2$O$_5$NPs with a mean diameter of 1.3 nm were decorated on f-GNPs by a straight forward “dry synthesis” method. TEM images showed an excellent attachment and homogeneous dispersion of Ru$_2$O$_5$NPs on GNP. The weight percentage of Ru in GNP-Ru$_2$O$_5$NPs was 2.68, as determined by EDS analysis. Raman intensity ratios confirmed the good attachment of Ru$_2$O$_5$NPs on the surface of GNP. XRD and XPS revealed that the Ru was in +4 oxidation state with a nanocrystalline nature of Ru$_2$O$_5$NPs. The N-oxidation of tertiary amines could be carried out effectively with as low as 0.13 mol% of supported Ru catalyst for a wide range of substrates. To the best of our knowledge, this is the lowest amount of Ru used for the N-oxidation reaction. The proposed catalyst was chemically as well as physically very stable, heterogeneous in nature and could be reused up to 5 cycles. In summary, we have developed a heterogeneous Ru based nanocatalytic system for the N-oxidation of tertiary amines, which requires only a lower amount of catalyst (0.13 mol% of Ru) for efficient reaction.

Acknowledgements

This work was supported by the grant-in-aid for global COE program by the Ministry of Education, Culture, Sports, Science, and Technology, Japan. R.K. thanks DST (Govt. of India) for financial support under FIST programme.

Notes and references

1 Nano Fusion Technology Research Lab, Interdisciplinary Graduate School of Science and Technology, Shinsyu University, Ueda, Nagano–386 8567, Japan. Fax: +81 268 21 5482, Tel: +81 268 21 5139. E-mail: wekai@shinsyu-u.ac.jp

2 SRM Research Institute, SRM University, Kattankulathur 603203, India

3 Department of Chemistry, National Institute of Technology, Tiruchirappalli–620 015, India. Fax: +91 431 2500133 Tel: +91 431 2503636, E-mail: kar@nitt.edu

† Electronic Supplementary Information (ESI) available: 1H-NMR and 1C-NMR and FT-IR spectra. See DOI: 10.1039/b0000000x

33 O. Akhavan, Carbon 2010, 48, 509.

40 M. Gopiraman, S. G. Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R.

