天然多糖類の高機能化と医用材への応用

阿部 康次、寺本 彰
信州大学 繊維学部 機能高分子学科

1. 緒言

生体内に存在している多糖類は、生物にとって重要な生理機能、例えば発生、分化増殖、老化といった生命現象の制御、に大きく関与している。我々は、この多糖類と生体組織との相互作用に注目し、生体機能を能動的に制御することが可能な生体活性性材料の開発を目的としている。今回特に、多糖類から構成される基材を生体に作用させた場合に生ずる、1. 免疫反応に代表される初期的な相互作用、2. 中、長期的に組織細胞の増殖、分化などに与える影響について検討を行った。

2. 実験方法

1. キトサン、フィブロイシ混合材の免疫活性に与える影響の検討。

免疫系に対しての相互作用の解明が重要な因子となる。生体親和性に優れた絹フィブロイン(SF)と、免疫活性化能を有するキトサン(CS)からなる基材を用い、免疫反応の初期段階で重要な役割を担っているマクロファージとの相互作用について検討を行った。

6% SF溶液と0.25%、0.5%、1% CS溶液を等量混合後、組織培養用ディッシュ(TCD)に注入し、乾燥させることによりSF・CSコーティングディッシュ(SFCSX; X=CS濃度)を得た。分化誘導剤(PMA)及び活性化剤(LPS)を添加したマクロファージ様細胞株HL-60を、各基材上で定法に従い24時間培養し、接着率、細胞障害試験、食蚕率及びIL-1β mRNA発現量を測定した。また、各基材で30分間処理したヒト新鮮血清の補体活性(CH50)を測定した。

2. 細胞の増殖、分化に及ぼすPECの影響。

生体組織を構成する細胞は、生体内においては分化相と、未分化相の間を厳密に制御されるが移行している。今回、硫酸基及びカルボキシメチルキチンとCSから形成される高分子電解質錯体(PEC)を培養基材として用い、人歯根膜由来縫維芽細胞(HPLF)の機能を試みた。

ポリアニオンとしてカルボキシメチルキチン(D.S.=0.7:CM70)、硫酸化キチン(D.S.=0.34:S34)及びCM70に硫酸基を導入したSCMx (x;硫酸基導入率、H;高分子量、L;低分子量)を、ポリアニオンとしてCSを用い、共に血清当たり0.01μMに調整後、沈降法によりPECを組織培養用ディッシュ(TCD)上にコーティングした。HPLFを種植し、常法により所定時間培養後、細胞増殖、形態変化及び分化マーカーを評価した。

3. 結果と考察

1. マクロファージ系: 接着率測定の結果、TCD、SF及びSFCS系の基材に対しては高い接着性、CS系の基材に対しては低い接着性を示した。分化・活性化したマクロファージは、異物として認識した対象に強い接着性を示す細胞であることから、接着率が高い基材はマクロファージによって異物として認識されたと考えられる。24時間培養した後のサイトカインであるIL-1β mRNAの発現は、SFCS(0.25)において最も顕著であり、SFでは若干の低下、CS系の基材では発現量の大幅な低下が観察された。SFで発現が抑制されたのは、SFが生体親和性に優れている
ためであり、CS系の基材における発現の大幅な抑制は、CS単独では細胞障害性が高いためであると考えられる。これに対しSFCS系の基材では、SFの生体親和性とCSのマクロファージ活性化能が適度に作用し、その結果として発現が促進されたものと考えられる。

Fig.1に、各基材で処理した血清のCH50値を示した。CH50は補体の単位であり、至適濃度の溶血素で感作させた一定量の赤血球を、50%溶血させるのに必要な補体量を定められている。従って、CH50が小さいほど補体の活性は高い。新鮮血清の値(Control)と比較すると、全ての基材でCH50の低下が観察され、補体が活性化されていることが示唆された。SF、SFCS系及びCS系において、TCDよりCH50が高いことから、これらの基材は特異的に補体を活性化することが示唆された。

2. HPLF系：Fig.2に、各PEC上でのHPLFの増殖挙動を示した。S34上では、コントロールであるTCDより若干抑制されるものの、伸展形態を示し増殖した。一方、CM70上では、培養初期から増殖が大きく抑制され、多重の細胞層からなる石灰化nodule様の凝集形態を示した。SCMx上では、硫酸基導入率が高くなるに従い、また硫酸基導入率が等しい場合は低分子量の方が増殖を促進させた。これらの結果より、硫酸基はカルボキシメチル基に比べHPLFの増殖を促進することが示唆された。また、SCM13、SCM21Hでは、凝集形成に伴う増殖が抑制された。

石灰化の初期分化マーカーであるALPaseの発現、およびカルシウムの沈着は凝集部分で局所的に観察され、凝集部分において石灰化が進行していることが示唆された。一般に、骨芽細胞は石灰化noduleを形成し、石灰化することが知られている。従って、PEC上で形成される凝集体も、石灰化noduleと同様の機能を有していると考えられる。すなわち、PECによるHPLFの石灰化誘導は凝集形成が大きな要因であり、PECのカルボキシメチル基の存在が主因であると考えられる。これらの結果より、PEC中の硫酸基、カルボキシメチル基の割合を変化させることにより、HPLFの増殖、石灰化を制御する可能性が示された。

4. まとめ

本研究では、多糖類、もしくは多糖類とタンパク質の複合材料と、生体組織との相互作用を検討することにより、組織細胞の有する生理機能を制御できる可能性が示された。