桑樹の乾燥気象に対する適応能力に関するニ・三の考察

第一報 組織構造上より観たる要因

池田正五郎

目 次
1. 緒 言
2. 北海道産桑樹の北海道産に於ける生長度の差異、及び両地の気象環境の差異
3. 北海道産桑樹の乾燥気象に対する非適性を示すニ・三の成績
A. 薬の構造上の差異
 a. 薬肉の厚さ
 b. 薬皮細胞群の厚さ、薬皮各組織細胞群の厚さの割合
 c. 組織細胞群（薬肉）の硬度
 d. 気孔の大きさ、分布密度に於ての構造
B. 通常道路の発達の差異
 a. 薬柄に於ける通常道路発達の差異
 b. 樹幹に於ける通常道路発達の差異
4. 考察と結論

1. 緒 言

或る植物、又はある作物の２種間（２品種間）の或る同一期間内に於ける生長度の差異又は収穫量の差異を示す機構の問題は究極に於て共々共に２種間の生命力、乃至は活力（Vitality）の問題であつて吾々の容易に説知し得るる分野に属すと云はねばならぬであろう。然しながら此處に甲地に於ては等同乃至或に近し成長度又は生育能力を示しつる添々２種が生活環境を著しく異にする乙地に於て甲々異りたる生長度、生育能力を示す場合のあることは吾人の屡次観察する處であつて此處に同種間の環境に対する適応能力の差異を見る事が出来る譜である。この能力の差異は先頃には生長力（Vitality）の差異と Synonym であるが一部共の植物乃至作物を構成する組織器官の新環境に対する適応能力の差異に由来する部分もあり見ねばならぬと思ふ。ある植物、ある作物に於ては新環境に適応し難き非適応構造とも云ふべきものの存在を豫見し得ると思ふ。

此處に筆者は北海道原産の北農第10号、模の川の藤種が南滿洲の乾燥気象に対して特に適応能力に宿け、實用的栽培価値を全然破発し居る事実に着目観察の結果、共、この間の消息を察知し得たるを以て以下此の論点を著して清洲の御教示を仰ぎ次第である。

猶、本報所載の摘録は科員中平省三氏を頂したり記して深謝の意を表す。

2. 北海道産桑樹の北海道産南満洲に於ける生長度の差異

薬に両地の気象環境の相異

北海道原産桑樹所調産桑種中の優良品種ある北農第10号、模の川藤種の原産地北海道に於ける栽培成績は次の様である。
表

<table>
<thead>
<tr>
<th>品種名</th>
<th>茎長 (cm)</th>
<th>赤木を100とする指数</th>
<th>反収量 (kg)</th>
<th>赤木を100とする指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道試験場梁川</td>
<td>1.67</td>
<td>86.1</td>
<td>1559.99</td>
<td>97.0</td>
</tr>
<tr>
<td>北海道試験場梁川</td>
<td>1.51</td>
<td>77.8</td>
<td>1051.99</td>
<td>81.0</td>
</tr>
<tr>
<td>北海道市来使用梁川</td>
<td>1.94</td>
<td>100.0</td>
<td>1290.26</td>
<td>100.0</td>
</tr>
</tbody>
</table>

本表は北海道農試年報第 41 號頁 6-7 より採録したものにして北農第 10 號、梁川の川は春

第 2 表

<table>
<thead>
<tr>
<th>品種名</th>
<th>茎長 (cm)</th>
<th>赤木を100とする指数</th>
<th>反収量 (kg)</th>
<th>赤木を100とする指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>梁川</td>
<td>0.709</td>
<td>48.9</td>
<td>201430</td>
<td>16.4</td>
</tr>
<tr>
<td>北農第10號</td>
<td>1.618</td>
<td>100.0</td>
<td>1230.444</td>
<td>100.0</td>
</tr>
</tbody>
</table>

第 3 表

備考 1. 茎長は花芽中末度のもの 3 個の平均にて示す
2. 茎長は同上的もの 5 個の平均を示す
3. 茎長は同上的もの 1 個の測定数値より

<table>
<thead>
<tr>
<th>茎長</th>
<th>茎長</th>
<th>茎長</th>
<th>同上の指数</th>
<th>茎長</th>
<th>茎長</th>
<th>同上の指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0</td>
<td>9.4</td>
<td>0.06</td>
<td>100.0</td>
<td>39.7</td>
<td>9.0</td>
<td>100.0</td>
</tr>
<tr>
<td>48.0</td>
<td>9.8</td>
<td>1.15</td>
<td>119.8</td>
<td>37.3</td>
<td>7.6</td>
<td>104.0</td>
</tr>
<tr>
<td>77.3</td>
<td>17.4</td>
<td>2.73</td>
<td>284.4</td>
<td>70.7</td>
<td>15.3</td>
<td>229.3</td>
</tr>
<tr>
<td>148.0</td>
<td>17.9</td>
<td>3.84</td>
<td>283.7</td>
<td>54.7</td>
<td>15.3</td>
<td>104.0</td>
</tr>
<tr>
<td>53.3</td>
<td>13.6</td>
<td>2.61</td>
<td>210.8</td>
<td>49.8</td>
<td>12.1</td>
<td>159.6</td>
</tr>
<tr>
<td>238.0</td>
<td>17.3</td>
<td>2.87</td>
<td>238.9</td>
<td>60.3</td>
<td>13.8</td>
<td>232.2</td>
</tr>
<tr>
<td>50.6</td>
<td>16.6</td>
<td>2.10</td>
<td>218.7</td>
<td>53.7</td>
<td>16.1</td>
<td>215.3</td>
</tr>
</tbody>
</table>
次に北海道に南満洲の気象的差異を挙げ、続論第四項「気象より観る南満洲の眺望的特異性」より抄出すれば次の如し。

第4表
南満洲北海道兩地の気象要素の比較

<table>
<thead>
<tr>
<th></th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
</tr>
</thead>
<tbody>
<tr>
<td>月間平均気温 (単位)</td>
<td>札幌</td>
<td>霧別城</td>
<td>-1.0</td>
<td>5.3</td>
<td>10.4</td>
<td>14.8</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>霧別城</td>
<td>-0.8</td>
<td>6.2</td>
<td>10.5</td>
<td>22.0</td>
<td>25.5</td>
<td>24.8</td>
</tr>
<tr>
<td>月間最高気温 (単位)</td>
<td>札幌</td>
<td>霧別城</td>
<td>2.7</td>
<td>10.7</td>
<td>16.2</td>
<td>20.3</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>霧別城</td>
<td>6.3</td>
<td>16.0</td>
<td>22.4</td>
<td>27.8</td>
<td>30.0</td>
<td>29.4</td>
</tr>
<tr>
<td>月間最低気温 (単位)</td>
<td>札幌</td>
<td>霧別城</td>
<td>-4.7</td>
<td>0.1</td>
<td>4.6</td>
<td>9.8</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>霧別城</td>
<td>-4.7</td>
<td>3.6</td>
<td>10.6</td>
<td>16.3</td>
<td>21.0</td>
<td>20.0</td>
</tr>
<tr>
<td>月間気温差 (単位)</td>
<td>札幌</td>
<td>霧別城</td>
<td>9.0</td>
<td>10.6</td>
<td>11.6</td>
<td>10.5</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>霧別城</td>
<td>11.0</td>
<td>12.4</td>
<td>11.8</td>
<td>11.5</td>
<td>9.0</td>
<td>9.2</td>
</tr>
</tbody>
</table>

月間平均照度 (単位) | 札幌 | 霧別城 | 70% | 72 | 74 | 81 | 84 | 84 |
| | 霧別城 | 54 | 40 | 51 | 67 | 68 | 60 |

月間日照時間 (単位) | 札幌 | 霧別城 | 161.0 | 197.2 | 210.6 | 208.3 | 191.3 |
| | 霧別城 | 234.2 | 254.2 | 257.7 | 233.7 | 231.3 | 232.9 |

月間降水量 (単位) | 札幌 | 霧別城 | 60.3 | 80.0 | 83.8 | 68.4 | 86.0 |
| | 霧別城 | 57.7 | 21.1 | 41.4 | 50.7 | 32.5 | 146.6 |

月間湿度 (単位) | 札幌 | 霧別城 | 4.3 | 4.7 | 4.1 | 3.1 | 2.8 |
| | 霧別城 | 4.3 | 4.7 | 4.1 | 3.1 | 2.8 |

月間気温差 (単位) | 札幌 | 霧別城 | 62.8 | 100.3 | 132.3 | 137.5 | 143.7 |
| | 霧別城 | 81.7 | 173.0 | 208.0 | 219.4 | 366.8 | 448.2 |

以上の中、植物の生理に直接に影響すると考えられる事項中、一般気象要素の要因を示すものとして変種の活動期なる4月以降9月までの月平均の日照時間、降水量等を指標値として示すをより表し示すか次のようなである。

第5表

<table>
<thead>
<tr>
<th>項目</th>
<th>月</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>平均</th>
<th>指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>日照（札幌）</td>
<td>197.2</td>
<td>198.4</td>
<td>198.8</td>
<td>231.1</td>
<td>194.0</td>
<td>164.2</td>
<td>153.3</td>
<td>198.7</td>
<td></td>
</tr>
<tr>
<td>時数（雪別城）</td>
<td>254.2</td>
<td>257.7</td>
<td>239.7</td>
<td>231.3</td>
<td>232.9</td>
<td>241.6</td>
<td>243.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>降水量（札幌）</td>
<td>56.6</td>
<td>45.8</td>
<td>64.8</td>
<td>86.9</td>
<td>90.6</td>
<td>132.7</td>
<td>89.1</td>
<td>111.5</td>
<td></td>
</tr>
<tr>
<td>雪別城</td>
<td>22.1</td>
<td>41.4</td>
<td>15.0</td>
<td>50.2</td>
<td>152.8</td>
<td>145.6</td>
<td>67.6</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>燃焼値（札幌）</td>
<td>100.3</td>
<td>132.3</td>
<td>137.5</td>
<td>143.7</td>
<td>140.3</td>
<td>29.9</td>
<td>125.7</td>
<td>71.8</td>
<td></td>
</tr>
<tr>
<td>雪別城</td>
<td>172.0</td>
<td>205.0</td>
<td>219.4</td>
<td>186.8</td>
<td>148.2</td>
<td>119.7</td>
<td>175.0</td>
<td>106.9</td>
<td></td>
</tr>
</tbody>
</table>

除、限界の気候的季節を要約すれば南満洲は北海道に比し遅かに乾燥地にして従って南満洲に於て良好なる発育をなす為には特に耐早性に於て優るものあるを要することは明である。同時に前記変種の南満洲に於ける顯著なる発育不良は主としてその乾燥気候に対する非適性形態に由来すると考へ得ると考えられる。

3. 北海道産変種の乾燥気候に対する非適性形態を示す二三の成績

植物の耐早性に直接関係ありと思えるものは葉の構造（特に葉肉の厚さ、組織細胞の疎密、表皮層の厚さ、乾燥気候の大きい形態分布状態等）変種に於ける変種組織の発達の状態、乾燥根部の発達程度、分布状態等であると思われる。然に変種の場合に於ては一般普通植物の場合とは異なるが変種の発育を示す枝木を使用するで以て検して根部の変値は各種類共一と見做し得べく従って上記的事項は次の如く簡略に記し得べき。
A. 葉の構造上の差異

a. 葉肉の厚さ

今、昭和 8 年 10 月 12 日生葉の葉脈部位を避け直接 Micrometer により測定する結果は次の如し。

第 6 表

<table>
<thead>
<tr>
<th></th>
<th>上部</th>
<th>中部</th>
<th>下部</th>
<th>平均</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>潆</td>
<td>0.160</td>
<td>0.160</td>
<td>-</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td>北農第10號</td>
<td>0.118</td>
<td>-</td>
<td>-</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>利</td>
<td>0.173</td>
<td>0.160</td>
<td>0.168</td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td>改良鼠毛</td>
<td>0.174</td>
<td>0.160</td>
<td>0.149</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>魚</td>
<td>0.161</td>
<td>0.157</td>
<td>0.146</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>カナネオ</td>
<td>0.175</td>
<td>0.157</td>
<td>0.142</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>多朝早生</td>
<td>0.156</td>
<td>0.160</td>
<td>0.144</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td>錦</td>
<td>0.159</td>
<td>0.158</td>
<td>0.142</td>
<td>0.158</td>
<td></td>
</tr>
<tr>
<td>秋</td>
<td>0.161</td>
<td>0.157</td>
<td>0.158</td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>鳥</td>
<td>0.177</td>
<td>0.164</td>
<td>0.164</td>
<td>0.168</td>
<td></td>
</tr>
</tbody>
</table>

猶、本項に就ては特に次表参照せられたし。

b. 表皮細胞層の厚さ、並に各組織細胞層の厚さの割合

第 7 表

<table>
<thead>
<tr>
<th></th>
<th>上表皮</th>
<th>表簿組織</th>
<th>細胞組織</th>
<th>下表皮</th>
<th>計（厚）</th>
</tr>
</thead>
<tbody>
<tr>
<td>潆</td>
<td>21.80</td>
<td>55.60</td>
<td>81.31</td>
<td>9.64</td>
<td>107.34</td>
</tr>
<tr>
<td>北農第10號</td>
<td>24.15</td>
<td>40.80</td>
<td>61.63</td>
<td>11.64</td>
<td>138.31</td>
</tr>
<tr>
<td>利</td>
<td>30.58</td>
<td>34.85</td>
<td>69.10</td>
<td>13.50</td>
<td>148.13</td>
</tr>
<tr>
<td>改良鼠毛</td>
<td>32.40</td>
<td>39.37</td>
<td>71.82</td>
<td>14.36</td>
<td>158.15</td>
</tr>
<tr>
<td>魚</td>
<td>27.63</td>
<td>38.92</td>
<td>63.77</td>
<td>15.20</td>
<td>145.60</td>
</tr>
<tr>
<td>カナネオ</td>
<td>27.20</td>
<td>36.14</td>
<td>59.37</td>
<td>11.12</td>
<td>133.84</td>
</tr>
<tr>
<td>多朝早生</td>
<td>29.80</td>
<td>36.14</td>
<td>66.65</td>
<td>13.55</td>
<td>146.32</td>
</tr>
<tr>
<td>錦</td>
<td>29.65</td>
<td>48.85</td>
<td>65.73</td>
<td>12.31</td>
<td>156.47</td>
</tr>
<tr>
<td>秋</td>
<td>29.39</td>
<td>35.54</td>
<td>64.54</td>
<td>14.80</td>
<td>144.80</td>
</tr>
<tr>
<td>鳥</td>
<td>29.71</td>
<td>59.94</td>
<td>68.46</td>
<td>12.16</td>
<td>170.28</td>
</tr>
</tbody>
</table>
第8表

<table>
<thead>
<tr>
<th></th>
<th>上面表皮</th>
<th>単状組織</th>
<th>海綿状組織</th>
<th>下面表皮</th>
<th>計（平均）</th>
</tr>
</thead>
<tbody>
<tr>
<td>龍ノ川</td>
<td>13.04</td>
<td>33.13</td>
<td>48.44</td>
<td>5.33</td>
<td>100.0</td>
</tr>
<tr>
<td>北農第十種</td>
<td>17.46</td>
<td>29.52</td>
<td>44.54</td>
<td>5.41</td>
<td>100.0</td>
</tr>
<tr>
<td>利楽</td>
<td>20.60</td>
<td>23.50</td>
<td>46.63</td>
<td>3.14</td>
<td>100.0</td>
</tr>
<tr>
<td>改良鼠害</td>
<td>20.80</td>
<td>21.70</td>
<td>45.44</td>
<td>2.20</td>
<td>100.0</td>
</tr>
<tr>
<td>勝楽</td>
<td>18.88</td>
<td>36.73</td>
<td>43.70</td>
<td>10.50</td>
<td>100.0</td>
</tr>
<tr>
<td>カタネヤ</td>
<td>20.33</td>
<td>27.80</td>
<td>44.36</td>
<td>3.34</td>
<td>100.0</td>
</tr>
<tr>
<td>多胡早生</td>
<td>20.14</td>
<td>23.72</td>
<td>45.50</td>
<td>2.37</td>
<td>100.0</td>
</tr>
<tr>
<td>錦</td>
<td>18.90</td>
<td>31.22</td>
<td>42.21</td>
<td>7.36</td>
<td>100.0</td>
</tr>
<tr>
<td>秋ノ内</td>
<td>20.36</td>
<td>21.62</td>
<td>41.71</td>
<td>10.31</td>
<td>100.0</td>
</tr>
<tr>
<td>島ノ内</td>
<td>17.45</td>
<td>35.29</td>
<td>40.20</td>
<td>7.14</td>
<td>100.0</td>
</tr>
</tbody>
</table>

6. 組織細胞観（素肉）の解析

今、昭和9年8月22日測定による各品種成株5葉宛の平均細胞間隔（す）22品に前掲第8表を得たと同様に前掲1に示すと、ルシダを用いて描ける葉の側面図を示す形に加び、

1) 竹内亮：種々の植物の葉の組織細胞間隔の測定方法にその生物学的価値、
2) 中島茂：染葉ノ質論 繊維学会 Vol. XVI. No. 4, 1934

第9表

<table>
<thead>
<tr>
<th></th>
<th>計比数</th>
<th>組織間隔率</th>
</tr>
</thead>
<tbody>
<tr>
<td>龍ノ川</td>
<td>17.30 %</td>
<td>17.30 %</td>
</tr>
<tr>
<td>北農第十種</td>
<td>18.31</td>
<td>18.31</td>
</tr>
<tr>
<td>利楽</td>
<td>17.61</td>
<td>17.61</td>
</tr>
<tr>
<td>改良鼠害</td>
<td>18.31</td>
<td>18.31</td>
</tr>
<tr>
<td>勝楽</td>
<td>4.49</td>
<td>4.49</td>
</tr>
<tr>
<td>カタネヤ</td>
<td>6.55</td>
<td>6.55</td>
</tr>
<tr>
<td>多胡早生</td>
<td>12.58</td>
<td>12.58</td>
</tr>
<tr>
<td>錦</td>
<td>8.84</td>
<td>8.84</td>
</tr>
<tr>
<td>秋ノ内</td>
<td>4.34</td>
<td>4.34</td>
</tr>
<tr>
<td>島ノ内</td>
<td>5.93</td>
<td>5.93</td>
</tr>
</tbody>
</table>

Takinogawa.
d. 気孔の大き、分布密度等にその構造
気孔の大き分布密度等に就ては既に 1933 年の報告に於て詳細に記載せるも、今該報告中より関係品種の分を抄録する時は次の如し。

<table>
<thead>
<tr>
<th></th>
<th>長 径</th>
<th>幅 径</th>
<th>長 輪 率</th>
<th>1 平方 mm 内分 布 数</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚 ノ 川</td>
<td>20.24</td>
<td>14.88</td>
<td>136.0</td>
<td>967.2</td>
</tr>
<tr>
<td>北 島 第 十 銀</td>
<td>21.05</td>
<td>14.90</td>
<td>141.2</td>
<td>783.6</td>
</tr>
<tr>
<td>利 桑</td>
<td>17.00</td>
<td>13.90</td>
<td>126.0</td>
<td>1138.7</td>
</tr>
<tr>
<td>走 麦 里 阿 鱗</td>
<td>17.01</td>
<td>14.57</td>
<td>116.8</td>
<td>1518.2</td>
</tr>
<tr>
<td>魚 桑</td>
<td>15.05</td>
<td>13.31</td>
<td>118.5</td>
<td>1524.3</td>
</tr>
<tr>
<td>カ タ タ オ</td>
<td>17.15</td>
<td>13.46</td>
<td>127.5</td>
<td>1120.9</td>
</tr>
<tr>
<td>多 胡 早 生</td>
<td>21.46</td>
<td>15.03</td>
<td>136.9</td>
<td>930.5</td>
</tr>
<tr>
<td>魚 桑</td>
<td>20.46</td>
<td>14.54</td>
<td>140.7</td>
<td>1040.7</td>
</tr>
<tr>
<td>秋 雨</td>
<td>17.32</td>
<td>13.56</td>
<td>127.7</td>
<td>1273.3</td>
</tr>
<tr>
<td>魚 ノ 内</td>
<td>22.13</td>
<td>15.23</td>
<td>145.6</td>
<td>975.5</td>
</tr>
</tbody>
</table>

次に気孔の横断的構造に就ては各品種共前揭第10表の data を得たると同様の標本によりカメラリングを用ひて書きたるもの示せば次の如し。
B. 枝幹の通導組織の発達の差異

通導組織の発達程度を検するために常り著者は葉柄の横断切片扇に同様に採取した図示した様子は図示した様子を用い、而して前者は生きたまま切片となし後、固定染色してプレパラートを作製し後者の場合は1ヶ月間硫酸水素にて処理した土切端プレパラートを作製するものとす。

a. 葉柄に於ける通導組織発達の差異
第11表

<table>
<thead>
<tr>
<th>項目</th>
<th>紙管筒の長さ</th>
<th>最大直径</th>
<th>紙管筒の長さ</th>
<th>平均直径</th>
<th>資料</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>53</td>
<td>1</td>
<td>3.5×2.5</td>
<td>2.33×2.14</td>
<td>本図は何れもプレパラート標準による</td>
<td></td>
</tr>
<tr>
<td>北南</td>
<td>56</td>
<td>6</td>
<td>3.8×3.5</td>
<td>2.80×2.62</td>
<td>バララート標準による</td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>72</td>
<td>8</td>
<td>4.5×4.5</td>
<td>3.30×2.26</td>
<td>で撮影した一定の数</td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>63</td>
<td>6</td>
<td>4.0×3.8</td>
<td>2.84×2.70</td>
<td>紙の厚さを用いて行</td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>69</td>
<td>7</td>
<td>5.0×4.5</td>
<td>3.38×3.14</td>
<td>べるためにして縦径</td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>65</td>
<td>7</td>
<td>4.5×4.5</td>
<td>3.30×3.08</td>
<td>線径の単位はmmとなる</td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>70</td>
<td>7</td>
<td>4.5×4.0</td>
<td>3.22×2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>76</td>
<td>7</td>
<td>4.5×3.8</td>
<td>2.85×2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>帆</td>
<td>72</td>
<td>7</td>
<td>5.0×4.5</td>
<td>3.40×3.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

本項に於ては毎次に掛ける常格版参照ありとし。

1. 紙管 suppression the standard technical data の更進

次表は8cmの樹幹より得たプレパラート標準によりカメラ、ルシダを以て縦8cm、横6.5cmのゲート紙に紙管筒を描き、測定させ、紙管筒径表は上記により描けるものを丁寧に切抜き徳を、間、描きの際は紙片を手轮の外側に接してこれに併行に置けり。
4. 考察と結論

前項までに掲げたる調査成績に基づき各葉に乾燥気象に対する適応能力に関与すべき程度を考察するために次の如し。

1. 植葉の厚さは特徴ある関係なさが如し。色しみ葉厚が該適応能力に関与する處ありとすれば日処ワインの葉温の上昇速度の大小（これに関しての A. M. Smith の多肉質と液晶欠との測定成績あり）最終に蒸発速度に関与する二點なるべしと前者に対しては品種による植葉の差異

2. 上面表皮の厚さが薄いの川、北農第1号共に、他の観察良好なるものに比して小なるの事実は注目に値すべく特に、他の8品種の平均20.51μに対し薄の川は74.18%、北農第1号は81.83%に着り、且つ全葉肉の厚さに対する上面表皮の厚さの割合も著しく同様に他の8品種の平均19.72%に対し薄の川の13.04%は6例6分に着り、北農1号の17.46%は8割

3. 下面上葉の場合も殆ど同様の関係を認め得る。

4. 細胞組織の選出、即細胞間隙率の多少はこの乾燥気象に対する適応能力に、最も関係深きものと認められ、即細胞間隙率夜少なる葉、秋雨等に比すれば殆ども倍にして同調品種中品種的に差の如く差を認め得るもの無しより見て、北海道産植物の南満洲に於ける非適応性の大部分の原因はこれによるものと思はる。

5. 気孔の大き分布密度に関しては既に著者の1934年の報告に詳述せるを以て細繊を省略するも遠産二種の気孔の大さ、分布密度等に関しては発育良好なる島の個等と大差なき點より見ても、その乾燥気象に対する適応能力の大小に関与する程度は必ずしも大地らずと云ふを得べし。

6. 管脊の発達程度に於ても遠産の四種は遙かに劣るは明にして葉脈の管管列10列に於ける管管数は8品種平均72.7にして、これに対する薄の川は53、北農第1号は56にして各々73%77%に相当し、最大管管の管径標準に於ても他の8品種の平均4.51×4.51μに対し薄の川は3.5×3.5μ北農第1号は3.8×3.5μに過ぎず（尤もこの場合第11表に示したる全管管の平均数値は郎一を太小に比較に過す。この理由は着者版にも明なるが如く改良苗の如く別に極めて小した管管の多数を有するもの存するより）。

最後に樹幹の調査に於てと関係は極めて明瞭にして薄の川、相模（本種が南満洲に於て発育極度不良にして殆ど栽培上の利用価値に缺くるものならに既に著者の1931年の業績の耐性に関する調査（薬物学雑記第3巻第3號）中に於ても述べたる處なり）。次で多胡早生、群馬赤木等の比較的発育不良なるものに於て管脊の理小にして、且つ定形値的に分布する管脊面積の減少なるの事実は明に全業としての常軌組織の発達不良を明示するものなり。

附記 本業に関し植物全体の発育不良、従って蒸散機能（葉）の発育不良が如何に導きて通気管脊の発

これを要するために著者は北海道産植物の薄の川、北農第1号植物の南満洲に於ける特異なる発育

不良の原因に関しては前者の主因を蒸散機能とし、葉の細胞間隙の過大なると通気組織の発達の不良なるに至るからと考えるものにして、これに上面皮、下面皮の比較的発達不良なる等の原因によって蒸発発育を障害され居るものと見るべきものと信じ。質し葉の細胞間隙の

大なるは所謂 Inner-transpiration を促進して Transpiration を促進し上面皮、下面皮
の蒸発不良なるはCuticular-transpirationを促すを以てである。更に通気組織の機能の竭より
云へば通気を低下せる水気は表面の水液に正比例するを以て上記の表に示され
たる程度の通気組織蒸発の差異による通気能力の差異は極めて著大なるものと見ねばならぬ。
即上記の諸要因が相組って御種の非適応性を構成するもの見るに妥当と信じらるゝ誤である。

次に Stomata の大小、分布密度の関係する程度は濁の川、北農第１０號の適応能に関する
誤りに於ては上記の諸要因に比して意外に賑少なるの事実は上述の如し。而して Transpiration
regulatorとしての Stomata の能力に関する Schwendener（1885）Lloyd（1908）の著述、並にこれに対する Renner（1910）Lofftfield（1921）H. Walter 其他の論説はこの問題に
関する規模大なるものであるも、本研究の目的期に於て以上の如く単に実験的事実を記載するに留めと欲す。

郎、濁の川、北農第１０號の耐満潤に於ける特徴なる発育不良こそを生理解剖学的に云へば
細胞間隙密の気を大なると上、下の表皮の蒸発不良による Transpiration の過大なるに由来し
更に通気組織の著しく蒸発不良による通気能力の低下によりその乾燥気象に対する非適応性を
倍加するためと見做することが出来る。 （1934 10. 18 稿了）

桑樹の乾燥気象に対する適応能力に関する
二・三の考察

第二報 機能的に観たる要因

池田正五郎

1. 緒論

著者は本報告の第一報に於て南満洲に於て発育生長幅度を急しく減じ実用的栽培価値を有せ
ざる北海道産之の川、北農第１０號に対する生理解剖学的所見を述べ、固有種他者の発育生長正
常なる品種に比し共の通気組織の蒸発不良なると蒸散機能を司る葉の上下の表皮細胞抵抗高く、
殊にその細胞間隙密は極めて大にして他の発育生長優良なるものに比し殆ど 3 倍に達しがれ等
の點に於て乾燥気象に対する非適応形質とも稀すべきものは存在する事を推論し従来植物生理
学の先験によって導き注目され、主に著者が 1933 年の報告に於て挙げる Stomata の大
小、分布密度と、この乾燥気象に対する適応能力との関係は上記細胞間隙密の多少との関係に
比すれば遂に賑少なる事を Stomata の大小、分布密度等に関しては前述北海道産種と殆ど
同様なる発の如きを引用結論せり。

本報は更に進んで前報に於て挙げた解剖学的所見に立脚する推論の正否の判定に意味とす
るものにして蒸散量の大小、蒸発速度の速連に直射日光に曝れたる葉温の測定結果を包含す
るものとす。

著本報告記載の実験中蒸散量の大小に関しては昭和 8 年度は渡遼正二君、昭和 9 年度は石井
宗雄君、蒸発速度に関しては渡遼正二君、直射日光下に於ける葉温の測定には中平省二君、石