SOME NEW NAMES OF PLANTS PROPOSED FOR THE JAPANESE ALPINE FLORA

By

Hideo TOYOKUNI*

In March 1981, I made a paper entitled "A preliminary note on the floristic phytogeography of the alpine flora of Japan" in this Journal of the Faculty of Liberal Arts, Shinshu University No. 15, Pt. II (Natural Science), and mostly in accordance with the data of this work I published "Alpine Flowers of Japan" by YAMA-KEI Publishers, Tokyo in October, 1988. In that book, I proposed some new names that have not hitherto been published properly in accordance with the current code of nomenclature.

This paper deals with the new names proposed in the above mentioned work (TOYOKUNI 1988).

 subsp. japonica (NAKAI et HARA) TOYOKUNI, comb. et stat. nov.
 Syn. -
 Japanese phase is considered to be a geographical subspecies of the collective circumpolar species Alchemilla vulgaris. In 1972, I observed A. vulgaris growing abundantly along roadsides near the Lake Baical in Siberia, and the results of my observation lead me to the conclusion that Japanese phase was not separable from the typical phase, even though the serration on leaf-margin in our plants is not so coarse; in European plants the serration is rough and coarse.

 forma alpicona (MAKINO) TOYOKUNI, comb. et stat. nov.
 Syn. -

* Biological Institute and Herbarium (SHIN), Faculty of Liberal Arts, Shinshu University, Matsumoto 390, Japan.
This paper is dedicated to the memory of the late Dr. Munenao KUROGI (1921-1988), Professor Emeritus of Hokkaido University.
Robust Hokkaido phase belongs to the typical phase f. *lactea*, but Honshu

type is separated as f. *alpicoila* which was originally published as a distinct

species by MAKINO in 1903. Dr. Tatemi SHIMIZU proposed a view that the Japa-
nese plant was not separable from *Anaphalis lactea* in China (SHIMIZU 1982a, b).

3) *Cacalia auriculata* DE CANDOLLE var. *kamtschatica* (MAXIMOWICZ) MATSU-

MURA, Shokubutsu Mei-i (ed. 2), 56. 1895.

subvar. *bulbifera* (KOIDZUMI) TOYOKUNI, stat. nov.

Syn.—

With Dr. Kan’ichi INAGAKI and Dr. Shiro NOSAKA, I regarded this phase

with auxiliary bulbs as the rank of form. However, further detailed obser-

vations on this bulbiferous phase, made me lead to the conclusion that the

phase must be treated as a subvariety of var. *kamtschatica*.

4) *Draba sachalinensis* (FR. SCHMIDT) FR. SCHMIDT, Fl. Sachal. (ed. ross.),

122. 1874.

subsp. *igarashii* (S. WATANABE) TOYOKUNI, comb. et stat. nov.

Syn.—

This *Draba* was recorded at first from Mt. Ōhira, Prov. Shiribeshi, and

the second locality was Mt. Kirigishi, Prov. Ishikari. The third locality was

Takinoue, Prov. Kitami. By virtue of observing abundant materials collected

from the above three localities, it became to be clear that this plant was not

separable from *D. sachalinensis* as a distinct species; the length of style of

this plant, however, is always shorter than that of *D. sachalinensis*, measuring

1–1.8mm long. I should like to regard this plant as a race of *D. sachalinen-

sis*.

Bot. Lugd.-Bat. 1: 30. 1863.

var. *miqueliana* (TAKEDA) TOYOKUNI, comb. et stat. nov.

Syn.—

Nom. Jap. *Shiratamano-ki*

Some authors regard this Japanese *Gaultheria* as quite identical with *G.

pyroloides* of the Himalayas, but some others regard it as quite distinct one.

I treat here the Japanese phase as a variety.

6) *Gentianella amarella* (LINNAEUS) BÖRNER subsp. *takedae* (KITAGAWA)

1988 (printed as 1987).
formá leucantha (HAYASHI) TOYOKUNI, comb. nov.

Syn.--

White-flowered form of G. amarella subsp. takedae.

7) Geranium eriostemon FISCHER ex DE CANDOLLE, Prodr. 1: 641. 1824.

subsp. erianthum (DE CANDOLLE) TOYOKUNI, comb. et stat. nov.

Syn.--

Geranium erianthum DE CANDOLLE, Prodr. 1: 641. 1824.

G. eriostemon, especially its var. reinii f. onoei has long patent hairs mixed with glandular hairs on stem and leaf-petioles, while ssp. erianthum has only adpressed hairs. The essential difference between the two plants lies in the characteristics of hairs, so I treated the latter as a subspecies of the former. The both Gerania were published simultaneously by DE CANDOLLE in his “Prodrromus I” (1824) on the same page, but the description of G. eriostemon is in upper lines, so I regarded G. eriostemon as the mother plant from the nomenclatural point of view.

forma pallescens (NAKAI) TOYOKUNI, comb. nov.

Syn.--

Nom. Jap. Tokachi-fáro

Paller flowered form of ssp. erianthum.

forma leucanthum (TAKEDA) TOYOKUNI, comb. nov.

Syn.--

Nom. Jap. Shirobana-chishima-fáro

White flowered form of ssp. erianthum.

8) Oxytropis nigrescens (PALLAS) FISCHER ex DE CANDOLLE, Prodr. 2: 278. 1825.

subsp. japonica (MAXIMOWICZ) TOYOKUNI, stat. nov.

Syn.--

Oxytropis japonica MAXIMOWICZ in Bull. Acad. St.-Pétersb. 31: 27. 1886.

Nom. Jap. Oyamano-endô

In accordance with the view proposed by HULTÉN, I consider the Japanese plant as being within the scope of the species O. nigrescens; I, however, regard it as a geographical race of the mother plant.

subsp. sericea (KOIDZUMI) TOYOKUNI, stat. nov.

Syn.--

Nom. Jap. Ezo-oyamano-endō
Leaves as well as leaflets are smaller and hairs on stems, leaves and inflo-
rescences are much denser as compared with those of ssp. japonica.

30: 524, f. 5. 1936.
forma purpurascens (KOMAROV) TOYOKUNI, comb. et stat. nov.
Syn.–
A form of S. punctata ssp. insularis with purplish reddish flowers.

forma yezoensis (HARA) TOYOKUNI, stat. nov.
Syn.–
Nom. Jap. Ō-iwatsumekusa

The distinction between the typical phase f. nipponica and the Hokkaido
phase f. yezoensis becomes sometimes to be unclear, and moreover, the Hokka-
ido type is found to be growing in the North Japanese Alps. On such a basis,
I propose the rank of form for the robust growing phase.

Summary
13 new names for Japanese alpine plants that were tentatively proposed
in “Alpine Flowers of Japan” (1988) have been dealt with taxonomically here.

References
(References for taxonomic treatments are almost omitted here)
15: 5–6.
3) TOYOKUNI, H. 1981. A preliminary note on the floristic phytogeography of the
alpine flora of Japan. in Jour. Fac. Lib. Arts, Shinshu Univ. II (Nat. Sci.), 15:
81–96.