〈報告〉

枠川周辺に生育するケショウヤナギ、コゴメヤナギ、ハリエンジュの年輪解析

小林嶽太・畑 哲大・丸山知裕・塚田朋勢・牧 玲佳・島野光司

Annual ring growth of three tree species, *Chosenia arbutifolia*, *Salix serissaefolia*, and *Robinia pseudoacacia*, Ryota KOBAYASHI¹, Tetsuhiro HATA¹, Tomohiro MARUYAMA¹, Tomonari HORITA¹, Reika MAKI², Koji SHIMANO²* (Department of Environmental Sciences, Faculty of Science, Shinsu University, 3-1-1 Asahi, Matsumoto City, 390-8621, Japan. *Graduate School of Science and Engineering, 3-1-1 Asahi, Matsumoto City, 390-8621, Japan. *E-mail: shimano@shinsu-u.ac.jp).

We studied annual ring growth of three riparian species: *Chosenia arbutifolia*, *Salix serissaefolia* and *Robinia pseudoacacia*. Mean annual ring width of *Chosenia arbutifolia* was 2.9±0.9mm (±SD) from 10 samples. That of *Salix serissaefolia* 3.0±1.3mm. That of *Robinia pseudoacacia* 6.5±1.9mm. Though there was no significant difference of annual ring growth between *Chosenia arbutifolia* and *Salix serissaefolia*, the annual ring growth of *Robinia pseudoacacia* was significantly wider than other two species.

Key words: annual ring growth, *Chosenia arbutifolia*, *Robinia pseudoacacia*, *Salix serissaefolia*.

はじめに

樹木において、年輪と幹の直径との関係を知ることとは、樹木の成長を知るうえで基礎的なことである。ある種について年間の年輪成長幅を知ることができれば、幹幹直径から樹齢を概算することができますようになる。

ケショウヤナギ（*Chosenia arbutifolia*）は現在、北海道と長野県にのみ生育が確認されており、長野県版レッドデータブックでは準絶滅危惧種に指定されている（http://www.pref.nagano.jp/）長野県HP長野県版レッドリスト参照）。希少種であるケショウヤナギの成長を定量的に把握することはその保全に関しても重要なものである。このため、年間的に生育するコゴメヤナギ（*Salix serissaefolia*）やハリエンジュ（*Robinia pseudoacacia*）などの1年あたりの年輪成長幅を知っておけば、毎年調査などで森林構造を把握する際、そうした種がケショウヤナギと同時に定着したこと、あるいはあとから侵入してきたかなどを知ることが出来る。

そこで本調査では、成長錐によるコアサンプルを元に、ケショウヤナギ、コゴメヤナギ及びハリエンジュの1年ごとの年輪幅を計測し、それぞれの年輪幅把握し、同時にケショウヤナギ、コゴメヤナギ、ハリエンジュ間で年輪成長幅に差があるかどうかを明らかにする。

調査概要

調査は、2013年10月30日にケショウヤナギ、コゴメヤナギのサンプル採取を長野県松本市新島々駅付近の枠川右岸の河床散数で行った。ハリエンジュのサンプル採取は2006年8月17日に長野県千曲市、千曲川左岸着橋上流付近の河床散数で行った。

ケショウヤナギとコゴメヤナギのサンプル採取を行った枠川は飛騨山脈の穂ヶ岳から上高地を経て松本盆地に入り、奈良井川と合流し犀川と名を変える河川である。調査地である河川数は標高約680m、北緯36度11分29秒、東経137度49分18秒の場所に位置しており、本調査地である松本市の2003年から2012年にかけての10年間の年平均気温は12.2℃、年平均降水量は1070.2mmである（http://www.jma-net.go.jp 長野地方気象台 2013年（平成25年）の長野県の天候について参照）。また、松本市のアメダスの設置地点の標高は610mであるため、月ごとの平均気温について調査地との標高差を考慮し、気温を1℃/100mで補正をかけたものをもとに暖かさの指数を求めたところ99.8℃・月となってい。これはケショウヤナギとコゴメヤナギなどからなる成熟した河畔林となっている。
<table>
<thead>
<tr>
<th>年輪幅 (mm)</th>
<th>全体の平均 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>サンプル番号</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>平均年輪幅 (mm)</td>
<td>2.8 3.0 2.3 2.6 3.3 3.4 3.7 2.6 2.4 2.9</td>
</tr>
<tr>
<td>標準偏差 (mm)</td>
<td>0.9 0.8 0.8 0.9 1.1 1.2 1.4 0.7 0.6 0.9</td>
</tr>
</tbody>
</table>

相対栄養（年）

<table>
<thead>
<tr>
<th>相対栄養（年）</th>
<th>1 2 3 4 5 6 7 8 9 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3 2.8 2.1 2.7 3.1 3.1 5.0 2.2 1.9 1.8</td>
</tr>
<tr>
<td>2</td>
<td>3.1 3.0 1.9 1.2 4.7 3.2 4.8 3.0 4.0 2.2</td>
</tr>
<tr>
<td>3</td>
<td>4.0 2.1 3.0 2.5 4.0 2.5 6.1 3.1 2.2 3.0</td>
</tr>
<tr>
<td>4</td>
<td>3.1 1.7 3.0 2.2 5.0 3.0 2.1 2.2 3.1 2.8</td>
</tr>
<tr>
<td>5</td>
<td>3.0 5.0 4.5 3.0 3.0 2.0 2.7 2.5 2.0 2.8</td>
</tr>
<tr>
<td>6</td>
<td>2.7 4.2 5.1 1.4 4.2 3.0 2.0 2.3 2.1 2.0</td>
</tr>
<tr>
<td>7</td>
<td>3.1 2.6 3.0 2.1 5.5 2.0 3.0 2.3 2.4 3.6</td>
</tr>
<tr>
<td>8</td>
<td>3.5 3.1 2.7 1.0 4.5 4.0 7.0 2.7 1.7 1.9</td>
</tr>
<tr>
<td>9</td>
<td>2.3 3.0 1.8 0.8 2.0 2.5 4.8 3.0 2.0 3.1</td>
</tr>
<tr>
<td>10</td>
<td>6.5 2.1 2.6 2.0 3.1 4.1 6.0 1.9 2.6 3.8</td>
</tr>
<tr>
<td>11</td>
<td>4.0 3.0 1.2 2.0 2.0 3.2 6.0 2.9 1.6 3.5</td>
</tr>
<tr>
<td>12</td>
<td>1.8 2.4 2.7 2.8 4.9 2.7 4.6 2.0 2.0 3.6</td>
</tr>
<tr>
<td>13</td>
<td>4.0 4.0 3.0 2.6 2.1 5.1 2.0 2.8 2.1 2.1</td>
</tr>
<tr>
<td>14</td>
<td>1.9 3.0 2.8 2.5 4.7 3.0 5.0 2.1 2.7 3.8</td>
</tr>
<tr>
<td>15</td>
<td>2.2 3.2 1.7 2.2 2.1 3.0 5.5 1.4 1.5 4.0</td>
</tr>
<tr>
<td>16</td>
<td>3.0 3.1 2.4 3.8 3.9 3.0 3.4 2.2 2.0 2.3</td>
</tr>
<tr>
<td>17</td>
<td>2.5 2.8 2.0 3.0 1.0 3.0 3.8 3.1 1.6 4.2</td>
</tr>
<tr>
<td>18</td>
<td>3.0 2.1 2.1 2.5 2.6 4.0 4.5 3.1 2.6 3.3</td>
</tr>
<tr>
<td>19</td>
<td>2.9 3.9 2.5 4.0 4.4 2.5 2.8 2.0 2.7 3.2</td>
</tr>
<tr>
<td>20</td>
<td>4.0 2.0 2.8 4.6 3.7 3.5 4.0 2.0 2.9 1.3</td>
</tr>
<tr>
<td>21</td>
<td>3.1 4.0 1.9 3.4 5.1 3.0 3.9 2.1 1.3 1.0</td>
</tr>
<tr>
<td>22</td>
<td>1.9 2.3 1.3 2.0 3.0 6.0 4.3 2.3 3.0 4.1</td>
</tr>
<tr>
<td>23</td>
<td>2.5 2.5 2.0 1.4 4.2 6.0 3.1 2.8 2.8 3.4</td>
</tr>
<tr>
<td>24</td>
<td>2.5 2.0 2.3 4.0 3.0 2.0 6.0 2.9 2.0 2.6</td>
</tr>
<tr>
<td>25</td>
<td>1.5 2.2 2.0 3.9 1.8 4.8 3.1 2.8 1.8 2.9</td>
</tr>
<tr>
<td>26</td>
<td>3.5 2.2 1.2 4.1 2.8 2.5 2.9 2.4 2.0 3.2</td>
</tr>
<tr>
<td>27</td>
<td>1.7 2.4 2.0 2.8 2.1 3.5 5.9 2.2 1.5 2.0</td>
</tr>
<tr>
<td>28</td>
<td>2.0 3.2 3.0 3.0 3.0 4.0 2.1 2.1 2.2 3.5</td>
</tr>
<tr>
<td>29</td>
<td>3.7 3.0 3.0 2.0 3.0 5.0 1.8 1.5 1.9 3.1</td>
</tr>
<tr>
<td>30</td>
<td>3.0 3.0 1.9 2.7 4.0 6.5 1.8 4.0 3.0 3.0</td>
</tr>
<tr>
<td>31</td>
<td>2.9 5.0 1.8 1.8 5.0 2.5 2.1 2.2 2.9 4.2</td>
</tr>
<tr>
<td>32</td>
<td>4.2 3.9 1.4 3.0 3.1 2.5 4.2 2.8 3.6 4.0</td>
</tr>
<tr>
<td>33</td>
<td>2.0 5.1 1.8 3.0 4.4 2.5 4.6 5.0 2.8 3.0</td>
</tr>
<tr>
<td>34</td>
<td>3.0 3.0 1.7 3.0 4.1 1.7 3.0 2.1 3.0 3.4</td>
</tr>
<tr>
<td>35</td>
<td>2.9 2.8 1.0 2.7 3.8 2.6 2.8 2.4 3.1 2.0</td>
</tr>
<tr>
<td>36</td>
<td>3.7 3.2 1.7 2.9 4.0 2.5 2.1 3.4 2.3 3.7</td>
</tr>
<tr>
<td>37</td>
<td>3.1 2.8 2.3 1.7 4.1 4.0 4.0 3.5 2.1 4.2</td>
</tr>
<tr>
<td>38</td>
<td>3.0 2.9 2.0 2.6 2.8 4.2 2.9 2.8 3.3 3.9</td>
</tr>
<tr>
<td>39</td>
<td>3.0 2.9 3.0 1.7 4.1 4.3 3.0 3.0 1.8 3.3</td>
</tr>
<tr>
<td>40</td>
<td>2.8 2.8 2.5 2.0 4.6 3.8 3.2 1.9 3.4</td>
</tr>
<tr>
<td>41</td>
<td>2.7 2.6 3.4 1.2 2.5 6.1 2.0 2.7 2.8</td>
</tr>
<tr>
<td>42</td>
<td>2.1 2.6 2.9 2.7 2.0 3.8 1.9 2.7 2.3</td>
</tr>
<tr>
<td>43</td>
<td>2.6 2.5 2.8 2.0 4.9 2.9 4.1 2.1 2.2</td>
</tr>
<tr>
<td>44</td>
<td>2.2 3.4 3.0 1.4 3.9 4.0 3.5 1.5 2.6</td>
</tr>
<tr>
<td>45</td>
<td>1.7 3.0 1.0 2.5 3.3 2.5 3.5 2.9 2.5</td>
</tr>
<tr>
<td>46</td>
<td>2.1 3.7 1.9 2.4 2.6 4.0 2.1 2.0 1.9</td>
</tr>
<tr>
<td>47</td>
<td>4.0 4.3 3.0 2.3 3.9 2.5 2.0 1.9 2.1</td>
</tr>
<tr>
<td>48</td>
<td>3.0 3.7 2.9 3.0 2.7 4.0 1.6 2.4 3.1</td>
</tr>
<tr>
<td>49</td>
<td>2.7 2.1 1.0 4.5 4.8 1.8 2.0 2.0 1.0</td>
</tr>
<tr>
<td>50</td>
<td>2.9 2.8 4.2 2.4 3.4 1.7 3.8 0.9</td>
</tr>
<tr>
<td>51</td>
<td>2.3 2.0 2.8 2.2 2.9 3.1 1.1</td>
</tr>
<tr>
<td>52</td>
<td>3.0 2.0 1.0 2.0 1.9 2.0 2.2</td>
</tr>
<tr>
<td>53</td>
<td>2.7 1.7 1.3 3.0</td>
</tr>
<tr>
<td>54</td>
<td>2.0 2.9 1.6 3.5</td>
</tr>
<tr>
<td>55</td>
<td>2.0 2.4 2.5 4.0</td>
</tr>
<tr>
<td>56</td>
<td>3.0 3.0 4.0 3.1</td>
</tr>
<tr>
<td>57</td>
<td>2.0 2.9 3.3</td>
</tr>
<tr>
<td>58</td>
<td>3.1 2.7 2.2</td>
</tr>
<tr>
<td>59</td>
<td>2.4 3.1 2.9</td>
</tr>
<tr>
<td>60</td>
<td>2.8 3.0 1.1</td>
</tr>
<tr>
<td>61</td>
<td>2.1 3.0</td>
</tr>
<tr>
<td>62</td>
<td>2.6</td>
</tr>
</tbody>
</table>
表2. コゴメヤナギの年輪幅

<table>
<thead>
<tr>
<th>サンプル番号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均年輪幅 (mm)</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>3.5</td>
<td>3.2</td>
<td>2.6</td>
<td>2.9</td>
<td>3.2</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>標準偏差 (mm)</td>
<td>1.4</td>
<td>1.3</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>相対倒数 (年)</td>
<td>3.0</td>
<td>1.3</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

全体の平均 (mm)
表3. ハリエンジュの年輪幅

<table>
<thead>
<tr>
<th>サンプル番号</th>
<th>年輪幅 (mm)</th>
<th>全体の平均 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (長径)</td>
<td>2 (短径)</td>
<td>1 (長徑)</td>
</tr>
<tr>
<td>平均年輪幅 (mm)</td>
<td>9.3</td>
<td>8.1</td>
</tr>
<tr>
<td>標準偏差 (mm)</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>相対樹齢 (年)</td>
<td>6.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

ハリエンジュのサンプル採取を行った千曲川は長野県東部を流れ新潟県ととの県境で信濃川と名前をえる日本最長の川である。調査地の河川敷は標高約370m、北緯36度30分43秒、東経138度7分30秒の場所に位置している。気象情報は千曲市に隣接するである長野市のものをもとにした。2003年から2012年にかけての10年間の年平均気温は12.7℃、年平均降水量は977.2mmである（http://www.jma-net.go.jp 長野地方気象台 2013年（平成25年）の長野県の天候について。参照）。こちらもアメダスの設置地点が418mと、調査地と標高差があったため、それを考慮し、気温差減率－0.6℃/100mを用いて換算の指数を求めたところ102.8℃/月となった。ここでは、高水敷を中心にハリエンジュが生育している。

二つの調査区に流れている栢川、千曲川はともに信濃川水系であり、また気象情報から、二地点において気候及び環境の大きな違いはないと考えられる。

調査方法

ケショウヤナギ、コゴメヤナギに関しては、それぞれ10個体ずつを対象として年輪の採取を行った。対象となった個体はいずれも、胸高直径が20cm以上であり、樹高が10m以上成長の成熟個体である。サンプルは年輪コアサンプラー（コアリーダー、Haglof, Sweden）を用いて採取した。

その後、サンプルの年輪が方眼紙上の目盛りと直角になるようにおき、方眼紙の目盛を用いて年輪の垂直幅を測定した。これに際し、方眼紙上の目盛りは1mmが最大目盛であるが、その1/10の0.1mm単位で年輪幅を読み取った。

また、ハリエンジュに関しては、2006年に樹形を調査する機会があった際に伐採を行い（Akamatsu et al. 2011）、その際年輪幅を測定した。またハリエンジュのサンプルとして伐採した2本は断面が橘円であったため、長径と短径それぞれの年輪幅を測定し、平均的な値を得ることを試みた。

結果

解析の結果ケショウヤナギの年輪幅は2.9±0.9mm（平均±標準誤差、以下同様）であり、サンプルは最低でも39年以上生育していた（表1）。コゴメヤナギの年輪幅は3.0±1.3mmであり、サンプルは最低でも34年以上生育していた（表2）。ハリエンジュの年輪幅は6.5±1.9mmであり、サンプル番号1が樹齢11年、サンプル番号2が樹齢8年であった（表3）。なお、それぞれの積算年輪幅についてグラフで示した（図1, 2, 3)。

また一元分散分析、Tukey-Kramer法により、3種それぞれの年輪幅を検定したところ、ケショウヤナギとコゴメヤナギの間では有意差はみられなかったが、ケショウヤナギとハリエンジュ、及びコゴメヤナギとハリエンジュの間では有意差がみられた（P<0.01, 表4）。

考察

ケショウヤナギ及びコゴメヤナギはハリエンジュと比較して成長が遅いことが明らかとなった。他の樹種についてみると、ケショウヤナギ及びコゴメヤナギと同様に河川敷、あるいは湿地等の立地に生育
図1. ケショウヤナギの積算年輪幅

図2. コゴメヤナギの積算年輪幅

図3. ハリエンジュの積算年輪幅

表4. 各種の平均年輪成長幅

<table>
<thead>
<tr>
<th></th>
<th>平均年輪成長幅 (mm/年)</th>
<th>標準偏差</th>
<th>有意差</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケショウヤナギ</td>
<td>2.9</td>
<td>0.9</td>
<td>a</td>
</tr>
<tr>
<td>コゴメヤナギ</td>
<td>3.0</td>
<td>1.3</td>
<td>a</td>
</tr>
<tr>
<td>ハリエンジュ</td>
<td>6.5</td>
<td>1.9</td>
<td>b</td>
</tr>
</tbody>
</table>

一元分散分析、Tukey–Kramer 法、p<0.01
異なるアルファベット間には有意差がある。
するハンノキ（*Afnus japonica*）、ヤチダモ（*Fraxinus mandshurica*）といった樹木の平均年輪成長幅は2 mmであることが分かっている（富士田2004）。また、木材用に植栽されるヒノキ（*Chamaecyparis obtusa*）、スギ（*Cryptomeria japonica*）及びアカマツ（*Pinus densiflora*）についてみると、ヒノキの平均年輪成長幅は、夏季降水量650mm前後を境に、夏季降水量が多い年には平均6 mm、少ない年には平均3 mmである（小谷ほか1997）。また、アカマツの平均年輪成長幅は樹齢20–30年で4.0 mm、30–40年で3.0 mm、40–60年で2.1 mmとなっている（竹中・本村1994）。またスギの平均年輪成長幅は、樹齢13年までで6 mm程、それ以降で平均2 mmから3 mmである（吉野2004）。このことから、ケショウヤナギ及びコゴメヤナギはハンノキ、ヤチダモと比較すると平均年輪成長幅が同程度であるが、スギやヒノキなどと比較すると平均年輪成長幅は小さいことが分かる。

桜川の河川敷には、上記のケショウヤナギ、コゴメヤナギ、ハリエンジュが生育している。直径が同程度のケショウヤナギとコゴメヤナギがあった場合、ほぼ同齢とみることが出来る。一方でハリエンジュの年間年輪成長はこれらの2倍程度であるので、ケショウヤナギやコゴメヤナギと同程度の直径のハリエンジュがあった場合、上記ヤナギ2種の半分程度の樹齢であると推測できる。桜川河川敷を実際に観察すると、ケショウヤナギの林分径を観察し、まだ樹高の低いハリエンジュをみることがある。こうした群落で毎週調査を行い、幹の直径階分布や樹高階分布を作成することで群落構造を把握すれば、ケショウヤナギ林からハリエンジュ林に林相が変化することを定量的に予測することが出来るだろう。

引用文献

竹中則夫・本村直美 (1994) 近縁地方に成立するアカマツ林の年輪解析、神戸女学院大学論集 41：117–133。

吉野 豊 (2004) スギ林における植栽密度によるスギカミキリ被害の違い、日本林学会誌 86：1–4。