人体骨格筋の不随意性収縮疲労に対する
acetylcholine 及び glucuronic acid の効果
（人体の筋・神経の興奮性の研究 第44報）
昭和34年8月31日受付
信州大学医学部第一生理学教室（主任：和合教授）
赤羽伸弘

Effects of Acetylcholine and Gulucuronic Acid on Involuntary
Contraction Fatigue of Human Skeletal Muscle
(Studies on the Excitabilities of Nerve and Muscle in Man, XLIV)
Nobuhiro Akahane
1st Institute of Physiology, Faculty of Medicine, Shinshu University
(Director: Prof. U. Wago)

I 論文

1942年del Pozo①は血行を保った腓の m. gastro-
cnemius plantarisを、n. ischiadicusを通じて間接
に刺激して疲労を起こされた。毎秒30回以上の頻度の
刺激では収縮疲労が起こり、20回以下では血行であると
は容易に見逃されないが、長時間刺激すれば疲労が現われ
ると言ひ、これは収縮疲労であると報告した。

高橋②はV/Vr法により、血行的収縮骨格筋を、每
秒20回の頻度で間接に24分間持続刺激したとき発生す
る疲労は、主として収縮疲労であると報告している。

更に和合③④は每秒20回（Du-Bois Reymont生
導器）及び毎秒3回（Augospel）の刺激で、又
並の④は毎秒3回（Augospel）の刺激で、人体につい
て、m. rectus femorisを筋直接に、又神経を通じて
間接に持続刺激したとき、間接刺激では容易に疲労は
起こらないが、直接刺激では10分間で既に疲労が起り、
この疲労はacetylcholine、Ach の効かない収縮疲労
であると報告している。

以上要するに、低頻度の刺激を、筋直接に且つ又比
較的長時間加えたとき、収縮疲労を起こし得ることが
明らかとなった。

著者は収縮疲労を起す目的で、頻度毎秒3回の刺激を
m. rect. fem.に直接に加えて不随意性疲労を起
し、刺激持続時間を変えたとき、和合の言う増加率、
i. r. 及び持続時間増数、Kmの如何に変化するか
を、0.75μF V/Vr法によって筋「直接」に測定した。

更にこの疲労に対して、Ach 及び glucuronie acid、
gl. acid が如何なる影響を及ぼすかを実験した。

II 実験装置及び方法

1) 測定装置は逆電極法電刺激装置で、その回路は
第1図に示す通りである。

第1図 測定回路

Comm : 方向転換器
C : 可変温器
S : スイッチ
× : 筋
R₁ : 可変抵抗
E : 電圧源
(R.8)
Rₙ : 固定抵抗
(10,000Ω)
R₂ : 固定抵抗
(1,000Ω)
K₁, K₂ : 通電器

第1図で、「×」は被験者のm. rect. fem.。Comm
は方向転換器で、一回の通電毎に、直後必ず同一強度
の電流を逆方向に流した。C は Condenser で 20μF
と 0.75μF とを使い、R₁ の可変抵抗器を順に換えた
て Condenser にかかる電圧を加減した。

2) 疲労を起す為の刺激には、頻度毎秒3回の低周
波直角波状刺激（Augospel）を用いた。
疲労刺激を加えるのは被験下肢の m. rect. fem. の刺激点で、主として m. rect. fem. を不随意性に収縮させて疲労を起こした。

刺激の強さは完全強絶を起す範囲で最小のものにした。この時の電流の強さは 1mA 〜5mA であった。

3） 測定方法は被験者を寝台に仰臥させて安静にさせ、その m. rect. fem. の刺激点を陰極として、岩電極放電によって直接刺激し、寝台外に出した下肢部の最小仲間運動を示標として、疲労のときの興奮性の変化を、和合の 0.75μF V/Vr 法によって測定した。その間、身体の他の部分は出来るだけ力の入らないようにさせた。

4） 被験者は20才より28才までの健康男子で、体重は50kg 〜60kg であった。

5） Prostigmine は塩野製薬株式会社製の Vago-stigmin, Ach は第一製薬株式会社製の Ovisol, gl. acíd は中外製薬株式会社製の Guransan を使用し、全すべて皮下注射とした。

6） 刺激点の選び方、電極の位置、その他の実験条件、実験中の諸注意事項は和合の原法③通り行つた。

Ⅱ 実験成績
A 毎秒3回刺激で、刺激持続時間を変えたときの疲労

1） 7分間刺激による疲労

m. rect. fem. で直接に V/Vr の正常値を3回〜4回繰り返し測定し、次いで m. rect. fem. を毎秒3回の頻度で7分間持続刺激して疲労を起こし、刺激停止直後から再び V/Vr 値を測定した。

刺激停止直後、67％は V/Vr は正常値を示し疲労は起こらなかったが、33％は V/Vr は上昇して最大値に達し、時間の経過と共に下降して、やがて疲労前値に戻った。疲労の起こった例を挙げると第2図左端に示す通りである。

恢復時間は V/Vr の i.r. と共に長くなり、i.r. の増加分に比例した。疲労の起こったものについての i.r. の平均値は1.17で、Km の平均値は1.07であった（第1表）。

2） 10分間刺激による疲労

全例に疲労が現われ、第2図中央に示す通り7分間刺激によって起こった疲労と同様な曲線を得た。

この時の i.r. 及び Km は、被験者 T. O. については第2表に、各被験者については第3表に示す通りであ
る。7分間刺激に比べていつれも大きい値を示した。すなわち被験者 T.O. では i.r. の平均値は 1.24, Km の平均値は 1.23であった。

3) 15分間刺激による疲労
この場合も前項実験と同様に全例において疲労が見られた（第 2 図右端）。i.r. 及び Km は第 4 表及び第 5 表に示す通りで、各被験者とも10分間刺激に比べて著しく大きな値を示し、被験者 T.O. の i.r. の平均値は 1.26, Km の平均値は 1.28分であった。

第 4 表 15分間刺激による疲労（被験者 T.O. 20才）

<table>
<thead>
<tr>
<th>実験番号</th>
<th>V/Vr 正常値</th>
<th>V/Vr 最大値</th>
<th>i.r.</th>
<th>恢復時間</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>1.10</td>
<td>1.42</td>
<td>1.29</td>
<td>30分</td>
<td>1.31分</td>
</tr>
<tr>
<td>176</td>
<td>1.08</td>
<td>1.32</td>
<td>1.22</td>
<td>26</td>
<td>1.18</td>
</tr>
<tr>
<td>176</td>
<td>1.09</td>
<td>1.36</td>
<td>1.25</td>
<td>32</td>
<td>1.28</td>
</tr>
<tr>
<td>187</td>
<td>1.07</td>
<td>1.30</td>
<td>1.22</td>
<td>30</td>
<td>1.36</td>
</tr>
<tr>
<td>187</td>
<td>1.08</td>
<td>1.40</td>
<td>1.30</td>
<td>38</td>
<td>1.26</td>
</tr>
</tbody>
</table>

平均 | 1.26 | 1.28 |

第 5 表 15分間刺激による疲労
（夫々の被験者の平均値）

<table>
<thead>
<tr>
<th>被験者</th>
<th>例数</th>
<th>V/Vr 正常値</th>
<th>V/Vr 最大値</th>
<th>i.r.</th>
<th>恢復時間</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.O.</td>
<td>5</td>
<td>1.08</td>
<td>1.36</td>
<td>1.26</td>
<td>33分</td>
<td>1.28</td>
</tr>
<tr>
<td>T.S.</td>
<td>5</td>
<td>1.08</td>
<td>1.35</td>
<td>1.24</td>
<td>30</td>
<td>1.25</td>
</tr>
<tr>
<td>K.M.</td>
<td>5</td>
<td>1.08</td>
<td>1.38</td>
<td>1.28</td>
<td>34</td>
<td>1.22</td>
</tr>
</tbody>
</table>

4) 20分間刺激による疲労
10分間刺激及び15分間刺激の実験と同様に、全例において疲労が見られ、その後 i.r. は各被験者とも更に増大し、被験者 T.O. の平均値は 1.28であった。

Km は各被験者により大きく異なるものもあり、反って小さくなるものもあった（第 6 表及び第 7 表）。被験者 T.O. の平均値は 1.21分であった。一例を示すと第 3 図左端の通りである。

5) 30分間刺激による疲労
10分間刺激、15分間刺激及び20分間刺激と同様に、全例に疲労が見られ、その後 i.r. は各被験者とも最も大きい値を示し、第 8 表及び第 9 表に示す通り、被験者 T.O. の平均値は 1.33であった。

Km は各刺激持続時間中最小で、被験者 T.O. では 0.96分であった。一例を示すと第 3 図右端の通りである。

以上の実験成績から、毎秒 3 回刺激の持続時間と i.r. 及び Km との関係を見ると、第 4 図及び第 10 表に示す通りで、i.r. は刺激持続時間に比例して増大し
第9表 30分間刺激による疲労
（夫々の被験者の平均値）

<table>
<thead>
<tr>
<th>被験者</th>
<th>倍数</th>
<th>V/Vr 正常値</th>
<th>V/Vr 最大値</th>
<th>i.r.</th>
<th>恢復 時間</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.O.</td>
<td>5</td>
<td>1.09</td>
<td>1.44</td>
<td>1.33</td>
<td>31</td>
<td>0.96</td>
</tr>
<tr>
<td>T.S.</td>
<td>5</td>
<td>1.09</td>
<td>1.45</td>
<td>1.33</td>
<td>38</td>
<td>1.15</td>
</tr>
<tr>
<td>K.M.</td>
<td>5</td>
<td>1.09</td>
<td>1.48</td>
<td>1.35</td>
<td>39</td>
<td>1.11</td>
</tr>
</tbody>
</table>

第4図 刺激持続時間と増加率及恢復時間恒数との関係

第10表 毎秒3回刺激の持続時間による
i.r. 及びKmの相関

<table>
<thead>
<tr>
<th>刺激持続時間</th>
<th>図</th>
<th>T.O.</th>
<th>T.S.</th>
<th>K.M.</th>
<th>T.O.</th>
<th>T.S.</th>
<th>K.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>1.18</td>
<td>1.15</td>
<td>1.94</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.24</td>
<td>1.20</td>
<td>1.27</td>
<td>1.23</td>
<td>1.23</td>
<td>1.19</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.26</td>
<td>1.24</td>
<td>1.28</td>
<td>1.28</td>
<td>1.25</td>
<td>1.22</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.28</td>
<td>1.27</td>
<td>1.30</td>
<td>1.21</td>
<td>1.26</td>
<td>1.20</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.35</td>
<td>0.96</td>
<td>1.15</td>
<td>1.11</td>
</tr>
</tbody>
</table>

た。Kmは10分間刺激と20分間刺激の間で最大であり、30分間刺激では反って小さくなった。

B 毎秒3回、刺激持続時間10分間の直接刺激による疲労に対するAch及びgl. acidの効果

毎秒3回の直接刺激をm. rect. fem.に10分間加え、V/Vr値を測定したとき、第1図中央に示す様な疲労曲線を得た。そしてこれをAch、gl. acidの各与に対する対称実験とした。

第8巻 第9号

1）Achの影響
疲労が終ってV/Vrが正常値に戻った後、更に2回～3回測定を続け、次いで cholinesterase 抑制剂である prostigmine (Vagostigmin 0.5cc) を注射し、5分後阿 Ach (Ovisot 0.033g) を注射して、直後に再び疲労刺激を加えた。この時の刺激条件は全て対称実験と同じであった。

注射後の疲労曲線は対称例と殆ど同じ経過ごとなり正常値に戻った（第5図）

被験者 T. O.については第11表に示すように i.r.の平均値1.20であり、Kmの平均値1.27分であった。夫々の被験者の平均値を非注射例に比較すると第12表のようである。

換言すれば、毎秒3回、刺激持続時間10分間の直接刺激で起きた疲労に対して、Achは全く無効であった。

2）gl. acidの効果
対称実験後、gl. acid（Guronsan 200mg）を注射し、直後に再び疲労刺激を加え、疲労曲線に対する

第5図 Achの影響
（被験者T. O. 20才）

第11表 毎秒3回10分間刺激による疲労に対する
Achの影響（被験者T.O. 20才）

<table>
<thead>
<tr>
<th>実験番号</th>
<th>V/Vr 正常値</th>
<th>V/Vr 最大値</th>
<th>i.r.</th>
<th>恢復 時間</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>1.08</td>
<td>1.29</td>
<td>1.19</td>
<td>29</td>
<td>1.21</td>
</tr>
<tr>
<td>111</td>
<td>1.09</td>
<td>1.33</td>
<td>1.22</td>
<td>29</td>
<td>1.32</td>
</tr>
<tr>
<td>112</td>
<td>1.10</td>
<td>1.28</td>
<td>1.16</td>
<td>20</td>
<td>1.25</td>
</tr>
<tr>
<td>113</td>
<td>1.09</td>
<td>1.32</td>
<td>1.21</td>
<td>28</td>
<td>1.33</td>
</tr>
<tr>
<td>114</td>
<td>1.08</td>
<td>1.25</td>
<td>1.16</td>
<td>23</td>
<td>1.44</td>
</tr>
<tr>
<td>115</td>
<td>1.08</td>
<td>1.27</td>
<td>1.18</td>
<td>20</td>
<td>1.11</td>
</tr>
<tr>
<td>107</td>
<td>1.09</td>
<td>1.37</td>
<td>1.26</td>
<td>32</td>
<td>1.23</td>
</tr>
<tr>
<td>平均</td>
<td>1.20</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第12表 毎秒3回10分間刺激による疲労に対するAchの影響
（夫々の被験者の非注射例との比較）

<table>
<thead>
<tr>
<th>被験者</th>
<th>実験</th>
<th>i. r.</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. O.</td>
<td>例数</td>
<td>1.24</td>
<td>1.20</td>
</tr>
<tr>
<td>T. S.</td>
<td>5</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>M. S.</td>
<td>5</td>
<td>1.20</td>
<td>1.22</td>
</tr>
<tr>
<td>K. M.</td>
<td>5</td>
<td>1.27</td>
<td>1.25</td>
</tr>
</tbody>
</table>

gl. acidの効果を観た。一例を示すと第6図のよう
で，V/Vr値は対称実験と同様刺激直後に上昇し，最
大値は大部分刺激直後に，一部は第2回目の測定に
てして表われた。

i.r.は非注射例に比して著しく減少し，Kmも各被
験者について小さくなり，非注射例のKmに比較すると，
被験者T.O.は30%，T.S.は24%，M.S.は19%，K.
M.は35%の減少をたた（第13表，第14表）。

即ちgl. acidは取る程度，この種の疲労を抑制する
作用があるものと思われる。

3) Ach及びgl. acid併用の効果

対称実験後，Vagostigmin 0.5ccを注射し，それよ
り3分後にGuronsan 200mg、5分後にOvisol 0.033
mgを注射して，直後に疲労をきたした。このときの疲
労曲線は，一例を示すと第7図のようにgl. acid単独
注射による疲労曲線と同様であった。

i.r.振幅時間及びKmは第15表及び第16表に示す
ように，gl. acid単独注射の場合と同様に非注射例に
比して小さくなり，Kmは非注射例に比し被験者T.
O.，T.S.，M.S.，K. M.について夫々23%，29%，20%
30%の減少を見た。

第6図 gl. acidの効果
（被験者 T. O. 20才）

第13表 毎秒3回10分間刺激による疲労に対する
gl. acid効果（被験者T.O.20才）

<table>
<thead>
<tr>
<th>実験</th>
<th>V/Vr正常値</th>
<th>V/Vr最大値</th>
<th>i. r.</th>
<th>周復</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>1.07</td>
<td>1.27</td>
<td>1.19</td>
<td>12分</td>
<td>0.69分</td>
</tr>
<tr>
<td>109</td>
<td>1.09</td>
<td>1.31</td>
<td>1.20</td>
<td>16</td>
<td>0.80</td>
</tr>
<tr>
<td>111</td>
<td>1.09</td>
<td>1.27</td>
<td>1.16</td>
<td>15.5</td>
<td>0.97</td>
</tr>
<tr>
<td>95</td>
<td>1.06</td>
<td>1.24</td>
<td>1.17</td>
<td>12</td>
<td>0.71</td>
</tr>
<tr>
<td>104</td>
<td>1.07</td>
<td>1.24</td>
<td>1.16</td>
<td>13.5</td>
<td>0.85</td>
</tr>
<tr>
<td>113</td>
<td>1.09</td>
<td>1.22</td>
<td>1.12</td>
<td>12.5</td>
<td>1.04</td>
</tr>
<tr>
<td>114</td>
<td>1.09</td>
<td>1.21</td>
<td>1.11</td>
<td>11.5</td>
<td>1.05</td>
</tr>
</tbody>
</table>

平均 | 1.16 | 0.87 |

第14表 毎秒3回10分間刺激による疲労に
対するgl. acidの効果
（夫々の被験者の非注射例との比較）

<table>
<thead>
<tr>
<th>被験者</th>
<th>実験</th>
<th>i. r.</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. O.</td>
<td>例数</td>
<td>1.24</td>
<td>1.16</td>
</tr>
<tr>
<td>T. S.</td>
<td>5</td>
<td>1.20</td>
<td>1.14</td>
</tr>
<tr>
<td>M. S.</td>
<td>5</td>
<td>1.26</td>
<td>1.16</td>
</tr>
<tr>
<td>K. M.</td>
<td>5</td>
<td>1.27</td>
<td>1.16</td>
</tr>
</tbody>
</table>

平均 | 1.21 | 0.77 |

第7図 Ach及びgl. acid併用の効果
（被験者 K. M. 23才）

すなわち，この種の疲労に対して，Achをgl. acid
と併用しても，Achは全く無効でありgl. acidのみの
効果が表われた。

IV考按

1) 動態疲労について

骨骼筋を高頻度で間欠刺激したときは，neuro-
muscular junctionにおけるAchの欠乏を来し伝達
第15表 毎秒3回 10分間刺激による疲労に対する
Ach 及び gl. acid 併用の効果
（被験者 T.O. 20才）

<table>
<thead>
<tr>
<th>被験者</th>
<th>V/Vr</th>
<th>V/Vr</th>
<th>i. r.</th>
<th>恢復時間</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>1.07</td>
<td>1.17</td>
<td>1.11</td>
<td>9.5分</td>
<td>0.86分</td>
</tr>
<tr>
<td>118</td>
<td>1.06</td>
<td>1.21</td>
<td>1.15</td>
<td>13</td>
<td>0.87</td>
</tr>
<tr>
<td>119</td>
<td>1.06</td>
<td>1.23</td>
<td>1.16</td>
<td>16</td>
<td>0.94</td>
</tr>
<tr>
<td>120</td>
<td>1.06</td>
<td>1.19</td>
<td>1.12</td>
<td>11</td>
<td>0.92</td>
</tr>
<tr>
<td>121</td>
<td>1.06</td>
<td>1.18</td>
<td>1.11</td>
<td>11</td>
<td>1.00</td>
</tr>
<tr>
<td>122</td>
<td>1.06</td>
<td>1.21</td>
<td>1.13</td>
<td>14</td>
<td>1.08</td>
</tr>
<tr>
<td>123</td>
<td>1.06</td>
<td>1.18</td>
<td>1.11</td>
<td>11</td>
<td>1.00</td>
</tr>
<tr>
<td>124</td>
<td>1.06</td>
<td>1.18</td>
<td>1.11</td>
<td>11</td>
<td>1.00</td>
</tr>
</tbody>
</table>

平均 1.13 0.95

第16表 毎秒3回 10分間刺激による疲労に対する
Ach 及び gl. acid 併用の効果
（夫々の被験者の非注射例との比較）

<table>
<thead>
<tr>
<th>被験者</th>
<th>非注射</th>
<th>Ach + gl. acid 注射</th>
<th>非注射</th>
<th>Ach + gl. acid 注射</th>
<th>減少率</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. O.</td>
<td>7</td>
<td>1.24</td>
<td>1.13</td>
<td>1.23</td>
<td>0.95分</td>
</tr>
<tr>
<td>T. S.</td>
<td>5</td>
<td>1.20</td>
<td>1.12</td>
<td>1.23</td>
<td>0.88</td>
</tr>
<tr>
<td>M. S.</td>
<td>5</td>
<td>1.26</td>
<td>1.15</td>
<td>1.18</td>
<td>0.94</td>
</tr>
<tr>
<td>K. M.</td>
<td>5</td>
<td>1.27</td>
<td>1.14</td>
<td>1.19</td>
<td>0.83</td>
</tr>
</tbody>
</table>

疲労が起る⑨⑩⑪⑫⑬。

このとき, Ach 放電が充分に合った順にさらなる低頻度の間接刺激では, neuromuscular junction で impulse の残留が行なわれ, 連続刺激すれば筋線維自身の興奮性低下の起こる。これは筋自身のエネルギー源の消耗および中間代謝産物の蓄積の結果起る取縮労である⑪⑫⑬。

和合は人体の筋力低下度で直接刺激したとき, 今まで容易に起らないとされていた取縮疲労が起こったことを報告している。

本実験では, 毎秒3回の刺激で m. rect. fem. を直姿に刺激した。刺激持続時間10分間で変えて, 疲労の程度を観察したところ, 7分間刺激で33%に疲労曲線を得た。すなわち7分間刺激が疲労を起す最小有効時間と考えられる。

刺激持続時間10分間以上では, 全例に疲労が現われ, V/Vr 値の増加するため疲労の度合は刺激持続時間の延長に従って増大した。

Km については, 10分間刺激と20分間刺激の間では1.20分～1.30分で略一定であったが, 30分間刺激では刺激持続時間に逆に小さくなる傾向が観られた。これ

は次のことが考えられる。すなわち疲労には疲労過程と同時に, 一方において恢復過程が起ることが推定され, 刺激持続時間が20分間以上になると恢復過程が著明となることが考えられる。

以上要するに, 毎秒3回の直接刺激によって起る疲労は, 疲労を起こす前に予め Ach を注射したときも, その影響を受けることなく, Km が不随意性伝達疲労の Km (約0.4分) の約3倍であることを考えると, 主として取縮疲労であると見て差支えない。

2) gl. acid の効果

生体疲労の原因に就いては, 古くから種々の説が言われているが, 疲労素によると言う学説がある。然しその疲労物質は過去において蓄積していた乳酸ではなく各種物質の混合体であり, 五谷に glycogen, phosphagen 等の力を蓄積物の不足と, 乳酸その他の中間代謝産物の蓄積が疲労の真の原因であると言う説が有力となった。

そこで, この疲労物質を解消すれば疲労は消えて元の興奮性に戻るわけであり, この解毒には gl. acid が重要な働きを持つのではないかと考えて種々の実験が行われ, 疲労恢復に対する効果が認められている⑩⑪⑫⑬。

最近和合及び倉田等は, gl. acid を長期連続内服させて各種の不随意性取縮疲労に対する効果を観たが, gl. acid が成る程度疲労を抑制する作用のあることを報告している。

又松原は, 人体で毎秒1回の範囲で Mosso の ergograph を用い10分間反復引かせた結局, 取縮性取縮疲労に対して, gl. acid が有効であることを報告している。

本研究においても, 毎秒3回の直接刺激による取縮疲労に対して予め gl. acid を注射したとき, 最大値, i. r. 及び恢復時間の著明な減少を現し, 同時に Km が非注射例に比して19%～35%減少したことは, gl. acid がこの種の疲労を成る程度抑制したものである。

この程度の取縮疲労に対して, gl. acid が有効であることは, gl. acid の総合解毒作用によって体内外の疲労物質が速やかに解消されるために, 新たに体外から必要力源物質を取り入れなくても, 体内から補給される為であると考えられる。

第8巻 第9号

V 総括

1) 人体の m. rect. fem. に毎秒3回の刺激を直接

と加えて不随意性疲労を起し, その刺激持続時間を変
えたとき，疲劳曲線が如何に変わるかを \(0.75 \mu \text{F} \ V/Vr \)
法によって筋「直接」に測定した。

2) 7分間刺激の場合，33%は \(V/Vr \) 値は増加し，
疲劳曲線を得られた。従って人体骨格筋における此の
頻度による疲劳発生のための最小刺激持続時間は7分
附近であると思われる。

3) 刺激持続時間10分間以上では，常に疲劳が現わ
れ，i.r.は刺激持続時間に比例して増大した。

4) \(K_m \) は10分間刺激と20分間刺激の間で最大であり
1.20分—1.30分であった。30分間刺激では反って小
さくなり0.96分—1.15分になった。

5) 10分間刺激で起きる疲労に対して，予め Ach
を注射したときに疲労曲線に変化は観られなかった
従ってこの種の疲労は収縮疲労が主である。

6) この疲労に対して，予め gl. acid (Gurusan
200mg) を注射したときは，i.r.の減少とともに \(K_m \)
は非注射例に比較して19%—35%の減少を示した。す
なわち gl. acid はこの類の収縮疲労に対してある程度
有効であった。

附記 本論文の要旨は，昭和33年8月21日第4回中部地区生理学
学術会に発表した。

文献

(2) 高橋貞文 (1957) 日本生理誌 19, 4, 314.
(3) 和合卯太郎 (1956) ibid. 18, 12, 965.
(4) 和合卯太郎 近日日本生理誌発表の要領（第12報）
(5) 三枝 (1959) 信州医学誌 8, 2, 288.
(6) 和合卯太郎 (1953) 信州大学紀要 3, 106.
(7) 和合卯太郎 (1952) ibid. 2, 17.
(8) 和合卯太郎 (1954) ibid. 4, 122.
(10) Rosenblueth, A., B. D. Lindley and R. S. Morison (1936)
Amer. J. Physiol., 115, 53.
(11) Rosenblueth, A., and Morison (1937) ibid. 119, 236.
(12) 小原賢雄 (1957) 日本生理誌 19, 5, 355.
(14) 小原賢雄・田村俊吉 (1957) ibid. 224.
(15) 小原賢雄・他 (1957) ibid. 227.
(16) 河合正一 (1957) ibid. 239.
(17) 高橋 裕・中岡 正 (1957) ibid. 225.
(18) 和合卯太郎・倉田吉祥・他 (1958) 健州医学誌 7, 600.
(19) 松原幹彦 (1959) ibid 8, 738.