暗順応眼に対する光照射による人体骨格筋興奮性の変化

第 1 報 白色光照射
(人体の筋・神経の興奮性の研究 第39報)
昭和34年6月23日受付
信州大学医学部第一生理学教室（主任：和合卯太郎教授）
研究生井手泰夫

Change of Excitability of Human Skeletal Muscle by the Stimulation of Light to Retina in Dark Adaptation
Part I Relationship between the Stimulation of White Light and Excitability of Skeletal Muscle
(Studies on the Excitabilities of Nerve and Muscle in Man, XXXIX)
Yasuo Ide
Department of Physiology, Faculty of Medicine, Shinshu University
(Director: Prof. U. Wago)

I 緒 言

暗順応眼①は、筋の興奮性の測定法として、和合の V/Vr 法②③④により、明順応眼を遮光して、m. rectus femoris 並びに m. extensor pollicis longus の V/Vr 値を測定した。遮光中に与える V/Vr 値は低下し、凡そ20〜40分後に最小値に達し、その後は一定値を続け、遮光中止と共に遮光前に正常値に戻る事を報告した。この時、筋直接又は神経を通じての間接の測定共に、同一の結果を得た。そして遮光前の光の照度（L）と、遮光中 V/Vr 値の最小値に達する迄の時間（T）との間に次の実験式を得た。

\[T = 70 \log \log (L + 10) \]

著者は暗順応眼に光照射を与え、V/Vr 値の経過に就いて、下記の種々の実験を行った。

i) 暗順応眼に白色光照射を与え、静に不動を続け、疲労していない筋の骨格筋の興奮性の変化について。

ii) 逆順応眼及び脳障害部に、白色光照射を与える、静止骨格筋の興奮性の変化について。

iii) 白色光照射の度数と、筋の興奮性変化との関係について。

iv) 白色光照射による、筋の筋疲労に対する acetylcholine, Ach の効果について。

II 実験方法

A 疲定装置
測定装置は、和合のものと全く同様であった。

B 疲定方法
被験者を、bed 上に仰卧させ、出来だけ全身に力の入れない様に注意し、疲定反応及び順応反応を観察、骨格筋興奮性の変化を m. rect. fem. に関して、この筋直接「筋」又は n. femoralis を通じ間接「神経」に骨格筋興奮性の変化を測定（道）④と同様 0.5uF/Vr の光刺激法にて測定した。刺激部位の部位方、被験者の姿勢、その他の事項の測定に必要な事項は和合の報告⑤を全く同様であった。

C 光照射の方法

a) 明順応

疲定反応を 300～1,500lux の光の明るさの実験室に入れて出来だけ不動にし、発光したまま bed 上に仰臥させた。少なくとも20分間この状態に放置し、次で実験を始めた。以後この状態を「明順応眼」と称し、数回反復測定した V/Vr 値の平均を「明順応値」とした。

b) 陰順応眼
「明順応値」測定後、左右両眼を各々黒布の被布でおおい、完全に光の入らない様遮光した。遮光後に V/Vr 値は次第に低下し20〜40分後に最低値に達し、その後一定の値を保った。得られた V/Vr 値の最少の値を「暗順応値」と称し、この状態の眼を「暗順応眼」と称した。

c) 非明順応に光照射を与える方法
「暗順応値」測定後、実験室全体を暗室とし、他の中の光が入らないように覆をした。2V の炷電球で、測定下肢及び測定装置だけを照し、光を当てた部
分と被験者の頭部との間には黒布で遮光をし、眼が不要な光線で乱されることのない様に充分注意した。
光照射には第1図の光学系を利用した。光源は60〜100Wの白熱電球を使用し、直径10cm、従10cmの
四角な摺子子の screen の後方10cmの位置で、栄養
化学実験装置の遮光計を置いて遮光を測定し、次いで左
眼は黒布で遮光をし、右眼の眼帯を外して遮光計
と同じ位置に角膜表面が置かれるようにし、screen
中心を指標させた。これを白色光照射とした。照射開始
後と同時に測定を始めた。

次に、遮光の変更には Wallis クールの neutral density
(N. D.) filter を用いた。

第1図 綱膜全照射用光学系

23才から35才迄の眼疾患を有しない健康な男女を6
名使用した。実験に当つては開始前少しとも1時間休
息させ、2時間は飲食物をとらぬよう注意した。

Ⅱ 実験成績

A 全網膜白色光照射による安静骨格筋の興
奮性の変化

a) 明顕応値

同一被験者について、同一測定日に於ける測定、及
び日を異にした測定の何れの場合でも、第1表に示す
ように「筋」、「神経」共に±2％の範囲内にて一定の値
を示した。

第1表 各被験者の明顕応値

<table>
<thead>
<tr>
<th>姓 名</th>
<th>性</th>
<th>明顕応値(0.5μF V/Vr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>男</td>
<td>1.17〜1.18</td>
</tr>
<tr>
<td>W</td>
<td>男</td>
<td>1.23〜1.26</td>
</tr>
<tr>
<td>M</td>
<td>男</td>
<td>1.12〜1.16</td>
</tr>
<tr>
<td>K</td>
<td>男</td>
<td>1.08〜1.11</td>
</tr>
<tr>
<td>F</td>
<td>男</td>
<td>1.08〜1.10</td>
</tr>
</tbody>
</table>

b) 潜在応値

明顕応値を遮光すると、安静にしていて疲労していて
ない者の m. rect. fem. について、V/Vr 値は「筋」
「神経」共に測定数増し、20〜40分後に最低値を示し
この値をそれ以後につけた。この時間的経過は慢性
(2)と全く同様な成績であった（第3図、第4図）。

潜在応値は第2表に示すように、同一被験者に関し
て、同一測定日に於ける測定でも、日を異にした測定

第2図 綱膜部分照射用光学系
に於いても，一定の値を示した。

第2表 各被験者の暗順応値

<table>
<thead>
<tr>
<th>姓 名</th>
<th>性</th>
<th>暗順応値 (0.5μF V/Vr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z H</td>
<td>♂</td>
<td>1.06～1.07 1.06～1.08</td>
</tr>
<tr>
<td>Y A</td>
<td>♂</td>
<td>1.05～1.07 1.05～1.07</td>
</tr>
<tr>
<td>M O</td>
<td>♂</td>
<td>1.04～1.06 1.04～1.06</td>
</tr>
<tr>
<td>S K</td>
<td>♂</td>
<td>1.04～1.06 1.04～1.07</td>
</tr>
<tr>
<td>K M</td>
<td>♀</td>
<td>1.03～1.07 1.03～1.08</td>
</tr>
<tr>
<td>F T</td>
<td>♀</td>
<td>1.04～1.06 1.04～1.06</td>
</tr>
</tbody>
</table>

第3図 白色光全室照射による骨格筋興奮性的
変化の時間的経過（共の1）
（白色光 65lux「神経」）

第4図（共の2）
（白色光 35lux「筋」）

c) 白色光全室照射による骨格筋興奮性的
変化の時間的経過

充分な暗順応後に，白色光全室照射を与えると，
m. rect. fem. の V/Vr 値は急激に増大し，次で光照
射を継続しているに拘らず，V/Vr 値は再び急速に下
降し始めて一定の値を示した。この値は明順応値に一
致した。此のような V/Vr 値の変動は「筋」と「神
経」の何れについても観られた（第3図，第4図）。

又 Vr は V/Vr とはほぼ同様な経過を示す場合もあり
たが，時には低下を続けることもみられ一定しなかっ
た。これは従来の報告⑦⑧⑨と同様であった。

上記の V/Vr 値の時間的経過は，光照射を始めた後測
定には1回約1分間を要したが，第1回の測定では
V/Vr 値は不変であった。即ち約1分間の暗臓期を経
て増加し始め，増加の途中に一つの折れ目（knickung）
を示した。即ち二相性の経過を示している事がわかった。
被験者別及び照明により異るが，光照射開始約
3～4分後，V/Vr 値は一定の値を示すやかに上昇し，
一時上昇を停止し，その後再び上昇し，再び下落し
た。これを繰返すに二つの曲線部分から成立してい
るものをと考えられる。前者を第1次曲線，後者を第2
次曲線と称した。

なお，此の二相性の曲線は10lux 以下の照明では，
第1次曲線が観られ，第2次曲線は認められなかった
（第5図）。

第5図（共の3）
（白色光 16lux 「筋」）

B 白色光全室照射による安静骨格筋の
興奮性の変化の時間的経過

主として網膜中心窩及び周辺部を白色光照射を与
え，この2種の照射照射による安静骨格筋にあらわし
る V/Vr 値の変動を m. rect. fem. について測定し
た。第2図に示した光学系を用い光の照射を行った
が，この照明照射の光は，網膜内に於て摂々光反射さ
れ，期待される様に中心窩のみ，又は周辺部のみを模
拟的に照射する事は不可能である。

又 Wright⑩の述べている様に中心窩を光照射する
場合，被験者は殆ど数秒間しか光照射に耐え得ない
と云われるが、上記の方法を、中心窓照射と着敷した。

又周辺部のみの光照射の場合は、被験者は明るいと
感ずるのみで、外観的に眼を動かずに光照射に耐え
得た。

実験に際しては、全例に於て左眼は遮光したまま、
右眼に光照射を与えた。光を与えれば、瞳光はこれに
反応して変化する。強い光では瞳光がやおしい、そのた
め困難照射の条件が不明である。これを一定するた
め、予め30分間で5% Neo-Synephrinを2回点眼し
て、充分に散瞳させた。

第6図に示した様に、2病の光照射のうちの最も
安息m, rect. fem.のV/Vr値は、急に増大した。

i）中心窓を照射した時は、2～3分の潜伏期を経
て、V/Vr値は急に増大して最大値を示し、再び急
激に減少して、暗順応値に戻った。後一定不変値を保
った。しかしながらこの場合、増大後減少して暗順応値
に戻って一定した例もあった（第6図）。

ii）一方、周辺部のみの照射では、約1分の潜伏期
を経て安息m, rect. fem.のV/Vr値は徐々に増大し
て最大値を示し、次いで減少し暗順応値に戻った（第
6図）。

第6図 綱膜中心窩又は周辺部のみの光照射
によるV/Vr値の時間的経過

「神経」

第8巻 第7号

C 経様の照度による光照射と安息骨格筋の
興奮性の変化について

「明順応値」、「暗順応値」を測定した後、第2回の
光学系をN. D. filterを用いて、照度を様々なに変化させ
網膜に対して光照射を与えた。この際観察される骨格
筋興奮性の変化をm. rect. fem.にて測定した。照
順応値は第3表に示した。

光照射開始後のV/Vr値が最高に到る迄の時間を
「頂点時」とする。照度が大きい程「頂点時」はやや
延長した。

頂点時から明順応値に戻る迄の時間を、「明順応
回復時間」とすると、照度との間に直線の傾斜が観察
された。

第3表 経様の光照射による照度骨格
筋興奮性の変化及実測V/Vr
値 subj. Z. H. & 2才

「神経」

実験

| 実験
番号 | ルッ
1.18	1.06	1.16	1.09	3分	0分		
27	8	1.18	1.06	1.16	1.09	3分	0分
6	16	1.18	1.06	1.28	1.21	6	2
19	16	1.18	1.08	1.25	1.16	4	2
23	19	1.18	1.07	1.24	1.16	4	1
4	32	1.19	1.08	1.31	1.21	7	10
20	32	1.18	1.07	1.34	1.25	6	5
25	32	1.18	1.07	1.34	1.25	6	5
15	54	1.17	1.06	1.49	1.40	7	7
21	68	1.18	1.07	1.46	1.36	6	7
24	68	1.18	1.17	1.41	1.32	6	6
18	115	1.17	1.06	1.50	1.41	12	16
22	115	1.18	1.06	1.53	1.44	5	7
28	125	1.16	1.07	1.45	1.35	6	7
26	147	1.17	1.08	1.55	1.44	6	9

「筋」

実験

| 実験
番号 | ルッ
1.17	1.07	1.08	1.10	4分	0分		
29	8	1.18	1.06	1.26	1.19	8	3
8	16	1.18	1.06	1.26	1.19	8	3
11	16	1.17	1.06	1.22	1.15	7	3
14	30	1.18	1.07	1.36	1.30	8	4
15	30	1.18	1.07	1.37	1.24	6	8
7	60	1.18	1.07	1.44	1.35	7	9
13	60	1.17	1.06	1.44	1.34	7	5
9	85	1.17	1.06	1.45	1.37	5	9
15	125	1.17	1.07	1.48	1.38	9	17
16	135	1.17	1.06	1.48	1.40	10	7
光照射時の最大V/Vr 値 = 増加率 (I. r.) と称した。

増加率と光照射の間の変動率との関係は、照度の対数値とI. r. との間に、略々直線的又は、S字状の関係のある事が判った (第7, 8 図)。又 S字状関係の観られた場合でも、10から80lux の間では直線的関係を示した。

第4表 種々の照度の白色照射による安静骨格筋の変化 V/Vr 平均値

<table>
<thead>
<tr>
<th>Lux</th>
<th>明顕</th>
<th>明顕</th>
<th>最高値</th>
<th>増加率</th>
<th>頂点時</th>
<th>明顕</th>
<th>明顕</th>
<th>最高値</th>
<th>増加率</th>
<th>頂点時</th>
<th>明顕</th>
<th>明顕</th>
<th>最高値</th>
<th>増加率</th>
<th>頂点時</th>
<th>明顕</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>明顕</td>
<td>座顕</td>
<td></td>
<td></td>
<td></td>
<td>明顕</td>
<td>明顕</td>
<td></td>
<td></td>
<td></td>
<td>明顕</td>
<td>明顕</td>
<td></td>
<td></td>
<td></td>
<td>明顕</td>
</tr>
<tr>
<td>8</td>
<td>1.18</td>
<td>1.05</td>
<td>1.19</td>
<td>1.13</td>
<td>3.6分</td>
<td>0分</td>
<td>1.14</td>
<td>1.06</td>
<td>1.17</td>
<td>1.10</td>
<td>3.0分</td>
<td>0分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.18</td>
<td>1.05</td>
<td>1.25</td>
<td>1.19</td>
<td>5.0</td>
<td>2.6</td>
<td>1.14</td>
<td>1.07</td>
<td>1.27</td>
<td>1.19</td>
<td>4.3</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.18</td>
<td>1.05</td>
<td>1.36</td>
<td>1.30</td>
<td>4.5</td>
<td>4.0</td>
<td>1.16</td>
<td>1.06</td>
<td>1.35</td>
<td>1.26</td>
<td>6.0</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1.18</td>
<td>1.05</td>
<td>1.46</td>
<td>1.39</td>
<td>6.2</td>
<td>7.8</td>
<td>1.16</td>
<td>1.07</td>
<td>1.46</td>
<td>1.38</td>
<td>5.5</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>1.18</td>
<td>1.05</td>
<td>1.47</td>
<td>1.40</td>
<td>7.0</td>
<td>7.0</td>
<td>1.18</td>
<td>1.06</td>
<td>1.51</td>
<td>1.42</td>
<td>6.1</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第7図 実測V/Vr 値
subi. Z. H. 21才

第8図 V/Vr 平均値

第5表 白色光照射に対する Ach の効果 平均値 照度：65lux

<table>
<thead>
<tr>
<th>氏名</th>
<th>実験回数</th>
<th>最高値</th>
<th>頂点時</th>
<th>明顕</th>
<th>頂点時</th>
<th>明顕</th>
<th>頂点時</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. M</td>
<td>3</td>
<td>1.23</td>
<td>(1.46)</td>
<td>4 (7)</td>
<td>3 (7)</td>
<td>3 (7)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>H. I</td>
<td>2</td>
<td>1.22</td>
<td>(1.48)</td>
<td>4 (6)</td>
<td>4 (7)</td>
<td>3 (7)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>M. O</td>
<td>2</td>
<td>1.18</td>
<td></td>
<td>5</td>
<td>5</td>
<td>1.18</td>
<td>4</td>
</tr>
</tbody>
</table>
Oviout: 13～18×10^{-4} g/kg を上肢及び下注射終了後5 分を経て、65lux の明るさの白色光全黒暗照射を与え、Ach の疲労抑制作用を観察。第5 表に示す様に、最高 V/Vr 値は Ach の非注射時に比べて小さな値を示した。観察、明順応回復時間では中等か注射時に比し短かかった。即ち Ach 注射によっては、白色光照射による V/Vr 値の上昇は一部抑制された。

IV 総括並びに考察

A 明順応障の遮光する事によって、安定骨格筋の V/Vr 値の減少を観察。V/Vr 値は遮光20分乃至40分で最小値を示し、その後の値を観察した。V/Vr 値の経過は左下(図1)の報告と同様であった。

暗光連続を白色光照射を与えると、安定して同動しない時の骨格筋の V/Vr 値の増大を観察した。この V/Vr 値の増大は和合の報告の如く疲労の発生と著効される。

光照射による疲労の経過は、約1分間の遮光期を経て、V/Vr 値は途中に一つの折れ目(knickung)を示しながら上昇し、合併に示す明順応値に等しくなり、その後増大を続けた。

和合は、m. ext. poll. 長に Moss の Ergogramm により疲労を起させると、安定して疲労していない管の m. rect. fem. に疲労の表われる事を観察、疲労が消え伝導される事を報告した。又高橋は、ガマの1個の n. ischiadicus を入射器に刺激して刺激し、m. gastrocnemius に電流を流させると、血行がある時は他の筋の m. gastrocnemius に疲労が表われるが、血行を止めてある時には、疲労が表われない事を報告し、又は時の左右の n. ischiadicus を切断しても同一結果となったから疲労が屈樞性のものでなく、液性伝導する事を動物実験によって証明した。

光照射によって約1分間の遮光期の後、m. rect. fem. に疲労が表われる事は触器に発生した疲労の原因が液性伝導され、m. rect. fem. に到達する迄の時間と考えられ、全身の血液循環時間の45～50secと一致する。

Hechtは、暗順応の時間的経過について光感覚を示標として測定すると、その経過に二相性の折れ目が見られ、その折れ目に前は筋状体細胞、後は筋状体細胞の暗順応により生じると述べている。

網膜の部分照射の場合、中心部照射を筋状体細胞照射、周辺部照射を筋状体細胞照射と考えると、各二種の照射による夫々の疲労の数値を基に、全網膜照射による疲労曲線の二相性があらわれ、第1次曲線は筋状体筋顔面機能、第2次曲線筋状体筋顔面機能によると考えられる。

本研究は網膜光照射と安定骨格筋における V/Vr 値の変化との相関関係であるが、Hecht の実験とは全く異っているにもかかわらず、筋状体細胞及び筋状体細胞との差異が見られる現象を本実験に現れている事は本質的に異なる部位を有するものと考えられる。

和合の15分間暗光をさせると、安定して疲労していない管の骨格筋に、疲労が表われる事を報告し、この疲労は屈樞性過剰によるものであると述べている。

又倉田は強音を聞くことと、安定骨格筋に疲労が表われる事を報告し、知覚制御を加え、又は除却する事によって、精神活動をうながし、その結果筋の興奮性の変化を来たす事を観察している。即ち神経性の刺激の有無が、安定骨格筋に影響して、V/Vr 値の増大並びに減少を来たすと述べている。

本実験に於ける光照射による安定骨格筋の疲労は、一部に液性伝導、又一部は和合、倉田の実験の如く、液性伝導の原因によって考えられる。

B 照度と骨格筋疲労

照度の対数と、疲労の発生点との関係は、直線的関係を認めた。又観察、明順応回復時間は照度の大きい範囲時間は延長を示した。

Chaffe and Hampsonは白色光照射刺激で生じる ERG の b 波の大きさは、high intensity range では、log1（照度）に比例すると述べている。

本実験は安定骨格筋の筋の変化であり、Chaffe and Hampsonは ERG であって、本実験は全く別種のものであるが、共通する成績も得た。即ちいづれも屈樞性刺激強度の増加に従って、ERG の b 波が、又 V/Vr 値が対数的に増大した点は同一であった。

C Ach の効果

Del Pozoは食血のある猫の骨格筋を間接的に刺激して、観血が何秒30秒以上の時は transmission fatigue が生じ、20秒以下の時は contraction fatigue となり、20秒と30秒の中間の頻度では両者の混合が起こる事を報告している。

又 transmission fatigue は Ach によって抑制され、contraction fatigue は Ach によって抑制されないという報告もある。

又和合は人体に関して、下肢を線間隔で伸縮させ、足間隔に2.02kgを負荷して、10秒乃至20秒支え
6）暗順応像に白色光で照射した場合に観られる骨格筋の V/Vr 値の増大は，Ach ではない完全に阻止出来なかった。
これらは本実験の疲労が transmission fatigue のみではなく contraction fatigue との混合であると考えられる。

文 献
①潮注道男 日本生理誌 Vol. 19, No. 2 ⑤和合卯太郎 信州大学紀要 2 号 ⑨和合卯太郎 信州大学紀要 4 号 ②和合卯太郎 信州大学紀要 3 号 ③和合卯太郎 日本生理誌 Vol. 12, No. 5
三田俊定 日本生理誌 Vol. 18, No. 5 ⑨Del Pozo E. C. Amer. J. Physiol. 135; 763, 1942