Diffusion Respiration に関する研究
昭和33年10月10日 受付
信州大学医学部第一外科教室
（指導：星子直行教授，岩月賢一助教授）
杉 山 敏 雄

Experimental Studies on Diffusion Respiration
Toshio Sugiyama
Department of Surgery, Faculty of Medicine, Shinshu University
(Directors: Prof. N. Hoshikyo and Assist. Prof. K. Iwatsuki)

緒 言
気管内麻醉の普及に伴い、気管内挿管に際して、筋弛緩剤を使用する場合が増加しているが、筋弛緩剤使用時呼吸停止によって起る anoxia を予防することは、臨床上部に留意しなければならない重要な問題である。特に挿管時の anoxia は特に心停止等の重篤なる合併症を招来する重要な因子と考えられる。
Nahas (1955) 等は筋弛緩剤を使用して挿管を行う場合、anoxia を防ぐ意味からとしても充分な酸素を含む脱酸素素 (denitrogenation) を行うことの重要性を指摘している。

著者はベントパルピタイアールで麻酔した犬にサファリコリンコトライドを静脈内に注射して呼吸運動を停止させ、次いで一定流量の酸素を気管内チューブを通じて肺内に送入して所調 diffusion respiration を行い、この際脱酸素素を行った場合と行わなかった場合の各種について、血液ガス、血液 pH を測定すると共に、同時に血圧心電図を記録して両者の場合の比較研究を行い、diffusion respiration の際に於ける脱酸素素の意義を検討した。

実験方法
体重10〜15kg の健康犬を用い、ベントパルピタイアール20〜30mmHg の筋肉内注射により麻酔し、気管内チューブを挿入、内心8mm、側管の内心4mm の T 字管を介して、（1）自発呼吸時100％酸素を毎分5L、20分間流して脱酸素を行、続くサファリコリンコトライド0.5〜0.6mg/kg を静脈内に注射して呼吸を停止させ、呼吸運動の停止した状態にて100％酸素を毎分5L 流した場合。（2）気管内チューブを挿入後、気道を空気中に開放し、無呼吸及び循環状態の安定を要する、サファリコリンコトライド0.5〜0.6mg/kg を静脈内に注射し呼吸を停止させ、呼吸運動停止と同時に100％酸素を毎分5L 流した場合。

（3）（2）の場合と同様に呼吸を停止させた後、100％酸素を毎分5L 及び10L 送入、T 字管側管に Y 字管を連結、側管の一方向を水圧計に装着し、一方の側管を指針にて閉鎖。気道内圧が10〜15cmH2O に達する時強化を助力させ、次いで指針を除き、かえる人工呼吸を毎分10〜12回行行った場合。以上2つの場合につき、呼吸停止前及び diffusion respiration 開始後5分、10分、20分、30分、45分に血液ガスを測定した。即ち左肺動脈より動脈血を動脈パラメーターに収集。Van Slyke 氏検圧法により酸素、炭酸ガス及び塩素量を測定し、一方別の試験管に採取した血液を用いて、Beckmann pH計により血液pHを測定した。Pco2 の算出は Singer のモノグラムによった。一方右前股動脈にカニューレを挿入し、股動脈血圧をカテーテラ化オムを用いて描描。心電図は四肢麻酔により福田製RS-22型直記式心電計を用いて同時描描し、主として I 調導により観察した。

実験成績
1 血液ガス、pH、Pco2
（1）脱酸素素施行後 diffusion respiration を行った場合
成績は表1 に示す通りである。動脈血酸素飽和度は呼吸運動を停止し diffusion respiration を開始してから徐々に下降の傾向を示したが、30分後は比較的良好に維持された。6 例の平均では呼吸停止前98.3％、diffusion respiration 開始後5分で97.0％、10分で96.6％、30分では94.6％となったが、45分では更に低下して86.7％となった。動脈血中酸素ガス含有量は diffusion respiration 開始後徐々に増加し、呼吸停止前41.7Vol.％に達し、5分で57.1Vol.％となり、以後時間の経過と共に増加を続け45分では68.0Vol.％となった。動脈血中塩酸ガス含有量は呼吸停止と共に徐々に増加の傾向を示し、呼吸停止前1.23Vol.％に対し30分後1.59Vol.％、45分では1.51Vol.％となった。動脈血中塩素 pH の変動は呼吸停止前1.37に対し徐々に低下し、45分では6.91となった。動脈血 Pco2 について見ると、呼吸停止前35.5mmHgに対し、時間の経過と
表1. Denitrogenation 施行後 Diffusion Respirationを行った場合の血液ガスの変動

<table>
<thead>
<tr>
<th>効率</th>
<th>pH</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39.8</td>
<td>51.7</td>
<td>69.5</td>
<td>129.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37.8</td>
<td>59.5</td>
<td>62.0</td>
<td>83.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>42.5</td>
<td>61.0</td>
<td>80.5</td>
<td>105.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>36.0</td>
<td>68.0</td>
<td>89.0</td>
<td>194.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.4</td>
<td>55.0</td>
<td>72.0</td>
<td>210.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>31.4</td>
<td>67.5</td>
<td>75.0</td>
<td>175.0</td>
<td></td>
</tr>
</tbody>
</table>

表2. Denitrogenation を施行せずに Diffusion Respirationを行った場合の血液ガスの変動

<table>
<thead>
<tr>
<th>効率</th>
<th>pH</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
<th>Ｐｒｏｚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.0</td>
<td>62.5</td>
<td>78.0</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>44.5</td>
<td>62.5</td>
<td>80.5</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51.0</td>
<td>73.0</td>
<td>91.0</td>
<td>128.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51.0</td>
<td>57.0</td>
<td>68.2</td>
<td>106.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>52.0</td>
<td>78.2</td>
<td>118.0</td>
<td>140.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46.8</td>
<td>61.0</td>
<td>91.0</td>
<td>128.0</td>
<td></td>
</tr>
</tbody>
</table>

共に急速な上昇が見られ、20分で83.1mmHg、30分で100.1mmHg、45分で120mmHg以上ととなった。

（2）監視下を施術せずにdiffusion respirationを行った場合

成績は表2に示す加くである。動脈血酸素飽和度は呼吸停止前5分頃迄はやや上昇し、十分量極小低下し、2分以後は急激な下降を示した。6例の平均で呼吸停止前90.1％に対し、5分で96.0％となり、10分で89.7％、20分で52.1％となった。動脈血中酸素ガス含有量は呼吸停止と共に急激に増加して、呼吸停止前
44.5Vol.%に対し，5分で54.1Vol.%，10分で58.7Vol.%，20分では65.1Vol.%，30分では66.1Vol.%となった。動脈血中酸素濃度は呼吸停止前3.06Vol.%に対し，5分で1.83Vol.%，以後徐々に増加して20分で2.00Vol.%，30分では2.05Vol.%となった。動脈血pHについて見ると，6例の平均で呼吸停止前7.28に対し徐々に低下し，30分で7.06となった。動脈血Pco₂は呼吸停止と共に急激に上昇し，呼吸停止前48.1mmHgに対し，5分で65.7mmHg，20分では112.1mmHg，30分では120mmHg以上となった。

（3）T字管の側管の開閉により人工呼吸を行った場合

表3a及びbに示す如く，動脈血酸素濃度は呼吸を停止し，人工呼吸を開始してから頻繁に上昇を続け，10～20分以後に於て略々一定の値となった。酸素流流量15Lの場合，3例の平均で人工呼吸開始前98.9％に対し，10分で95.0％，20分で96.6％，30分では97.4％となり，酸素流流量10Lの場合は，4例の平均で人工呼吸開始前90.0％に対し，10分で97.0％，20分で97.3％，30分では97.8％となった。動脈血中酸素ガス含有量は，酸素流流量15Lでは人工呼吸開始前と比し著変の変化は見られず，酸素流流量10Lの場合は人工呼吸を開始してから徐々に減少して，人工呼吸開始前49.4Vol.%に対し，30分で44.1Vol.%となった。動脈血中酸素濃度は人工呼吸開始と共に減少し，5分後は急激に，10分以後は徐々に減少して行った。

以上の成績をグラフに示すと，図1～5に示す通りである。

【II】脈搏数，血圧及び心電図

（1）酸素輸送後diffusion respirationを行った場合

呼吸停止後，脈搏数は後々に減少し，6例の平均で呼吸停止前184に対し，10分で104，15分で96となつた。血圧は前半比較的よく維持され，15分頃より上昇を始め30分頃に著明に上昇し，振幅も増大した。以後は徐々に下降の傾向を示した。1例を示すと図6a，bの如く，収縮期血圧は呼吸停止前140mmHgに対し，30分後には170mmHgとなり，以後は下降して45分では120mmHgとなった。心電図では図7に示す如く5分に於て既にR－R間隔の延長，Rの増高を認め，10分頃よりTの増高が現われ，20～30分頃には非常に著明となった。40～45分ではRは更に増高し，STの低下が認められた。心停止は48分より68分の間に起り，6例の平均死亡時間は61分である。

（2）酸素輸送後diffusion respirationを行った場合

脈搏数は呼吸停止後数次減少して，6例の平均で呼吸停止前192に対し，5分で140，10分で120となり，15分頃より律動は不整となった。血圧は初期徐々に上昇し，15分頃より急激に上昇を始め，20分頃に血圧の

<table>
<thead>
<tr>
<th>番号</th>
<th>呼吸止</th>
<th>5分</th>
<th>10分</th>
<th>20分</th>
<th>30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>動脈血酸素濃度 (%)</td>
<td>平均値</td>
<td>88.9</td>
<td>93.2</td>
<td>86.0</td>
<td>96.4</td>
</tr>
<tr>
<td>動脈血液ガス量 (Vol%)</td>
<td>平均値</td>
<td>45.5</td>
<td>46.5</td>
<td>47.4</td>
<td>44.4</td>
</tr>
</tbody>
</table>

表3a T tube使用による人工呼吸（酸素流流量 5L/min）

<table>
<thead>
<tr>
<th>番号</th>
<th>呼吸止</th>
<th>5分</th>
<th>10分</th>
<th>20分</th>
<th>30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>動脈血酸素濃度 (%)</td>
<td>平均値</td>
<td>90.0</td>
<td>95.7</td>
<td>97.0</td>
<td>97.3</td>
</tr>
<tr>
<td>動脈血液ガス量 (Vol%)</td>
<td>平均値</td>
<td>49.4</td>
<td>46.0</td>
<td>45.5</td>
<td>44.7</td>
</tr>
</tbody>
</table>

表3b T tube使用による人工呼吸（酸素流流量 10L/min）

表3c T tube使用による人工呼吸（酸素流流量 15L/min）
図 1. 動脈血酸素飽和度

図 2. 動脈血中炭酸ガス含有量

図 3. 動脈血中窒素含有量

上昇と共に脈圧は増大してビーグを作り、以後急速に下降して死亡する。図 8 に示す例について見ると、収縮圧は呼吸停止時106mmHgに対して15分で120 mmHg、20分では急激に上昇して170mmHgとなり以後著明に下降して遂に動物は死亡した。電図は図 9 に示す如く、2分30秒後に於て既に T の増高が現われ、5分では R - R 間隔、S T 間隔の延長が認められ10分では更に著明となった。15〜20分では以上の変化は更に強くなり、不整脈が現われ、T の増高は特に著明となった。25分では R は低下し T の増高が顕著となり、頻脈、不整脈が認められた。32分に於ては心室性期外収縮が認められた。心停止は25分より38分の間に起り6例の平均死亡時間は23分であった。

（10）T tube を使用して人工呼吸を行った場合の血圧は図10に示す如く、陽圧呼気による脈圧の変動は著明に見られるが、血圧の上昇乃至下降は見られなかった。

考察
diffusion respiration については1944年以来、Draper等、Whitehead、Roth、Spencer、Parry等により一連の研究が報告されている。Dra-per等は犬を用いて呼吸停止前20分間100%酸素を
図 6. a Denitrogenation 施行後 Diffusion Respiration を行った場合の血圧曲線
（呼吸停止前より呼吸停止後25分迄）

図 6. b Denitrogenation 施行後 Diffusion Respiration を行った場合の血圧曲線
（呼吸停止後 20分→30分及び40分→50分）

呼吸させた後、ベントサールの浸潤液により45分間apneaの状態に維持し、その後100％酸素を送入し、その後人工呼吸を行い再発させることに成功した。Drapeer等はこれを diffusion respiration と呼び、長時間のapneaの後にも再発し得るのはhemoglobin oxygen pump の作用あるとし、その為の必須の条件として、

（1）気道が確保されていること。
（2）血圧、血液及び組織中の中酸素を酸素により置換させること。
（3）100％酸素の存在。
（4）循環が充分行われていること。
図 7. Dinitrogenation 施行後 Diffusion Respiration を行った場合の心電図

Shieres 等は筋弛緩剤としてテクラノニウムを使用して呼吸運動を停止させ、diffusion respiration を行った際の尿量の減少乃至無尿、心搏出量の減少を記載している。

Nahas は d-tubocurarine の注射により呼吸を停止させ、脱窒素を 20 分間行ってから気道を 100% 酸素に接合し半閉鎖にした状態を apneic oxygenation と呼び、脱窒素を行わず気道を空気中に開放した場合とを比較検討した。Nahas の成績では apneic oxygenation の場合、5 分間の呼吸停止により動脈血 pH が 7.2 に低下してもよく耐えられることが出来る。即ち動脈血が酸素で充分に飽和されている場合は pH 5.2 の低下にもよく耐えられることが出来るが、脱窒素を行わずに呼吸停止をさせた場合には、急速に anoxia が進み 2 分以内に循環失調の傾向が現われる事より、筋弛緩剤を使用する場合はそれに伴う呼吸停止の際の anoxia を防ぐ意味から、筋弛緩剤投与前に脱窒素を行うことが重要であると言われている。

著者の成績でも脱窒素を行った場合の前半約 30 分間は高度の hypercapnea があるにもかかわらず動脈血
図 8. Denitrogenation を行わず Diffusion Respiration を行った場合の血圧曲線

図 9. Denitrogenation 順を行わず Diffusion Respiration を行った場合の心電図

酸素飽和度は比較的よく保たれたが、脱窒素を行わなかった場合には、呼吸停止後10分で動脈血酸素飽和度は89.7%となり、20分では50.7%と急激に低下してanoxia は著明となり、動脈血 Pco₂ の上昇、pH の低下、窒息量の増加等の変化も早期より激しく現われ、且つ動物も前者より短い時間で死亡した。

Parryらはdiffusion respiration の前半に心室性期外収縮を認め、之はペントサールによる心室抑制の結果であると述べている。Nahasらはapneic oxygenation の場合、脈搏数の減少と共に大動脈圧は上昇するが、心電図上洞性低脈以外の不整脈は見られず、脱窒素を行わずacute apneic hypoxia を起した
図10. Artificial Respiration（T tube使用、酸素流量5L/min）

時は、2分後心筋障害を認め、血圧は下降すると云つ
ている。古川等はサクシニールコリンクロライドを
静注してdiffusion respirationを行い、初期及び前
半に動脈時脈、動脈時脈の他に心室性期外
収縮の発生を発表している。西村は、古川
の述べている加く不整脈とanoxia、hypercapnea
とは密接な関係にあり、麻酔中性質調律、期外収縮が
見られるときはST、Tの変化と相まって anoxia、
hypercapnea の存在に注目すべきことを強調してい
る。古賀はサクシニールコリンクロライドの使用の
際にお心電図的にR—R間隔の範囲を延長を認め、同時
に起こりSTの変化は無呼吸に起因するanoxiaに関係す
るとの云い、Johnstoneはサクシニールコリンクロ
ライド静注後32%に徐脈が認められ、100例中37例に
displaced pacemakerが認められたことである。

著者の実験に於けるも、予防脱窒素の施行された場合に
は前半約20分は血圧の変動は少なく、高度のhypercap-
neaの状態にあるにもかかわらず、動脈時脈の他に
不整脈は見られなかった。脱窒素を施行した場合
には、血液ガスの変化と共に血圧は上昇し、比較的早期
より動脈時脈、動脈時脈が見られ、且つ心繊維乃至
心室性期外収縮が認められた。

以上の結果から呼吸停止前に組織、血液、肺胞内の
窒素を酸素で充分換換させた場合、その初期に於ては
動脈血酸素飽和度は比較的よく維持されて、hypercap-
nea、循環系の変化にも耐えられるものと考える。筋
弛緩剤を使用するときは、前もって100%酸素を投与
して充分に脱窒素を行うことが望ましい。

次に人工呼吸法については、Jacoby、Reed等は
簡易な人工呼吸法として気管内に先端の細くなれた13
gauge の針を挿入して間歇的に100%酸素を吸入させる
方法を提唱し、緊急を要する場合に対しては気管切
開後に代って用いることが出来ると述べている。著者
の行ったT tube使用による人工呼吸法では血液ガス
は良好な状態に維持されて、血圧の変動は認められた
かった。急性呼吸停止等の緊急を要する際に應用し
て、容易に人工呼吸を施行することが出来、呼吸停止
に伴う anoxia、hypercapnea を予防し得るものと考え
る。

脱窒素を行うに必要な有効酸素流量につき、Darling
は純酸素の吸入により7分で肺胞内酸素は排出され
ると云い、Hamilton等によれば脱窒素の目的に
は、半閉鎖で4L/min.以上のガス流量を必要とすると述べ
ば、脱窒素の排出曲線は図11の如く、4L/min.の場合、
呼気中の酸素量は2〜3分で10%以下になると云う。上
と同様は non-rebreathing 系を用いて分時呼吸量の
流出量で酸素を流したとき肺胞内酸素ガスの排出は2〜
3分で完了し、半閉鎖系を用いた場合でも流量を分時呼
吸量に等しくすると同様に脱窒素は早く完了すると云
っている。即ち脱窒素を完全に行うには半閉鎖系では分
時呼吸量に等しい酸素流量で数分間100%酸素を呼吸
させる必要がある。しかし流量を余り大きくすると呼
吸の停止が障害され、肺胞ガスの酸素を来す危険性も
あり得る。

脱窒素を行わない場合に、時間の経過と共に anoxia
が著明となるが、これは筋弛緩剤使用によって急激に
呼吸停止を起こさせた場合、死脅及び脳内には80％の酸素が存在し、常に脳及び組織中に吸い込んでいた酸素が次第に脳内に排出されて、脳内酸素分圧の低下を招くことになり、anoxiaを促進するものと考えられる。即ち組織及び血液中の酸素の肺胞内濃度の拡散によるdiffusion anoxiaが、一方心拍出量の減少と相まって重要な因子となるものと考えられる。

総括及び結論

麻酔犬にサチューニールコリンクロライドを静脈内に注射し呼吸運動を停止させ、これに100％酸素を肺内に吹送して所謂diffusion respirationを行った場合の血液ガスの変動及び血圧、脈搏、心電図等の変化を、予め100％酸素を20分間吸入させて脳虚無を行った場合と然らざる場合とを比較検討し、次に知事を得た。

（1）脱気虚無行後diffusion respirationを行った場合は、動脈血酸素飽和度は30分以上に比較的よく維持されていたが、その後は下降する傾向を示した。

動脈血PCo2、炭酸ガス含有量は次第に上昇し、血漿pHは低下した。血圧は呼吸停止後15分頃より徐々に上昇し、30分頃に著明上昇を示し、以後は次第に下降した。心電図には前半動脈虚無が見られ、後半はanoxiaに伴う心房障害を示す変化が認められた。

（2）脱気虚無を施行せずdiffusion respirationを行った場合は、呼吸運動停止と共に動脈血PCo2、炭酸ガス含有量は急激に上昇し、血漿pHは速やかに酸性に陥り、動脈血酸素飽和度は既に10分頃より下降を示し、20分以後は著しく低下を示し、血圧は初期より徐々に下降し、15分頃より急激に上昇を始め、20分頃より徐々に下降を示した。心電図には既に初期より動脈虚無、動脈虚無後認められ、後半及び末期に

は心房性乃至心室性期外収縮等の不整脈が認められた。

（3）呼吸運動停止後T tubeを用いて閉管を周辺的に開閉して人工呼吸を行った場合にはdiffusion respirationの場合に見られた様な変化は認められず、血液ガスの状態及び血圧は良好に保たれた。

以上の成績より次の如き結論を得た。

1）呼吸運動の存在しない場合酸素を吹送するdiffusion respirationによっても、ある時間内に動物を生存させ得るが、炭酸ガスの蓄積はきわめて少ない。脱気虚無を行わない時には、早期よりanoxiaを合併し、循環系等の重要なる障害も多たる。筋弛緩剤を使用する場合にはしばしば呼吸停止を来すので、予め充分に酸素を与え脱気虚無を行う必要がある。

2）T tube使用の人工呼吸法は急性呼吸虚無に対して救命的処置として有効である。

3）diffusion respirationに伴うanoxiaの成因として、組織細胞内酸素の肺胞内への排出によるdiffusion anoxiaが一つの因子と考えられる。

摘を終らに臨み、御懇談なる御指導、御債随を賜った恩師馬子直行教授並びに岩月賢一教授には深甚なる感謝の意を表し、終始絶大なる御協力をいただいた治坂和一氏、立木光氏の御厚意に深謝する。

文献

呼吸調節の研究

第二編 病態生理学的研究

昭和33年10月14日受付
信州大学医学部第一外科教室
（指導：黒子直行教授，岩月賢一助教授）

生坂和一

Studies on Artificial Pulmonary Control
Part II: Pathophysiological Studies

Waichi Ikusaka

(Department of Surgery, Faculty of Medicine, Shinshu University)
(Directors: Prof. N. Hoshiko and Assist. Prof. K. Iwatsuki)

緒言

閉鎖性循環式麻酔に於て最も重要視すべき点は蒸気ガス濃度及び酸素欠乏である。これらの状態は主として換気障害によっておこるものであるから、これを排除するためには必要に応じて人工換気を補助する必要がある。この際可及的生理的状態に近づくため容易ならしめるためには如何なる方法がよいか今日なお論議のあつまるところである。著者はこの点を明らかにするため動脈換気及び肺葉換気（閉鎖的肺気圧換気，陰圧換気）の際における血液ガス，呼吸気ガス，血圧，肺動脈圧，心電図，心電出量等を，動物及び臨床例につき検討し，主として病態生理学的な面からこれらの呼吸調節の方法を比較検討した。

実験方法

（1）10～26kgの健康犬をベントハウス状態で25～30mg/kgの筋肉内注射によって麻酔し，水平背臥位に固定。肺管内チューブを挿入し，閉鎖性循環式麻酔装置にて通気した。臨床例においても同様に肺管内チューブを挿入した。

（2）動脈血圧及び呼吸曲線の描記は，第一編に述べた方法と同様である。心電図は福田製 R-S 22 型電気心電計を用い，肺動脈圧は心カテーテル法により，原点を静脈波のカテーテル挿入部位として，福田製ビペットレコーダーを用い記録した。