原著

グルクロン酸代謝に関する研究（6）

健康人及び貧血患者における血中及び尿中抱合型グルクロン酸量

昭和32年3月22日受付

信州大学医学部敬岡内科（主任：敬岡教授）
長野通信病院内科（院長：小野製作博士）

井内正彦

略　言
1955年Fishmanが抱合型グルクロン酸の定量法を報告して以来、二、三抱合型グルクロン酸についての報告が見られるようになった。しかし人体における血液、血球及び尿中抱合型グルクロン酸量の関係についての報告は殆どなく、又貧血患者における抱合型グルクロン酸量についての報告はない。著者は健康人及び貧血患者における全血、血球及び尿中抱合型グルクロン酸量及び尿中抱合型グルクロン酸量を測定したのでその結果について報告する。

検査対象
長野通信病院における勤務者及び入院患者について朝空腹時に採血し、尿は朝八時から翌朝八時迄放置したものについて測定した。

実験方法
血液及び尿中抱合型グルクロン酸の測定はFishmanのナフトレゾリシオン（ナフトレゾリシオンはナフトレゾリシオン
ンカルボン酸バリウムを使用し、塩酸を加えバリウムをはさんで用いた）による発色反応を用い、尿中グルコン酸型グルクロン酸及び尿中抱合型グルクロン酸の測定はDischeのカルバゾールによる発色反応により、光電比色計を用い、Filterはナフトレゾリシオン法では570μμ、カルバゾール法では530μμを用いて比色測定した。

血液100cc中の血清抱合型グルクロン酸量は全血抱合型グルクロン酸量及び血球抱合型グルクロン酸量の差から間接的に求め、別に血液100cc中の抱合型グルクロン酸量を直接測定した。

表1 Glucuronide of total blood, blood cells and plasma in normal adults. (Unit mg./100ml.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>Red cell (×10⁴)</th>
<th>Hb (％)</th>
<th>Glucuronide in 100ml. of total blood</th>
<th>Blood cells</th>
<th>Plasma (100ml.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. N.</td>
<td>30</td>
<td>♀</td>
<td>430</td>
<td>95</td>
<td>2.5</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>K. N.</td>
<td>24</td>
<td>♀</td>
<td>400</td>
<td>80</td>
<td>2.7</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>H. O.</td>
<td>40</td>
<td>♀</td>
<td>410</td>
<td>90</td>
<td>2.5</td>
<td>2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>T. S.</td>
<td>31</td>
<td>♀</td>
<td>400</td>
<td>85</td>
<td>2.7</td>
<td>2.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Y. M.</td>
<td>32</td>
<td>♀</td>
<td>430</td>
<td>90</td>
<td>3.0</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>T. S.</td>
<td>38</td>
<td>♀</td>
<td>420</td>
<td>80</td>
<td>2.7</td>
<td>2.3</td>
<td>0.4</td>
</tr>
<tr>
<td>S. Y.</td>
<td>26</td>
<td>♀</td>
<td>440</td>
<td>95</td>
<td>3.0</td>
<td>2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>H. O.</td>
<td>41</td>
<td>♀</td>
<td>440</td>
<td>90</td>
<td>3.3</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>K. O.</td>
<td>36</td>
<td>♀</td>
<td>450</td>
<td>90</td>
<td>2.8</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>J. K.</td>
<td>35</td>
<td>♀</td>
<td>420</td>
<td>95</td>
<td>3.0</td>
<td>2.6</td>
<td>0.4</td>
</tr>
<tr>
<td>K. K.</td>
<td>17</td>
<td>♀</td>
<td>440</td>
<td>95</td>
<td>2.8</td>
<td>2.3</td>
<td>0.5</td>
</tr>
<tr>
<td>H. O.</td>
<td>18</td>
<td>♀</td>
<td>480</td>
<td>100</td>
<td>3.4</td>
<td>2.9</td>
<td>0.5</td>
</tr>
<tr>
<td>K. M.</td>
<td>18</td>
<td>♀</td>
<td>420</td>
<td>85</td>
<td>2.7</td>
<td>2.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Y. Y.</td>
<td>17</td>
<td>♀</td>
<td>400</td>
<td>85</td>
<td>2.1</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>K. O.</td>
<td>19</td>
<td>♀</td>
<td>410</td>
<td>90</td>
<td>2.1</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>M. S.</td>
<td>23</td>
<td>♀</td>
<td>430</td>
<td>90</td>
<td>2.7</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>S. Y.</td>
<td>17</td>
<td>♀</td>
<td>470</td>
<td>100</td>
<td>2.8</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>K. K.</td>
<td>18</td>
<td>♀</td>
<td>430</td>
<td>90</td>
<td>2.6</td>
<td>1.9</td>
<td>3.7</td>
</tr>
<tr>
<td>R. N.</td>
<td>28</td>
<td>♀</td>
<td>460</td>
<td>95</td>
<td>2.8</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>U. T.</td>
<td>19</td>
<td>♀</td>
<td>410</td>
<td>80</td>
<td>2.7</td>
<td>2.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Average 2.75 2.26 0.49 0.90

Total blood 2.95≥ m ≥ 2.55 (α = 0.01)
Blood cells 2.45≥ m ≥ 2.07 (α = 0.01)
Plasma 0.61≥ m ≥ 0.37 (α = 0.01)
Plasma 100ml 1.15≥ m ≥ 0.65 (α = 0.01)
Table 2 グルコース誘導体の血液値の推移

<table>
<thead>
<tr>
<th>検体名</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>T. K.</td>
<td>Total blood</td>
</tr>
<tr>
<td></td>
<td>Blood cells</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td></td>
<td>Plasma 100ml.</td>
</tr>
<tr>
<td>T. S.</td>
<td>Total blood</td>
</tr>
<tr>
<td></td>
<td>Blood cells</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td></td>
<td>Plasma 100ml.</td>
</tr>
<tr>
<td>K. K.</td>
<td>Total blood</td>
</tr>
<tr>
<td></td>
<td>Blood cells</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td></td>
<td>Plasma 100ml.</td>
</tr>
<tr>
<td>Y. J.</td>
<td>Total blood</td>
</tr>
<tr>
<td></td>
<td>Blood cells</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td></td>
<td>Plasma 100ml.</td>
</tr>
<tr>
<td>Average</td>
<td>Total blood</td>
</tr>
<tr>
<td></td>
<td>Blood cells</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td></td>
<td>Plasma 100ml.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>S S</th>
<th>D F</th>
<th>MS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>0.7145</td>
<td>3 – 1 = 3</td>
<td>0.3573**</td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>0.9087</td>
<td>4 – 1 = 3</td>
<td>0.3029**</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.1188</td>
<td>2 x 3 = 6</td>
<td>0.0198</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.7420</td>
<td>12 – 1 = 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 尿中のグルコースとグルコン酸の比較

<table>
<thead>
<tr>
<th>全体</th>
<th>グルコース誘導体</th>
<th>グルコン酸</th>
<th>脱水酸化物</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K. N.</td>
<td>420</td>
<td>390</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Y. U.</td>
<td>380</td>
<td>330</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>K. I.</td>
<td>480</td>
<td>470</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>M. I.</td>
<td>400</td>
<td>310</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>K. W.</td>
<td>320</td>
<td>300</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>K. S.</td>
<td>270</td>
<td>270</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Y. M.</td>
<td>380</td>
<td>280</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>K. N.</td>
<td>310</td>
<td>260</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>K. T.</td>
<td>390</td>
<td>320</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>K. U.</td>
<td>360</td>
<td>250</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>T. S.</td>
<td>380</td>
<td>330</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>T. E.</td>
<td>460</td>
<td>400</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>K. O.</td>
<td>350</td>
<td>280</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>H. O.</td>
<td>300</td>
<td>250</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>T. O.</td>
<td>400</td>
<td>310</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>M. Y.</td>
<td>390</td>
<td>360</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>R. Y.</td>
<td>400</td>
<td>290</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>G. K.</td>
<td>260</td>
<td>260</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>T. O.</td>
<td>450</td>
<td>430</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>T. N.</td>
<td>400</td>
<td>340</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>375.0</td>
<td>318.5</td>
<td>56.5</td>
<td></td>
</tr>
</tbody>
</table>

Total glucuronide acid 413.3 ± 336.7 (a = 0.01)
Glucoside glucuronide 357.5 ± 279.6 (a = 0.01)
Ester glucuronide 77.7 ± 35.3 (a = 0.01)

実験結果

1) 健康人における全血、血液及び血漿のポリオール

血液熱量 400万以上の健康人20例の血液100cc中の全血、血漿及び血漿のポリオール グルコン酸酸度

赤血球数 400万以上の健康人20例の血液100cc中の全血、血漿及び血漿のポリオールグルコン酸酸度及び血漿100cc中の補体型グルコン酸酸度は第1表に示した如く、それぞれ2.1〜3.4mg/1, 1.7〜2.9mg/1, 0.2〜0.9mg/1及び0.3〜1.6mg/1で、男女の間に有意差が見出せなかった。

その平均値はそれぞれ2.75mg/1, 2.26mg/1, 0.49mg/1及び0.90mg/1である。又これらの値の信頼限界を95％の信頼度で求めて見ると、それぞれ245±m>0.55mg, 245±m>0.27mg, 0.86±m>0.07mg及び1.15±m>0.65mgである。又赤血球100万に対する血液ポリオール グルコン酸酸度の平均値は0.526mg/1である。

2) 療法投与による血中両型グルコン酸酸度の変動

十二指腸虫症の患者4例のオーミン(1-プロモ2-ナフトール)1.5万乃至2.0mg経口投与後における血液100cc中の全血、血液酸値、血漿ポリオール酸及び血漿100cc中の補体型グルコン酸酸度の変動は第2表に示した如く、その平均値は投与前1.9mg, 1.4mg, 0.5mg, 0.9mg, 投与後1時間では2.2mg, 1.4mg, 0.8mg, 1.5mg, 投与後2時間では1.6mg, 1.4mg, 0.1mg, 0.4mgである。これらの値を検定して見ると血液100cc中の全血、血液ポリオール酸値及び血漿100cc中の補体型グルコン酸酸度は1％の危険率で有意の変動を示すが血漿ポリオール酸値は変動を示さない。すなわち血液100cc中の全血、血液ポリオール
第6巻 第3号

Table 4 Glucuronide of total blood, blood cells and plasma in anemic patients. (Unit: mg/100ml)

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>Red cell Hb</th>
<th>Glucuronide content in 100ml of total blood</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(×10^12)</td>
<td>(％)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total blood</td>
<td>Blood cells</td>
<td>Plasma</td>
</tr>
<tr>
<td>K. N</td>
<td>36</td>
<td>男</td>
<td>300</td>
<td>55</td>
<td>2.1</td>
</tr>
<tr>
<td>H. U</td>
<td>50</td>
<td>男</td>
<td>280</td>
<td>60</td>
<td>1.7</td>
</tr>
<tr>
<td>K. T</td>
<td>30</td>
<td>男</td>
<td>200</td>
<td>40</td>
<td>1.8</td>
</tr>
<tr>
<td>K. M</td>
<td>28</td>
<td>男</td>
<td>370</td>
<td>55</td>
<td>2.1</td>
</tr>
<tr>
<td>K. M</td>
<td>33</td>
<td>男</td>
<td>300</td>
<td>50</td>
<td>1.6</td>
</tr>
<tr>
<td>S. W</td>
<td>60</td>
<td>男</td>
<td>280</td>
<td>60</td>
<td>1.4</td>
</tr>
<tr>
<td>T. K</td>
<td>27</td>
<td>男</td>
<td>350</td>
<td>70</td>
<td>1.9</td>
</tr>
<tr>
<td>T. K</td>
<td>35</td>
<td>男</td>
<td>370</td>
<td>50</td>
<td>2.1</td>
</tr>
<tr>
<td>M. Y</td>
<td>25</td>
<td>女</td>
<td>300</td>
<td>55</td>
<td>2.0</td>
</tr>
<tr>
<td>I. K</td>
<td>25</td>
<td>女</td>
<td>210</td>
<td>40</td>
<td>1.6</td>
</tr>
<tr>
<td>Y. U</td>
<td>30</td>
<td>女</td>
<td>270</td>
<td>55</td>
<td>2.1</td>
</tr>
<tr>
<td>T. K</td>
<td>35</td>
<td>女</td>
<td>310</td>
<td>60</td>
<td>2.3</td>
</tr>
<tr>
<td>Y. T</td>
<td>30</td>
<td>女</td>
<td>300</td>
<td>60</td>
<td>2.2</td>
</tr>
<tr>
<td>T. I</td>
<td>17</td>
<td>女</td>
<td>320</td>
<td>70</td>
<td>2.3</td>
</tr>
<tr>
<td>K. K</td>
<td>28</td>
<td>女</td>
<td>310</td>
<td>60</td>
<td>2.1</td>
</tr>
<tr>
<td>M. A</td>
<td>40</td>
<td>女</td>
<td>180</td>
<td>35</td>
<td>1.1</td>
</tr>
<tr>
<td>T. T</td>
<td>60</td>
<td>女</td>
<td>450</td>
<td>45</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Average: Total blood, Ts=7.79>Tssa (0.01)
Blood cells, Ts=8.33>Tsa (0.01)
Plasma, Ts=2.62>Tsa (0.05)
Plasma 100ml, Ts=4.58>Tsa (0.01)

4) 貧血患者における血液、血球及び血漿型グルクロン酸量

赤血球数400万以下の貧血患者を例示して、血液100cc中の血液及び血液型グルクロン酸量及び赤血球100cc中の血漿型グルクロン酸量及び血液100cc中の血漿型グルクロン酸量が捕らえたとされるが、これらの値が健康人の平均値と比較すると血液100cc中の血液及び血液型グルクロン酸量及び血液100cc中の血漿型グルクロン酸量は血液100cc中の赤血球型グルクロン酸量は1％の危険率で有意の差を示し、血液100cc中の血漿型グルクロン酸量は5％の危険率で有意の差を示す。

5) 貧血度と血漿型グルクロン酸量

貧血患者の血液100cc中の血液型グルクロン酸量及び血液100cc中の血漿型グルクロン酸量は第1图に示したとおりである。これを検定してみると、貧血度が増大するにつれて血漿型グルクロン酸量が減少する。
考察

血液中頻値型グルタロン濃度については、Fishman①及び井上②は血液頻値型グルタロン酸濃度として、
又田原は血液中頻値型グルタロン酸濃度として、

図の回帰直線の式は以下の通りです。

\[y = 0.520 \times 10^9 \]

\[y = 0.809 \times 10^9 \]
ガルコン酸量と赤血球数との間に密接な関係が認められる。又オーミー投与の実験成績からすると薬物の投与による血液中拠合型ガルコン酸量の変動は血液中の拠合型ガルコン酸量の変動によるものである。以上の事から血液中拠合型ガルコン酸は全血よりむしろ血液について測定するのが適当と考えられる。貧血患者においては血液中拠合型ガルコン酸量は減少している。これは主として赤血球数の減少によるものであると考えられる。

小括
健康人及び貧血患者における血液100cc中の全血、血球及び血漿拠合型ガルコン酸量及び血漿100cc中の拠合型ガルコン酸量を測定し、次に結果を示す。
1) 健康人20例における血液100cc中の全血、血球及び血漿拠合型ガルコン酸量及び血漿100cc中の拠合型ガルコン酸量はそれぞれ2.95±m±2.55mg (a=0.01), 2.45±m±2.07mg (a=0.01), 0.61±m±0.37mg (a=0.01) 及び1.15±m±0.55mg (a=0.01) である。
2) オーミー(1-プロム2ナフトール)を投与すると血液中拠合型ガルコン酸量は増加し、ついで減少する。これは血漿拠合型ガルコン酸量の変動による。
3) 健康人20例における1日尿中拠合型ガルコン酸、ガルコン酸後同型ガルコン酸及びエステル型ガルコン酸排泄量をそれぞれ、413.3±m±336.7mg (a=0.01), 357.5±m±297.9mg (a=0.01) 及び77.7±m±35.3mg (a=0.01) であり、遊離のガルコン酸は認められない。
4) 貧血患者18例における血液100cc中の全血、血球拠合型ガルコン酸量及び血漿100cc中の拠合型ガルコン酸量は健康人に比し1%の危険率で有意の減少を示し、又血液100cc中の血漿ガルコン酸量は5%の危険率で有意の減少を示した。

文献
2) 井上：第24回消化器病学会口演, 1956, 4.
3) 田坂：第2回ガルコン酸研究会口演, 1956, 5.

Studies on the Metabolism of Glucuronic Acid (6)
Glucuronide in blood and plasma of normal adults and anemic patients, and glucuronic acid in the urine of normal adults
Masahiko Iuchi
Department of Internal Medicine, Faculty of Medicine, Shinshu University
(Director: Prof. M. MatsuoKA)

Glucuronide in blood and plasma of normal adults and anemic patients, and glucuronic acid in the urine of normal adults were measured by Fishman's method and following results were obtained.

1) Glucuronide of total blood, blood cells and plasma in 100ml of blood, and of 100ml of plasma ranged from 2.1 to 3.4 average 2.75mg. (total blood); from 1.7 to 2.6, average 2.26mg. (blood cells); from 0.2 to 0.9, average 0.49mg. (plasma) in 100ml of blood, and from 0.3 to 1.6, average 0.90mg. in 100ml of plasma respectively.

2) The alteration of blood glucuronide after the oral administration of 1-Bromo Naphthol-2 was attributed to the change of plasma glucuronide.

3) Total glucuronic acid, glucoside glucuronide and ester glucuronide in the urine ranged from 260 to 480, average 375.0mg.; from 200 to 470, average 318.5mg. and from 0 to 110, average 56.5mg. respectively.

4) In anemic patients, glucuronide of total blood, blood cells and plasma in 100ml of blood, and of 100ml of plasma decreased in proportion to the severity of anemia.