Pancreaticobiliary Fistula Evident after ESWL Treatment of Pancreatolithiasis

Norikazu Arakura¹, Yayoi Ozaki¹, Masafumi Maruyama¹, Yoshimi Chou¹, Ryou Kodama¹, Mari Takayama¹, Hideaki Hamano¹, Eiji Tanaka¹ and Shigeyuki Kawa²

Abstract

Here we report a patient with a pancreaticobiliary fistula that was possibly associated with pancreatolithiasis. He was admitted due to mild pancreatitis. Pancreatolithiasis was revealed in the parenchyma of the head region and in the main pancreatic duct of the pancreas body with distal dilatation. Extracorporeal shock wave lithotripsy (ESWL) effectively eliminated the pancreatic stones; however, an apparent internal fistula from the middle portion of the common bile duct (CBD) to the main pancreatic duct was revealed where the parenchymal stones had been located. The patient was considered to be in the same condition as pancreato-biliary malunion without CBD dilatation, and was treated with laparoscopic cholecystectomy.

Key words: pancreaticobiliary fistula, pancreatolithiasis, extracorporeal shock wave lithotripsy

(Intern Med 48: 545-549, 2009)
(DOI: 10.2169/internalmedicine.48.1788)

Introduction

Pancreaticobiliary fistula is a rare condition generally associated with pancreatic pseudocysts (1-18), acute necrotizing pancreatitis (19, 20), pancreatic abscesses (21, 22), and intraductal papillary-mucinous pancreatic neoplasm (IPMN) (23-25). This pathological condition generally presents symptoms such as hemobilia or obstructive jaundice soon after fistulous formation, or is found pathologically after operation on pancreatic pseudocysts caused by acute pancreatitis (13). Here, we report a patient with pancreaticobiliary fistula with an acute attack of chronic pancreatitis due to the compression of the main pancreatic duct (MPD) by pancreatolithiasis, which in turn caused stasis of pancreatic juice and formation of pancreatolithiasis in the distal MPD. In this case, pancreaticobiliary fistula became apparent after elimination of stones by extracorporeal shock wave lithotripsy (ESWL), indicating that the pancreatic stone in the fistula had blocked communication between the fistula and MPD. Because this pancreaticobiliary fistula was considered to be the same condition as pancreato-biliary malunion without dilatation of the common bile duct (CBD), we performed only laparoscopic cholecystectomy to prevent the occurrence of malignancy.

Case Report

A 66-year-old man who was an alcoholic with no history of acute pancreatitis, pancreatic cysts or severe abdominal pain complained of epigastralgia and nausea and visited his family physician in March 2006. Blood tests showed elevation of fast plasma glucose and CRP (Table 1). CT, magnetic resonance cholangio-pancreatography (MRCP) and endoscopic retrograde cholangio-pancreatography (ERCP) showed compression and narrowing of MPD at the head region due to pancreatolithiasis in the parenchyma (Figs. 2, 3a, 4a, 4b), which in turn resulted in dilatation and stone formation in the distal MPD. We performed ESWL treatment (LITHOSTAR SC...
6002XL, Siemens, Erlangen, Germany) for pancreatolithiasis, as the pancreatitis attack was thought to be induced by parenchymal stones that compressed and narrowed MPD, resulting in stasis of pancreatic juice. After complete elimination of stones by ESWL, MRCP and ERCP showed apparent pancreaticobiliary fistula between the branched pancreatic duct and middle portion of CBD in a manner of Y with separated orifices at the CBD end (Figs. 3b, 5a, 5b), and collected bile juice showed elevation of amylase (65,250 U/L). As this pancreaticobiliary fistula was considered to be the same condition as pancreatico-biliary malunion without dilatation of CBD, and as the MPD stenosis and the fistula had not changed during 4 months of follow-up periods, we performed only laparoscopic cholecystectomy to prevent the occurrence of biliary malignancy. Pathological findings of gall bladder showed mild diffuse chronic inflammatory change, but not hyperplasia of the epithelium, which is frequently observed in cases of pancreato-biliary malunion.

Table 1. Patient Laboratory Data

<table>
<thead>
<tr>
<th>Hematology</th>
<th>AMY</th>
<th>63 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>4360/mm³</td>
<td>11 mg/dL</td>
</tr>
<tr>
<td>RBC</td>
<td>439 × 10³/mm³</td>
<td>Cr 0.79 mg/dL</td>
</tr>
<tr>
<td>Hb</td>
<td>13.9 g/dL</td>
<td>Na 142 mEq/L</td>
</tr>
<tr>
<td>Ht</td>
<td>41.3%</td>
<td>K 3.3 mEq/L</td>
</tr>
<tr>
<td>Plt</td>
<td>19.5 × 10³/mm³</td>
<td>Cl 104 mg/dL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca 8.6 mg/dL</td>
</tr>
<tr>
<td>Blood Chemistry</td>
<td></td>
<td>Fast plasma glucose 126 mg/dL</td>
</tr>
<tr>
<td>TP</td>
<td>7.2 g/dL</td>
<td>Serological examination</td>
</tr>
<tr>
<td>Alb</td>
<td>4.1 g/dL</td>
<td>T. Bil 0.92 mg/dL</td>
</tr>
<tr>
<td>T. Bil</td>
<td>0.92 mg/dL</td>
<td>CRP 0.60 mg/dL</td>
</tr>
<tr>
<td>D. Bil</td>
<td>0.50 mg/dL</td>
<td>HbA1c 5.6%</td>
</tr>
<tr>
<td>AST</td>
<td>14 IU/L</td>
<td>CEA 2.3 ng/mL</td>
</tr>
<tr>
<td>ALT</td>
<td>7 IU/L</td>
<td>CA19-9 19.7 U/mL</td>
</tr>
<tr>
<td>ALP</td>
<td>321 IU/L</td>
<td>γ-GTP 20 U/L</td>
</tr>
</tbody>
</table>

Discussion

Pancreaticobiliary fistulae are rarely seen complications of chronic pancreatitis, and are usually formed secondary to the formation of pancreatic pseudocysts (1-18), acute necrotizing pancreatitis (19, 20), pancreatic abscesses (21, 22), and intraductal papillary-mucinous pancreatic neoplasm (IPMN) (23-25), except for iatrogenic causes (26). This rare condition is also caused by pancreatic tuberculosis (27). Pancreaticobiliary fistulization is generally thought to be formed after compression of the expanding cyst to the bile duct wall and resultant inflammatory reaction in cases of pancreatic pseudocyst. Even in cases of IPMN, tumor invasion to the bile duct wall occurred in only 50% of the reported cases, and the other 50% of the cases were considered to be derived from cystic compression to the bile duct and inflammation as shown in pancreatic pseudocysts (23).

The pathogenesis of the present pancreaticobiliary fistuli-
Figure 3a. MRCP on admission. The arrowheads indicate pancreatolithiasis with a low intensity area in the main pancreatic duct.

Figure 3b. MRCP after extracorporeal shock wave lithotripsy (ESWL). A pancreaticobiliary fistula (arrowhead) was found between the dilated branch where pancreatolithiasis was found before ESWL and the middle portion of the bile duct.

Figure 4a. ERCP on admission showed narrowing of the main pancreatic duct of the pancreatic head with distal dilation. Pancreatolithiasis was found near the narrowing of the main pancreatic duct (arrowhead) and in the main pancreatic duct of the pancreatic body (arrow).

Figure 4b. Schema of Figure 4a. Common bile duct (long arrow), main pancreatic duct (short arrow), pancreatic stone (arrowhead), narrowing of the main pancreatic duct (small arrow).

zation is possibly due to either of the following mechanisms: 1) a pancreatic pseudocyst, which previously formed after alcoholic pancreatitis but was now absent and communicated to the CBD, or 2) a branched intraductal stone had induced the stasis of pancreatic juice, which in turn injured the bile duct wall directly, resulting in pancreaticobiliary fistulization. Regarding the first mechanism, the patient had previously shown no apparent symptoms due to pseudocyst formation. As it is implausible that the pancreaticobiliary fistula had formed without apparent symptoms, we believe the first mechanism can be ruled out. On the other hand, it is possible that the stone in the branched duct induced fistula formation, because the dilated fistula divided in a Y manner and communicated with the bile duct separately with the same shape of branched pancreatic ducts. However, it is difficult to determine which mechanism functioned in the pathogenesis, and whether the pancreatic stone caused the fistula or was a result of fistula.

There have been few reports of pancreaticobiliary fistula with pancreatolithiasis. The reason for this small association between pancreatolithiasis and pancreaticobiliary fistula is early diagnosis or prompt treatment of fistulization seen in common pathological conditions of expanding pancreatic pseudocysts derived from acute pancreatitis or internal hemorrhage (13), and obstructive jaundice found in IPMN (24). If a stone in the branched duct caused the stasis of pancreatic juice and made a small retention cyst without symptoms, which in turn injured the bile duct wall and resulted in fistula formation, the pancreaticobiliary fistula was not detectable because the stone obstructed the fistula as in this present case.

Therapy for pancreaticobiliary fistula in IPMN has primarily been surgical resection of tumor and fistula (24). Transarterial embolism, endoscopic pseudocyst drainage and surgical resection have been performed in cases of pseudocysts, as hemobilia derived from intracystic bleeding or acute growth required prompt therapy (17). There has been
no agreement concerning the direct treatment for pancreatobiliary fistula, as the preoperative diagnosis for this condition is very difficult to ascertain. Several patients with this disease were conservatively treated with a pancreatic stent (16, 21, 22). We were unable to perform pancreatic stent therapy for this patient, as we concluded that the pancreatobiliary fistula would not close with this procedure due to long stricture of the main pancreatic duct and diffusely apparent pancreatobiliary fistula. Because the condition had not changed during 4 months of follow-up periods, we selected only cholecystectomy according to the standard treatment of pancreato-biliary malunion without dilatation of the CBD in order to prevent the occurrence of gallbladder cancer. The lack of dilatation of CBD and the patient’s old age did not favor the choice of pancreatoduodenectomy. Pathological findings of gall bladder showed mild diffuse chronic inflammatory change, though hyperplasia of the epithelium is frequently observed in cases of pancreatic-biliary malunion. The primary reason for this absence of hyperplasia was thought to be related to the short duration after fistula formation or obstruction of the fistula by pancreatic stone.

In conclusion, we report a rare case of pancreatobiliary fistula that was evident after ESWL treatment of pancreato-lithiasis, and speculate that the stone in the branched duct possibly caused the fistula formation.

References

