1	AMB_No. AMAB-D-12-00872_Revisd Manuscript
2	
3	Significance of the Cgl1427 gene encoding cytidylate kinase in microaerobic
4	growth of Corynebacterium glutamicum
5	
6	Seiki Takeno· Daisuke Shirakura· Nobuyoshi Tsukamoto· Satoshi Mitsuhashi· Masato
7	Ikeda
8	
9	S. Takeno· D. Shirakura· N. Tsukamoto· M. Ikeda (corresponding author)
10	Department of Bioscience and Biotechnology, Faculty of Agriculture,
11	Shinshu University, Nagano 399-4598, Japan
12	E-mail: m_ikeda@shinshu-u.ac.jp
13	Fax: +81-265-77-1629
14	
15	S. Mitsuhashi
16	Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd.,
17	Tsukuba, Ibaraki 305-0841, Japan
18	

- 20 Abstract
- 21

22	The Cgl1427 gene was previously found to be relevant to the microaerobic growth of
23	Corynebacterium glutamicum (Ikeda et al. 2009). In the present work, Cgl1427 was
24	identified as a cytidylate kinase gene (cmk) by homology analysis of its deduced amino
25	acid sequence with that of other bacterial cytidylate kinases (CMP kinases), and on the
26	basis of findings that deletion of Cgl1427 results in loss of CMP kinase activity.
27	Deletion of the <i>cmk</i> gene significantly impaired the growth of <i>C. glutamicum</i> in
28	oxygen-limiting static culture, and the impaired growth was restored by introducing a
29	plasmid containing the <i>cmk</i> gene, suggesting that this gene plays an important role in
30	microaerobic growth of C. glutamicum. On the other hand, in the main culture with
31	aerobic shaking, a prolonged lag phase was observed in the <i>cmk</i> disruptant, despite an
32	unchanged growth rate, compared to the behavior of the wild-type strain. The
33	prolongation was observed when using seed culture grown to later growth stages in
34	which oxygen limitation occurred, but not observed when using seed culture grown to
35	an earlier growth stage in which oxygen remained relatively plentiful. Since nucleotide
36	biosynthesis in C. glutamicum requires oxygen, we hypothesized that the ability of the

37	cmk disruptant to synthesize nucleotides was influenced by oxygen limitation in the
38	later growth stages of the seed culture, which caused the prolongation of the lag phase
39	in the following shaken culture. To verify this hypothesis, a plasmid containing genes
40	encoding all components of a homologous ribonucleotide reductase, a key enzyme for
41	nucleotide synthesis that requires oxygen for its reaction, was introduced into the <i>cmk</i>
42	disruptant, which significantly ameliorated the lag phase prolongation. Furthermore,
43	this experimental setup almost completely restored the growth of the <i>cmk</i> disruptant in
44	the oxygen-limiting static culture. These results indicate that CMP kinase plays an
45	important role in normal nucleotide biosynthesis under an oxygen-limiting environment.
46	
47	Key words: cytidylate kinase, nucleotide synthesis, oxygen, microaerobic growth,
48	Corynebacterium glutamicum
49	
50	
51	Introduction
52	
53	An aerobic microorganism, Corynebacterium glutamicum, has been used for production
54	of various amino acids (Kinoshita and Nakayama 1978). For C. glutamicum as well as

55	for most industrial aerobic microorganisms, oxygen is a very important factor for
56	growth and production. Under oxygen limitation, production strains usually accumulate
57	undesirable organic acids, which results in damaged fermentation with decreased
58	production yields. For this reason, considerable effort and expense have been devoted to
59	ensure that such production environments maintain a high oxygen supply (Oka 1999;
60	Ikeda 2003). If, however, we can develop so-called low-O ₂ adapted strains that produce
61	amino acids efficiently even under oxygen limitation, this will be industrially significant
62	from the viewpoint of cost savings. Such technology does not yet exist, but a few
63	studies have adopted a common method in research, namely, the use of Vitreoscilla
64	hemoglobin (VHb). Research on biotechnological applications using VHb has described
65	increased production of antibiotics (Priscila et al. 2008; Liu et al. 2010; Zhu et al. 2011),
66	biopolymers (Horng et al. 2010; Chien et al. 2006), and biochemicals (Liu et al. 2008;
67	Li et al. 2010). The positive effects are generally presumed to be due to VHb-enhanced
68	oxygen delivery to the respiratory chain, which facilitates respiration under hypoxic
69	conditions. These studies are examples showing that oxygen availability is associated
70	with respiration.
71	In a previous study, we revealed that wild-type C. glutamicum can grow even

72 in environments with low oxygen concentration, whereas other aerobic bacteria cannot

73	(Takeno et al. 2007). Therefore, this bacterium is speculated to have certain functions
74	for adaptation to low oxygen environments. Elucidation and subsequent improvement of
75	such functions may lead to new technologies for creating productive strains. For this
76	purpose, we obtained a number of high-oxygen-requiring mutants of C. glutamicum,
77	and identified genes that enable these mutants to grow under low oxygen conditions
78	(Ikeda et al. 2009). While we could provide relevant discussion for most of the genes,
79	concerning adaptability to low-oxygen environments, the Cgl1427 that is annotated as a
80	putative cytidylate kinase (CMP kinase) has not yet been satisfactorily explained. In this
81	report, we identified Cgl1427 as a CMP kinase gene (cmk) and investigated the effects
82	of Cgl1427 disruption on the growth of C. glutamicum. We describe the importance of
83	the cytidylate kinase in normal nucleotide biosynthesis under low oxygen environments.
84	Our findings indicate that the nucleotide synthetic pathway is particularly important
85	when seeking to develop low-O ₂ adapted strains (Fig. 1).
86	
87	Materials and methods
88	
89	Bacterial strain, growth conditions, and plasmids
90	

 $\mathbf{5}$

91	The wild-type C. glutamicum strain ATCC 31833 was used in this study. Complete
92	medium BY (Takeno et al. 2007) and minimal medium MM (Takeno et al. 2007), each
93	containing 20 μ g/ml of kanamycin, were used for the cultivation of ATCC 31833 and its
94	derivative recombinants. MM medium contained 1% (wt/vol) glucose as a sole carbon
95	source. Seed culture was grown in 5 mL of BY medium in test tubes at 30°C subjected
96	to reciprocal shaking at 120 strokes/min. Chronological assessment of oxygen depletion
97	under the shaking conditions set for seed cultures was done using 5 mL of MM medium
98	containing 1.0 mg/L of resazurin (Takeno et al. 2007). For the aerobic growth test,
99	liquid culture was carried out at 30°C in L-type test tubes shaken with a Monod shaker
100	at 48 strokes/min. For the growth test under oxygen-limiting conditions, liquid culture
101	was carried out statically at 30°C in test tubes (Ikeda et al. 2009). Escherichia coli
102	DH5 α was used as a host for DNA manipulation. LB medium (Sambrook and Russell
103	2001) was used to grow E. coli. Plasmid pESB30 (Mitsuhashi et al. 2004), which is
104	nonreplicative in C. glutamicum, was used for gene disruption in C. glutamicum.
105	Plasmid pCS299P (Mitsuhashi et al. 2004) was used for the expression of <i>C</i> .
106	glutamicum ribonucleotide reductase genes. Plasmid pRNR, which contains the C.
107	glutamicum nrdHIE operon and the nrdF gene, was constructed as diagramed in Fig. 5.
108	Plasmid pCcmk, which was previously designated as pBam1.8 (Ikeda et al. 2009), was

109	used for the plasmid-mediated expression of the C. glutamicum cmk gene. Plasmid
110	pEcmk, for expression of the <i>E. coli cmk</i> gene, was constructed as follows. The genomic
111	region comprising the <i>cmk</i> gene from <i>E. coli</i> K-12 W3110 was amplified by PCR using
112	two primers, cmkup200FBamHI and cmkdown400RBamHI. The resulting fragment
113	was digested with <i>Bam</i> HI and then ligated to <i>Bam</i> HI-digested pCS299P to yield pEcmk.
114	Both pCcmk and pEcmk contain the corresponding <i>cmk</i> gene, with no other intact
115	genes.
116	
117	Recombinant DNA techniques
118	
119	Standard protocols (Sambrook and Russell 2001) were used for the construction,
120	purification, and analysis of plasmid DNA and for the transformation of <i>E. coli</i> .
121	Chromosomal DNA was extracted from C. glutamicum as described by Saito and Miura
122	(1963). Transformation of C. glutamicum by electroporation was carried out using the
123	method described by van der Rest et al. (1999), using the Gene Pulser II electroporation
124	system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). PCR was performed using a
125	DNA thermal cycler (GeneAmp PCR System 9700; Applied Biosystems, Foster City,
126	CA, USA), using Phusion High-Fidelity DNA Polymerase (New England Biolabs,

ied
eset

133 Strain construction

135	The sequences of the primers used in this study are listed in Table 1. All primers were
136	designed based on the genomic sequences of C. glutamicum (BA000036) and E. coli
137	(AP009048), which are publicly available at http://www.genome.jp/kegg/genes.html.
138	For the chromosomal deletion of the cmk gene, plasmid p Δ cmk that contains
139	the internally deleted <i>cmk</i> gene was constructed as follows. The 5' region of the <i>cmk</i>
140	gene was amplified by PCR using two primers, Pr8 and Cgl1427FusR, with pBam1.8
141	(pCcmk in the present work) as a template. Similarly, the 3' region of the gene was
142	amplified using two primers, Cgl1427FusF and Pr7. Fusion PCR was then performed
143	using the purified 5' and 3' region fragments as templates, and the Pr8 and Pr7 primers.
144	The resulting 1.2-kb fragment containing the deleted <i>cmk</i> gene, shortened by in-frame

145	deletion of the inner sequence, was digested with BamHI and then ligated to
146	<i>Bam</i> HI-digested pESB30 to yield pC Δ cmk. Defined chromosomal deletion of the <i>cmk</i>
147	gene was accomplished using pC Δ cmk via two recombination events as described
148	previously (Ohnishi et al. 2002). The strain carrying the <i>cmk</i> gene deletion in a
149	wild-type background was designated strain Δ cmk. Strain Δ cmk contained the deleted
150	cmk gene which was shortened from 693 bp to 78 bp.
151	
152	Preparation of soluble fraction and enzyme assay
153	
154	C. glutamicm strains were grown to late-log phase in 200 ml of MM medium in 2-L
155	Sakaguchi flasks reciprocally shaken at 120 strokes/min. Cells were harvested by
156	centrifugation at 10,000 \times g for 10 min and then washed twice with 50 mM Tris-HCl
157	buffer (pH7.4). The cells were suspended in 4 volumes of the same buffer and sonicated
158	on ice for 5 min using a UD-200 ultrasonic disruptor (Tomy Seiko Co., Ltd., Tokyo,
159	Japan). Cell debris was removed by centrifugation at $10,000 \times g$ for 10 min, and the
160	supernatant was further ultracentrifuged at $100,000 \times g$ for 60 min using an Optima TL
161	ultracentrifuge (Beckman Coulter, Inc., Fullerton, CA, USA). The resulting supernatant
162	was dialyzed against the same buffer, and then used in the enzyme assay. All steps were

163	done at 4°C unless otherwise stated. CMP kinase activity was spectrophotometrically
164	measured at 30°C according to the methods described by Blondin et al. (1994) using an
165	Ultrospec 3000 spectrophotometer (Amersham Pharmacia Biotech, Cambridge, UK).
166	One unit of enzyme corresponds to 1 µmol of product formed per minute.
167	
168	Analysis
169	
170	Bacterial growth was monitored by measuring the optical density at 660 nm (OD_{660}) of
171	the culture broth, using a Miniphoto 518R spectrophotometer (Taitec, Saitama, Japan).
172	Protein content was determined using a Bio-Rad protein assay kit (Bio-Rad
173	Laboratories). Homology analysis was performed using GENETYX-WIN ver. 5.1.1
174	software (Genetyx Co., Tokyo, Japan).
175	
176	Results
177	
178	Homology analysis of the deduced amino acid sequence of Cgl1427, and CMP kinase
179	activity in a Cgl1427 disruptant
180	

181	Although Cgl1427 is annotated as a putative CMP kinase, this has not been confirmed
182	experimentally. The deduced amino acid sequence of Cgl1427 shows 58.2, 39.7, and
183	37.3% identity with well-defined CMP kinases of Mycobacterium tuberculosis (Thum et
184	al. 2009), E. coli (Fricke et al. 1995), and Bacillus subtilis (Schultz et al. 1997),
185	respectively. Cgl1427 is located in the C. glutamicum chromosome between Cgl1426
186	(probable RNA pseudouridylate synthase) and Cgl1428 (GTP-binding protein). The
187	same arrangement is found in <i>M. tuberculosis</i> , a species related to <i>Corynebacterium</i> . No
188	other putative CMP kinase gene is found in the C. glutamicum genomes (Ikeda and
189	Nakagawa 2003; Yukawa et al. 2007).
190	We constructed a Cgl1427 deletion mutant, strain Δ cmk, through in-frame
191	deletion of the Cgl1427 inner sequence from a wild C. glutamicum ATCC 31833 strain.
192	The soluble fraction from strain $\Delta cmk/pCS299P$ grown in MM medium exhibited a
193	reduced level of CMP kinase activity (2.34 mU/mg) compared with that of strain ATCC
194	31833/pCS299P (28.4 mU/mg). Bacterial CMP kinase also catalyzes the
195	phosphorylation of dCMP to dCDP (Thum et al. 2009). A reduced level of dCMP kinase
196	activity was also found in strain $\Delta cmk/pCS299P$ (3.68 mU/mg) compared with that of
197	strain ATCC 31833/pCS299P (12.7 mU/mg). These results indicate that Cgl1427
198	encodes the CMP kinase in C. glutamicum. Cgl1427 is referred to as the cmk gene in the

199	sections that follow. It should be noted that the data represent mean values obtained
200	using the soluble fraction from two independent cultures, which showed $< 10\%$
201	differences between each other.
202	
203	Effect of <i>cmk</i> gene disruption on the growth of <i>C. glutamicum</i>
204	
205	Our previous results that plasmid-mediated expression of the <i>cmk</i> gene restores the
206	growth defects of a variety of high-oxygen-requiring mutants of C. glutamicum in
207	oxygen-limiting static culture (Ikeda et al. 2009) indicate that the <i>cmk</i> gene is relevant
208	to microaerobic growth. In the present work, we examined the effects of <i>cmk</i> gene
209	disruption on the growth of C. glutamicum under oxygen-limiting conditions.
210	Under oxygen-limiting static conditions, the growth of strain $\Delta cmk/pCS299P$
211	was markedly damaged, but this impaired level of growth was restored to that of strain
212	ATCC 31833/pCS299P by introducing pCcmk (Fig. 2), suggesting that the CMP kinase
213	is relevant to microaerobic growth of C. glutamicum. Plasmid pEcmk that contains the
214	<i>E. coli cmk</i> gene also restored the growth of strain Δ cmk to near the level of strain
215	Δ cmk/pCcmk (Fig. 2), supporting that Cgl1427 is the <i>cmk</i> gene in <i>C. glutamicum</i> .
216	If the <i>cmk</i> gene was involved only in microaerobic growth, gene disruption

217	should have no effect on the aerobic growth of C. glutamicum. The effect of cmk gene
218	disruption on aerobic growth was examined by cultivation using routine methods; 5 mL
219	of the main medium, to which 50 μl of seed culture grown to the late-exponential phase
220	had been transferred, was subjected to aerobic shaking (Fig. 3a). The growth rate of
221	strain $\Delta cmk/pCS299P$ was almost comparable to that of strains ATCC 31833/pCS299P
222	and $\Delta cmk/pCcmk$. However, the growth curve of strain $\Delta cmk/pCS299P$ seemed to be
223	only slightly shifted backward, compared to that of strain ATCC 31833/pCS299P,
224	raising the possibility that the lag phase in strain $\Delta cmk/pCS299P$ was prolonged. To
225	verify this, we decreased the inoculum volume from 50 μl to 5 μl and then 0.5 μl , and
226	performed the same cultivation (Fig. 3b and 3c). The results showed that a prolonged
227	lag phase did emerge in strain $\Delta cmk/pCS299P$ with 5 µl of inoculum and, furthermore,
228	the prolongation was more pronounced with 0.5 μ l of inoculum, as compared with that
229	of strain ATCC 31833/pCS299P, under each condition tested. The phenotype was fully
230	complemented by pCcmk to the level of strain ATCC 31833/pCS299P, and partially
231	complemented by pEcmk (Fig. 3b). These data show that the disruption of the <i>cmk</i> gene
232	causes prolongation of the lag phase in the main culture with aerobic shaking.
233	

234 Effects of different seed culture growth phases on the lag phase of the *cmk* disruptant in

the main culture with aerobic shaking.

237As described above, prolongation of the lag phase occurred in the *cmk* disruptant, with 238no significant changes in growth rates observed in the main culture with aerobic shaking. Our hypothesis for this puzzling phenomenon is that the *cmk* disruptant, in which its 239240ability to grow under microaerobic conditions was markedly damaged (Fig. 2), suffered 241from limitation of oxygen in the later stage of the previous seed culture due to increased 242cell mass, and an intracellular carryover of the resulting disadvantage was reflected in 243the main culture as a prolongation of the lag phase. As the first step to test this 244hypothesis, shaking conditions set for cultivation of seed culture were checked for residual oxygen (Fig. 4a). The environment shifted from aerobic to oxygen-deprivation 245states; the early-exponential phase (OD_{660} = approximately 1.0) was barely aerobic 246(Photograph d inset in Fig 4a), and oxygen deprivation occurred in the mid- $(OD_{660} =$ 247approximately 2.0) and late-exponential phases (OD_{660} = approximately 4.0) 248(Photographs c and b inset in Fig 4a, respectively). Based on our hypothesis, 249prolongation of the lag phase demonstrated by the *cmk* disruptant should occur only 250251when using seed cultures grown to later growth stages during which oxygen deprivation occurs, and prolongation should not occur when using seed cultures grown to a growth 252

253	stage where oxygen remains. Accordingly, we performed the same cultivation as that
254	shown in Fig. 3b, using seed cultures grown to each growth phase (Fig. 4b, 4c, and 4d).
255	Whereas prolongation of the lag phase was observed when using seed culture grown to
256	mid- and late-exponential phases (Fig. 4c and 4b, respectively), no prolongation was
257	observed when using seed culture grown to the early-exponential phase, as expected
258	(Fig. 4d). These results suggest that the prolonged lag phase observed in strain
259	$\Delta cmk/pCS299P$ in the main culture with aerobic shaking was attributed to
260	oxygen-limitation in the seed culture.
261	
262	Effect of amplification of homologous ribonucleotide reductase genes on the growth of
263	the <i>cmk</i> disruptant
264	
265	Although nucleotide synthesis is speculated to be damaged by the <i>cmk</i> gene disruption,
266	the mechanism by which this damage influences the microaerobic physiology of this
267	strain remains unclear. We hypothesized that the damage limits the performance of a
268	certain oxygen-dependent metabolic step in the nucleotide synthetic pathway. In this
269	regard, we focused on a ribonucleotide reductase (RNR) of this strain, a key enzyme of
270	nucleotide biosynthesis and an oxygen-requiring enzyme responsible for the conversion

271	of ribonucleoside diphosphates to their corresponding deoxyribonucleoside diphosphate,
272	e.g., CDP to dCDP (Fig. 1) (Oehlmann et al. 1999; Sjoberg 2010; Kolberg et al. 2004).
273	C. glutamicum RNR is a class I RNR composed of four components; NrdH,
274	NrdI, NrdE, and NrdF (Oehlmann et al. 1999). NrdE and NrdF are large and small
275	subunits of the RNR, respectively (Hofer et al. 2012). NrdE contains the active site and
276	carries out the actual reduction of the ribonucleoside diphosphates. For this reaction,
277	radical transfer from the tyrosyl radical of NrdF to the cysteine in the active site of NrdE
278	is required. The tyrosyl radical of NrdF was recently proposed to be formed by an
279	oxygen-requiring reaction of NrdI (Cotruvo and Stubbe 2010). NrdH is a redoxin
280	protein that reduces the disulfide cysteine at the active site, which is concomitantly
281	formed by ribonucleotide diphsophate reduction.
282	If the prolongation of the lag phase and impaired growth in oxygen-limiting
283	static culture is due to a limitation in RNR function, an increased dosage of RNR should
284	complement both phenotypes of the <i>cmk</i> disruptant. Plasmid pRNR that contains genes
285	encoding all components of a homologous ribonucleotide reductase was constructed as
286	diagramed in Fig. 5 (in which the arrangement of RNR genes in the C. glutamicum
287	genome is also diagramed). The effects of amplification of RNR genes on the growth
288	properties of the <i>cmk</i> disruptant were analyzed using pRNR (Fig. 6 and 7). In the main

289	culture under shaken conditions, the prolonged lag phase, observed in cases where
290	strain $\Delta cmk/pCS299P$ was applied, was abolished to the level observed in strains ATCC
291	31833/pCS299P and $\Delta cmk/pCcmk$ by introduction of pRNR (with 5µl of inoculum, Fig.
292	6a). The ameliorating effect of pRNR on the prolongation of lag phase was evident with
293	$0.5 \ \mu l$ of inoculum (Fig. 6b). Furthermore, in oxygen-limiting static culture, the growth
294	level of strain $\Delta cmk/pRNR$ was comparable to that of strains ATCC 31833/pCS299P
295	and $\Delta cmk/pCcmk$ (Fig. 7). These results demonstrate that RNR is a determining factor
296	for growth and physiology of the <i>cmk</i> disruptant in an oxygen-limiting environment.
297	
298	Discussion
299	
300	In the present study, we found that deletion of the Cgl1427 gene encoding CMP kinase
301	reduced the ability of C. glutamicum to grow in oxygen-limiting static culture, and
302	caused a prolonged lag phase in the main culture with aerobic shaking when using seed
303	culture grown to a later growth stage in which oxygen limitation was observed. Since
304	both phenomena were concurrently resolved by amplification of genes encoding RNR, a
305	key enzyme in nucleotide synthesis that requires oxygen for its reaction, it was
306	suggested that Cgl1427 has a great impact on the efficiency of nucleotide synthesis

307	under microaerobic conditions. These findings indicate that the dispensable CMP kinase,
308	a nucleotide salvage pathway enzyme, plays an important role in the adaptability of an
309	aerobic microorganism C. glutamicum to low oxygen environment. These findings
310	direct our attention to the nucleotide synthetic pathway when seeking to improve the
311	adaptability to low oxygen environments in which producer strains are prone to fall.
312	The present study concentrated on CMP kinase and RNR. Deletion of the <i>cmk</i>
313	gene reduced enzymatic activities to trace amounts. The extensive deletion of the <i>cmk</i>
314	gene should not allow any enzymatic activities. Furthermore, no isozyme of CMP
315	kinase is found in the C. glutamicum genome. Therefore, the remaining activities are
316	now supposed to be due to the other unspecified enzyme(s) that catalyzes the
317	phosphorylation of CMP to CDP and/or dCMP to dCDP. However, because of the low
318	level of the remaining activity, such unspecified enzyme(s) hardly contributes to CDP
319	supply. The physiological role of CMP kinase is conversion of CMP, produced from
320	hydrolytic cleavage of mRNA or during synthesis of phospholipids, to the CDP required
321	for dCDP synthesis by RNR (Thum et al. 2009). C. glutamicum has only one RNR, a
322	so-called class I RNR due to its oxygen dependency. In E. coli, where only a single
323	copy of the <i>cmk</i> gene is present, <i>cmk</i> gene disruption decreased dCTP and dTTP pools,
324	most probably due to the decline in the CDP supply (Fricke et al. 1995). Moreover, it

325	has been reported that reduction of class I RNR activity progresses rapidly with
326	increasing hypoxia (Climploy et al. 2000). Taken together, low oxygen availability and
327	a decline in CDP supply synergistically limit the function of the RNR that is necessary
328	for nucleotide synthesis in C. glutamicum, which results in the impaired growth
329	observed in strain Δ cmk in the oxygen-limiting static culture (Fig. 2 and 7), and which
330	influences the physiology of the cells in the later growth stage where oxygen
331	deprivation is severe. The physiological influence appears as a prolonged lag phase in
332	the following shaken culture (Fig. 3 and 4). The lag phase is a period during which cells
333	adjust their metabolism and prepare for cell proliferation (Folch-Mallol et al. 2004). It
334	was reported with Lactococcus lactis subsp. lactis (Larsen et al. 2006) and
335	Saccharomyces cerevisiae (Brejning et al. 2003) that higher expression levels of genes
336	involved in nucleotide synthesis are observed in the lag phase, rather than in
337	exponential or stationary phases. A reliable explanation for this observation is that the
338	cells accumulate nucleotides for DNA, RNA, and ATP synthesis before they start to
339	divide (Koistinen et al. 2007). The prolonged lag phase observed in strain Δ cmk here
340	may be explained by reduced pools of nucleotides, due to low oxygen availability and
341	the decline in CDP supply. This condition of reduced nucleotide pool is carried into the
342	following culture, so more time is required to accumulate nucleotides to the

343	concentrations required for cellular proliferation. Considering that the increased level of
344	RNR by introducing pRNR complemented the both phenotypes of the <i>cmk</i> disruptant
345	(Fig. 6 and 7), it seems that oxygen is still barely present even in such low-oxygen
346	conditions. Therefore, a limited ability of RNR caused by low oxygen availability is not
347	attributed to shortage of oxygen required for radical formation in RNR. We assume that
348	low concentrations of oxygen reduce the reaction rate of RNR and thereby disable the
349	maintenance of a desirable level of nucleotide synthesis. Therefore, it is thought that the
350	enhanced level of RNR increases the total reaction rate for the ribonucleotide reduction
351	and thereby alleviates the impaired ability of the nucleotide synthesis under the
352	low-oxygen environments.
353	From an application standpoint, enhancement of CDP supply and/or
354	improvement of the RNR's functions might enable the development of low O ₂ -adapted
355	strains. We introduced pCcmk or pRNR into the wild-type strain, but no substantial
356	improvement in the ability to grow under oxygen-limiting static conditions was seen
357	(data not shown). It appears that such application is difficult for the strains retaining a
358	normal copy of these genes. It is now worthy proposing other possible ways to lead low
359	O ₂ -adapted strains. Utilization of oxygen-independent RNRs from other microbial
360	sources (Kolberg et al. 2004) is one of such candidates. Furthermore, in addition to

361	CMP kinase, utilization of polynucleotide phosphorylase, which phosphorolytically
362	cleaves mRNA to nucleoside diphosphates containing CDP (Favaro and Deho 2003),
363	might be effective for increased CDP supply. The corresponding gene is present in the C .
364	glutamicum genome, but the functional analysis of the gene has yet to be performed.
365	However, more importantly, industrial strains that have traditionally been constructed
366	by multiple rounds of mutagenesis generally have weak constitutions, showing
367	sensitivities to various stresses, including limited oxygen availability, as compared to
368	the ancestral wild-type strains (Ikeda et al. 2009). Although the genetic backgrounds of
369	such traits remain undefined, Cgl1427 is a promising target for cellular engineering of
370	industrial strains to improve their performance under low oxygen conditions, because of
371	its cross-complementation ability between the different high-oxygen-requiring mutants
372	of C. glutamicum derived by random mutagenesis (Ikeda et al. 2009).
373	
374	Acknowledgements
375	
376	We thank Y. Ueda for encouraging support of our work, and also S. Hashimoto, S.
377	Koizumi, and T. Ogawa for their useful discussion.
378	

References

381	Blondin C, Serina L, Wiesmuller L, Gilles AM, Barzu O (1994) Improved
382	spectrophotometric assay of nucleoside monophosphate kinase activity using the
383	pyruvate kinase/lactate dehydrogenase coupling system. Anal Biochem 220:219-221
384	Brejning J, Jespersen L, Arneborg N (2003) Genome-wide translational changes during
385	the lag phase of Saccharomyces cerevisiae. Arch Microbiol 179:278-294
386	Chien LJ, Chen HT, Yang PF, Lee CK (2006) Enhancement of cellulose pellicle
387	production by constitutively expressing Vitreoscilla hemoglobin in Acetobacter
388	xylinum. Biotechnol Prog 22:1598-1603
389	Climploy K, Tassotto ML, Mathews CK (2000) Ribonucleotide reductase, a possible
390	agent in deoxyribonucleotide pool asymmetries induced by hypoxia. J Biol Chem
391	275:39267-39271
392	Cotruvo JA Jr. and Stubbe J (2010) An active dimanganese(III)-tyrosyl radical cofactor
393	in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 49:1297-1309
394	Favaro R, Deho G (2003) Polynucleotide phosphorylase-deficient mutants of
395	Pseudomonas putida. J Bacteriol 185:5279-5286
396	Folch-Mallol JL, Martinez LM, Casas SJ, Yang R, Martinez-Anaya C, Lopez L,
397	Hernandez A, Nieto-Sotelo J (2004) New roles for CDC25 in growth control,

galactose regulation and cellular differentiation in Saccharomyces cerevisiae.

- 399 Microbiology 150:2865-2879
- 400 Fricke J, Neuhard J, Kelln RA, Pedersen S (1995) The *cmk* gene encoding cytidine
- 401 monophosphate kinase is located in the *rpsA* operon and is required for normal
- 402 replication rate in *Escherichia coli*. J Bacteriol 177:517-523
- 403 Hofer A, Crona M, Logan DT, Sjoberg BM (2012) DNA building blocks: keeping
- 404 control of manufacture. Crit Rev Biochem Mol Biol 47:50-63
- 405 Horng YT, Chang KC, Chien CC, Wei YH, SunYM, Soo PC (2010) Enhanced
- 406 polyhydroxybutyrate (PHB) production via the coexpressed *phaCAB* and *vgb* genes
- 407 controlled by arabinose P-BAD promoter in *Escherichia coli*. Lett Appl Microbiol
- 408 50:158-167
- 409 Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Adv
- 410 Biochem Eng Biotechnol, vol. 79, Microbial production of L-amino acids. Springer,
- 411 Berlin, Heidelberg, New York, pp 1-35
- 412 Ikeda M, Baba M, Tsukamoto N, Komatsu T, Mitsuhashi S, Takeno S (2009)
- 413 Elucidation of genes relevant to the microaerobic growth of *Corynebacterium*
- 414 *glutamicum*. Biosci Biotechnol Biochem 73:2806-2808

415	Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and
416	impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99-109
417	Kinoshita S, Nakayama K (1978) Amino acids. In: Rose AH (ed) Primary products of
418	metabolism. Academic, London, pp 209-261
419	Koistinen KM, Plumed-Ferrer C, Lehesranta SJ, Karenlampi SO, von Wright A (2007)
420	Comparison of growth-phase-dependent cytosolic proteomes of two Lactobacillus
421	plantarum strains used in food and feed fermentations. FEMS Microbiol Lett
422	273:12-21
423	Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure, function, and
424	mechanism of ribonucleotide reductases. Biochim Biophys Acta 1699:1-34
425	Larsen N, Boye M, Siegumfeldt H, Jakobsen M (2006) Differential expression of
426	proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in
427	synthetic medium and reconstituted skim milk. Appl Environ Microbiol
428	72:1173-1179
429	Li M, Wu J, Lin J, Wei D (2010) Expression of Vitreoscilla hemoglobin enhances cell
430	growth and dihydroxyacetone production in Gluconobacter oxydans. Curr Microbiol
431	61:370-375

432	Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ (2008) Microbial production of
433	L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum
434	harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol
435	77:1297-1304
436	Liu Y, Gong G, Xie L, Yuan N, Zhu C, Zhu B, Hu Y (2010) Improvement of
437	cephalosporin C production by recombinant DNA integration in Acremonium
438	chrysogenum. Mol Biotechnol 44:101-109
439	Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M (2004) A gene homologous to β -type
440	carbonic anhydrase is essential for the growth Corynebacterium glutamicum under
441	atmospheric conditions. Appl Microbiol Biotechnol 63:592-601
442	Oehlmann W, Auling G (1999) Ribonucleotide reductase (RNR) of Corynebacterium
443	glutamicum ATCC 13032-genetic characterization of a second class IV enzyme.
444	Microbiology 145:1595-1604
445	Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A
446	novel methodology employing Corynebacterium glutamicum genome information to

447 generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217-223

448	Oka T (1999) Amino acids, production processes. In: Flickinger MC, Drew SW (eds)
449	Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation.
450	Wiley, New York, pp 89-100
451	Priscila G, Fernandez FJ, Absalon AE, Suarez MR, Sainoz M, Barrios-Gonzalez J,
452	Mejia A (2008) Expression of the bacterial hemoglobin gene from Vitreoscilla
453	stercoraria increases rifamycin B production in Amycolatopsis mediterranei. J Biosci
454	Bioeng 106:493-497
455	Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol
456	treatment. Biochim Biophys Acta 72:619-629
457	Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold
458	Spring Harbor Laboratory Press, Cold Spring Harbor, New York
459	Schultz CP, Ylisastigui-Pons L, Serina L, Sakamoto H, Mantsch HH, Neuhard J, Barzu
460	O, Gilles AM (1997) Structural and catalytic properties of CMP kinase from Bacillus
461	subtilis: a comparative analysis with the homologous enzyme from Escherichia coli.
462	Arch Biochem Biophys 340:144-153
463	Sjoberg BM (2010) A never-ending story. Science 329:1475-1476

464	Takeno S,	Ohnishi J,	Komatsu	T, Masaki	T, Sen K,	, Ikeda M	(2007)) Anaerobic	growth
-----	-----------	------------	---------	-----------	-----------	-----------	--------	-------------	--------

- and potential for amino acid production by nitrate respiration in *Corynebacterium*
- 466 *glutamicum*. Appl Microbiol Biotechnol 75:1173-1182
- 467 Thum C, Schneider CZ, Palma MS, Santos DS, Basso LA (2009) The Rv1712 locus
- 468 from *Mycobacterium tuberculosis* H37Rv codes for a functional CMP kinase that
- 469 preferentially phosphorylates dCMP. J Bacteriol 191:2884-2887
- 470 Yukawa H, Omumasaba CA, Nonaka H, KosP, Okai N, Suzuki N, Suda M, Tsuge Y,
- 471 Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the
- 472 *Corynebacterium glutamicum* group and complete genome sequence of strain R.
- 473 Microbiology 153:1042-1058
- 474 Zhu H, Sun S, Zhang S (2011) Enhanced production of total flavones and
- 475 exopolysaccharides via *Vitreoscilla* hemoglobin biosynthesis in *Phellinus igniarius*.
- 476 Bioresour Technol 102:1747-1751
- 477 van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation
- 478 of *Corynebacterium glutamicum* with xenogeneic plasmid DNA. Appl Microbiol
- 479 Biotechnol 52:541-545

Figure Legends

483	Fig. 1 Metabolic pathway of pyrimidine nucleotides. CMP is produced by the hydrolytic
484	cleavage of mRNA or during synthesis of phospholipids (dotted arrows). CMP kinase
485	catalyzes phosphorylation of CMP to CDP that is required for dCDP synthesis by
486	ribonucleotide reductase (RNR). C. glutamicum has only one RNR and it is an
487	oxygen-dependent enzyme.
488	
489	Fig. 2 Growth of the <i>cmk</i> disruptant in oxygen-limiting static culture. Strains were
490	statically cultivated in 5 mL of MM medium in test tubes at 30°C. Cultivation was
491	started by the addition of 50 μ L of seed culture grown in BY medium. Symbols: <i>solid</i>
492	circles, C. glutamicum ATCC 31833 carrying pCS299P; solid squares, strain ∆cmk
493	carrying pCS299P; <i>solid triangles</i> , strain Δ cmk carrying pCcmk; <i>solid diamonds</i> , strain
494	Δ cmk carrying pEcmk. Values are means for triplicate cultures.
495	
496	Fig. 3 Growth of the <i>cmk</i> disruptant in the main culture with aerobic shaking. Strains
497	were cultivated in 5 mL of MM medium in L-type test tubes subjected to Monod
498	shaking at 48 strokes/min. The cultivation was started by the addition of 50 μ L (a), 5 μ L

499	(b), or 0.5 μ L (c) of seed culture grown in BY medium to the late-exponential phase.
500	Symbols: solid circles, C. glutamicum ATCC 31833 carrying pCS299P; solid squares,
501	strain Δ cmk carrying pCS299P; <i>solid triangles</i> , strain Δ cmk carrying pCcmk; <i>solid</i>
502	diamonds, strain Δ cmk carrying pEcmk. Values are means for triplicate cultures.
503	
504	Fig. 4 Effect of different seed culture growth phases on lag phase interval for <i>cmk</i>
505	disruptant in the main culture. (a) Progress in oxygen depletion under the shaking
506	conditions set for the seed culture was assessed by monitoring changes in the color of

507 the oxygen indicator resazurin. Resazurin changes color from blue to pink in response

to gradual oxygen depletion, and is colorless under severe oxygen depletion. Cultivation

509 was carried out at 30°C in 5 mL of MM medium in test tubes subjected to reciprocal

510 shaking at 120 strokes/min. Inset color photographs showing the progression of oxygen

511 depletion in (a) were obtained from strain Δ cmk carrying pCS299P. The same results

512 were obtained from strains ATCC 31833 carrying pCS299P and Δ cmk carrying

513 pCS299P. (b, c, d) Strains were cultivated in 5 mL of MM medium in L-type test tubes

subjected to Monod shaking at 48 strokes/min. Seed culture used for each experiment

515 were grown in BY medium grown to the late-exponential phase ($OD_{660} = 4.0$) (b),

516 mid-exponential phase ($OD_{660} = 2.0$) (c), and early-exponential phase ($OD_{660} = 1.0$) (d),

respectively. Symbols: *solid circles*, *C. glutamicum* ATCC 31833 carrying pCS299P; *solid squares*, strain Δcmk carrying pCS299P; *solid triangles*, strain Δcmk carrying
pCcmk. Values are means for triplicate cultures.

520

Fig. 5 Arrangement of RNR genes in C. glutamicum genome and construction of 521plasmid pRNR for amplification of RNR genes. The genomic regions comprising the 522nrdF gene and nrdHIE operon from C. gluamicum ATCC 31833 were amplified by PCR 523using pairs of primers, nrdFf (primer 2) and nrdFr (primer 1), and nrdHIEf (primer 4) 524525and nrdHIEr (primer 3), respectively. Restriction sites: B, BamHI; K, KpnI. 526Fig. 6 Effect of amplification of RNR genes on growth of the *cmk* disruptant in shaken 527528culture. Strains were cultivated at 30°C in 5 mL of MM medium in L-type test tubes subjected to Monod shaking at 48 strokes/min. Cultivation was started by the addition 529of 5 μ L (a) or 0.5 μ L (b) of seed culture grown in BY medium to the late-exponential 530phase (OD₆₆₀ = 4.0). Symbols: solid circles, C. glutamicum ATCC 31833 carrying 531pCS299P; solid squares, strain Δ cmk carrying pCS299P; solid triangles, strain Δ cmk 532533carrying pCcmk; open circles, strain ∆cmk carrying pRNR. Values are means for triplicate cultures. 534

536	Fig. 7 Effect of amplification of RNR genes on growth of the <i>cmk</i> disruptant in
537	oxygen-limiting static culture. Strains were statically cultivated in 5 mL of MM medium
538	in test tubes at 30°C. Cultivation was started by the addition of 50 μ L of seed culture
539	grown in BY medium. Symbols: solid circles, C. glutamicum ATCC 31833 carrying
540	pCS299P; <i>solid squares</i> , strain Δ cmk carrying pCS299P; <i>solid triangles</i> , strain Δ cmk
541	carrying pCcmk; open circles, strain Δ cmk carrying pRNR. Values are means for
542	triplicate cultures.
543	

Primer	Sequence ^a
nrdHIEf	5'-CTG <u>GGTACC</u> GGAGTGTTTTGGGTTGT-3'
nrdHIEr	5'-CAC <u>GGTACC</u> AGCGGAATTCGCGGAAA-3'
nrdFf	5'-ATGGGATCCTAGTGGCGATAATTTAGG-3'
nrdFr	5'-CTTGGATCCAAAGGTGTGAAGGGGTT-3'
Pr8	5'-AGCGGATAACAATTTCACACAGGAAAC-3'
Cgl1427FusR	5'-AGGTGGATGAGGTGATCAAGTACTTGGAGGCCACCGGC
	AGGCATGTTGG-3'
Cgl1427FusF	5'-CCAACATGCCTGCCGGTGGCCTCCAAGTACTTGATCACC
	TCATCCACCT-3'
Pr7	5'-CGCCAGGGTTTTCCCAGTCACGAC-3'
cmkup200FBam	5'-AACGGATCCGTGATCGTATCGCCTCTG-3'
ні	
cmkdown400RB	5'-GCGGGATCCAGGCTTCGTGACGTTTAG-3'
amHI	

Table 1. Sequences of primers used in this study

545 ^a*Kpn*I sites are underlined, and *Bam*HI sites are italicized.

Fig. 1 Takeno et al.

Fig. 2 Takeno et al.

Fig. 3 Takeno et al.

Fig. 4 Takeno et al.

Fig. 5 Takeno et al.

Fig. 6 Takeno et al.

Fig. 7 Takeno et al.