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Abstract

The aim of this paper is to study relationships between Frobenius exten-
sions and Auslander-Gorenstein rings and to give constructions of Auslander-
Gorenstein rings using Frobenius extensions.

Let G be a non-trivial finite multiplicative group with the unit element e
and A = @,cq A, a G-graded ring. We construct a Frobenius extension A of A
and study when the ring extension A of A, can be a Frobenius extension. Also,
formulating the ring structure of A, we introduce the notion of G-bigraded rings
and show that every G-bigraded ring is isomorphic to the G-bigraded ring A
constructed above.

The case that G is a cyclic group. Starting from an arbitrary ring R we
provide a systematic construction of Z/nZ-graded rings A which are Frobenius
extensions of R, and show that under mild assumptions A is an Auslander-
Gorenstein local ring if and only if so is R.

Moreover, formulating the construction of Clifford algebras we introduce the
notion of Clifford extensions and show that Clifford extensions are Frobenius
extensions. Consequently, Clifford extensions of Auslander-Gorenstein rings are
Auslander-Gorenstein rings.
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Chapterl

Introduction

1.1 Background and Motivation

Auslander-Gorenstein rings (see Definition 2.1.2) appear in various fields
of current research in mathematics. For instance, regular 3-dimensional alge-
bras of type A in the sense of Artin and Schelter, Weyl algebras over fields of
characteristic zero, enveloping algebras of finite dimensional Lie algebras and
Sklyanin algebras are Auslander-Gorenstein rings (see [2], [5], [6] and [21], re-
spectively). Nevertheless, ring theoritical studies of Auslander-Gorenstein rings
are seen little. In particular, the construction of Auslander-Gorenstein rings
are very little. Recently, M. Hoshino and H. Koga has shown in [13, Section
3] that a left and right noetherian ring B is an Auslander-Gorenstein ring if it
admits an Auslander-Gorenstein resolution over an Auslander-Gorenstein ring .
A special ring extension A/R of a noetherian ring R which is called ”Frobenius
extension” is a typical example which admits an Auslander-Gorenstein resolu-
tion. Commutative Gorenstein local rings have been studied extensively (see
e.g. [16]). Tt is needed to study Auslander-Gorenstein local rings.

In this paper, starting from an arbitrary Auslander-Gorenstein ring (respec-
tively, Auslander-Gorenstein local ring) we will provide a method of construction
of Auslander-Gorenstein rings (respectively, Auslander-Gorenstein local rings)
using Frobenius extensions. We will introduce the notion of Clifford extensions
and show that Clifford extensions are Frobenius extensions. Since Frobenius
extensions of Auslander-Gorenstein rings are Auslander-Gorenstein ([10, Propo-
sition 1.9]), it follows that Clifford extensions of Auslander-Gorenstein rings are
Auslander-Gorenstein.

Now we recall the notion of Frobenius extensions of rings due to Nakayama
and Tsuzuku [17, 18] which we modify as follows (cf. [1, Section 1]). We use
the notation A/R to denote that a ring A contains a ring R as a subring. We
say that A/R is a Frobenius extension if the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;



(F2) A is finitely generated projective as a right R-module;

(F3) there exists an isomorphism ¢ : A = Hompg(A, R) as right A-modules.

Note that for any f € Hompg(A, R) and any a € A, define (fa)b = f(ab)
for any b € A, Hompg(A, R) is a right A-module. Note also that ¢ induces
a unique ring homomorphism 6 : R — A such that z¢(1) = ¢(1)0(x) for all
x € R (cf. Proposition 2.1.4). A Frobenius extension A/R is said to be of first
kind if A = Hompg(A, R) as R-A-bimodules, and to be of second kind if there
exists an isomorphism ¢ : A = Hompg (A, R) in Mod-A such that the associated
ring homomorphism 6 : R — A induces a ring automorphism of R. Note that
a Frobenius extension of first kind is a special case of a Frobenius extension
of second kind. Let A/R be a Frobenius extension. Then A is an Auslander-
Gorenstein ring if so is R, and the converse holds true if A is projective as a left
R-module, and if A/R is split, i.e., the inclusion R — A is a split monomorphism
of R-R-bimodules. It should be noted that A is projective as a left R-module if
A/R is of second kind.

1.2 Results

In Chapter 2, we first recall the notion of Frobeniu extensions of rings and
that of Auslander-Gorenstein rings.

In Chapter 3, let G be a non-trivial finite multiplicative group with the
unit element e and A = @, A, a G-graded ring. In this paper, assuming A,
is a local ring, we study when a ring extension A of A. can be a Frobenius
extension, the notion of which we recall below. To state our main theorem we
have to construct a Frobenius extension A/A of first kind. Namely, we will define
an appropriate multiplication on a free right A-module A with a basis {v;}zeq
so that A/A is a Frobenius extension of first kind. Denote by {7, }.c¢ the dual
basis of {v;}zeq for the free left A-module Homy4 (A, A) and set v = X,cqve.
Assume A, is local, A;A,—1 C rad(A4.) for all x # e and A is reflexive as a
right A.-module. Our main theorem states that the following are equivalent
(Theorem 3.2.3):

(1) A= Homy, (A, A.) as right A-modules;

(2) There exist a unique s € G and some o € Homg, (A, Ac) such that
Gszz : Vsz A = Homa, (Avg, Ae), A = (= a(y(Ap))) for all z € G;

(3) There exist a unique s € G and some oy € Homy, (As, Ae) such that
Yyt Age — Homy, (Ay-1, Ac),a — (b— ag(ab)) for all z € G.

Assume A/A. is a Frobenius extension. We show that it is of second kind
(Corollary 3.2.5), and that A is an Auslander-Gorenstein ring if and only if so
is A (Theorem 3.2.6). As we saw above, the ring A plays an essential role in
our argument. Formulating the ring structure of A, we introduce the notion of
group-bigraded rings as follows. A ring A together with a group homomorphism
7 : G°? — Aut(A), z — n, is said to be a G-bigraded ring, denoted by (A, n), if



1 =3, cc Ve with the v, orthogonal idempotents and 7, (v,) = vgy for all z,y €
G. A homomorphism ¢ : (A,n) — (A’,n’) is defined as a ring homomorphism
¢ : A — A’ such that ¢(v,) = v}, and pn, = n,p for all z € G. We conclude
that every G-bigraded ring is isomorphic to the G-bigraded ring A constructed
above (Proposition 3.3.3).

In Chapter 4, we fix a set of integers G = {0,1,...,n— 1} withn > 2 and a

cyclic permutation
(01 - n-1
T™=\l1 92 ... 0

of G. Note that the law of composition G x G — G, (i, ) + (i) makes G a
cyclic group with 0 the unit element. Note also that if A = F[X] is a polynomial
ring in one variable X over a ring F and R = F[X"] is a subring of A then A can
be considered as a G-graded ring over R. In this paper, we will formulate this
example and, starting from an arbitrary ring R, provide a systematic way to
construct G-graded rings A so that the ring extensions A/R are split Frobenius
extensions of second kind. Namely, we will define an appropriate multiplication
on a free right R-module A with a basis {e;};,c¢ using the following two data:
a certain pair (g, x) of an integer ¢ and a mapping x : G — Z; a certain triple
(0,¢,t) of 0 € Aut(R) and ¢,t € R. Our main results in this Chapter state
that if either ¢ € rad(R), or ¢ € rad(R) and nx(i) > iq for all ¢ # 0, then A is
an Auslander-Gorenstein local ring if and only if so is R (Theorems 4.1.6 and
4.1.7). Also, we will provide a way to obtain every pair (g, x) mentioned above.

In Chapter 5, we will provide a systematic way to construct split Frobenius
extensions of second kind. We fix a set of integers G = {0,1,...,n — 1} with
n > 2 and aring R together with a pair (o, ¢) of 0 € Aut(R) and ¢ € R satisfying
the condition: (*) o™ =idg and ¢ € R NZ(R). Let A be a free right R-module
with a basis {v;};ec and, setting v; i, = vicF for i € G and k € Z,, define
a multipleication on A subject to the following axioms: (L1) v;v; = v;4; for
all i,j € G; (L2) av; = v;o'(a) for all a € R and i € G. We will show that
A/R is a split Frobenius extension of second kind, that R/rad(R) = A/rad(A)
canonically if ¢ € rad(R), and that for any e € RZNZ(R) with €™ = 1 there exists
¢ € Aut(A) such that for any ¢ € R7NZ(R) the pair (7, ¢’) satisfies the condition
(*) (Proposition 5.1.2). In case n = 2, we use the notation Cl;(R; o, ¢) to denote
the ring A constructed above. Moreover, we restrict ourselves to the case where
n = 2. We fix a set of integers G = {0, 1} and a ring R together with a sequence
of elements ¢y, ¢z, ... in Z(R). We will construct a sequence {(Ag, o)} >0 of
pairs (Ag, oy ) of rings Ay, and certain o, € Aut(Ay) inductively. Namely, setting
Ap = R and 0¢ = idg, for k > 1 we set Ay, = Cly(Ag—1;0k—1,cx) with which a
certain o € Aut(Ay) is associated (see the proof of Theorem 5.2.1(1)). For any
k > 1 we will show that the ring extension Ay /R is a split Frobenius extension
of first kind, and that R/rad(R) = Ay /rad(Ay) canonically if ¢; € rad(R) for all
1 <4 <k (Theorem 5.2.1). We use the notation Cli(R;cq, ..., cx) to denote the
ring A constructed above for k£ > 1 and we call those rings Clifford extensions
of R. It should be noted that if R is an Auslander-Gorenstein local ring and if
¢; € rad(R) for all i > 1 then every Cli(R;cy, ..., cx) is an Auslander-Gorenstein



local ring.
In Appendix, we describe some examples.



Chapter2

Preliminaries

2.1 Definitions and Basic Properties

For a ring R we denote by rad(R) the Jacobson radical of R, by R* the set of
units in R, by Z(R) the center of R, by Aut(R) the group of ring automorphisms
of R, for 0 € Aut(R) by R’ the subring of R consisting of all + € R with
o(x) = z, and for n > 2 by M, (R) the ring of n x n full matrices over R.
Usually, the identity element of a ring is simply denoted by 1. Sometimes,
the notation 1g is used to stress that it is the identity element of the ring R.
We denote by Mod-R the category of right R-modules. Left R-modules are
considered as right R°P-modules, where R°P denotes the opposite ring of R. In
particular, we denote by inj dim R (resp., inj dim R°P) the injective dimension
of R as aright (resp., left) R-module. Sometimes, we use the notation Xp (resp.,
rX) to stress that the module X considered is a right (resp., left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 2.1.1 (Auslander). Let R be a right and left noetherian ring.
Then for any n > 0 the following are equivalent.

(1) In a minimal injective resolution I® of R in Mod-R, flat dim I* < i for
all <7 <n.

(2) In a minimal injective resolution J®* of R in Mod-R°P, flat dim J* < i for
all) <7 <n.

(3) For any 1 < i < n+1, any M € mod-R and any submodule X of
ExtR(M, R) € mod-R°P we have Exth, (X, R) =0 for all 0 < j < i.

(4) For any 1 < i < n+1, any X € mod-R°® and any submodule M of
Extpos (X, R) € mod-R we have Extly (M, R) =0 for all 0 < j < i.

Proof. See e.g. [7, Theorem 3.7]. O



Definition 2.1.2 ([6]). A right and left noetherian ring R is said to satisfy
the Auslander condition if it satisfies the equivalent conditions in Proposition
2.1.1 for all n > 0, and to be an Auslander-Gorenstein ring if it satisfies the
Auslander condition and inj dim R = inj dim R°P < co.

It should be noted that for a right and left noetherian ring R we have
inj dim R = inj dim R°? whenever inj dim R < oo and inj dim R°P < oo (see
[22, Lemma Al).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama
and Tsuzuku [17, 18], which we modify as follows (cf. [1, Section 1]).

Definition 2.1.3. A ring A is said to be an extension of a ring R if A contains R
as a subring, and the notation A/R is used to denote that A is an extension ring
of R. A ring extension A/R is said to be Frobenius if the following conditions
are satisfied:

(F1) A is finitely generated as a left R-module;

(F2) A is finitely generated projective as a right R-module;

(F3) A~ Hompg(A, R) as right A-modules.

In case R is a right and left noetherian ring, for any Frobenius extension A/R
the isomorphism A = Hompg (4, R) in Mod-A yields an Auslander-Gorenstein
resolution of A over R in the sense of [13, Definition 3.5].

The next proposition is well-known and easily verified.

Proposition 2.1.4. Let A/R be a ring extension and ¢ : A = Homp(A, R) an
isomorphism in Mod-A. Then the following hold.

(1) There exists a unique ring homomorphism 6 : R — A such that x¢(1) =
o(1)0(x) for all x € R.

(2) If ¢’ : A = Hompg(A, R) is another isomorphism in Mod-A, then there
exists u € A such that ¢'(1) = ¢(1)u and 0'(x) = u=10(z)u for allz € R.

(8) ¢ is an isomorphism of R-A-bimodules if and only if 0(x) = = for all
r € R.

Proof. For the benefit of the reader we include a proof.

(1) Since Homp(A, R) € Mod-R°?, z¢(1) € Hompg(A, R) for all z € R.
Then, since Homp (A, R) is a free right A-module of rank 1 with a basis {¢(1)}
for all z € R there exists a unique element 6(z) € A such that z¢(1) = ¢(1)0(x).
Next, we show that 6 : R — A is a ring homomorphism. We have ¢(1)0(1g) =
1rep(1) = ¢(1) = ¢(1)14 and hence O(1r) = 14. Also, for all z,y € R we have
o(1)0(zy) = zyd(1) = x¢(1)0(y) = ¢(1)0(x)6(y) and hence O(zy) = 0(x)6(y).

(2) Set u = ¢~ 1(¢'(1)). Then u € AX and we have ¢(1)u = ¢(u) = ¢'(1).
Also, for all x € R we have ¢'(1)0/(z) = x¢'(1) = zp(1)u = ¢(1)0(z)u =
d(Duu=10(z)u = ¢'(1)u=10(z)u and hence 0’ (z) = u=10(x)u.

(3) “Only if” part. We have ¢(1)0(x) = z¢(1) = ¢(x) = ¢(1)z and hence
O(z) = .

“If” part. For any « € R and a € A we have ¢(za) = ¢p(1)za = ¢p(1)0(z)a =
zp(1)a = xzd(a). O

)



Definition 2.1.5 (cf. [17, 18]). A Frobenius extension A/R is said to be of first
kind if A = Hompg(A, R) as R-A-bimodules, and to be of second kind if there
exists an isomorphism ¢ : A = Hompg (A, R) in Mod-A such that the associated
ring homomorphism 6 : R — A induces a ring automorphism 6 : R = R.

Proposition 2.1.6. If A/R is a Frobenius extension of second kind, then A is
projective as a left R-module.

Proof. Let ¢ : A = Hompg(A, R) be an isomorphism in Mod-A such that the
associated ring homomorphism 6 : R — A induces a ring automorphism 6 : R =
R. Then 6 induces an equivalence Uy : Mod-R°P = Mod-R°P such that for any
M € Mod-R°P we have UgM = M as an additive group and the left R-module
structure of UgM is given by the law of composition R x M — M, (x,m)
O(x)m. Since ¢ yields an isomorphism of R-A-bimodules UyA = Homp (A, R),
and since Hompg (A, R) is projective as a left R-module, it follows that Uy A and
hence A are projective as left R-modules. O

Proposition 2.1.7. For any Frobenius extensions AJ/A, A/R the following hold.
(1) A/R is a Frobenius extension.

(2) Assume AJA is of first kind. If A/R is of second (resp., first) kind, then
so is A/R.

Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have

A = Homyu (A, A)
= HOIHA(A, HomR(A, R))
>~ Homp(A®4 A, R)
>~ Hompg(A, R)
in Mod-A.
(2) Let ¢ : A = Homy(A, A) be an isomorphism of A-A-bimodules and
¢ : A= Hompg(A, R) an isomorphism in Mod-A such that the associated ring

homomorphism # : R — A induces a ring automorphism 6 : R = R. Setting
v=1(1) and o = ¢(1), as in (1), we have an isomorphism in Mod-A

€: A= Homp(A, R), A — (1 — aly(Ap))).

For any x € R, we have

z€(1) () = za(y(w))
= a(f(z)v(n))
= a(y(0(z)n))
= (1) (0(2)p
for all p € A and z£(1) = £(1)0(x). O



Definition 2.1.8 ([1]). A ring extension A/R is said to be split if the inclusion
R — A is a split monomorphism of R-R-bimodules.

Proposition 2.1.9 (cf. [1]). For any Frobenius extension A/R the following
hold.

(1) If R is an Auslander-Gorenstein ring, then so is A with inj dim A <
inj dim R.

(2) Assume A is projective as a left R-module and A/R is split. If A is an
Auslander-Gorenstein ring, then so is R with inj dim R = inj dim A.

Proof. (1) See [13, Theorem 3.6].

(2) It follows by [1, Proposition 1.7] that R is a right and left noetherian ring
with inj dim R = inj dim R°P = inj dim A. Let A — E*® be a minimal injective
resolution in Mod-A. For any i > 0, Homg(—, E*) & Homa(— ®g A, E) as
functors on Mod-R and E% is injective, and E' @p — = E' @4 A Qg — as
functors on Mod-R°P and flat dim F} < flat dim EY < i. Now, since Rp
appears in Ap as a direct summand, it follows that R satisfies the Auslander
condition. O



Chapter3

Group-graded and group-bigraded
rings

3.1 Graded rings

In this chapter, G stands for a non-trivial finite multiplicative group with the
unit element e.

Definition 3.1.1. Let A be a ring. A G-grading for A is a family {4, }.co
such that A = ®,eqA, and A, A, C A,y for all z,y € G.

Throughout this and the next sections, we fix a ring A together with a family
{02 }zec in Endz(A) satisfying the following conditions:

(D1) 0,0, =0 unless v =y and ) d, =ida;

(D2) 64(a)dy(b) = 65y (d2(a)b) for all a,b € A and z,y € G.

Namely, setting A, = Im §, for z € G, A = BrecA, is a G-graded ring. In
particular, A/A, is a split ring extension.

To prove our main theorem (Theorem 3.2.3), we use an extension ring A
of A such that A/A is a Frobenius extension of first kind. We construct such
a ring A. Let A be a free right A-module with a basis {v, },ec and define a
multiplication on A subject to the following axioms:

(M1) vyvy = 0 unless @ =y and vyv; = v, for all x € G;

(M2) avy =37, cq Vydys-1(a) for alla € A and z € G.

We denote by {7Vs}zec the dual basis of {v,},cq for the free left A-module
Homa (A, A), ie, A =3 nvs72(A) for all A € A. It is not difficult to see that

z,yeG

for all X\, u € A. Also, setting v = 3 Ve, we define a mapping

¢ A — Homa(A, A), X — YA\

10



Proposition 3.1.2. The following hold.

(1) A is an associative ring with 1 = 3 . v, and contains A as a subring
via the injective ring homomorphism A — A, a— 3 . vza.

(2) ¢ is an isomorphism of A-A-bimodules, i.e., AJA is a Frobenius extension
of first kind.

Proof. (1) Let A € A. Obviously, > .~ v, - A=A Also, by (D1) we have

zelG
A Z Uy = Z 'Ua:(szyfl(r)/w(/\))
yeG z,yeG
= Z 'U:c’ym(A)
z€G
=\

Next, for any A, p, v € A by (D2) we have

A =" we0ua-1(0ay—1 (2(N) 7 (1) 7= (v)

z,y,2€G

= Z 'Uaffsrcy*l('796(/\))6yz*1(7y(:u))72(1/)

z,y,z€G
= Nuv).

The remaining assertions are obvious.

(2) Let A € Ker ¢. For any y € G we have 0 = v(A\vy) = > c 0zy—1(72(N))
and d,,-1(72(A)) = 0 for all z € G. Thus for any = € G we have §,,-1(72(\)) =
0 for all y € G and by (D1) 7,(\) = 0, so that A = 0. Next, for any f =
> weq GzYz € Homa(A, A), setting A= 3" _;v:0,.-1(az), by (D1) we have

(YA (vy) = v(Avy)
= Z 6wy—1 ('Vz()‘))

zeG

= Z 5zy71(5m—1(az))

z,z€G
= ay
= f(vy)
for all y € G and f = ~\. Finally, for any a € A by (D1) we have

(va)(A) = (ar)
= Z 6ym*1(a)7$(k)

z,yeG
=ay(\)

for all A € A and va = av. O

11



Remark 3.1.3. Denote by |G| the order of G. If |G| - 14 € A*, then A/A is a

split ring extension.
Lemma 3.1.4. The following hold.
(1) V2 vy = V0,1 (Y2(N)) for all X € A and x,y € G.
(2) vaAvy = v Ay -1 forall z,y € G.
(3) vz -vyb = vzab for all x,y,z € G and a € Ayy-1,b€ Ay, 1.
Proof. Immediate by the definition. O

Setting A, , = vy Avy for z,y € G, we have A = @, yegey With Ay y A, =
0 unless y = z and Ay yAy . C A, . for all z,y,2 € G. Also, setting A\, , =
Opy-1(V2(A)) € Agy—1 for X € A and z,y € G, we have a group homomorphism

n: GP — Aut(A), z — 1,

such that 7,(\)y,. = Ayg—1,.,—1 forall A € A and 2,9,z € G. We denote by AC
the subring of A consisting of all A such that 7, (\) = A for all z € G.

Proposition 3.1.5. The following hold.
(1) ny(vg) = vgy for all z,y € G.
(2) A¢ = A.
(3) (M), = 3 -yeq Awyhy,z for all A\, p € A and x,2 € G.
Proof. (1) Since 1y (vy)2w = -1 (V2y-1(v2)) for all z,w € G, we have

1

(v2) 1 ifz=wandz=zy ",
Vg )zw =
Ty ’ 0 otherwise.

(2) For any a € A, since 1y(a)y: = Ayz—1 .01 = Oya—1)(za-1)-1(a) =
8y.-1(a) = ay,. for all z,y,z € G, we have a € A. Conversely, for any A € A9
we have 6,-1(72(A)) = Ao ye = Ne-1(Neyy = Aeyy = dy-1(7e(A)) for all z,y € G,
so that v, (A) = v.(X) for all z € G.

(3) For any A\, p € A and z, z € G by (D2) we have

(Mo, = Z 021 (0y—1 (Y2 (X)) vy (1))

yeG

= uy1 (72 ()61 (3 (1))

yeG@

= Z Az,ylly,z-

yeG

12



Remark 3.1.6. We have 1y (vza5)vyby = vyyazby for all a, € A, and by, € A,.
Proposition 3.1.7. The following hold.

(1) Endp (v, A) = A, as rings for all x € G.

(2) va A 2 vy A in Mod-A for all x,y € G with Ay,-1A,,—1 Crad(A.).

Proof. (1) We have Endp (v, A) 2 v, Av, = A, as rings.

(2) For any f : vyA — vyA and g : vyA — vy A in Mod-A, since f(v;) = vya
with a € Ay,-1 and g(vy) = v.b with b € A, -1, we have g(f(v,)) = vyba with
ba € rad(A.). O

The proposition above asserts that if A, is local and A, A,-1 C rad(A.) for
all z # e then A is semiperfect and basic. We refer to [3] for semiperfect rings.

3.2 Auslander-Gorenstein rings
In this section, we will ask when A/A, is a Frobenius extension.
Lemma 3.2.1. For any x € G the following hold.

(1) av, = vza for all a € A, and Av, is a A-Ag-bimodule.

(2) Aoy =3 cqvyAys—.

(3) A5 Avg,a— 2 ye VyOye—1(a) as A-Ac-bimodules.

(4) If Av, is reflexive as a right A.-module, then Endy(Homy, (Av,, Ae)) =
A, as rings.
Proof. (1) and (2) Immediate by the definition.
(3) By (2) we have a bijection f, : A = Avg,a +— > yec VyOyz—1(a). Since
every d0,,—1 is a homomorphism in Mod-A,, so is f,. Finally, for any a,b € A
we have

a- (Z 0y 0,01 (D)) = Z 0,0,y-1(a)d,,-1(b)

yeG y,2€G
= 0D 6.y-1(a)bya1 (D))
zeG yeG
= 0:0.0-1() | Guyr(a)b)
zeG yeG
= Z V30,,-1(ab)
zeG

and f, is a homomorphism in Mod-A°P.
(4) Since the canonical homomorphism

Av, — Hom 4or (Homy, (Avg, Ae), Ae), A= (f — (X))

is an isomorphism, Endy (Hom 4, (Avs, Ae)) = Endper (Av, )P 2 v, Av, =2 A, as
rings. O
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It follows by Lemma 3.2.1(1) that d.v. : A — A, is a homomorphism of
Ae-Ac-bimodules and A/A, is a split ring extension.

Lemma 3.2.2. For any x,y € G and a,b € A we have

Uz - (Z 'Uzézyfl (b)) = 'Uw(z Opr—1 (a)(szy*1 (b>)

zeG zeG
Proof. Immediate by the definition. O

Theorem 3.2.3 ([10] Theorem 3.3). Assume A. is local, Ay A~ C rad(A.)
for all x # e and A is reflexive as a right A.-module. Then the following are
equivalent.

(1) A=~ Homy, (A, A.) as right A-modules.
(2) There exist a unique s € G and some o € Homa_ (A, Ae) such that
Pszz : Vsx N = Homa, (Avg, Ao), A = (p— a(y(Ap)))
forallx € G.
(8) There exist a unique s € G and some as € Homy, (Ag, Ae) such that
Vy : Agy — Homa, (A1, Ae),a — (b — as(ab))
forallz € G.

Proof. (1) = (2). Let A = Homy, (A, Ac),1 — « in Mod-A. Then, since by
Proposition 3.1.2(2) A = Homa(A, A), A\ — ~X in Mod-A, by adjointness we
have an isomorphism in Mod-A

A % Homy, (A, A, A= (u— a(y(An))).

By Proposition 3.1.7(1) A = @,ecqv, A with the Endy (v,A) local. Also, by (1)
and (4) of Lemma 3.2.1

HomAe (Aa Ae) = @mGGHomAe (sz7 Ae)

with the Ends (Homy, (Av,, A.)) local. Now, according to Proposition 3.1.7(2),
it follows by the Krull-Schmidt theorem that there exists a unique s € G such
that

Os.e Vs = Homa, (Ave, Ae), A — (p— a(y(Ap))).

Thus, setting as = a|4,, by Lemmas 3.2.1(2) and 3.2.2 we have
i A5 Homy, (A, A),a— (b ag(ds(ab))).
It then follows again by Lemmas 3.2.1(2) and 3.2.2 that

¢sz,x NN = I{OIHAe (Avxv Ae): A (,u = O‘(V(AN)))
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for all x € G.

(2) = (3). Since A = @®pcgAsy = Preglyp-1, and since A, A,—1 C Ay for
all * € G, 1 induces 9, : Ay, — Homa, (A1, 4.),a — (b ag(ab)) for all
z €.

(3) = (1). Setting 1, : Asp — Hompy, (A, 1, A.),a+— (b as(ab)) for each
z € G, the 1, yields ¢ : A = Homa, (4, A.),a +— (b as(ds(ab))). O

Remark 3.2.4. In the theorem above, oy is an isomorphism and A, = Enda_(Ay)
canonically.

Proof. For any b € A, setting f : Ac — A, 1 — b, we have f = 1.(a) and
hence b = a,(a) for some a € A,. Also, Ker oy = Ker ¢ = 0. Then, since
the composite A, — Enda, (As) — Homy, (As, Ae) is an isomorphism, the last
assertion follows. O

Corollary 3.2.5. Assume A, is local and A A,—1 C rad(Ae) for all x # e. If
A/A. is a Frobenius extension, then it is of second kind.

Proof. Set t = a;'(1) € As. Then for any u € A there exists f € Endy, (As)
such that u = f(¢t) and hence v = at for some a € A,. Thus A.t = A,
and there exists § € Aut(Ae) such that 6(a)t = ta for all @ € A.. Then
(as0(a))(t) = as(0(a)t) = as(ta) = as(t)a = a = (aas)(t) and asb(a) = aay for
all a € A,. Now, setting 1 : A = Homy, (A, A.),a — (b as(ds(ab))), we have
(@(1)() = a0s(6 () = (a03)(0,(0)) = (s0(@))(5,(6)) = s (0()6,(8)) =
as(05(0(a)b)) = (¥(1)0(a))(b) for all a,b € A, so that ap(1) = 1(1)0(a) for all
a€ A O

Theorem 3.2.6 ([10] Theorem 3.6). Assume A. is local, Ay A~ C rad(A.)
for all x # e, and AJ/A. is a Frobenius extension. Then A is an Auslander-
Gorenstein ring if and only if so is A.

Proof. The ”only if” part follows by Propositions 2.1.9(1) and 3.1.2(2). Assume
A is an Auslander-Gorenstein ring. By Proposition 3.1.2(2) A/A is a Frobenius
extension of first kind, and by Corollary 3.2.5 A/A. is a Frobenius extension of
second kind. Thus by Proposition 2.1.7 A/A, is a Frobenius extension of second
kind. Also, by Lemma 3.2.1(1) A/A, is split. Hence by Propositions 2.1.6 and
2.1.9(2) A, is an Auslander-Gorenstein ring and by Proposition 2.1.9(1) so is
A. O

Remark 3.2.7. Assume A, is local, A, A,-1 C rad(A.) for all x # e and A/A.
is a Frobenius extension. Let s € G be as in Theorem 3.2.3. Then the following
hold.

(1) s # e unless A = A,.

(2) Let H be a subgroup of G containing s and Ay = @,ecpyA,. Then Ay /A,
is a Frobenius extension and, unless s = e, the mapping cone of the
multiplication map

@ Avy @4, vz A — A

zeH
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is a tilting complex for right A-modules (see [20] for tilting complexes).

Proof. (1) Suppose to the contrary that s = e. Let & € G with © # e
and A, # 0. Then by Remark 3.2.4 there exists v € A.” such that A, =
Hom(A,-1,A.),a — (b — uab). Note that uab € rad(A.) for all a € A, and
be A, -1. On the other hand, since A,-1 is nonzero projective, and since A, is
local, there exists an epimorphism f: A,-1 — A, in Mod-A., a contradiction.

(2) Since 9, : Agy — Homy, (A1, Ae),a — (b +— ag(ab)) for all z € H,
the 1, yields ¥y : Ay — Homa, (Ag, Ae),a — (b — as(ds(ab))). The first
assertion follows by Theorem 3.2.3.

Next, let vy = ),y vz Then by Lemma 3.2.1(1) avy = vgaforalla € A..
Since A/A. is a Frobenius extension, Avy is finitely generated projective as a
right A.-module and by Theorem 3.2.3 vy A = Homyu, (Avg, A.) as right A-
modules. Note that v,Av, # 0 and vg,Av, # 0 for all + € H. Thus the last
assertion follows by the same argument as in [1, Example 4.3]. O

We will see in the final section that the element s € G in Theorem 3.2.3 does
not necessarily depend on the structure of the group G (Example 3.4.3).

3.3 Bigraded rings

Formulating the ring structure of A constructed in Section 2, we make the
following.

Definition 3.3.1. A ring A together with a group homomorphism
n: GP — Aut(A), z —

is said to be a G-bigraded ring, denoted by (A,7), if 1 = > - v, with the v,
orthogonal idempotents and 7, (vy) = vy, for all z,y € G. A homomorphism
¢ (A,n) — (A,n) is defined as a ring homomorphism ¢ : A — A’ such that
o(v,) = vl and ¢n, = nle for all z € G.

Throughout this section, we fix a G-bigraded ring (A,n). Set A, = v,Av,
for x € G and A = @,cqA,. Note that n,(A;) = vgyAv, for all z,y € G.
For any a, € A, and b, € A, we define the multiplication a, - b, in A as the
multiplication 7, (az)b, in A (cf. Remark 3.1.6).

Proposition 3.3.2. The following hold.
(1) A is an associative ring with 1 = v,.
(2) A is a G-graded ring.
Proof. (1) For any a, € Az, by € A, and ¢, € A, we have
(ag - by) - c. = ny(az)by - c.
= n:(ny (az)by )=

= WyZ(am)nz(by)Cz
=ay - (by - cz).
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Also, for any a, € A, we have v, - az = 1, (Ve)ay = Vza, = a; and ay - v, =
ne(ax)ve = QzVe = Ay

(2) Obviously, A, A, C A,y for all z,y € G. O

In the following, for each € G we denote by d, : A — A, the projection.
Then, setting A\, y = v,Av, for A € A and z,y € G, we have a mapping ¢ : A —
A such that p(a),,y = 1y(04y-1(a)) for all a € A and 2,y € G.

Proposition 3.3.3. The following hold.
(1) ¢ : A — A is an injective ring homomorphism with Im ¢ = A9,
(2) veAvy = vep(Agy-1) for all z,y € G.
(3) {vs}twea is a basis for the right A-module A.
(4) p(a)ve =3, cq Vyp(dyz-1(a)) for alla € A and x € G.
(5) vep(a)vyp(b) = vyp(ab) for all x,y,z € G and a € Ayy-1,b€ Ay,

Proof. (1) Obviously, ¢ is a monomorphism of additive groups. Also, we have

(v2) vy ifx =y,
Ve)z,y =
v v 0 otherwise

and ¢(14) = 15. Let a, € Az, by € Ay and z,w € G. Since ¢(ay - by)z0w =
oMy (az)by)zw = Nw(020-1(1y(az)by)), p(az - by).w = 0 unless vy = zw™h If
zy = zw ™Y, then 1y (8,p-1(ny(az)by)) = Nyw(az)nw(by). On the other hand,

(p(az)p(by))zw = Z P(a2)2,up(by)u,w

ueG
= Z nu(azu_l (am))nw (51“11_1 (by))
ueG

1 1 1

Thus (¢(az)e(by))zw = 0 unless zu~' = z and vw™"' = y, ie, 2w~ = zy.

If zw™! = zy, then > wee Mu(02u-1(02)) 1w (Ouw—1(by)) = Nyw(az)nw(by). As a
consequence, ©(ay - by)zw = (¢(az)@(by)):w. The first assertion follows.
Next, for any a € A and x,y, z € G we have

e (9(a))y,= = vyna(p(a))v.
= Nz (Vyz-19(a)v5-1)
= N0:(0(@) yo—1,22-1)
= Ne(Nee—1(0y=-1(a)))
= 1:(0y--1(a))
= ‘P(a)yyz’

so that Im ¢ C AY. Conversely, let A € A®. Then )\, , = Ny(Apy—1.e) = Apy—1e

forall z,y € G. Thus, settinga = Y . Az, we have ¢(a)z,y = 1,(05y-1(a)) =
Ny(Apy-1.e) = Agy-1.c = Mgy for all 2,y € G and p(a) = A.
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(2) Let z,y € G and a € A,,—1. For any z # y we have ¢,,-1(a) = 0 and
hence vyp(a)v, = @(a)y,, = 1:(dz.-1(a)) = 0. Thus vyp(a) = @(a)g,, = Ny(a).
It follows that v, Avy = 1)y (V-1 Ave) = Ny (Agy-—1) = Ve@(Agy-1).

(3) This follows by (2).

(4) Note that 7,(dy,-1(a)) = vyne(0y,-1(a)) for all y € G. Thus p(a)v, =

ZyGG vyp(a)vy = ZyGG Nz ((Syw—l (a)) = ZyGG VyTx (5yw—1 (a)). Also,

Uy‘P yr— 1 E :’UyQO yxr—
zeG

=) 012 (821 (8401 (a)))
zeG
= ’Uy/r]:c(é‘yl‘*l (a‘))

for all y € G.
(5) This follows by (2) and (4). O

Let us call the G-bigraded ring constructed in Section 2 standard. Then
the proposition above asserts that every G-bigraded ring is isomorphic to a
standard one. Namely, according to Lemma 3.1.4, ¢ : A — A can be extended
to an isomorphism of G-bigraded rings.

3.4 Examples

In this section, we will provide a systematic construction of G-graded rings A
such that A/A. is a Frobenius extension of second kind.

Let (s, x) be a pair of an element s € G and a mapping x : G — Z satisfying
the following conditions:

(X1) x(z) + x(y) = x(zy) for all z,y € G;

(X2) x(z) + x(z7ts) = x(s) for all x € G.
These are obviously satisfied if s is arbitrary and y(z) = 0 for all x € G. We
set

w(z,y) = x(z) + x(y) — x(zy)
for z,y € G.

Lemma 3.4.1. The following hold.
(1) w(z,y) >0 for all z,y € G.
(2) w(e,z) = w(z,e) = x(e) =0 for all x € G.
(3) x(x) + x(y) = w(z,y) + x(zy) for allz,y € G.
w(

(4)
(5) w(z, 27 ts) =0 for all x € G.

w(zy, z) + w(z,y) = w(z,yz) + w(y, 2) for all x,y,z € G.

Proof. Tt follows by (X2) that x(e) = 0. The other assertions are obvious. [
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In the following, we fix a ring R together with a pair (o,c¢) of o € Aut(R)
and ¢ € R satisfying the following condition:

() o(c)=c and ac=co(a) for all a € R.

This is obviously satisfied if either o = idr and ¢ € Z(R), or ¢ is arbitrary and
¢ = 0. As usual, we require ¢’ = 1 even if ¢ = 0.

Let A be a free right R-module with a basis {u; }zec. By abuse of notation
we denote by {d;}sec the dual basis of {u,},eq for the free left R-module
Hompg(A, R), ie., a = ) .suzd.(a) for all @ € A. According to Lemma
3.4.1(1), we can define a multiplication on A subject to the following axioms:

(M1) ugtty = gy @) for all 2,y € G;

(M2) au, = u,0X® (a) for all a € R and z € G.

Proposition 3.4.2. The following hold.
(1) A is a G-graded ring with A, = R.
(2) AJ/Ac is a Frobenius extension of second kind.
(3) If c € rad(R), then Ay A, Crad(A.) for all x # e with w(z,z~1) > 0.

Proof. (1) It follows by Lemma 3.4.1(2) that wu, - uza = uza = uza - u, for all
z € G and a € R. For any z,y,2 € G and ay,ay,a, € R we have

(Ugay - UyGy) - Usay = uwc“’(z’y)a’((y) (az)ay - usa,
— umyzc‘”(‘”y’z)a’((z)(cw(””’y)a"(y) (ax)ay)az

wl@y,2) (w(@y) x(2)+xW) (g, )X (2) (ay)a

= Ugy2C z

= umyzcw(:cy,sz(:c,y)JX(Z)+x(y)(az)ox(Z)(ay)az’

UpQy - (Uyay - Uza;) = Ugpay - uyzcw(y’z)oX(z)(ay)az
= uzyzcw(w,yz)ox(y@(%)cw(yz)gx(Z)(ay)az

- uxyzcw(z,yZ)Cw(y’Z)Jw(y’Z) (Ux(yZ)(ar))gx(Z)(ay)az

= uwyzcw(x,ysz(y,z)Uw(yvz)+x(yZ)(aw)ax(Z)(ay)az

and by (3), (4) of Lemma 3.4.1 (uzpay - uyay) - U0, = UzGy - (Uyay - Uza;). Thus
A is an associative ring with 1 = u.. Obviously, A contains R as a subring via
the injective ring homomorphism R — A,a +— uca, i.e., setting A, = u, R for
r € G, A= PrecA, is a G-graded ring with A, = R.

(2) Tt follows by (M2) that §,a = oX(*)(a)d, for all « € R and z € G. In
particular, {0, },eq is a basis for the right R-module Homp(A, R). Also, for
any « € G by Lemma 3.4.1(5) ugzu,—15 = us and hence dsu, = 6,-1,. It follows
that A = Hompg(A, R),a — dsa in Mod-A. Obviously, A is a free left R-module
with a basis {u,}zeq. Thus, since 6,a = oX(*)(a)d, for all a € R, A/R is a
Frobenius extension of second kind.

(3) Immediate by (M1). O
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Example 3.4.3. For any s € G\ {e}, setting

0 ifz=e,
x(@)=42 ifz=s,
1 otherwise,

we have a pair (s, ) satisfying the conditions (X1), (X2).

Example 3.4.4. Consider the case where G = G X --- x G, with the Gy
cyclic. For each 1 < k < n, fix a generator x, € Gy, and set my = |Gy|. Set s =
(= 1) and X((ap1 yeeo, @) =iy + - +1y, where 0 < i < my—1

for all 1 <k < n. Then the pair (s, x) satisfies the conditions (X1), (X2).
Remark 3.4.5. The following hold.

1) 0 < x(z) < x(s) for all z € G.

(1)
(2) G ~1(0) is a subgroup of G with sGy = Gys.
(3) x takes the constant value x(z) on GoxGy for all z € G.
(4) w(z,z71) > 0 for all z # e if and only if Gy = {e}.

Proof. (1) For any = € G, since 2™ = e for some m > 0, it follows by (X1)
that my(x) > x(z™) = x(e) = 0 and x(z) > 0. It then follows by (X2) that
x(z) < x(s) for all z € G.

(2) We have e € G and by (X1) zy € Gy for all z,y € Gy. Also, by (X2)
we have sGo = x~(x(s)) = Gos.

(3) Tt follows by (X1) that x(x) > x(zy) for all z € G and y € Gy. It then
follows that x(zy) > x(zyy~!) = x(z) for all x € G and y € Gy. Similarly,
x(x) = x(yz) for all z € G and y € Gj.

(4) By the fact that Gy is a subgroup of G. O

Remark 3.4.6. Set Ay = $zeq, Az, which is the group ring of Gy over R. It
follows by Remark 3.4.5(3) that A is free as a right (resp., left) Ap-module.
Next, define mappings dy : A — Ap and 0 : Ay — A as follows:

So(a) = > updep(a) and () = Y w0 (Gyps-1(D))

r€Go zeGo

for a € A and b € Ay, respectively. Then 6y € Homa, (A, Ag) and 6 € Aut(Ay).
Furthermore, A = Homa, (A, Ag),a — dpa in Mod-A and dpb = 0(b)d, for all
b e Ay. Consequently, A/Ay is a Frobenius extension of second kind.

Remark 3.4.7. Consider the case where R is commutative, o = idg and s lies in
the center of G. Then A = Hompg (A4, R),a — &sa as A-A-bimodules.
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Proof. Note first that A = Hompg(A, R),a — 6sa in Mod-A, which we have
shown in the proof of Proposition 3.4.2(2). Next, for any a,b € A we have

Js(ab) = > 6x(a)d,-14(b)

zeG

=) G (b)6:(a)

zeG

= Z Gy (b)0y-15(a)
yeG

= 58 (ba)v

so that d;a = ad, for all a € G. O
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Chapter4

Constructions of Auslander-
Gorenstein local rings

4.1 Construction

Throughout this chapter, we fix a set of integers G = {0,1,...,n — 1} with
n > 2 and a cyclic permutation

7T_(o 1 .- nl)
12 - 0
of G. Note that the law of composition G x G — G, (i, ) + 7 (i) makes G a
cyclic group with 0 the unit element. Note also that if A = F[X] is a polynomial
ring in one variable X over a ring F and R = F[X"] is a subring of A then A can
be considered as a G-graded ring over R. In the following, we will formulate this
example and provide a systematic construction of G-graded local rings starting
from an arbitrary local ring.
Also, throughout this chapter, we fix a pair (gq,x) of an integer ¢ and a
mapping x : G — Z satisfying the following conditions:
(X1) g — x(n — j+14) < x(j) — (i) < x(j — 1) for all i,j € G with i < j;
(X2) x(i)+ x(n—i—1)=x(n—1) for all i € G.
These are obviously satisfied if ¢ < n and x(i) =i for all i € G. We set

o) = {x@ XD =X @) it <n,
x(@) +x(j) = x(7/(i)) —q ifi+j=n
for i,j € G.
Lemma 4.1.1. The following hold.
(1) w(i,j) >0 foralli,j e G.
(2) w(0,7) = w(i,0) = x(0) = 0 for all i € G.
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(3) w(ii,n—i—1)=0 for alli € G.
Proof. (1) If i + j < n, setting j' =i+ j, we have i,j € G with i < j’ and
w(i, j) = x(7" = i) = {x (") = x ()}
If i + 7 > n, setting ¢/ =i+ j — n, we have 7/, j € G with ¢/ < j and
w(i, j) = {x() = x()} = {g = x(n —j + i)},

Consequently, the assertion follows by (X1).
(2) By definition we have w(0,4) = w(i,0) = x(0) and by (X2) x(0) = 0.
(3) Immediate by (X2). O

In the following, we fix a ring R together with a triple (o, ¢,t) of o € Aut(R)
and ¢, t € R satisfying the following condition:

() ¢,te€R% and zc=co(x),xt =to!(z) for all z € R.

This is obviously satisfied if either o = idg and ¢,t € Z(R), or o is arbitrary
and ¢ =t = 0. Note also that ct = tc. As usual, we require ¢’ = 1 even if ¢ = 0.
Let A be a free right R-module with a basis {e;}icq and {0;};cc the dual
basis of {e;}icc for the free left R-module Homg (A, R), ie., a = ), eidi(a)
for all @ € A. According to Lemma 4.1.1(1), we can define a multiplication on
A subject to the following axioms:
(M1) €5ej = € iyc? ) if i+ j <n and eje; = eqs(tc ™) if i 4§ > n;
(M2) ze; = e;oX(z) forallz € Rand i € G.
We will see that A is an associative ring with 1 = ¢y and the mapping
¢:A— Hompg(A,R),a+— 0,10
is an isomorphism in Mod-A with oX("=1(2)¢(1) = ¢(1)z for all 2 € R.
Lemma 4.1.2. The following hold.

(1) For any a,b € A we have

ab = Z eﬂj(i)cw(i’j)o”‘(j)(5i(a))5j(b)

i+j<n

+ > eni(pte? X (5;(a))d; (b)

i+j>n
and do(ab) = do(a)do(b) + > ;0 te? =X (=1 (5:(a))5,_; ().

(2) For any a € A and i,j € G we have

S Cw(ﬂ-’j(’i),j)o-x(j)<6ﬂ_,j(i)(a)) if i > 7,
i(aej) = teo (DD XD (5,5 1y (a)) ifi < J.
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Proof. (1) Straightforward.
(2) Obviously, the equality holds for j = 0. Let j # 0. For any a € A and
k € G we have

ooy = fer o e
eri(pytc? " oXU) (6 (a)) it k45 > n.
If £+ j < n, setting i = k + j, we have
eij0i_j(a) - ej = ;¢TI oXU)(5,_i(a))
and §;(ae;) = * =3 gX0)(8;_;(a)). If k+j > n, setting i = k+j —n, we have
Cimjindijin(a) - ¢j = ete’ I XD (5,51 (a))
and &;(ae;) = te? =i+ oX0) (5,1 (a)). O
In the following, we set
Civkn = €it" and  xg(i + kn) = x(i) + kq
for i € G and k € Z, the set of non-negative integers, and set
wq(k, 1) = xq(k) + xq() = xq(k +1)

for k,l € Z. Obviously, xq|¢ = x and wg|laxe = w. Also, it is not difficult to
check the following:
(a) eiej = e;qjca9) for all i, j € G;
(b) wey, = ekUXq( )(z) for all z € R and k € Z;
(©) wai ) = Xal) + Xa() — Xqli + ) for all i, € G;
(d) wq(z + 4. k) +we(t, ) = we(i,j + k) +wq(y, k) for all 4,5,k € G.

Proposition 4.1.3. The following hold.

(1) A is an associative ring with 1 = ey and contains R as a subring via the
injective ring homomorphism R — A, x — egx, i.e., setting A; = e; R for
1€ G, A= Diccd; is an G-graded ring with Ag = R

(2) ¢ is an isomorphism in Mod-A with oX("~1(2)¢(1) = ¢(1)x for allx € R,
i.e., A/R is a split Frobenius extension of second kind.

Proof. (1) It follows by Lemma 4.1.1(2) that eq-e;2 = e;x = e;z-¢eg for alli € G
and z € R. Let ¢,j,k € G and z,y,z € R. By (a), (b) we have

(i - ejy) - enz = eipc21 0D gXa) ()y - e 2
= ei+j+kcwq(i+j,k)0xq(k) (a9 gXa D) (1)y)) 2
— iy eI 0 ) a0 () X () 3 2

= ei+j+kc“’q(i+j»k)+wq(ivj)O-Xq(k)+Xq(j) (l‘)O'XQ(k) (y)z

)
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et - (ejy - epz) = e - e IR gxalk) ()
= ei+j+kcwq(i’j+k)0><q(j+k) (2)ca@R) gxa(k) ()
= ei+j+kc‘“q(i’j+k)c“q(j’k)o‘”q(j’k) (qu(j+k) (x))O—Xq(k) (y)z

— 6i+j+kcwq(i’j+k)+wq(j’k)a-wq(jvk)‘i‘Xq(j‘Hc) (I)qu(k) (y)z

It then follows by (c), (d) that (e;x - e;y) - exz = e;x - (ejy - exz). The last
assertion is obvious.

(2) Tt follows by (M2) that §;z = oX()(x)8; for all z € R and i € G. In
particular, {d;};cc is a basis for the right R-module Hompg (A, R). Also, for
any ¢ € G by Lemma 4.1.1(3) e;e,,—;—1 = €,—1 and hence 0,_1¢; = 0,,—;—1. It
follows that ¢ : A = Hompg(A, R),a + §,_1a in Mod-A. Obviously, A is a free
left R-module with a basis {€;}scq. Thus, since §,, 12 = oX("~1(z)5,,_; for all
= € R, the associated ring homomorphism is just o~ X("=1 : R = R and hence
A/R is a Frobenius extension of second kind. Also, by (1) A/R is split. O

In the following, we set
n—1
e(i) =Y wyli, ki)
k=1
for i € G. By Lemma 4.1.1(1) (i) > 0 for all i € G. Also, for any i € G we
have x,4(in) = iq and hence
n—1
e(i) = Z{Xq(i) + Xq (ki) — xq((k +1)i)}
k=1
= nxq(i) = Xq(ni)
= nx(i) — iq.
Lemma 4.1.4. The following hold.
(1) eiej = eje; for alli,j € G and e} = eot'c* for alli € G.
(2) If t € rad(R), then dp(a) € R* for all a € A*.

Proof. (1) For any i,j € G by (a) we have wy(i,j) = wy(j,1) and e;e; = eje;.
Next, by induction we have e = e;,.c¥e(b)+Fwa(t.(=1)i) for all > 2, 50 that
e = eincc(D = egtice(D),

(2) Let a € A*. By Lemma 4.1.2(1) we have

So(aa™) = dp(a)do(a™t) + Z te =D X (=D (5, ()8, _i(a™h).
i#0

Since te*(#" =) ¢ rad(R) for all i # 0, and since §o(aa™') = 1, 6y(a)do(a™ ") €
R* and dp(a) has a right inverse. Similarly, dg(a) has a left inverse. O

Proposition 4.1.5. Ift € rad(R), then R/rad(R) = A/rad(A) canonically.
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Proof. Setting m = rad(R), we will see that rad(A) = eom & (B, 20e;R). We
divide the proof into several steps.

Claim 1: There exists an injective ring homomorphism
p:A— My(R),a— (6;(ae;))ijec
such that for any a € A if p(a) € M,,(R)* then a € A*.

Proof. We have an injective ring homomorphism A — Endr(A),a — (b — ab)
and a ring isomorphism ¢ : Endg(A4) = M, (R), f — (6;(f(e;)))ijec, so that as
the composite of them we have an injective ring homomorphism p : A — M, (R)
such that p(a) = (d;(ae;))i jeq for all a € A. Next, for any a € A with p(a) €
M,,(R)*, since (b+ ab) = ¢~ (p(a)) € Endg(A)*, we have A = A, b +— ab and
hence a € A*. O

Claim 2: Am = @;cqe;m is a two-sided ideal of A with Am C rad(A).

Proof. Obviously, Am is a left ideal. Since Am consists of a € A with J;(a) € m
for all ¢ € G, and since o(m) = m, it follows by Lemma 4.1.2(1) that Am is a
two-sided ideal. Let a € Am. We claim that a € rad(A). Since 6;(1 —a) =
—d;(a) € m for i # 0 and dp(1 —a) =1 — dp(a) € R*, it follows by Lemmas
4.1.1(2) and 4.1.2(2) that p(1 —a);; € R* for all ¢ and p(1 — a);; € m unless
i = j. Note that rad(M,,(R)) consists of all matrices with the entries in m (see
e.g. [15, Chapter 1, Proposition 7.22]). Thus p(1 —a) € M,,(R)* and by Claim
1 we have 1 —a € A*, so that a € rad(A4). O

Claim 3: n = egm @ (B;20e; R) is a two-sided ideal of A with n C rad(A).

Proof. Obviously, n is a subgroup of A. It then follows by Lemma 4.1.2(1) that n
is a two-sided ideal of A. Next, since t'c*() € m for all i # 0, by Lemma 4.1.4(1)
there exists m > 1 such that ™ € Am for all a € n, i.e., n/Am is a two-sided
ideal of A/Am consisting only of nilpotent elements. Thus n/Am C rad(A/Am).
It follows by Claim 2 that n C rad(A). O

Claim 4: rad(A) C n.

Proof. Let a € rad(A). For any x € R we have 1 —a(egz) € A* and by Lemma
4.1.4(2) 1 — do(a)zr = do(1 — a(epz)) € R*. Thus dp(a) € m and a € n. O

This finishes the proof of Proposition 4.1.5. O
Now, by Propositions 2.1.6, 2.1.9, 4.1.3 and 4.1.5 we have the following.

Theorem 4.1.6 ([12] Theorem 2.6). Assume t € rad(R). Then A is an
Auslander-Gorenstein local ring if and only if so is R.
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In Lemma 4.1.4(2) the assumption ¢ € rad(R) can be replaced by the con-
dition that ¢ € rad(R) and w(i,n — ) > 0 for all ¢ # 0. Similarly, in Claim 3
in the proof of Proposition 4.1.5 the assumption ¢ € rad(R) can be replaced by
the condition that ¢ € rad(R) and (i) > 0 for all ¢ # 0. Note also that

e(i) +e(n —1i) = nw(i,n —1)
for all 7 # 0. Consequently, we have the following.

Theorem 4.1.7 ([12] Theorem 2.7). Assume ¢ € rad(R) and nx(i) > iq for all
1# 0. Then A is an Auslander-Gorenstein local ring if and only if so is R.

4.2 Matrix rings

In this section, we will construct an extension ring A of A such that A/R is a
split Frobenius extension of second kind and A = M,,(R) as right R-modules
(see Remark 4.2.5 below). We also show that the following are equivalent: (1) R
is an Auslander-Gorenstein ring; (2) A is an Auslander-Gorenstein ring; (3) A is
an Auslander-Gorenstein ring. We refer to [1] and [9] for similar constructions
of matrix rings.

We denote by 6i A — Ay a— e;0;(a) the projection for each i € G. Then
the following conditions are satisfied:

(D1) &5] =0 unless i =jand ), 6; = ida;

(D2) Si(a)gj (b) = Sﬁj(i)(&(a)b) for all a,b € A and i,j € G.
Let A be a free right A-module with a basis {v; };c¢ and define a multiplication
on A subject to the following axioms:

(L1) v;u; =0 unless ¢ = j and v;v; = v; for all ¢ € G;

(L2) avi =3 vj&r_i(j)(a) for all a € A and i € G.
We denote by {7;}ice the dual basis of {v;};cq for the free left A-module
Homa (A, A),ie, A=, vivi(A) for all A € A. Tt is not difficult to see that

M=) 0idn—s ) (1 (N) i ()
i,jEG
for all X\, u € A. Also, setting v = 3, Vi, we define a mapping
¥ A — Homyu (A, A), A — yA.
Proposition 4.2.1. The following hold.

(1) A is an associative ring with 1 =3 .~ v; and contains A as a subring via
the injective ring homomorphism A — A, a v ), va.

(2) 1 is an isomorphism of A-A-bimodules, i.e., A/A is a Frobenius extension
of first kind.
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Proof. (1) Let A € A. Obviously, >, - vi - A = A. Also, by (D1) we have

A vi= > by (n(N)

jeG ijEG
= sz‘%‘()\)
i€G
=\

Next, for any A, u,v € A by (D2) we have

(A = Z V61 (i) (O3 (5 (Vi (M) (1)) 73 (V)
ij.keG
= ) 0idas i) (% (A) 05 (75 (1)1 ()
ij,keG
= A uv).
The remaining assertions are obvious. .
(2) Let A € Ker 9. For any j € G, 0 = v(\vj) = > ;e 0—i(i)(7i(N)) and
hence 57T—j(i) (7:(A\)) =0 for all i € G. Thus for any ¢ € G, gﬂ——j(i) (7:(A)) =0 for
all j € G and by (D1) v;(\) = 0, so that A = 0. Next, for any f =), a7y €

Hom4 (A, A), setting A =7, ;<5 vi0r—r(i)(ar), by (D1) we have

(YA (v5) = v(Avy)
= Z 877—-7(1’) (vi(N)
i€G

Z 5Tr,j(i)(3fk(1;)(ak))

i,keG

= aj
= f(vj)
for all j € G and f = yA. Finally, for any a € A, by (D1) we have

(va)(A) = v(aN)
= Y deila)ni(N)

i,j€G
= ay(A)
for all A € A and va = avy. O

Remark 4.2.2. I n-14 € A, then A/A is a split ring extension.

Setting A\;; = 377__7(1») (73(A)) € Ap—j(;) for A € A and 4,5 € G, we have a ring
automorphism 7 € Aut(A) such that 1n(\);; = Ar-1(;),--1¢;) for all X € A and
i,j € G. Obviously, n* = idy and the mapping G — Aut(A),i — 7’ is a group
homomorphism.
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Note that A is a free right R-module with a basis {vie; }i jeq and {3;7i}i jea
is the dual basis of {v;e;}; jeq for the left R-module Hompg(A, R), and that for
any i € G by (L2) zv; = v;x for all x € R and Awv; is a A-R-bimodule

Proposition 4.2.3. The following hold.
(1) 77 (v;) = vgiyy for alli,j € G.
(2) A" = A.
(3) vih = Homp(Avg(y, R), A — 0,—17%:A in Mod-A for alli € G.

Proof. (1) Let i,j € G. For any k,l € G, since 1/ (v;)x = Sﬂ_z(k)(yrj(k)(vi)),
we have

. 1 ifk=1landi=n"7(k),
n](vi)kl:{ )

0 otherwise.

(2) For any a € A, since 0'(a)jx = Qni(j)ri(h) = Sﬂ_ﬂfi(,c)(ﬂ_i(j))(a) =
Sﬂ.—k(]‘)(a) = aj), for all 7,5,k € G, we have a € A". Conversely, for any A € A"
we have 05— (7i(A)) = Aixsi) = 1" (ANo,; = Ao,j = 0n—j(10(N)) foralli,j € G,
so that v;(A\) = v0(\) for all i € G.

(3) Let i € G. Since by (L2) e;v; = vgi(jye; for all j € G, it follows that

Uri+1(4)€j if k= 7Tj+1(i)7
Vk€jVn(i) = .
o) 0 otherwise

for all j, k € G and hence Hompg(Av,(;), R) has a basis {;v,i+1(;) }jec as a left
R-module. Also, it follows by (M2) and (L2) that 5j’yﬂj+1(i)$ = gx0) (33)5j’y,rj+1(i)
for all z € R and j € G. Thus {0;7i+1(;) }jec is a basis for the right R-module
Hompg(Avr(;), R). Since v;A has a basis {vie;}jeq as a right R-module, it suf-
fices to show that 6,_17; - viej = OpYur+1(sy With k =777 (n —1) for all j € G.
Let j € G. For any r,s € G, since e;v; = vgi(;)€;, we have

viejes if i =7 (r),

Vi€jUr€s = ViUri(r)€;€s = .
) 0 otherwise.

It follows by (M1) that (8,17 - viej)(vres) = dp—17i(viejvpes) # 0 if and only
if r=m"7()and s =n —j— 1. It then follows by (X2) that &§,_1v;0;e; =
Jﬂ—j(nfl)’)/ﬂ-—j(i) and, setting k = P (n—1), 0p_17: vie; = 5k’yﬂ.k+1(i). [

Theorem 4.2.4. The following are equivalent.
(1) R is an Auslander-Gorenstein ring.
(2) A is an Auslander-Gorenstein ring.

(8) A is an Auslander-Gorenstein ring.
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Proof. (1) = (2) = (3). By Propositions 2.1.9(1), 4.1.3(2) and 4.2.1(2).

(3) = (1). Since by (L2) 2v; = v,z forallz € Rand i € G, dpyo: A — Risa
homomorphism of R-R-bimodules with dgyo|r = idg. It follows by Propositions
2.1.7, 4.1.3(2) and 4.2.1(2) that A/R is a split Frobenius extension of second
kind. The assertion now follows by Propositions 2.1.6 and 2.1.9(2). O

Remark 4.2.5. Set e;; = vier—i(;) for i,j € G. Then {e;;}; jec is a basis for
the right R-module A and the multiplication in A can be defined subject to the
following axioms:

(N1) e;jer = 0 unless j = k and

eiptee™ DTG i 77 (i) +7F(5) > n;

{eikcw(”j(i)*“k(j)) if 7779 (i) + 7k (4) < n,
eijejk =

(N2) ze;; = eijUX(T‘fj(i))(ac) forall z € R and i,j € G.
Remark 4.2.6. Set A, = {(i,77*(i)) | i € G} for k € G. Then G xG = UgegAry,
which is a disjoint union. The mapping G x G — Z, (i,j) — x(777(4)) takes
the constant value x(k) on Ay and 1 - e = Z(i,j)eAk e;; for all k € G.

4.3 Classification

In this section, we will provide a way to obtain every pair (g, x) satisfying the
conditions (X1) and (X2).
Let ¢ be an integer and x : G — Z a mapping satisfying the condition (X2).

Lemma 4.3.1. The following hold.
(1) x(i) = x(i—1)=x(n—9)—x(n—i—1) forall1 <i<n-—1.
(2) If n = 2m with m > 1, then there exist p1,...,Dm,Pm+1 € Z such that
0 ifi =0,

X)) =4p1+-+pi if1<i<m,

and ¢ =2{p1 + -+ Pm-1} + Pm + Pm1-
(8) If n =2m+1 with m > 1, then there exist p1,...,Pm,Pm+1 € Z such that

0 ifi =0,
X(@) = {pr+-+pi #lsism,

andq: 2{p1 ++pm}+pm+1
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Proof. (1) Forany 1 <i<n-1, x(i)+x(n—i—1) = x(n—1) = x(i—1)+x(n—1)
and hence x(i) — x(i—1) = X(n —i)—xn—1i-1).

(2) and (3) Since x(0) =0, x(i) = ZZZI{X(k)fx(kfl)} foralll <i<n-1.
Thus, setting p; = x(i) — x(¢ — 1) for 1 <i <m and py+1 = g — x(n — 1), the
assertions follow by (1). O

Proposition 4.3.2. Let n = 2m with m > 1. Then (g, x) satisfies the condition
(X1) if and only if the following hold.

(1) pi > pm1 for all 1 <i<m.
(2) Ifm>2, and if 1 <r <% and 1 <s <m—2r+1, then
(p1+"'+pr)_(ps+r+"'+ps+2r—1)20~

. 2m—1 r—1
(8) If m > 5, and if 3 <r < == and 1 < s < 5=, then

(P14 +pr) = Pm—s T +DPm +Pm—1+ "+ Pmts—rt1) = 0.
(4) If m >3, and if 1 <r < ™71 and 1 < s <m —2r, then
—(p1+--- +pr) + (Pstr + 00+ Pstar) > Pmt1-
(5) Ifm >4, and if 2 <r < 2”3_2 and 1 < s < %, then
—(p1 4 D)+ Pmes + AP A Pt F Pngs—r) 2 Pt

Proof. For the sake of convenience, we set x(n) = ¢g. Then the condition (X1)
is equivalent to that

X0 —1) = {x() = x()} 2 0 and {x(j) — x(O)} — {x(n) =x(n—j+i)} >0
for all 0 <i < j <n—1. In case i = 0, the first inequality is trivial and
x(7) = {x(n) = x(n = j)} = x() + x(n = j) = x(n)
=x() +{x(n —=1) =x(G =1} = x(n)
={x(j) —xU =D} —{x(n) —x(n - 1)}.

foralll1<j<n-—-1. Let 1 <i<j<n-—1. Settingr=j—iands =1, we
have r,s > 1 with r+s <n —1 and

r+s
X( =) = {x(j) }—Z{x x(k=1DF= Y () —x( -1},
l=s+1
{x(G) = x(@)} —{g—x(n—j+i)}
r+s
> k) = x(k - Z {x(1) = x(1 - 1)}.
k=s+1 l=n—r+1
Consequently, canceling common terms, the assertion follows. O
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Proposition 4.3.3. Let n = 2m + 1 with m > 1. Then (q,x) satisfies the
condition (X1) if and only if the following hold.

(1) i = Pt for all1 <i<m.
(2) Ifm>2, and if 1 <r <% and 1 < s <m —2r+1, then
P14+ +pr) — Psgr + -+ Dst2r—1) > 0.
. 2
(8) If m > 3, and if 2 <r < =% and 1 < s < 5, then
(P14 +pr) = Pm—st1+ - +Pm+DPm+ -+ Pmts—rt1) > 0.

(4) If m > 3, andiflgrng_l and 1 < s <m —2r, then

_(pl + - +p7) + (ps+7' + - +ps+27') Z Pm+1-

(5) If m > 2, andif1§r§2m3;1andlgsg’"gl,then

P14 F )+ Pmest1+ F P Pt F Pgs—r) > Pl

Proof. Similar to Proposition 4.3.2. O

4.4 Examples

In this final section, we will provide some examples of A and A which are
constructed from an arbitrary ring R (see Section 1 and Section 2, respectively).

Lemma 4.4.1. For the ring A, we have 15 =), €

Proof. 1t follows by Proposition 4.2.1 and Remark 4.2.5 that
Zeii = Zviefi(i) = Zvieo = Zvi = 1a.
e icG ic@ €@
O

Example 4.4.2. Let n =2, ¢ = x(1) = 1, R = k[[X, Y]] a formal power series
ring over a field k and ¢ = ¢t = 0. We take o as a k-algebra automorphism of
R such that o(X) =Y and o(Y) = X. Then (o, ¢,t) satisfies the condition (x)
and the pair (g, x) satisfies the conditions (X1) and (X2). It follows by (M1)
and (M2) that eje; = et = 0 and ze; = e10X(M(2) = ejo(x) for any
x € R. Setting e; = Z, we have

A2 (XY, 2NV (XY =YX, 22 XZ — 2Y,YZ — ZX),

where k((X,Y, Z)) is a noncommutative power series ring over k. By Theorem
4.1.6 A is an Auslander-Gorenstein local ring with inj dim A = 2, which is
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neither quasi-Frobenius nor commutative Gorenstein. Also, by Remark 4.2.5
and Lemma 4.4.1 we have 15 = egg + €11 and the following relations:
and

zegy = egoo X

(z) = egor,
zegr = eoroXM (z) = egro (),
zerg = erooXM(x) = eqgo(x),
wep; = ep10X0(2) = ey

for all x € R. Setting eqgp = S,e91 = T,e19 = U and e;; =V, we have
A= E(X)Y,S, T, U, V))/I,
where I is an ideal generated by the following elements:
S2 -8, 1% U? V2V,
ST-T, TV -T, US-U, VU —-U,
su, sv, TS, TU, UT, UV, VS, VI, 1-S5—-T
XY -YX, XS-SX,YS-SY, XT-TY, YT -TX,
XU-UY, YU-UX, XV-VX, YV -VY.
By Theorem 4.2.4 A is an Auslander-Gorenstein ring with inj dim A = 2.

Throughout the rest of this section, we restrict ourselves to the case where
g = idR.

Example 4.4.3. Let n = 2, (¢, x) an arbitrary pair satisfying the conditions
(X1) and (X2) and R an arbitrary ring. Since w(1,1) = x(1)+x(1)—x(0)—¢ =
2x(1) — g, it follows that eje; = egtce?™) = te2X(D =4, Setting e; = X, we have

A= RIX]/(X? - teX(D-9),

where R[X] is a polynomial ring over R. Also, by Remark 4.2.5 and Lemma
4.4.1 we have 15 = egg + e11 and the following relations:
Setting ego = X, e01 =Y, e10 = Z and e;; = W, we have

A= R(X,Y,Z,W)/I,

| eoo | €or | €10 | ens

eoo || €oo | eo1 | O 0
€01 0 0 0 €01
€10 €10 0 0 0
e || 0 0 €10 | €11

33



H €00 ‘ €o1 ‘ €10 €11
€00 || €oo | €o1 0 0
€01 0 0 €oot62X(1)7q €01
e || ero eutc2X(1)_q 0 0
err || 0 0 €10 €11

where R(X,Y, Z, W) is a noncommutative polynomial ring over R and I is an
ideal generated by the following elements:

X2 - X, Y? 72, W2 -W,

XY-Y,YW-Y, WZ— 2, ZX — Z,
XZ, XW, YX, ZW, WX, WY,

YZ — Xte2XW—a 7y — WiexW—a 1 - X —W.
In particular, if t = 1 and 2x(1) = ¢ then A is isomorphic to My (R) as rings.

Example 4.4.4 (]9, Section 3]). Let n > 2, t =1, ¢ = nx(1) — 1 and x(i) =
ix(1) for all i € G. Then A is isomorphic to M, (R;idg,c) in the sense of

Hoshino [9, Section 3] as rings.
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Chapterb
Clifford extensions

5.1 Graded rings

Throughout this chapter, we fix a set of integers G = {0,1,...,n—1} withn > 2
and a ring R together with a pair (o,¢) of 0 € Aut(R) and ¢ € R satisfying the
following condition:

(¥) o"=idg and c€ R°NZ(R).

This is obviously satisfied if 0 = idr and ¢ € Z(R).

Let A be a free right R-module with a basis {v; };cq and {0;}ice the dual
basis of {v;}icc for the free left R-module Homp(A, R), i.e., X = > 5 vidi(\)
for all A € A. We set

Vi kn = vic"

for i € G and k € Z, the set of non-negative integers, and define a multiplica-
tion on A subject to the following axioms:

(L1) vv; = vy for all 4,5 € G;

(L2) av; = v;0%(a) for all a € R and i € G.

Lemma 5.1.1. The following hold.
(1) viv; =vjv; for alli,j € G and v = voc® for all i € G.
(2) For any A\, pp € A we have \p = 37, e viyjo? (3:(X))3;(1) and hence

So(M) = do(Mdo() + D 0" (E:(N)on—i()e.
i€G\{0}

(8) For any A € A and i,j € G we have

o9 (5;—;(N)) ifi > j,

51‘(/\’0]’) = {Uj((sz‘ﬁrn()‘))c ifi < j.
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Proof. (1) The first assertion is obvious. It follows by induction that v] = v;,
for all r > 1. In particular, v = v;;, = voc'.

(2) Straightforward.

(3) Obviously, the equality holds for j = 0. Let j € G\ {0}. Then for any
A€ A and k € G we have

vj+£07 (9k(N)) ifk+j<n,
Vj k-0’ (Gk(N))e if k+j > n.

vkék()\) 'Uj = {

If k+j < n then, setting i = k+ j, we have v;_;0;_;(\) - v; = v;07(§;_;(\)) and
8;(Av;) = 9 (8;—j(N)). Assume k + j > n. Then, setting i = k + j — n, we have
Viejnlimjrn(A) - v; = 0,07 (8i—j4n (X)) and 8;(Av;) = 07 (di—j1n(N))e. O

Proposition 5.1.2. The following hold.

(1) A is an associative ring with 1 = vy and contains R as a subring via the
injective ring homomorphism R — A, a — vpa.

(2) A/R is a split Frobenius extension of second kind.
(3) R/rad(R) = A/rad(A) canonically if ¢ € rad(R).

(4) For any € € R° NZ(R) with e™ = 1 there exists & € Aut(A) such that
5:(6(N) = a(8;(N)e® for all X € A and i € G, and for any ¢’ € R° NZ(R)
the pair (o,c") satisfies the condition (*).

Proof. (1) Obviously, vy - via = via = v;a - vy for all i € G and a € R. Since
otk = gl for all i € G and k € Z,, it is easy to check that av; = v;o'(a) for
all a € R and i € Z. Thus for any 4, j,k € G and A;, uj, v € R we have

(Vi - V) - vV = viﬂaj()\i),uj VRV

= Vigj4k0" (07 (X)) Vi

= Vi k00 RN (1) v,
Uik - (Vs - VEVR) = Vidi - 05 k0" (1 )k

= Ui+j+k0'j+k(/\i)0'k (:uj)l/k

and (v;\; - vj;) - Ve = U A; - (V5 - vpvg). The last assertion is obvious.

(2) Tt follows by (L2) that §;a = o%(a)d; for alla € Rand i € G. In particular,
{d:}iec is a basis for the right R-module Hompg(A, R). Also, v;vp—i—1 = Un_1
implies 6,,_1v; = 0,_;_1 for all i € G. Thus A = Hompg(A, R),\ — 6, 1\ in
Mod-A. Obviously, A is generated by {v; };cc as a left R-module. Consequently,
since §,,_1a = 0" (a)d,_1 and pa = ady for all a € R, the assertion follows.

(3) Set m = rad(R) and n = vom @ (D;cq\(oyviRR) C A. It suffices to show
that n = rad(A). We divide the proof into several steps.

Claim 1: §o(N\) € R* for all A € A*.
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Proof. Let A € A*. Since do(A\"1) = 1, and since ¢ € rad(R), by Lemma
5.1.1(2) do(N\)do (A1) = 1= e\ (0} 0" (6:(N))8n—i(A"1)e € R* and dp()) has
a right inverse. Similarly, 5o(A71)dp(\) € R* and §p(A) has a left inverse.  [J

Claim 2: There exists a ring homomorphism p : A — M, (R), A — (0;(A\vj))i jea
and A € AX for all A € A with p(\) € M,,(R)*.

Proof. Since we have a ring homomorphism A — Endg(A), A — (u — Ap) and
a ring isomorphism Endg(A) = M, (R), f — (5i(f(vj)))i7jeG7 as the composite
of them we have a desired ring homomorphism p : A — M, (R). If A € A with
p(N) € M, (R)*, then A = A, i +— Ay and A € A%, O

Claim 3: Am = ®;cqu;m is a two-sided ideal of A with Am C rad(A).

Proof. Obviously, Am is a left ideal. Since Am consists of A € A with §;(A\) € m
for all i € G, and since o(m) = m, it follows that Am is a two-sided ideal. Let
A € Am. We claim A € rad(A). Since 6;(1—A) = —§;(\) € m for i € G\ {0} and
do(1=X) = 1=9p(\) € R*, it follows by Lemma 5.1.1(3) that p(1—\);; € R* for
all i € G and p(1 — A);; € m unless ¢ = j. Note that rad(M,,(R)) consists of all
matrices with the entries in m (see e.g. [15, Chapter 1, Proposition 7.22]). Thus
p(1—X) € M,,(R)* and by Claim 2 we have 1 — X € A, so that A € rad(A). O

Claim 4: n is a two-sided ideal of A with n C rad(A).

Proof. Obviously, n is a subgroup. It then follows by Lemma 5.1.1(2) that n
is a two-sided ideal. Next, by Lemma 5.1.1(1) there exists m > 1 such that
A™ € Am for all A € n, i.e., n/Am is a two-sided ideal of A/Am consisting only
of nilpotent elements. Thus n/Am C rad(A/Am). It follows by Claim 3 that
n Crad(A). O

Claim 5: rad(A) C n.

Proof. Let A € rad(A). For any a € R, since 1 — Aa € A*, by Claim 1 we have
1—3dp(N)a = dp(1 — Aa) € R*, so that dp(A) € m and A € n. O

This finishes the proof of (3).

(4) Obviously, & is an automorphism of the additive group A satisfying
(1) = 1 and 6" = idy. Since €' = ¢ for all i € G and k € Z,, it
follows that for any A, p € A, setting §;(\) = A\; and d;(u) = p; for i € G, we
have G(A\u) = 32, jcq vitjo (07 (No)py)e™ = 3, icqvivio’ (0(Ni)et)o(p;)e? =
a(N)a(p). O

Remark 5.1.3. According to Proposition 5.1.2(4), the construction above can be
iterated arbitrary times.

Remark 5.1.4. Let R[t; o] be aright skew polynomial ring with trivial derivation,
i.e., R[t;o] consists of all polynomials in an indeterminate ¢ with right-hand
coefficients in R and the multiplication is defined by the following rule: at =
to(a) for all @ € R. Then (t" — ¢) = (t" — ¢)R[t; 0] is a two-sided ideal and the
residue ring R[t; o]/(t" — ¢) is isomorphic to A as extension rings of R.
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In the next section, we will deal with the case where n = 2 and denote by
Cli(R;0,c¢) the ring A constructed above.

5.2 Clifford extensions

In this section, we fix a set of integers G = {0,1} and a ring R together with a
sequence of elements ¢y, ca, ... in Z(R).

We may consider G as a cyclic group of order 2 with 0 the unit element,
ie,weset 0+i=i+0=idforalli e Gand 1+ 1 =0. For any n > 1 we
denote by G™ the direct product of n copies of G and by 0 the unit element
(0,...,0) of G™. We consider G"~! as a subgroup of G" via the injective group
homomorphism

Gn_l - Gn,(l‘l,...7$n,1) = (.’1/'17...,1‘”7170),

where G denotes the trivial group {0}. Although Proposition 5.1.2(4) enables
us to construct inductively various G™-graded rings which are Frobenius exten-
sions of R, in this paper we restrict ourselves to the following particular case
(see the proof of Theorem 5.2.1(1) below).

Let n > 1. For each © = (z1,...,z,) € G™ we set S(x) = {i | z; = 1}. Note
that S(x +y) = S(x) + S(y), the symmetric difference of S(z) and S(y), for all

x,y € G". We set
.. +1 ife <y,
e(i, j) = I
-1 ifi>j

for 1 <i,5 <mnand

C(l’,y) = H E(Za]) H Ck

(i,5)€S(z)xS(y) keS(x)NS(y)

for x,y € G™. We denote by s the element x € G with S(x) = {1,...,n}.

Let A, be a free right R-module with a basis {v;}zeqn. We denote by
{0z }weqn the dual basis of {vy}zeqn for the free left R-module Homp(A,, R),
ie, X = 3 conva0:(N) for all X € A,,. We define a multiplication on A,
subject to the following axioms:

(M1) vyvy = vgyyc(x,y) for all z,y € G™;

(M2) av, = vga for all z € G™ and a € R.

In the following, we set v, = t; for x € G™ with S(z) = {i}. It is easy to see
the following;:

(C1) t2 = vge; for all 1 < i < n;

(02) tit; +tit; = 0 unless ¢ = j;

(03) Vg =y - Ui, if S(CC) = {’L'l,...,Z'T} with i1 < -+ < 4.

Theorem 5.2.1 ([11] Theorem 3.1). For any n > 1 the following hold.
(1) A, is an associative ring with 1 = vy and contains R as a subring via the

injective ring homomorphism R — A, a — vga.
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(2) An/R is a split Frobenius extension of first kind.
(3) R/rad(R) = A, /rad(A,,) canonically if ¢; € rad(R) for all 1 <i < n.

Proof. (1) We will make use of induction on n > 1. Since A; = Cly(R;idg,c1),
the assertion holds true if n = 1. Let n > 1 and assume that the assertion holds
true for n — 1. Then there exists 0,,_1 € Aut(A,,_1) such that

On1(VaAg) = vz Ag(—1)15@)

for all z € G"! and A\, € R, where |S(z)| denotes the order of S(z). It is not
difficult to see that A, = Cli(Ap—1;0n-1,¢n)-

(2) By (M2) aé, = d,a for all x € G™ and a € R. In particular, {6, }secn
is a basis for the right R-module Hompg(A,,, R). Also, for any € G", by (M1)
VyUpts = Vsc(x, z + s) and hence 05v, = ¢(x, & + 5)0,4s. Since c(x,z + s) € Z*
for all z € G, it follows that A,, = Homp(A,, R), A — &5\ as R-A,-bimodules.
Obviously, dp is a homomorphism of R-R-bimodules with dp|z = idg.

(3) Setting Ag = R and o = idg, we have Ay = Cly(Ag—1;0%—1,cx) for all
1 <k < n. The assertion follows by Proposition 5.1.2(3). O

Remark 5.2.2. It d(x,y) = |S(x) x S(y)|—|S(xz)NS(y)| is even, then v,v, = vyv,.
In particular, v, € Z(A,) whenever n is odd.

Proof. We have []; i c sy sty €00 1) I j.hesw)x s €09 = (—1)d=v) O
Let H™ denote the subset of G™ consisting of all 2 € G™ with |S(x)| even.
Obviously, H™ is a subgroup of G™ and A% = @®,cgnv, R is a subring of A,,.
Proposition 5.2.3. Assume n is even. Then vs € AY and the following hold.
(1) AY/R is a split Frobenius extension of first kind.
(2) R/rad(R) = A% /rad(A%) canonically if c¢; € rad(R) for all 1 <i < n.

Proof. The first assertion is obvious.

(1) By the same argument as in the proof of Theorem 5.2.1(2).

(2) Set m = rad(R) and n = vom & (Syepn\ {0}V ). Then for m € Z with
2m = n we have A™ € AYm for all A\ € n, so that the assertion follows by the
same argument as in the proof of Proposition 5.1.2(3). O

We denote by Cl,,(R; c1, ... ,cp) (vesp., CI2(R;cq, ..., c,)) thering A,, (resp.,
A%) constructed above.

Remark 5.2.4. Let K be a commutative field and V' a 3-dimensional K-space.
Then CI9(K;0,0,0) = K x V, the trivial extension of K by V (see e.g. [7]),
which is not a Frobenius K-algebra. Thus in Proposition 5.2.3 the assumption
can not be removed in general.

Remark 5.2.5. If ¢, € R*, then
Cly_1(R; —c1Cpy ooy —Cp1Cn) — C’lg(R; ClyeeeyCn)yli = tity

as extension rings of R.
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We will call those rings Cl,,(R; ¢y, . . ., ¢,) Clifford extensions of R. Similarly,
we will call those rings CI9(R;cy,...,c,) with n even Clifford extensions of R.
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Appendix
The case of commutative rings

6.1 The case of commutative rings

The rest of this paper, we provide some examples of ring A which are constructed
from an arbitrary ring R (cf. Chapter 4). It follows by Theorem 4.1.6 that if R is
an Auslander-Gorenstein local ring then A is also an Auslander-Gorenstein local
ring. Moreover, the ring A is isomorphic to the n x n matrix for each n where
the (¢, j) element corresponds to (w(i,n—j—1)). There are too many examples
to list in this paper, we choose from examples where R is a commutative ring,
4<n<20,t=1and o =idg(cf. Chapter 4). For 4 < n < 10, we will write
down all types of relations of each algebra. For 11 < n < 20, we do the same
things for two variables.

The case of n = 4.
The integral matrix (w(i,n — j — 1))o<s,j<3 is of the form

0O 0 0 O
pr 0 f1 O
p2 p2 0 0
pt p2 pr O

with the p; > 1 and the f; > 0, where f; = p; — p2, and one of the following
cases OCcurs:

1. fi1 = 0: Setting p = po, we have (p1,p2) = (p,p) and

A RIX)/(X* - )

2. f1 > 1: Setting p = ps and ¢ = f1, we have (p1,p2) = (p+ ¢,p) and

A2 RIX,Y]/(X? -, V%~ X9)
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The case of n = 5.
The integral matrix (w(i,n — j — 1))o<s,j<a is of the form

o 0 0 O
pi 0 fi fi
p2 p2 0 fi
p2 fa p2 O
P1 P2 P2 p1

(e el e B e M en)

with the p; > 1 and the f; > 0, where fi = p1 —p2, fo = —p1 + 2p2, and one of
the following cases occurs:

1. f1 =0, fo > 1: Setting p = pa, we have (p1,p2) = (p,p) and
A= RIX)/(X® - )
2. f1 > 1, fo =0: Setting p = p2, we have (p1,p2) = (2p,p) and
A= RIX,Y]/(XY — P, X? - Y?)

3. fi > 1, fo > 1: Setting p = f1 and ¢ = f2, we have (p1,p2) = (2p+q,p+q)
and

A2 RIX,)Y,Z]/(YZ - X, Z? —Y P, X? — Zct, XY — T X7 —Y?)

The case of n = 6.
The integral matrix (w(i,n — j — 1))o<s,j<5 is of the form

o 0 o0 0 O
p 0 fi fo fu
p2 p2 0 fo fo
ps fz p3 0 fi
p2 fs fs p2 O
b1 p2 PpP3 P2 P1

OO OO oo

with the p; > 1 and the f; > 0, where fi = p1 —p2,fo = p1 — D3, f3 =
—p1 + p2 + p3, and one of the following cases occurs:

1. fl = 07 f2 = 07 fS > 1: Settlngp = p3, we have (pluanpS) = (p7p7p) and
A= RIX)/(X® — )

2. f1 =0, f2 > 1, f3 > 1: Setting p = p3 and q = f, we have (p1, p2,p3) =
(p+4q,p+q,p) and

A2 RIX,Y]/(X? -, V? - X&)
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3. f1>1, fa=0, f3 > 1: Setting p = p and ¢ = f1, we have (p1, p2, p3) =
(p+q,p,p+q) and

A= RIX,Y]/(X3 =P Y? — Xc?)

4. fl Z 17 f2 Z ]-7 f3 =0: Settlngp = P2 and q = p3, we have (pluanp?;) =

(p+¢,p,q) and
A2 RIX,Y]/(X? =l Y? — )

5. fi>1, fa>1, f3 >1: We have A~ R[X,Y,Z, W]|/I, where I is an ideal
generated by the following elements:

X2 - Zels XY —Wels, XZ — P2 Y2 —cP3 YW — Xelt,
72— Xl ZW =Yl W2 — Zeh  XW - Y Z.

The case of n =7.
The integral matrix (w(i,n — j — 1))o<i j<e is of the form

o 0 0 O o o0 o0
p 0 fi fo fo fi O
p2 p2 0 fo fs fa O
ps f3 p3 0 fa fo O
p3 fa fa p3 0 f1 O
p2 fs fa fs p2 0 O
p1 p2 ps p3 p2 p1 O

with the p; > 1 and the f; > 0, where
fi =p1— D2, fa =p1 — D3,

f3 = —p1 +p2+p3, f2=—p1 + 2p3,
f5 =p1+p2 — 2p3,

and one of the the following cases occurs:

1. fi=fo=fs=0and f; > 1 for i = 3,4: Setting p = ps, we have
(p1,p2,p3) = (p,p,p) and

A= RIX]/(XT - )

2. fi=fa1=0and f; > 1fori=2,3,5: Setting p = p3, we have (p1, p2,p3) =

(2p,2p, p) and
A2 RIX,Y]/(XY — P, X° - Y?)

3. f3=fir=0and f; > 1fori=1,2,5: Setting p = p3, we have (p1,p2,p3) =

(2p,p,p) and
A2 RIX,Y]/(XY — P, X* —YV?)
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. fs=fs=0and f; > 1fori=1,2,4: Setting p = py, we have (p1, p2, p3) =

(3p, p, 2p) and
A= RIX,Y]/(X?Y — P, X% —Y?)

. fi=0and f; > 1 for i = 2,3,4,5: Setting p = fy and ¢ = f4, we have
(p1,p2,p3) = (2p +¢,2p + ¢,p + q) and

A2 R[X,Y,Z]/(X? -~ Z, XY —cPYYZ — X, 72 ~Y P, Y? - XZ?)

. fs=0and f; > 1fori=1,2,4,5: Setting p = f4 and ¢ = f5, we have
(p1,p2,p3) = (3p +2¢,p + ¢,2p + q) and

A2 R[X,Y,Z]/(XY — ZP, XZ — "Y1 Y2 — X3¢P 7% V1, X~ Y Z)

. fa=0and f; > 1fori=1,23,5 Setting p= f; and ¢ = f3, we have
(p1,p2,p3) = (2p + 2¢,p + 2¢,p + q) and

A= RIX,)Y, Z|/(X? =21, XZ - Y21, Y? - XcP,YZ — P, XY — 7?)
. fs=0and f; > 1fori=1,2,3,4: Setting p = fy and ¢ = f3, we have

(p1,p2,p3) = Bp+q,p+q,2p+q) and A = R[X,Y,Z, W|/I, where I is
an ideal generated by the following elements:

X2 Y, XY —~Wet,XZ — PY,YZ — XP, YW — Z2cP,
IW —YcP, W2 — ZcP, XW —Y2,Y?2 — 73,

. fi>1lfori=1,2,3,4,5: We have A = R[X,Y,Z, W,U]/I, where I is an
ideal generated by the following elements:

X2 —Zefs XY —Wels, XZ —Uels, XW — P2, Y2 — Ucl+,
YZ -3, YU - X', ZW — X2, ZU — Yef2, W2 — Yels,
WU — Zef2, U? = Welt, XU - YW, YW — Z2.

The case of n = 8.

The integral matrix (w(i,n — j — 1))o<s,j<7 is of the form

o 0 o0 O o0 0 o0
pr 0 fi fo fz3 fo fi
p2 p2 0 fo fo fo [fo
ps fa w3 0 f3 fo f3
pa fs fs pa O fo fo
ps fs fr fs p3 0 f
p2 fo fs fs fa p2 O
pPr P2 P3 P4 P3 P2 P1

OO OO OO oo
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with the p; > 1 and the f; > 0, where

fi=p1—p2, fo=p1—ps3, f3=p1 —pa,
Ja=—p1+p2+ps3, fs =—p1 +p3+pa,
fe =Dp1 +p2 — p3 — pa,

fr=—p1— P2+ 2ps + pa,

and one of the following cases occurs:

1. fi=fao=fs=fs=0and f; > 1 for i =4,5,7: Setting p = py, we have
(p1,p2,p3,p1) = (p,p, P, p) and

A= RIX]/(X® &)
2. fi=fo=0and f; > 1 fori=3,4,5,6,7: Setting p = ps and ¢ = f3, we
have (p1,p2,p3,p4) = (p+¢,p+ ¢, p+ ¢,p) and
A= R[X,Y]/(X? -,V - X&)
3. fa=fe=0and f;, > 1fori=1,3,4,5,7: Setting p = py and g = f1, we
have (p1,p2,p3,p4) = (p + ¢,p,p + ¢,p) and
A= R[X,Y]/(X* -, V% - X&)
4. fp,=fs=0and f;, > 1 fori=1,2,3,6,7: Setting p = ps and q = f7, we
have (p1,p2,p3,p4) = (2p+ ¢, p,p+¢,p) and
A= RIX,Y]/(X* =P, Y2 - X3c7)
5. fs = fa=fs=0and f; > 1 fori=1,2,5,7: Setting p = p3, we have
(P17P2ap3,p4) = (2p7papa 2p) and
A= RIX,Y]/(X?Y — P, X* —Y?)
6. fs=fr=fr=0and f; > 1 for i =1,2,5,6: Setting p = p3, we have
(p1,p2,p3,pa) = (3p, 2p, p, 3p) and
A= R[X,Y]/(XY — P, X? - Y?P)
7. fa=fs=fr=0and f; > 1 fori=1,2,3,6: Setting p = p4, we have
(p1,p2,p3,pa) = (2p, p, p,p) and
A= R[X,Y]/(X* -, X? ~Y?)
8. fo=0and f; > 1fori=1,3,4,5,6,7: Setting p = p4, ¢ = f1 and r = [,
we have (p1,p2,p3,pa) = (p+q+7,p+7,p+q+rp) and
A2 RIX,)Y,Z]/(X? — P, Z% - Y1, Y? — Xc7)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

fs=0and f; > 1fori=1,2,3,4,6,7: Setting p = p4, ¢ = f4 and r = f7,
we have (p1,p2,p3,p4) = 2p+q+7.p+4q,p+q+r,p) and

A= R[X,Y,Z]/(Z? — P, X? — Zc1, Y2 — X Zc")

fai=fe=0and f; > 1fori=1,2,3,5,7: Setting p = ps and q = f3, we
have (p1,p2,ps,ps) = (2p+ ¢, p,p + ¢, 2p) and

A= R[X,Y,Z]/(XY — P, Z? — Xc?, X? —Y?)

fs=fr=0and f; > 1fori=1,2,3,4,6: Setting p = py and q = fy4, we
have (p1,p2,ps,p4) = (20 +4,p+ ¢, p + ¢,p) and

A= R[X,Y,Z])(Z* — P, X? — Zc, XZ —Y?)

fi=fs=fr=0and f; > 1 for i = 2,4,5,6: Setting p = p3, we have
<p17p27p37p4) = (2p7 2197177 2p) and

A= RIX,)Y,Z|/(XY — P, X? - 7% XZ - Y?)
fi=fs=0and f; > 1 fori=2,4,5,6,7: We have
A= R[X,Y, Z]/(XY -2 Y Z? - XcJo, 73 Yl X2 - 7207 X7 —Y?)
fs=fa=0and f; > 1fort=1,2,5,6,7: We have
A= R[X,Y,Z]/(XY —cP* Y Z - XcTo, 2% —Yicle X7 - Y5 X2 — ZcI7)
fa=fe=0and f; > 1fori=1,2,4,5,7: We have
A= R[X,Y, Z]/(X?Y — P, X3~ ZcJ1 )Y Z - X2, 2% —veh X7 —Y?)
fs=fr=0and f; > 1fori=1,2,4,56: We have
A= R[X,Y, Z]/(XY —cP* X Z Y2 Y3 Zcf 722 - X2 X3 —Y?2)
fai=fr=0and f; > 1fori=1,2,3,56: We have
A= R[X,Y, Z]/(XY = ZcP5, X3 —Y2el5, Y Z — P 2% — X2 Y3 - X2 27)

fi=fr=0and f; > 1fori=2,3,4,56: We have A~ R[X,|Y,Z W|/I,
where [ is an ideal generated by the following elements:

XZ — e, XY —Welt, Y2 — P YW — Xef2, 22 — XWebs,
ZW —Yels, X2W — Zefs, XW? - Y Z, X2 — W2.
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20.

21.

22.

23.

24.

fi=0and f; > 1 fori=2,3,4,56,7. We have A = R[X,Y,Z, W]/I,
where [ is an ideal generated by the following elements:

X2 W2l XY —Wels, XZ —cP3, Y2 — P4 ) YW — X2,
72 — XWels, ZW —Yels W3 — Zel2 XW?2 -Y Z.

fs=0and f; > 1fori=1,24,56,7. We have A = R[X,|Y,Z W]/I,
where [ is an ideal generated by the following elements:

X2 - 22 XY —cP3 XW = Y2 Y3 —Wefr YZ — Xcfo,
22 —YWele, ZW —Yef2 W2 — Zeh X7 — Y2W.

fa=0and f; > 1fori=1,2,3,56,7. We have A = R[X,Y,Z, W]/I,
where I is an ideal generated by the following elements:

XY — Zels, X3 —Wels XW — P2, Y2 —Wel™, Y Z — ¢P3,
72 — Xcf3, ZW —Yelo W? — X2cfo X2Z —YW.

fe=0and f; > 1 fori=1,2,3,4,57. We have A = R[X,|Y,Z W]/I,

where [ is an ideal generated by the following elements:

X2 - Z2c5 XY — Wl XZ — P2, 73 — X2 Y2 — Xefs,
YW — Z2cf3 ZW — Yefo, W2 — Zeh, XW — Y 72

fr=0and f; > 1fori=1,2,3,4,5,6: We have A =2 R[X,Y, Z, W,U]/I,

where [ is an ideal generated by the following elements:

X% - Zelr XY — Zefs X7 —Y32clfs XW —Ucl*,YZ —Uels,
YW — b3, YU — Xeft, 22 — P2, ZU — Y2, W2 — Xefs,
WU — Zcls U? = Y2ch XU — ZW, ZW — Y3,

fi>1fori=1,2,3,4,56,7: We have A~ R[X,Y,Z,U,V,W]/I, where
I is an ideal generated by the following elements:

X2 —Zcfs XY —Uels, XZ —Vels, XU —Wel+, XV — ¢P2,
Y2 Vel YZ - Wels, YU — P8, YW — X, 2% — P4,

ZV — Xcl2 ZW — Y2 U? — Xcf3 UV = Yfo UW — Zcfs,
V2 Zcle VW —cl2 W2 — Vet XW -YV,YV — ZU.

The case of n = 9.
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The integral matrix (w(i,n — j — 1))o<i j<s is of the form

o 0O o0 O o 0 0 o0
pr 0 fi fo f3 fz fo fi
p2 p2 0 fo fr fs fr fo
ps fa op3 0 f3s fs fs f3
pa fs fs pa O fz3 fr f3
pa fo fo fo pa O fo fo
ps fs fo fo fs p3 0 fi
p2 fa fs fe fs fa p2 O
b1 P2 P3 P4 pPsa P3 P2 P1

OO OO OO o oo

with the p; > 1 and the f; > 0, where

J1=p1 —p2, fo=p1 — p3, f3 = p1 — P4,
Ji=-p1+p2+ps, s =—p1+Dp3+pa, fo = —p1+2ps,
fr=p1+p2—p3—pa, fs =p1 +p2— 2pa,

Jo = —p1 —p2 +p3 + 2pa,

and the following cases are possible:

1. fi=fo=fs=fr=fs=0and f; > 1 for i =4,5,6,9: Setting p = py4,
we have (p17p25p3ap4) = (p7p7p7p) a‘nd

A= RIX]/(X° - )
2. fi=fs=fs=0and f; > 1 fori=2,4,506,7,9: Setting p = p3 and
q = fa2, we have (p1,p2,p3,ps) = (p+ ¢ p+¢,p,p+ q) and
A2 RIX,Y]/(X? -, V3 - X&)
3. fo=fe=fr=0and f; >1fori=1,3,4,5,8,9: Setting p = p4, we have
(p17p27p37p4) = (2p7p7 2p7p) and
A2 R[X,Y]/(X?Y — P, X3 - V?)
4. fa=fs=fes=0and f; > 1fori=1,2,3,7,8,9: Setting p = py, we have
(p17p27p37p4) = (2p7p7pap) and
A= R[X,Y]/(X? -, V3 - X?)
5. fa=fs=fo=0and f; > 1 fori=1,2,3,6,7,8: Setting p = p3 and
q = fo, we have (p1,p2,ps,ps) = (2p+q,p+ ¢,p,p + q) and
A2 RIX,)Y]/(X? -l Y? — X2c1)
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10.

11.

12.

13.

14.

15.

fa=fe=fr=0and f; > 1fori=1,2,3,58,9: Setting p = po, we have
(p1:p2,p3,p4) = (4p,p, 3p, 2p) and

A R[X,Y]/(XY — ¢, X° —Y?)

fi=fo=fe=fo=0and f; > 1fori=3,4,5,7,8: Setting p = p4, we
have (p1,p2, p3,pa) = (2p, 2p, 2p,p) and

A2 RIX,Y]/(XY -, X" —Y?)

fa=fr=fs=0and f; >1fori=1,2,3,56,9: Setting p = pa, we have
(p17p27p37p4) = (3p7p7 2p7 2p) and

A2 RIX,)Y,Z|)(XZ -, X? -YZ, Y~ Z?)
fi=fo=0and f; > 1 fori=3,4,5,6,7,8,9: We have
A= R[X,Y,Z]/(X? = Zclo XY — P2 )Y Z — X2 20 —Yel* X783 —Y?)
fo=fe=0and f; > 1fori=1,3,4,5,7,8,9: We have
A= R[IX,Y, Z]/(X? =Y, XY - 237 Y Z — P2, 24 — Xt X 28 —Y?)
fo=fr=0and f; > 1fori=1,3,4,5,6,8,9: We have
A= R[X,Y, Z]/(XY? —cP2 X2 —Zclo Y272 - XeP3, 22 - vl X2 -Y3)
fai=fr=0and f; >1fori=1,2,3,5,6,8,9: We have
A= R[X,Y, Z]/(X3-Ycle, XZ—cP2 Y2 - 730 Y7 — X200, X2y — 74)
fo=fr=0and f; >1fori=1,2,3,4,5,8,9: We have
A= R[X,Y,Z]/(X?-Y " XZ P2 YZ - X2 V3 - 7232 Xy? - 74)

fo=0and f; > 1fori=1,3,4,5,6,7,8,9: We have A = R[X,Y, Z, W]/I,
where [ is an ideal generated by the following elements:

X2 - Wele, XY — P, YZ — XWelt YW — Xcfs, 22 — Yelr,
W2 — Zch , XZW — V2.

fa=fe=0and f; > 1fori=1,2,3,5,7,8,9: Wehave A > R[X,Y, Z, W|/I,
where [ is an ideal generated by the following elements:

XY — Zefs, XZ —Wels, XW — cP2, Y2 — X3¢l V7 — X4cfs,
ZW —Yelt, W2 — Zefr X2 — 25, X2 —YW.
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17.

18.

19.

20.

21.

22.

fi=fo=0and f; > 1fori=2,3,4,5,6,7,8 Wehave A > R[X,Y, Z, W|/I,
where [ is an ideal generated by the following elements:

XZ —Wels X3 —cP3 Y2 - Wele YZ — P4 YW — X2,
IW =Ycls, X2W — Zefs XY — W2, 2% — X?Y.

fa=fs=0and f; > 1fori=1,2,3,5,6,7,9: Wehave A =~ R[X,Y, Z, W|/I,
where [ is an ideal generated by the following elements:

XZ2 —Yefs, XY — Wels, XW — cP2, 23 — 7Y Z — Xcf,
YW — Z2/7 W2 —Yelt, X2 — ZW,Y? — Z2W.

foe=fo=0and f; > 1fori=1,2,3,4,5,7,8 Wehave A~ R[X,Y, Z, W]/I,
where [ is an ideal generated by the following elements:

X2 — Zcls XY —Wels, XW =Y Zelfs ) YZ2 — XcP2 YW — Z2¢/5,
IW — P2, 723 — Yl XZ -Y? X272 - W2

fr=fs=0and f; > 1fori=1,2,3,4,5,6,9: Wehave A~ R[X,Y, Z, W]/I,
where [ is an ideal generated by the following elements:

X2 —YZcSt, XY —Welt, XZ — P2, YZ2 — Xcf2 ) YW — Z2¢73,
IW —Yels, W2 — Zelh Y2 — 23, XW — Z4.

fi=0and f; > 1fori=2,3,4,5,6,7,8,9: Wehave A = R[X,Y, Z W,U]/I,
where [ is an ideal generated by the following elements:

X2 —Wel XY —U?cfs, XZ —Ucls, XW — ¢P3,Y? — Ucle,
YZ =P YU — Xef2, ZW — XUcl?, ZU — Yels, W2 — Xefs,
WU — Zels U3 —Wel2, XU? — 22, YW — Z2.

fa=0and f; > 1fori=1,2,3,5,6,7,8,9: Wehave A = R[X,Y, Z W,U]/I,
where [ is an ideal generated by the following elements:

XY — Zels X3 —Welfe, XZ —Ucels, XU — P2, Y2 — Welo,

YZ - XWels YW — 3, ZW — Xcl3, ZU = YeIT, W2 —Yels,
WU — X288, U? — Zel, X2W — Z2,YU — Z°.

fe=0and f; > 1fori=1,2,3,4,5,7,8,9: Wehave A = R[X,Y, Z W,U]/I,
where [ is an ideal generated by the following elements:

X2~ Zcl XY —Wels, XW —Ucefs, XU — P2, Y? — X ZcTo,

YZ -Ucl, YW — Z%cfs, ZW — P+, ZU — XcI2, 73 — Yef2,

WU - Yl U? = Wel, X722 - W2, YU — W2,
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23. fr=0and f; > 1fori=1,2,3,4,5,6,8,9: Wehave A = R[X,Y, Z, W,U]|/I,
where [ is an ideal generated by the following elements:

X2 —Yel4 XY — Zelo, XZ —Ucls, XW — P2, Y? — Ucls,
YW — Xcl2 YU - W3el2, 22 —W3els , ZW — Yels, ZU — W2l
WU — Zcf2,U? = Welht, XU - WA YZ - W™

24. fs=0and f; > 1fori=1,2,3,4,5,6,7,9: Wehave A = R[X.Y, Z, W,U]/I,
where I is an ideal generated by the following elements:

X2 - ZWeh, XY — Wels, XZ — Uclt, XW — cP2, 73 — b3,
YZ — Xcfs ) YW — Z2c5 YU — ZWels, ZU — Yefs, W2 — Yel7,
WU — Zef2,U? — Weht, XU — Y2, 22°W — V2.

25. fo=0and f; > 1fori=1,2,3,4,5,6,7,8: Wehave A >~ R[X,Y, Z, W,U]|/I,
where [ is an ideal generated by the following elements:

X2~ Zcls XY —Wels, XZ —Y?2cls, XW =Y Zefs ) YW — Ucfs,
Y3 — P YU — X, 22 —Ucelo, ZW — P+, ZU — Yel2,
WU — Zcls U2 - Y Zch , XU - W?2,Y?2Z — W2,

26. f; > 1fori=1,2,3,4,56,7,8,9: We have A = R[X,Y,Z, W,U,V, S]/I,
where [ is an ideal generated by the following elements:

X2 —Zcls XY —Wels, XZ —Ucle, XW — Vels, XU — Sel+,
XV =2 Y2 -Uclh,YZ -Vl YW — Scfs ) YU — ¢P3,

YS - Xch, 722 - Sfe, ZW — P+, ZV — Xcf2, ZS — Yel2,

WU — Xcfs, WV —Yel"T, WS — ZeP=5 U2 —Yefs UV — ZeTs,
US—Wels V2 —Welt, VS —Uel?,8? — Vel , XS - YV,

YV - ZU,ZU — W2

The case of n = 10.
The integral matrix (w(i,n — j — 1))o<i,j<o is of the form

0 O 0 0 0 0 0 0 O
m 0 fi fo fs fo fs fo S
p2 p2 0 fo fs fo fo fs [fo
ps fs ps 0 f3 fo fiz fo f3
pa fo fo pa 0 fa fo fo fa
ps fr fio fr ops 0 f3 fs f3
pa fr fu fu fr opa 0 fo fo
ps fo fio fuu o fe p3 0 S
p2 fs fe fr fr fo fs p2 O
pPr P2 P33 Pa P5 P4 P3 P2 D1

OO DD OO OO oo
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with the p; > 1 and the f; > 0, where

J1=p1—p2, fa =p1 — p3, f3 =p1 — pa, fa = p1 — ps5,

J5 = —p1 +p2 +ps3, f6 = —p1 + p3 + pa, fr = —p1 + pa + ps,
Js =p1+p2—Dp3 — pa, fo =p1 +p2— ps — ps,

Jio=—p1 —p2+p3+ps+ps, fi1 = —p1 — p2 + pa+ pa+ ps,
Ji2 =p1 +p2+p3s—ps—ps—Ds,

and the following cases are possible:

1. f1 :fg :fg :f4 :fg :fg :f12 :0and fi Z 1 fori:5,6,7,10711:
Setting p = p1, we have (p1, p2, p3, p4,ps) = (p,p,p,p,p) and

A= RIX]/(X'—¢P)
2. fo=fas=fs=fo=0and f; > 1fori=1,3,56,7,10,11,12: Setting
p = p1 and q = p, we have (p1,p2, p3, P4, ps) = (0, q,p,q,p) and
A2 R[IX,Y]/(X® —c1,Y? - XcP79)
3. fi=fo=f3s=fs=0and f;, > 1 fori=4,56,7,9,10,11,12: Setting
p=p1 and ¢ = ps, we have (p1, pa2, p3, 4, p5) = (p,p, p,p, q) and
A2 R[IX,Y]/(X? -1, YP — XcP79)
4. fa=fs=fo=fo=fre=0and f; > 1fori=1,2,3,7,8,10,11: Setting
p = pa, we have (p1,p2, p3, P4, ps5) = (2p, p, p,p,2p) and
A2 R[X,Y]/(X?-Y* X%V — cP)
5. fa=fs=fe=fo=0and f; > 1fori=1,2,3,7,8,10,11,12: Setting
p =p1 and ¢ = pa, we have (p1, pa2, p3,p4,05) = (p,¢,p — ¢,¢,p) and
A2 R[X,Y]/(X® -1, Y? — X4cP29)
6. fl = f4 = f6 = flO = f12 =0 and fl Z 1 for i = 2,3,5,778,9, 11: Setting
p = ps, we have (p1,p2, p3,pa,ps) = (3p, 3p, p, 2p, 3p) and
A2 RIX,Y]/(XT-Y3 XY —cP)
7. f2 = f7 = fg = f11 = 0 and fl Z 1 for i = 1,3,4,576,9, 10, 12: Setting
p = p1 and ¢ = pa, we have (p1, p2,ps,P4,p5) = (P, ¢, 0, ¢, p — q) and

A2 RIX,)Y]/(X? -t Y2 — cP79)
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10.

11.

12.

13.

14.

15.

16.

17.

fi=fi=fs=fio=fii=0and f; > 1fori=23,57,8,9,12: Setting
P = pa, we have (p1,p2,p3,p4,05) = (2p,2p, p,p,2p) and

A= RIX,Y]/(X® -Y? XY — cP)
fs=Jfe=fr=/fio=/uu=0and f; > 1fori=1,2,3,4,8,9,12: Setting
p = ps , we have (p1, p2, p3,pa,ps) = (2p, p, p,p,p) and

A= R[X,Y]/(X?-Y? X?Y? — P)
fs=fs=fr=fir=0and f; > 1fori=1,23,4,809,10,12: Setting
p = p1 and ¢ = p2, we have (p1,p2,p3,P4,P5) = (0,¢,p — ¢,¢,p — q) and

A= RIX,Y]/(X? —c1,Y? — X3cP™29)
fi=fo=fi=fi1=0and f; > 1 for 7= 3,56,7,8,9,10,12: Setting
P = pa, W€ have (p17p27p37p4ap5) = (2p7 2p7 2p7p7 2p) and

A= R[X,)Y,Z]/(XY — P, X? - 7% X3 —Y?)
fi=fo=fs=0and f; > 1fori=3,5,6,7,8,9,10,11,12: Setting p = p;
and q = p4, We have (plap25p3ap4ap5) = (p7p7paq7p) and
A2 RIX,)Y, Z] /(XY =1, X2~ 22217 P Y 72— X P4, 74— Y P~ Y2 - X 7?)
fo=fa=fi1=0and f; >1fori=1,3,5,6,7,8,9,10,12: Setting p = p;
and q = p4, W€ have (p17p27p33p4ap5) = (p7 25]7177(]710) and
A2 R[IX,Y,Z]/(XY — ¢, X? ~Y? 7% — X?cP79)
fa=fe=fi2=0and f; >1fori=1,2,3,5,7,8,9,10,11: Setting p = p3
and g = p4, we have (p1,p2,p3,p4,05) = (P + ¢,2¢ — p,p, ¢, p + q) and
A2 RIX,Y, Z]/(XZ—cP, X?*~Y P~ Y Z-XcUP Y- 72977 XY3-273)
fi=fi=fs=fio=0and f; > 1fori=235,7,8,911,12: Setting
p=p1 and g = p3, we have (p1,p2,p3,pa,ps5) = (0, p,¢,p — ¢, p) and
A2 R[X,Y,Z]/(X3~Y !, XY ~ZP21 X 71, Y- X021 72y 317P)
fai=fe=fii=0and f; >1fori=1,2,3,5,7,8,9,10,12: Setting p = p;
and ¢ = ps, we have (p1,p2,ps,p4,05) = (p,2¢,p — ¢,4,p) and
A2 RIX,Y, Z]/(XY — ¢!, Z? —Y P21 X2 —Y3)
f5 = fg = fg = f12 =0 and fl 2 1 for i = 1,2,3,4,6,7, 10,11
Setting p = p2, we have (p1,p2, p3, pa,ps) = (3p,p, 2p, 2p, 2p) and
A= R[X,Y,Z]/(XY — P, X? - V3 Y3 - Z?)
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19.

20.

21.

22.

23.

24.

25.

26.

. fs=fs=fo=0and f; >1fori=1,2,3,4,6,7,10,11,12:
Setting p = p1 and ¢ = pa, we have (p1, p2, p3, pa,ps) = (0, ¢, P—4,2¢,p—q)
and
A= RIX)Y,Z]/(XY — 1,7Z% — X2cP73, X2 —Y3)

fs=fr=fs=0and f; > 1fori=1,2,3,4,6,9,10,11,12:
Setting p = p1 and q = pa, we have (p1,p2, p3,p4,p5) = (P, ¢, P — ¢,2¢,p —
2q) and

A= R[IX,Y,Z])(XY —c1,Z% — P21, X3 —Y?)
fs=fs=fio=frz=0and f; >1fori=1,23,4,7,8,09,11:
Setting p = p3, we have (p1, p2, ps, P4, p5) = (3p, 2p, p, 2p, 2p) and

A2 R[X,Y,Z]/(XY — P, Y? - 7% X® - Y Z)

f5:f6 :flo =0 and fz >1 fOI‘i:1,2,3,4,7,8,9,11,12:

Setting p = p; and ¢ = pa, we have (p1,p2,p3,p4,05) = (P,¢,P — 4,4,9)
and

A= RIX,)Y, Z] /(XY =P~ 73— X221 P X72-Y 1P Y2723 X3V 7)

foe=fio=fiz=0and f; >1fori=1,2,3,4,5,7,8,9,11:
Setting p = ps and ¢ = ps, we have (p1,p2, ps, ps,ps) = (3p, ¢, p, 2p, q) and

A2 R[IX,Y,Z]/(XY —cP, X 2P~ Y 7 - X302 72 Y2172 X37-Y3)

f5=f7:f10 =0 and fz >1 fOI‘iZ1,2,3,4,6,8,9,11,12:

Setting p = ps4 and g = pa, we have (p1, p2, p3, pa,ps) = (24,4, ¢, P, 2q — p)
and

A= R[X,Y,Z]/(XY — ZcP™9, 7% — 2477 X —Y?)
f6 = flO - fll =0 and fz 2 1 for ¢ = 172737475a77879712:
Setting p = ps4 and q = pa, we have (p1,p2, p3,pa,Ps) = (2p, ¢, p,p, q) and

A= RIX,)Y, Z]/(X?Y —P, X~ ZcP~ 1Y Z7-X2c17P 72 YU P X?7-Y?)
fi=fo=0and f; > 1fori=1,235,67,8,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X3~ Zefo, X2V — Wels X272 — P2, Y2 — XZch2 YW — Xefs,
72— Xcls, ZW —Yel:, W2 — Zel . XW — Y Z.
fi=fo=fio=0and f; >1fori=1,235,6,78,10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:
X3~ Zefo, X2Y — Welo, X2Z — P2 YW — X3, 72 — Xels,
IW —Yels, W2 — Zeh XZ Y2, XW — Y Z.
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27.

28.

29.

30.

31.

32.

33.

f3=f8 :f12 =0 and fz > 1 fOI"iZ172,4,5,6,779,10,11:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 — P YZ — Xcfo, ZW — cf2 W2 — Zch,
XW -Y2 YW — Z2.

f3=fs=0and f; > 1fori=1,2,4,5,6,7,9,10,11, 12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 P Y2 - XWeh2 YZ — XcPo, ZW — Yel2,
W2 — Zch YW — Z2.

fo=fi=0and f; >1fori=1,356,78,9,10,11,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 - Ze XY — P2 YZ — Xclo, 22 —Yels,
W? - Zch,vy?2 - X2Z.

fo=fs=0and f; > 1fori=1,3,4,5,6,7,9,10,11,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

{X2 — ZeIn XY —Welt, X 2% — P, Y2 — b5 YW — Xclo,

7% — Xclo, 22W — Yt W2 — Zehh XW —Y Z.

f2 :fll =0 and fi > 1 for i = 1,374,5,6,7,879,10712:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X4~ Zeln XY —Welt, XZ — P+ Y2 — s YW — X3,
Z2 — X3¢l ZW —Yelr W2 — X261 X3W —Y Z.

fi=fo=fii=0and f; >1fori=3,4,5,6,7,8,9,10,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X4 —Zel" XY —Welt, XZ — P Y2 — eP5 YW — Xef3,
72 — X3cls ZW —Yels X2 — W2 XW? —-Y Z.

fi=fo=0and f; > 1 fori=3,45,6,78,9,10,11,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

{

X2 - W2 XY — Welt, XZ — cP4,Y2 — P5 YW — Xcf3,
7% — XW2el1, ZW — Yelt, W4 — Zefs, XW3 — Y Z.
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fi=fi=fia=0and f; >1fori=23,56,7,8,9,10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X2 _veho XY —Wele, X7 — 3 ) YW? — Z2¢f3 Y Z — XcPo,
W —Yels W8 — Zel2 XW — Y2, XW? — Z5.

Cfi=fs=0and f; >1fori=24,56,7,89,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 - ZWelo XY —W32cfo X7 — P8, Y2 — P> YW? — X2,
72 —YWelz ZW? — Yl W3 — Zefo XW - Y Z.

 fs=fio=0and f; > 1fori=1,24,56,78,9,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

XZ —cP3 Y2 —cPs XW —Y Zeht, 22 - YWehe,
W2 - XYl X2 - ZW.

. fl = f3 = f10 =0 and fz >1fori= 2,4,5,6,7,8,9,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

XZ —cP3 Y2 —cPs 72 — YWehe,
XW -YZ,X? - ZW, XY — W2,

. fl = f3 = f12 =0 and fz >1 for i = 274,5,6,7,879, 10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X% — ZWeho XY —W2clo XZ — ¢eP3 Y2 — cP5 YW?2 — Xel2,
IW? Yl W3 — Zelo XW - YZ, YW — Z2.

fi=fio=fi2=0and f; > 1fori=2,3,4,56,7,8,9,11,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X3 —Wele, X2W —Yele, XZ — 3, Y2 —P5 ) YZ — XWels,
YW — Z%2¢03, ZW — X2cls XY — W2, X2Y — Z5.

. f3 = f10 = f12 =0 and fz 2 1 for ¢ = 1,2,4,5,6,7,8,9,112
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:
XZ— b5 XW —YZeh Y2 — ers W2 - XYeh,
X2 ZW, 722 —YW.
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. fi=fs=fio=fia=0and f; > 1fori=2,4,56,7,8,9,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

XZ — Y2 —cPs XW —YZ, X2~ ZW,
72 YW, W? — XY.

. fi=fa=fuu=0and f; >1fori=23,5,6,7,8,9,10,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 Zcho XZ —WePs,YZ — cPr YW — Xel2,
XW —Z2Y? - W2,

Cfi=fu=0and f; > 1fori=1,2,3,56,78,9,10,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X2 — Zcho XW — Z2ch X Z — Wefe Y3 — Z2c2 YW — Xcf3,
YZ — P, 7% —Y2cfo W2 —Y2ch XY? - Z2W.

Cfi=fs=0and f; >1fori=1,2,3,5,78,9,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X%~ Zeho XY —Wel  XW — b3 Y2 — Z3ch Y 7 — P,
Z4—Yels, ZW — XelPo W2 —Yehe X783 —YW.

. fl = flO = fll =0 and fz Z 1 fori= 2,3,475,6,7,8,97122
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X3 —Wele, X2V — P2 X2W — Zcfo ) YZ — WelT, YW — Xef2,
22— ZW =Yl Y2 - X2, X7 — W2

. fs=fo=fie=0and f; >1fori=1,2,3,4,56,7,10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X2 V2P XY —Wels, XZ — cP2 ) YW — Z2cf3, 7% — Xcf?
IW =Yl W2 — Zeh XW —Y 73, Y2 — Z3.
. fs=fo=0and f; >1fori=1,2,3,4,5,6,7,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:
X2 Z3¢Is XY —Wels, XZ — P2, Y2 — Z3cI2 YW — Z2%¢f3,
ZW —Yelo W2 — Zeh | 24 — Xcel2 XW — Y Z5.
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49.

50.

51.

52.

93.

o4.

Cfs=fo=fio=0and f; > 1fori=1,234,6,7,8,10,11:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

XY —Wele, XW — P2, Y2 — Xcl4,
W2 —Yels X2 - 22 YW — Z2.

fs=fo=0and f; >1fori=1,234,6,7,8,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

XY —Wele, XW — P2, Y2 — Xcf4 72 — YWz,
W2 —Yels, X2 -YW.

fs=fs=fia=0and f; >1fori=1,23,4,6,79,10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

{X3 — W2 XY — ZcIT XW — P2, Y2 — P53 Y Z — Xcf3,

ZW —Yelo, W3 — X2cfo, X2 — 72 YW? — 73,

fs=fs=0and f; > 1fori=1,2,34,6,7,9,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

{X3 — W2 XY — Zelt XW — P2 Y2 — P Y Z — Xels,

7% — X?cle W —Yefo W3 — X2ch2 X277 - YW2.

fr=fs=0and f; >1fori=1,2,3,4,5,6,9,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 —Yels XW —cP2 Y2 — Wel,
YW — Xcf2, 72 — cPs XY — W2,

fs=fo=fio=0and f; >1fori=1,234,78,9,10,11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

Y2~ Zcho YW — cP3, 22 — Xcl4,
ZW =Yl X2 - W2 XW -YZ.

fs=fe=0and f; >1fori=1,234,78,9,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

{

X3 — Zclt X?Y —Welt, X272 — P2, Y? — Zeho YW — ¢P3,
72— Xcf', ZW — Yl W2 — X2che XW - Y Z.
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59. f6 = f12 =0 and fi > 1 fori= 1,273,4,5, 7,8,97 107 11:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X2 —W2efs, XW —Y Zcls Y2 — Zelo YW — b3,
72— Xcl ZW — Yl XY Z — W3,

56. fs = fr=0and f; >1fori=1,2,3,4,6,8,9,10,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

XY — Zcfo X4 — Welo, XW — P2, Y2 — X3cho0 Y Z — Welo,
Z%2 —cPs ZW —Yelfs W2 — X3cfs X372 —YW.

57. f5 = f10 = f12 =0 and fz Z 1 for ¢ = 1,2,374,6,7,8,97112
We have A = R[X,Y, Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

XY — Zcelo X3 Y27, XZ —Wel, Y3 — XWele, YW — ¢Ps,
72 — P ZW — Xefs, X2 — W2, X2W - Y22,

58. fs = fio=0and f; >1fori=1,23,4,6,7,8,9,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X3 —Y2ch XY — Zele  XZ —Welt ) Y3 — XWels, YW — ¢P3,
72 —cPs ZW — Xfs W2 — X2¢h2 X2W —Y?2Z.

59. fo=fio=0and f; >1fori=1,23,4,57,8,9,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-

lowing elements:

X2 —Zels XZ Y27, XW —Y3els Y — Xl ) YW — s,
YZ - Weltn, 22 — XY2ch W2 — Zehe XY — ZW.

60. fo = fiu=0and f; >1fori=1,23,4,5,7,8,9,10,12:

We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:
X2 - Zcls XZ —Wel, Y2 — Welo,
ZW — s W2 — Xcfs XW — 22,
61. fr=fio=fiu=0and f; >1fori=1,23,4,56,8,9,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:
X2~ Zels, XY — Welo, W2 — cps,
Y2 -XZ,722-YW,XW -Y_Z.
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63.

64.

65.

66.

67.

. fr=fio=0and f; >1fori=1,2,3,4,5,6,8,9,11,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

{X2 — Zefs XY —Wels, Y7 — XWeln,

fr=fii=0and f; > 1fori=1,2,3,4,56,8,9,10,12:
We have A = R[X,Y,Z,W]/I, where I is an ideal generated by the fol-
lowing elements:

X2~ Zels, XY — Welo, X27 — P2, Y2 — X Zcho YW — Z2¢ho,
73— Xclo Z2W — Yefs, W2 — cPs, XW — Y Z.

fo=0and f; > 1fori=1,3,4,56,7,8,9,10,11,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 —Wel, XY —Ucl", XZ — P+, Y2 —cP5s YW — XUc/s,
YU - Xcf3, 22 - XWel, ZW — Xefo, ZU — Yef4,
W2 — Zcls U2 —Wel2, XWU -Y Z.

fi=fia=0and f; > 1fori=1,2,3,56,78,9,10,11:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 _vceho XY —Ucle, XZ — cP3, XU — Y2ch Y3 — Wels,
YZ — Xclo YW — Z2cfo ZW — YUl ZU — Yelfs, W2 — Yefs,
WU — Zcl2 U? —Wel2, XW — Y2U,Y?U — Z5.

fs=0and f; > 1fori=1,24,56,7,8,9,10,11,12:
We have A & R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 - zUclo XY —Weho, X7 — v3 XU — Y Zeft | Y2 — ¢Ps,
YW — Xcls, 22 - YUc2, ZW — Yelo, W2 — ZUc/s,
U2 —WeP2 WU — Zef>, XW — Y ZU.
fs=fio=0and f; >1fori=1,2,4,5,6,7,8,9,10,11:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:
X2 —zUcho XY —Weho X Z — ¢p3 XU —Y Zeh,
Y2 — P YW — Xcfs, ZW —Yelo, W2 — ZUc/s,
WU — Zch2 , U? —=Welh, XW — Z3,YU — Z2.
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69.

70.

71.

72.

73.

fi=fi=0and f; >1fori=2356,7,8,9,10,11,12:
We have A & R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 — Zcho XY —Wel [ XZ —Ucls, XW — cP2 Y2 — U2cl,
YZ — P YU — Xl ZW — Xclo, ZU? — Yelo W2 — Yehe,
WU — Zefs, U3 = Wels, XU — 22, YW — Z2U.

fi=fio=0and f; > 1 fori=23,4,56,7,8,9,11,12:

We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X3 —Ucls, XY —Weln, XW — P8, X2U — Zclo Y2 — U2,
YZ -Uc", YU - Xcl2,22 — 5, ZW — XUecls, ZU — Yf3,
W2 Yl WU — X3e/3 X7 -U? X?Z -YW.

fl = f11 =0 and f,’ >1 for i = 2,3,4,5,6,7,8,9, 10,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 — Zcho XY —U?cho, XZ —Ucle, Y2 — cP5 ) YU — Wel3,
72 — XUcl, ZU =Y ) YW —Ucf Y Z — cP4,
WU — Xel>, XU? - Y Z, W? —U?.

fo=0and f; > 1fori=1,2,3,4,56,7,8,10,11,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the

following elements:
X2 —YWels, XY —Wele, XZ —Uels, XW — P2, Y? — X¢l4,
YU — ZWels, 22 —YWel2, ZU — Yels, W2 — Yels,
WU — Zel2, U2 — Welt , XU — Y ZW.

fo=fio=0and f; >1fori=123,4,56,78,10,11:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:
X2 —YWels, XY —Wele, XZ —Uels, XU — P2, Y? — Xcl4,
YU - ZWcl, ZU = Yels, W2 —Yefs,
WU — Zel2, U? = Welt, XU - YZW, YW — Z2.
fs=fia=0and f; >1fori=123,4,56,7,9,10,11:
We have A = R[X,|Y,Z, W,U]|/I, where I is an ideal generated by the
following elements:
X2 - 7%2cfs XY — Zel", XZ —Uels , XW — P2, Y2 — ¢Ps,
YZ — XcI3, YU — Z%¢73, ZW —Ylo, ZU — W2els, W3 — Z2¢lo
WU — Zch2 U? = Welh, XU — 23, YW? — Z5.
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75.

76.

e

78.

79.

fio=fia=0and f; >1fori=1,2,3,4,5,6,7,8,9,11:
We have A & R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 —W32cFs XY — Zclo, XZ — Wl , XW — Ucls, Y3 — Ucle,
YW — P8 YZ — Xcl, 22 — s, ZW — X3, ZU — W2els,
WU —=Y2c3,U? - YZch , XU -Y?22,Y?Z — W3,

fs=0and f; > 1fori=1,2,3,4,5"7,8,9,10,11,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 Zefs XZ —Welt, XU —YWels, Y2 — Wefio,
YZ -Uc YU — P8, 2% — XScfv, ZW — P+ W2 — Xl
WU —Ycl, U? — Zeh2 XYW — ZU.

flO = f11 =0 and fz' > 1 for i = 1,2,3,4,5,6,7,8,9,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 —Zels XY —Welfe XZ — Y27, XW —Y Zel7, Y3 — Ucls,
Y2Z — P38 YU — X', ZW —Ucelr, ZU — Yel2, W2 — P35,
WU — Zefs,U? — Z2ch XU - YW, 22 - YW.

fr=0and f; > 1fori=1,234,56,8910,11,12:
We have A = R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:

X2 — Zels XY —Welo, XU — P2, Y2 — X Zcho,
YZ - XWeh ) YW —Ucho, 22 — Uclvr, ZU — Xef2, W2 — ¢Ps,
WU —Yecls U2 - XZcfs, XZW - YU.
fi=fie=0and f; >1fori=2,3,4,5,6,7,8,9,10,11:
We have A & R[X,Y,Z,W,U]/I, where I is an ideal generated by the
following elements:
X2 — Zcho XY —U?cho XZ —Uclo, XW — P2, Y2 — ¢Ps,
YW — XUcf3, YU = W?2cfs, 22 — XU, ZW — Xcfo, ZU — Yef4,
WU — Zels U3 —Wel2, XU? - W3, W3 —-Y Z.

fi=0and f; >1fori=1,2,3,5,6,7,8,9,10,11,12:
We have A = R[X,Y,Z, W,U,V]/I, where I is an ideal generated by the
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80.

81.

82.

83.

following elements:

X2 —Zcho XY —Weli XZ —Vels XW — P, XV — Z2c1
Y2 U, YZ — P2 YU — Z%2c2, YV — X2, 23 — Ucls,

IW — Xclo, ZU — Yelo W2 — Zehe WU — ZVelo, WV — Zefs,
U? — ZcIs UV =Wl V2 - U, XU - YW, YW — Z%V.

fi=0and f; > 1 fori=2,3,4,6,7,8,9,10,11,12:
We have A = R[X,Y,Z, W,U,V]/I, where I is an ideal generated by the
following elements:

X2 —Weho XY —Ucef, X7 — V2eho XW — Ve, XU — 3,
Y2 - V2 YZ - Vel YW — P4 YV — Xcf2 ) 22 — P3|

ZU — XVels, 2V —Yefs W2 — XVefs WU — Xelo, WV — Zefs,
U2 -Yel2 UV —Wels V3 —Uel2, XV2 -YU, YU — ZW.

fo=0and f; >1fori=1,23,4,5,6,7,9,10,11,12:
We have A = R[X,Y,Z,W,U,V]/I, where I is an ideal generated by the
following elements:

X2 —Yels XY —U?cl", XZ —Wel", XW — Vels, XU — 2,
Y2 U YZ Vel YU - X2, YV — ZUcS2, 22 — UcPs,
ZW — Xcfs, 2V —Yefs W2 — Yl WU — Zefo, WV — U2cefs,
U —Yclo UV —Wel2 V2 U, XV - YW, YW — ZU?.

fs=fie=0and f; >1fori=1,2,3,4,6,7,8,9,10,11:
We have A = R[X,Y,Z, W,U,V]/I, where I is an ideal generated by the
following elements:

X3 —Welt, XY — Zefo, XZ —Ucle, XW — Velo, XV — P2,

Y2 - Welo YW — XUclo,YZ — Veho YU — b3, Z2 — ¢Ps,

ZU — Xclfs, 2V —Yels W2 — Xels WU —Yelfo, WV — X2¢0,

UV — Zefo V2 —Wels, V2 —Ueh , X2U -YV, YV — ZW, X? - U>.

fs=0and f; >1fori=1,2,3,4,6,7,89,10,11,12:
We have A = R[X,Y,Z,W,U,V]/I, where I is an ideal generated by the
following elements:

X3 —Wel", XY — Zelfe, XZ —Uel7, XW — Velo, XV — P2,
Y2 - Weho YZ - Veho YW — XUels ) YU — b3, Z2 — ¢Ps,
ZU — Xcf3, ZV = Y/s W2 — Xcft, WU — Yefo, WV — X2¢fo,
U? — X2ch2 UV — Zefo V2 —Wels, X2U — YV, YV — ZW.
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85.

86.

87.

fio=0and f; >1fori=1,2,3,4,56,7,89,11,12:
We have A = R[X,Y,Z, W,U,V]/I, where I is an ideal generated by the
following elements:

X2 Zels XY —Wels, XZ —Y2el7, XW —Ucel", XU — Vels
Y3 —VeloYZ —Ucefi YU — #3,YV — X', 22 — YW el
IW —Velt, ZV —Yel2, W2 —eps WU — Xefs, WV — ZcTs,
U2 — Zche2 UV —Y2el3 V2 - YWl , XV - Y2W,Y?W — ZU.

fuu=0and f; >1fori=1,234,56,7,8,9,10,12:
We have A = R[X,Y,Z,W,U,V]/I, where I is an ideal generated by the
following elements:

X2 —Zels XY —Welfe, XZ —Uel", XW —Y Zcln, XU — Z2cfe,
Y2 —Ucho YW — Z2c¢ho YU —Vele YV — Xelt, 73 — X2,
IW —Vel1, ZU — P2, ZV —Yel2 W2 — ePs WV — Zef3,

U? - Xcl' UV —Weh V2 - Z22c0 XV - Y22 YZ? - WU.

fie=0and f; >1fori=1,2,3,4,5,6,7,8,9,10,11:
We have A = R[X,Y,Z,W,U,V,S|/I, where I is an ideal generated by
the following elements:

X2 —U2cfs XY — Zclo XZ —Uclt, XW — Velo, XU — Sefs,

XV —eP2 Y2 - Weho YW — Scfe YZ — Velo YU — ¢Ps,

YS — Xelt, 22 — v ZU — X3, 2V —Yels | 28 — U?efs, W2 — Xels,
WU —Yelfo, WX —U?co, WS — Zef+ UV — Zelo US — Wels,

V2 _Wels, VS —Ucel2,82 —Velt, XS —YV, YV — ZW, ZW — U®.

fi>1fori=1,234,56789,10,11,12:
We have A= R[X,Y, Z, W,U,V,S,T|/I, where I is an ideal generated by
the following elements:

X2 —Zefs XY —Wele XZ —Ucl", XW — Vel7, XU — Sefo, XV — Tels,
XS —cP2 Y2 —Ucho YZ -Vl YW — Scho YU —TeP3, YV — P38
YT — X/t 22 — S [ ZW — Telv  ZU — P4, ZS — Xcf2, ZT — Yel2,
W2 —cPs WV — Xels, WS —Yels WT — Zel3,U? — Xels, UV — Yelo,
US — Zclo UT — Wl V2 — Zehe VS —Wels VT — Uels| S? — Uels,
ST — Vel 12 — Seh  XT —-YS,YS - ZV,ZV — WU.

The case of n = 11.
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The integral matrix (w(i,n — j — 1))o<i j<10 is of the form

0 0 0 0 0 0 0 0 0 0
p1 0 fi f2 f3 fa fa f3 fo f
p2 p2 0 fo fo fio fir fio fo fo
ps fs p3 0 f3 fio fia fuu fio f3
pa fo fo pa O fi fui fuu fu fa
ps fr fiz fr ps 0 fa fio fio Ja
ps fs fiz fiz fs ps 0 fz fo f3
pa fr fiz Jis5 fiz fr pa O fo fo
ps fo fi2 fiz fiz fiz fe p3 0 fi
p2 fs fe fr fs fr fe fs p2 O
pr P2 P3 P4 P5 P55 P4 P3 P2 P1

with the p; > 1 and the f; > 0, where

=l eleloNoNoNeNelo ool

Ji=p1 —p2, f2 =p1 — p3, f3 =p1 — pa, fa = p1 — b5,
fs =—=p1+p2+ps, foe = —p1+ps+pa, fr=—pP1+ps+ps5, fs = —p1 +p5 +ps,
fo=p1+p2—p3s—pa, fio =p1 + P2 — ps—ps, fr1 = p1 +p2 — p5 — 5,
Ji2=—p1 —p2+p3 +ps+ps, f13 =—p1 — P2+ ps+ps+ps,
Jia =p1 +p2+p3—ps—ps —Ds,
Jis = —p1 —p2 — p3 + pa + pa + p5 + ps,
and the following cases are possible:
1. fi = fs = fs = fi2 = fis = 0 and f; > 1 otherwise: Setting p = ps, we
have (p1,p2,ps, ps,ps) = (2p, 2p, p, 2p,p) and
A= RIX,Y]/(X? -V XY — cP)
2. f3=fs=fs = fio = fia = 0 and f; > 1 otherwise : Setting p = p3, we
have (p1, p2, p3, pa,ps) = (4p, 3p, p, 4p, 2p) and
A2 RIX,Y]/(X*-YT, XY —cP)
3. fs=fe=fr=fi1= fis =0and f; > 1 otherwise : Setting p = pa, we
have (p1,p2, ps, pa, ps) = (3p,p, 2p, p, 2p) and
A= RIX,Y]/(X® -Y3 XY — cP)
4. f5 = fr = fo = fir = fis = 0 and f; > 1 otherwise : Setting p = py, we
have (p1,p2,ps, ps,ps) = (5p, p, 4p, 2p, 3p) and
A= RIX,Y]/(X®-Y® XY —cP)
5. fi=fa=f6 = fi1 = fi2 = fia = 0 and f; > 1 otherwise : Setting p = ps,
we have (p1,p2,p3,pa; ps) = (2p, 2p, p, p, 2p) and
A2 RIX,Y]/(XT-Y? XY — cP)
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6. f1 = fa= fe = f11 = fi12 = f15 = 0 and f; > 1 otherwise : Setting p = py4,
we have (p1, p2, p3, 4, ps) = (3p, 3p, 2p, p, 3p) and

A= R[X,Y]/(X?-Y® XY —P)
7. f3=[fs= fs = fo = fio = fia = 0 and f; > 1 otherwise : Setting p = ps,
we have (p1,p2,p3,pa, ps) = (2p,p, p, 2p, p) and
A= RIX,Y]/(X® Y2 X3Y — )
8. f5 = f6 = f7 = fg = f12 = f13 = f15 =0 and fz > 1 otherwise : Setting
p = ps, we have (p1, p2, p3, pa, ps) = (2p, p, p, p,p) and
A= RIX,Y]/(X? -V XY —cP)
9. f1 = fg = f3 = fg = fg = f13 = f15 = O and fl Z 1 otherwise : Setting
p = ps, we have (p1, p2, p3, pa, ps) = (2p, 2p, 2p, 2p, p) and
A= RIX,Y]/(X?-Y? XY —cP)

The case of n = 12.
The integral matrix (w(i,n — j — 1))o<i j<11 is of the form

0 0 0 0 0 0 0 0 0 0 0
pr 0 fi fo fs fi fs fi fz fo fi
p2 p2 0 fo fio fuu fiz fiz fu fio fo
ps fe p3 O f3 fu fie fir fie fu f3
pa fr fr pa 0 fo fio fir fir fiz fa
ps fs fis fs ps 0 fs fiz fie fiz S5
pe fo fia fia o pe O  fo fuu fu fa
ps fo fis fis fis fo ps 0 fz3 fio f3
pa fo fia Jis fis fiu fs pa O fo fo
ps fr fiz fiu fis fiu fis fr ps 0 fi
p2 fo fr fs fo fo fs fr fe p2 O
b1 P2 P3 P4 P5s Pé P55 P4 P3 P2 D1

with the p; > 1 and the f; > 0, where

OO DD DODDODDODODODO OO OO

J1="p1—p2, fo =p1 —p3, f3 =p1 — ps, fa = P1 — ps5, f5 = p1 — s,

fo = —p1+p2+ps3, fr=—p1+p3+pa, fs = —p1 +pa+ps, fo = —p1 + ps + pe,
Ji0 = p1 +p2 — p3 — Pa, fi1 = p1 + p2 — pa — ps, f12 = p1 + P2 — P5 — s,

Ji3 = —p1 —p2 +p3 +pa+ s, fa = —p1 — p2 + pa+ ps + p,

fi5 = —p1 — p2 + p5 + p5 + e,

Ji6 =p1+p2 +Pps —pa— ps — e,

Jir =p1+p2+ps —ps —ps — e,

fi8 = —p1 — p2 — p3 + pa + ps + P5 + Pe;

and the following cases are possible:
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10.

. fi=fo=fs=fis= fio= f11 =0 and f; > 1 otherwise : Setting p = p;
and g = pg, we have (p1, p2, p3, psa, Ps5.0s) = (0, P, P, P, P, q) and

A= R[IX,Y]/(X? -1, Y% — XcP79)
. fi=fo=fi=fs= fio = fir =0 and f; > 1 otherwise : Setting p = p;
and g = p4, we have (p1, p2, p3, pa, vs5.0s) = (0, > P, ¢, p,p) and
A= RIX,Y]/(X? -1,V — XcP79)
. fi=f3=fi=fu1= fie = fir =0 and f; > 1 otherwise : Setting p = p1
and g = p3, we have (p1, p2, p3, ps, Ps5.0s) = (P, P, ¢, P, P, q) and
A= RIX,Y]/(X* —c1,Y? — XcP79)
cfi=fa=fr=fi3 = fia= fir =0 and f; > 1 otherwise : Setting p = p;
and g = p3, we have (p1, p2, p3, 4, ps5,.06) = (P, P, ¢, — ¢, p,q) and
A2 RIX,)Y]/(X* =t Y3 — cP79)
. fo=f1 = fio = fi1 = fi2 = fir = 0 and f; > 1 otherwise : Setting
p =p1 and g = pz, we have (p1, p2, p3, P4, s, 06) = (P, ¢, P, q, P, q) and
AZRIX,)Y]/(X® —c? Y2 — XP™)
. fa=fo = fo= fio = fi1 = fis = fie = 0 and f; > 1 otherwise : Setting
p = p2, we have (p17p27p37p47p57p6) = (2p7p7pﬂ 2pap7p) and
A= RIX,Y]/(X? Y3 X3Y — cP)
. fa=Jf6=fo= f11 = fi5 = fi6 = 0 and f; > 1 otherwise : Setting p = p;
and g = pz, we have (p1, p2, p3, pa, vs5.06) = (0,4, » — ¢, p,q,p — q) and
A= R[X,Y]/(X* — P9 V3 — X3217P)
. fs = fr=fs = fio = fi3 = fir =0 and f; > 1 otherwise : Setting p = p;
and ¢ = ps, we have (p1, p2, p3, pa, Ps, vs) = (P, Pq, ¢, P — ¢, ¢, p) and
A= R[X,Y]/(X? - P9V — X2217P)
. fs = fo = fs = fio = fi2 = fis = 0 and f; > 1 otherwise : Setting p = pa,
we have (p1, p2, p3, P4, Ps,p6) = (3, p, 2p, 2p, p, 3p) and
A2 RIX,Y]/(X® —V3 XY — cP)
fs = fo = fs = fio = fis = fie = 0 and f; > 1 otherwise : Setting p = ps,
we have (p1, 2, p3, P4, Ps,Ps) = (5p, 2p, 3p, 4p, p, 5p) and
A2 RIX,Y]/(X°-YT, XY —cP)
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11.

12.

13.

14.

15.

fo = fr=fs = fo= fis = fia = fis = fis = 0 and f; > 1 otherwise :
Setting p = pa, we have (p1, p2, p3, P4, 05, vs) = (2p, p, p,p,p,p) and

A= R[X,Y]/(X?-Y? X3V? — P)
fe = fr=fs = fo = fia = fis =0 and f; > 1 otherwise : Setting p = p;
and g = pz, we have (p1, p2, p3, P4, Ps5.06) = (0,4, P — ¢, ¢, P — ¢, q) and

A2 RIX,Y]/(X® — 1, Y? — X3cP21)

fs=fo=fr=fs = fiz = fizs = fie = fir = 0 and f; > 1 otherwise :
Setting p = po, we have (p1,p2, p3, pa, ps, ps) = (2p,p, p, p, P, 2p) and

A2 RIX,Y]/(X* Y3 XY — cP)
foe = fr=fo= fis = fia = fi5 = 0 and f; > 1 otherwise : Setting p = p;
and g = py, we have (p1, p2, p3, P4, Ps5.06) = (0,4, P — ¢,¢,¢,p — q) and

A2 R[X,Y]/(X* — P79 V3 - X2217P)

foe = fs = fo = fio = fis = fis =0 and f; > 1 otherwise : Setting p = po,
we have (p17p27p37p4up5ap6) = (3p7p7 2p7 2p7pa 2p) and

A2 RIX,Y]/(X* =Y XY — cP)

The case of n = 13.

The integral matrix (w(i,n — j — 1))o<i,j<i2 is of the form

0 0 0 0 0 0 0 0 0 0 0 0 O
pr 0 fi fo f3s fa fs fs fo f3 fo f1 O
p2 p2 0 fo fur fiz fiz fua fiz fiz fu f2 O
ps fo p3 0 f3 fizo fis fio fio fis fiz fz3 O
pa fr fr o pa 0 fi fiz fio fee fio fiz fa O
ps fs fis fs ps 0 fs fia fio fio fia fs O
pe fo fie fie fo pe O fs fiz fis fiz fs O
pe fio fir fo fir fio pe O fi fiz fiz fa O
ps fo fir fa fa fir fo ps 0 f3 fu fz3 0O
pa fs Jie feo far foo fie fs o pa 0O fo fo O
ps fr fis fie fir fir fie fis fr p3s 0 f1 0O
p2 fe fr fs fo fio fo fs fr foe p2 0 O
P P2 P3s Pa Ps Pe P Ps pPa p3 p2 p1 O
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with the p; > 1 and the f; > 0, where

f1=p1 — D2, fo =p1 —p3, f3 = p1 — pa, fa = p1 — b5, f5 = p1 — Do,

fe = —p1+p2+ps, fr=—p1+p3+ps, fs = —p1 +pa+ps,

fo = —p1+ps5 +pe, fro = —p1 + P6 + Pes

Ji1 =p1+p2 —p3 — pa, fr2 =p1+ P2 — pa — ps,

J13 = p1+p2 — p5 — D6, f14 = P1 + P2 — Ps — Pe,

Jis = —p1 — p2 + p3 + pa + b5, frie = —p1 — P2 + pa + 5 + P,

Jir = —p1 — p2 + p5 + pe + ps,

Jis =p1+p2+Pp3s —ps—ps — pe, fro = p1 + P2 +P3 — Ps — P — Pes

Ja20 = —p1 —p2 — p3 +pa+ps5 + e + Pe, f21 = —p1 — P2 — p3 + ps + ps5 + Pe + Pe,
Ja2 = p1+p2+p3+Pps—Pps —Ps — Pe — Do,

and the following cases are possible:

1. fo=fs = fi1= f13 = f1a = foo = foo = 0 and f; > 1 otherwise : Setting
p = pa, we have (p1,p2, p3, P4, ps,p) = (3p, p, 3p, p, 2p, 2p) and

A= R[IX,Y]/(X® =Y X% — cP)
2. fi=fs=fa= fio = fio = fir = fis = 0 and f; > 1 otherwise : Setting
p = pe, we have (p1, p2,p3,ps, s, 06) = (2p,2p, p, 2p, 2p, p) and
A= RIX,Y]/(X?-Y® X?Y — )
3. fo = fs = fi0 = fi1 = f13 = f20 = f22 = 0 and f; > 1 otherwise : Setting
p = p2, we have (p1,p2,p3, P4, s, ps) = (6p,p, 5p, 2p, 4p, 3p) and
A2 RX,Y]/(XT Y5 XY —P)
4. f3=fo = fo= fi5 = fir = fis = fo1 = 0 and f; > 1 otherwise : Setting
p = p3, we have (p1, p2,p3,ps, s, 06) = (3p, 2p, p, 3p, p, 2p) and
A2 RX,Y]/(XT Y3 XY — P)
5. f3 = fﬁ = fg = f14 = f15 = f18 = f21 = 0 and fi Z 1 otherwise . Setting
p = ps, we have (p1, p2, p3, pa, D5, Ps) = (5p, 3p, 2p, 5p, p, 4p) and
A= RIX,Y]/(X®-Y? XY —cP)
6. fQ = f4 = f10 = f11 = f12 = f13 = fgo = f22 = O and fl Z 1 otherwise .
Setting p = ps, we have (p1, p2, ps3, P4, 5. D6) = (2p, p, 2p, p, 2p, p) and

A= RIX,Y]/(X* -Y3 X3Y — )
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7.

10.

11.

12.

13.

fi=fa=fr=fio=fis = fir = fis = fo2 = 0 and f; > 1 otherwise :
Setting p = p3, we have (p1, p2, p3, pa, Ps.ps) = (4p, 4p, p, 3p, 4p, 2p) and

A= RIX,)Y]/(X?—Y* XY — )

fi=fo=fs=fs = fia = fi5 = fi6 = f20 = fo1 = 0and f; > 1 otherwise
: Setting p = ps, we have (p1,p2,p3, P4, 5, 06) = (2p,2p, 2p, p, p, 2p) and

A2 RIX,Y]/(X?-Y% XY — cP)

fi=fo=f3=fs = fia = fi15 = fi6 = f20 = fo2 = 0 and f; > 1 otherwise
: Settmg D = P4, W€ have (p1,p27p35p4ap5ap6) = (3177 3177 3p7p’ 2p7 3p) and

A2 RIX,Y]/(X'0-Y3 XY —cP)

fa=foe=fo=fio=fi1 = fiz = fir = fis = for = 0 and f; > 1 oth-
erwise : Settlng P = ps, W€ have (p17p27p37p47p57p6) = (2p7p7p72p7p7p)
and

A= R[X,Y]/(X? Y2 XYY — P)

fi=fa=fr=fio=fis = fie = fir = foo = foo = 0 and f; > 1 oth-
erwise : Setting p = pg, we have (p1, p2, p3, pa, ps5. Ps) = (2p, 2p, P, D, 2p, p)
and

A2 RIX,Y]/(XT-Y% X3Y — cP)

i=foe=fa=[fi=Ffio=/ i1 = fiz=Ffir =fo=/Jf1=0
and f; > 1 otherwise : Setting p = pg, we have (p1,p2,p3, P4, P5,P6) =
(2p, 2p, 2p, 2p, 2p, p) and

A= RIX,Y]/(X" —Y2 XY —P)

fo = fr=[fs = fo = fio = fis = fie = fir = foo = for =0 and f; > 1
otherwise : Setting p = pg, we have (p1, p2, p3, P4, p5,p6) = (2p, P, , P, P, D)
and

A2 RIX,Y]/(X?-Y? XY — cP)

The case of n = 14.
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The integral matrix (w(i,n — j — 1))o<i j<13 is of the form

0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 fi fo f3 fi fs fo fs fa f3 fo N
p2 p2 0 fo fio fizs fu fis fis fuu fiz fiz fo
ps fr ps 0 fz3 fiz foo for feo far fao fiz f3
pa fz fs pa 0 fa fua S fas fos for fia fa
ps fo fie fo ps O fs fis fa2 fos fe2 fi15 f5
pe  fio fir fir fio pe 0 fo fis far fa1r fis fe
pr fuu fis fes fis fu opr 0 fs fiu foo fua fs
pe Ji1 fio foa fau fro fuu pe O fi fiz fiz [fa
ps fio fis foa fee foa fis Jio s 0 fz fi2 f3
pa fo fir fe3 foa foa Sz fir fo pa O fo fo
p3 fs  fie fir fis fio fis fir fie fs p3 0 fi
p2 fr fs fo fio fu fu fio fo fs fr p2 O
pP1 P2 P3s Pa D5 Pe Pt De Ps  Pa D3 D2 P1

OO DD OO OO OO0 OO0 O oo

with the p; > 1 and the f; > 0, where

Ji=p1—p2, fo=p1 —p3, f3 =p1 — pa, fa = p1 — 5, f5 = p1 — D6, f6 = p1 — p1,
fr=—p1 + D2+ 3, fs = —p1 + p3 + s, fo = —p1 + ps + ps,

Jio = —p1 + ps + pe, f11 = —p1 + pe + pr,

Ji2 = p1 +p2 —p3 —pa, f13 =Dp1 + p2 — ps — ps5, f14 = p1 + P2 — P5 — s,
Jis = p1 +p2 — pe — 1,

Ji6 = —p1 — p2 + p3 + pa + b5, fir = —p1 — p2 + pa + s + P,

Jis = —p1 —p2 + ps +pe + p7, fro = —p1 — p2 + Pe + pe + p7

J20 =Pp1+p2+DP3 —pa—Ps — D6, fo1 =p1+Dp2+pP3s—Ps — P — Prs

Ja2 =p1+p2+ps —pe —Pe — D7, fo3 = —p1 — P2 — p3 + pa + p5 + pe + b1,
foa = —p1 — P2 — P3 + Ps5 + ps + s + D7,

Jas = p1+p2+p3+Pps—Pps —Pps — Pe — Pr,

f26 = —p1 — P2 — p3 — s+ ps + s + pe + P + pr,

and the following cases are possible:

1. f; = 0 for i = 6,7,8,10,16,17,19,21 and f; > 1 otherwise : Setting
p = pe, we have (p1,pa, p3, pa, Ps, D6, P7) = (3p, 2p, p, 2p, 2p, p, 3p) and

A2 RIX,Y]/(X* —Y? XY — cP)

2. fi = 0for ¢ =1,2,3,4,5,12,13,14,20 and f; > 1 otherwise : Setting

p = p1 and ¢ = p7, we have (p1,p2,p3, P4, P56, P7) = (DD, DD, P, D5 q)
and
A= RIX,Y]/(X? -1, YT — XcP79)
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10.

11.

12.

. fi=0fori=24,11,12,13,14,19,23,24 and f; > 1 otherwise : Setting

p = p1 and ¢ = po, we have (p1,p2,p3, P4, D5, P6,P7) = (P, 4P 4P, ¢, P — q)
and
A2 R[IX,Y])/(XT —c1,Y? — cP79)

. fi=0fori=246,12,13,14,15,21,25 and f; > 1 otherwise : Setting

P =0 and q = p2, We have (p17p27p37p47p5ap6ap7) = (@‘LP»%P’CLP)
and
A2 RIX,Y]/(XT —c1,Y? — XcP79)

. fi=0fori=2,59,12,14,15,22,23,25 and f; > 1 otherwise : Setting

p = pa, we have (p1, p2, p3, pa, D5, D, P7) = (2p, p, 2p, p, p, 2p, p) and
A= R[X,Y]/(X* —Y3 X?Y? — P)

. fi=0for¢=2,6,9,10,12,15,17,23,24 and f; > 1 otherwise : Setting

p = p1 and ¢ = py, we have (p1, p2, p3, pa, 05,06, 07) = (0.4, P, 4P — ¢, 4, D)
and
A= RIX,Y]/(XT—c1,Y? — XOcP™29)

. fi=0fori=4,7,8,11,13,14,19,21,25 and f; > 1 otherwise : Setting p =

p1 and ¢ = pa, we have (p1, p2, p3, P4, D5, D6,P7) = (D, 4P — ¢, 4D ¢, P — q)
and

A2 RIX,Y]/(XT—c1,Y? — XPcP™29)

. fi=0fori=6,7,8,9,10,15,17,21,25 and f; > 1 otherwise : Setting p =

p1 and ¢ = pa, we have (p1, p2, p3, P4, D5, D6, P7) = (D, P — ¢, 4P — 4,4, D)
and

A2 RIX,Y]/(XT —c1,Y? — X4cP29)

. fi=0fori=17,8,9,10,11,17,19,23,24 and f; > 1 otherwise : Setting p =

p1 and g = pa, we have (p1, p2, 3, P4, Ps, pe. P7) = (P, ¢, P—4: ¢, P—4, ¢, P—q)
and
A2 RIX,Y]/(XT —c1,Y? — X3cP29)

fi =0 fori=3,6,7,10,13,19,20,21,26 and f; > 1 otherwise : Setting
p = p3, we have (p17p27p37p47p57p6ap7) = (3p7 2p7p7 3107 2p7p7 3p) and
A2 RIX,Y]/(X®-Y3 XY — cP)
fi =0 fori=3,6,7,10,16,19,20,21,26 and f; > 1 otherwise : Setting
p = p3, we have (p17p27p37p47p57p6ap7) = (5p7 4p7p7 5107 3177 2pu 5p) and
A= R[X,Y]/(X® -Y? XY —cP)
fi=0fori=2,6,9,10,12,15,17,23,24,26 and f; > 1 otherwise : Setting
P = p4, We have (p17p27p37p47p57p67p7) = (2p7p7 2p7papvp7 2p) and
A2 RIX,Y]/(X? Y% XY — cP)
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13.

14.

15.

16.

17.

18.

fi=0fori=4,7,811,13,14,19,20,21,25 and f; > 1 otherwise : Setting
p = pe, we have (p1,p2,p3, P4, s, P6, P7) = (20,0, P, , 2p, p,p) and

A= RIX,)Y]/(X® Y2 X?Y? — ¢P)
fi=0fori=1,2,56,9,15,16,17,22,23,25 and f; > 1 otherwise : Setting
p = pa, we have (p1, p2, p3, pa, Ps. D6 P7) = (2p, 2p, 2p, p, p, 2p, 2p) and

A= RIX,Y]/(X" - Y2 XY — ¢P)
fi=0fori=1,2,5,6,9,15,16,17,22,23,26 and f; > 1 otherwise : Setting
p = Dps5, We have (p17p27p37p47p57p6ap7) = (3p7 3p> 3p7 2p7p7 3pu 3p) and

A2 RIX,Y]/(X? -V XY —P)

fi = 0 for i = 3,6,7,10,12,13,15,20,21,22,26 and f; > 1 otherwise :

Setting p = ps, we have (p1,p2,p3, pa, ps,ps,p7) = (20,0, P, 2D, P, P, 2p)
and

A= RIX,)Y]/(X5 —Y2 XY —¢)
fi = 0 for i = 6,7,8,9,10,15,16,17,21,22,25 and f; > 1 otherwise :
Setting p = ps, we have (p1, p2,ps, P4, D5, D6, P7) = (2p, P, . P, p, P, 2p) and
A RIX,Y]/(X* - Y2 X3Y?2 —P)
f; =0fori=1,8,9,10,11,16,17,18,19,23,24,26 and f; > 1 otherwise :
Setting p = pa, we have (p1, p2, p3, p4, Ps, Ds, P7) = (20,0, P, P, P, P, ) and
A2 RIX,Y]/(X?-Y3 XY —cP)

The case of n = 15.

The integral matrix (w(i,n — j — 1))o<i,j<14 is of the form

0

P1
b2
p3
Pa
25
Ps
b7
pr
Pe
b5
Pa
p3
b2
p1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 fH fo fs fo fs fo fo fs fa f3 fo S
p2 0 fo fiz fuiu fis5 Jie fir Sfie fis fuu fi3 [fe
froop3 0 fz3 fia foo foz foa foa fos for fia f3
fs fs pa 0 fi fis foz fos foo fos foz fis fa
fo fis fo ps 0 fs fie foa foo foo foa fie fs
Jio fio fio fio pe O fo  fir fea fes faa fir S
S feo fos feo furopr O feo fie faz faz fie S
fiz for fae fee for fiz b 0 fs fis fa2 fis fs
fir for for fso fer for fuu ope O fa fia fuu fa
Jio fao fee fzo fzo fae f20 S0 b5 O fs fiz fs
fo fio fas fos for fee fas fio fo pa O fo fo
fs fis Jio feo far S feo J1o fis fs ps 0 S
fr fs fo fio fuu fiz fuu fio fo fs fr p2 O
b2 p3 pPsa Ps Pé6 Pr Pr Pé P5 P4 P3 P2 D1

OO DD O DD DD OO O OO

73




with the p; > 1 and the f; > 0, where

J1=p1—p2, fa=p1 —p3, f3 =p1 — pa, fa = p1 — 5, f[5 = p1 — P, fo = p1 — p7,
fr=-=p1+p2+ps, fs = —p1+p3+ps, fo=—p1+ps+ps,

Jfio = —p1 +ps + ps, f11 = —p1 + pe + p7, f12 = —p1 + p7 + pr,

Ji3 =p1+ P2 — p3 — pa, fra = p1 + p2 — pa — ps, f15 = p1 + P2 — P5 — e,
Ji6 = p1 +p2 — pe — p7, fr1 = p1 + p2 — pr — P,

Jis = —p1 — p2 + p3 + pa + b5, fro = —p1 — P2 + pa + 5 + P,

Jo0 = —p1 —p2 +ps +pe + pr, for = —p1 — p2 +pe + pr +p7

Ja2 =p1+p2+Pp3s —ps—ps — Pe, fo3 = p1 + P2 +P3—Ps — P — Prs

J2a =p1+p2+ps —ps —pr—pr,

Jas = —p1 — p2 — p3 + pa + ps + pe + p1,

Ja6 = —p1 — p2 — p3 + ps + pe + p7 + pr,

Jar = —p1 — p2 — p3 + pe + pe + p7 + pr,

Jas = p1+p2+p3+ps—ps —ps — pr— pr,

J20 = p1 + P2 +p3 +Ppas—Ppe — ps — pr — Pr,

f30 = —P1 — P2 — p3 — pa+ D5 + pe + ps + pr + pr,

and the following cases are possible:
1. f; =0 fori=17,89,11,12,15,25,27,28 and f; > 1 otherwise : Setting
P = pa, we have (p1,p2,p3, P4, Ps, e, P7) = (4p,p, 3p, p, 3p, 2p, 2p) and
A2 RIX,Y]/(XT-Y* XY — cP)
2. fi=0fori=17,9,11,13,15,17,25,27,28 and f; > 1 otherwise : Setting
p = p2, we have (p1,p2,p3, P4, Ps, Ps, p7) = (Tp, . 6p, 2p, 5p, 3p, 4p) and
A= RX,Y]/(X®-YT XY —cP)
3. fi=0fori=1,2,4,512,15,21,25,26,27 and f; > 1 otherwise : Setting
p = pr, we have (p1, p2, p3, pa, Ps. P D7) = (2p, 2p, 2p, p, 2p, 2p, p) and
A= RIX,Y]/(X?-YS X?Y — ¢F)

4. fi=0fori=1,2,3,5,6,13,16,17,24,29 and f; > 1 otherwise : Setting

p = p1 and ¢ = ps, we have (p1,p2,ps3, P4, Ps, P6,P7) = (P, D D> P> ¢ D> P)
and
A2 R[IX,Y]/(X? 1, YP — XcP79)

5. fi=0fori=1,3,4,6,14,17,22,23,24,28 and f; > 1 otherwise : Setting

p = p1 and ¢ = p3, we have (p1,p2,p3,P4,Ps5,P6,P7) = (PP, 4P, P, ¢, D)
and
A2 R[IX,Y]/(X® —c1,Y? — XcP79)
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10.

11.

12.

13.

14.

fi=0fori=1,3,6,10,17,18,19,20,24,30 and f; > 1 otherwise : Setting

p = p1 and ¢ = p3, we have (p1,p2,p3, P4, D5, 06, 07) = (P, D, ¢ PP — ¢, ¢, D)
and

A= R[X,Y])/(X® =1, Y3 —cP79)

fi=0fori=4,7,811,14,21,22,23,27,28 and f; > 1 otherwise : Setting

p = p1 and ¢ = py, we have (p1,p2, 3, P4, D5, P6,P7) = (Ds ¢, D — 4,4, P, D —
q,q) and

A= R[X,Y]/(X® — P9 YV3 - X3217P)

f; =0 for i = 7,8,10,11,18,19,20,21,27,30 and f; > 1 otherwise : Set-
ting p = p1 and ¢ = pa, we have (p1,p2,p3,P4,05,P6,P7) = (P, P —
4,4,9,p — q,q) and

A2 R[X,Y]/(X® — P79 V3 - X2217P)
fi=0fori=7,8,9,10,11,17,19,25,27,28 and f; > 1 otherwise : Setting
P = pe, we have (p1, p2, p3, pa, s, D6, P7) = (3p, p, 2p, p, 2p, p, 2p) and

A= RIX,)Y]/(X° - Y3 XPY — )

f; = 0 for i = 1,4,5,8,12,15,18,21,25,28,29 and f; > 1 otherwise :

Setting p = p4, we have (p1,p2, D3, P4, D5, P6, P7) = (4p,4p, 3p, p, 4p, 4p, 2p)
and

A2 RIX,Y]/(X" - Y% XY —P)

fi =0 fori=14,5812,15,18,21,22,23,28,29 and f; > 1 otherwise :

Settlng p = pr, we have (p17p27p37p47p57p67p7) = (2p7 2p7pﬂp7 2p7 2p7p)
and

A= RIX,)Y]/(X?-Y? X?Y — )

fi=0fori=4,7,811,12,14,15,21,22,23,27,28 and f; > 1 otherwise :
Setting p = p7, we have (p1, p2, p3, pa, D5, D, P7) = (2p, p, p, P, 2p, p, p) and

A= R[X,Y]/(X® Y3 X?YV? — P)

fi=0fori=1234,51213,14,15,21,22,26,27,30 and f; > 1 other-

wise : Setting p = pr, we have (p1, p2, p3, P4, s, D6, P7) = (2p, 2p, 2p, 2p, 2p, 2p, p)

and
A2 R[X,Y]/(XB —Y? XY —P)

fi=0for:=17,8,9,10,12,18, 19,20, 21, 25,26, 27,30 and f; > 1 otherwise
: Setting p = p7, we have (p1, p2, ps, P4, 5. D6, P7) = (2p,p, 0., p,p,p) and

A= RIX,)Y]/(X?-Y? X%V —¢F)
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The case of n = 16.
The integral matrix (w(i,n — j — 1))o<i,j<15 is of the form

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 fi fo fs fa fs fo fr fo fs fa fz fo S
p2 p2 0 fo fiu fis fie fir fis fis fir fie fis fua fo
ps fs p3s 0 fz3  fis foa fos fae Sfor fae fos foa Jis f3
pa fo fo pa 0 fa fie fas fa1 fa2 faz fai fos fie fa
ps fio fio fio ps 0 fs  fir foe fa2 f3s fa2 foe Sir S5
pe  fir foo feo fii pe 0 fo  fisg for fa2 fa2 for fis fe
pr fi2 far fes far fiz b O fr fis fae fzr fee S8 f7
ps Ji13 fa2 fao foo fe2 fi3 ps O fo fir fes fos fir fe
pr Ji3 fa3 fao faz fzo fes fiz opr 0 fs fie faa fie S
pe fiz fo2 fao faa faa fao fee fiz2 o pe O fa fis fis fa
ps fir for feo faz fsa fiz fao for fii ps 0 fz fia f3
ps fio foo fos foo S0 fao fao fos feo o pa O fo fo
ps  fo fio foo for fe2 fes S far foo fio fo D3 0 f
p2 fs fo fio fuu fiz fis fis fiz fuu fio fo fs p2 O
b1 p2 PpP3 Pa Ps Pé6 Pr P8 Pr Pé P5 Pa P33 P2 D1

OO DD OO DD OO DO OO OO0 oo

with the p; > 1 and the f; > 0, where

J1=p1—p2, fo=p1 —p3, f3 =p1 —pa, fa = p1 — 5, f[5s = p1 — P, fo = p1 — pr,
fr=p1—Dps,

fs = —p1+p2+p3, fo=—p1+p3+pa, fro = —p1 + pa+ps, fr1 = —p1 + p5 + pe,
Ji2 = —p1 +pe + pr7, fi3 = —p1 + p7r + ps,

J14 = p1 +p2 — p3 — pa, f15 = p1 + p2 — pa — ps5, f16 = p1 + P2 — P5 — s,

Jir =p1+Dp2 —pe — 7, fis = p1 + P2 — p7 — s,

Ji9 = —p1 —p2 +p3 + pa+ s, foo = —p1 — p2 + pa + ps + P,

Jo1 = —p1 —p2 +ps +pe + 7, f22 = —p1 — p2 + pe + p7 + s,

fo3 = —p1 — p2 +pr + pr +ps,

f2a =p1+p2+p3 —ps—ps — e, fas = P1 + P2+ p3 — P5 — Pe — D1,

fa6 = p1 +p2 +p3s — pe — pr — s,

Jar = p1+p2+p3s—pr—pr—ps,

Jas = —p1 —p2 — p3 + pa + ps + pe + p1,

Ja9 = —p1 —p2 — p3 + p5 + pe + P + ps;

f30 = —p1 —p2 — p3 + pe + p7 + p7 + ps,

J31 =p1+p2+p3+Pps—Pps—Ppe— Pr— DPs,

f32 = p1+p2+p3+ps—pe —pr— pr— Ps,

f33 = —p1 — P2 —Pp3 — Pa+ D5+ pe + pr + pr + s,

f34 = —p1 —p2 — p3 — pa+p6 + P + pr + P + P8,

J35 =p1+p2+p3+ps+ps —ps—ps—Pr—DPr— Ds,
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and the following cases are possible:

1.

fi =0 for i = 8,10,12,13,14,16, 23,28, 30,33 and f; > 1 otherwise: Set-

ting p = pa, we have (p1, p2, p3, P4, Ps, D6, P7, Ps) = (4p, D, 3p, 2p, 2p, 3p, p, 3p)
and

A= RIX,Y]/(X® -V X?Y — cP)

fi=0fori=4,8,9,12,15,22,24,25,27,31,34 and f; > 1 otherwise: Set-

ting p = pe, we have (p1, p2, p3, P4, Ps, D6, P7,Ps) = (3p, 2p, p, 2p, 3p, p, 2p, 2p)
and

A2 RIX,Y]/(X* -Y® XY — cP)

. fi=0fori=1,2,4,56,16,17,25,31,32,35 and f; > 1 otherwise: Setting

p = p1 and g = py, we have (p1, p2, P3, P4, P5, P6, P7,P8) = (P, P, D 4, P, DD q)
and

A2 RIX,Y]/(X* =1, Y* — XcP79)

. f; =0fori=2,5,10,13,16,17,23,28,29,30,35 and f; > 1 otherwise: Set-

ting p = p1 and g = p, we have (p1, p2, p3, Pa, s, 6> P75 P8) = (P, 4, P, P —
4,4,p,q,p — q) and

A2 R[X,Y]/(X* — P79V — X3297P)

. f; =0fori="7,8,10,12,14, 16, 18,26, 28, 31,35 and f; > 1 otherwise: Set-

ting p = pa , we have (p1, p2, p3, P4, Ps, D6, P7, Pg) = (4p, D, 3p, 2p, 2p, 3p, p, 4p)
and

A= RIX,Y]/(X®-Y* XY — cP)

. fi=0fori=7,8,10,12,14, 16, 23, 26, 28, 33,35 and f; > 1 otherwise: Set-

tlngp = p7, We have (pl7p2up33p4ap57p67p77p8) = (7p7 2p7 5p7 4p7 3]7» 6p7p7 7p)
and

A= R[X,Y]/(X° Y, XY —P)

. fi =0 fori=26,10,11,14,17,18,20,27, 28,29, 32,35 and f; > 1 other-

wise: Setting p = ps, we have (p1, p2, p3, P4, D5, D6, 7, Ps) = (20, p, 2D, D, D, D, 2D, P)
and
A2 RIX,Y]/(X? =Y, X% — cP)

. f; =0 for i = 2,5,10,13,14, 16,17, 23, 28,29, 30,33, 35 and f; > 1 other-

wise: Setting p = pa, we have (p1, p2, p3, P4, D5, D, 7, Ps) = (2p, p, 2D, D, D, 2D, p, P)
and

A2 RIX,Y]/(X* —Y3 XY — cP)

. f; =0fori=4,89,12,13,15,16,22,23,24,25,30,31, 34 and f; > 1 other-

wise: Setting p = po, we have (p1, p2, p3, pa, s, ps, Pr, p8) = (20,1, p, P, 2p, P, D, D)
and

A= RIX,)Y]/(X® —Y? X3Y? — ¢P)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

fi =0fori=1,4,7,9,12,19,20, 21,22, 23,28,30,31,34 and f; > 1 other-

wise: Setting p = p4, we have (p1, p2, p3, pa, s, Pe, P7,P8) = (2D, 2D, D, D, 2D, s P, 2Pp)
and

A2 RIX,Y]/(X® -V XY —cP)

fi=0fori=1,236,711,14,18,20,21,27,28,29,33,34 and f; > 1 oth-

erwise: Setting p = pg, we have (p1,p2, p3, P4, P5, D6, D7, Ps) = (2p, 2p, 2p, 2p, D, D, 2p, 2p)
and

A= RIX,)Y]/(X? Y2 X?Y — P)

fi=0fori=1,236,711,14,18,20,21,27,28,29,33,35 and f; > 1 oth-

erwise: Setting p = ps, we have (p1, p2, p3, P4, D5, Pe, 7, Ps) = (3p, 3p, 3p, 3p, , 2p, 3p, 3p)
and
A= RIX,Y]/(X® Y3 XY —P)

f; =0fori=8,9,10,11,12,13,19, 20, 21,22, 23, 28,29, 30,33, 34 and f; >

1 otherwise: Settlngp = P4, W€ have (pl7p27p37p47p57p67p75p8) = (2p7p7pap7p7pap7p)
and

A= R[X,Y]/(X?-Y? X?YV* — P)

f;=0fori=7,8,9,10,11,12,18, 19,20, 21, 26, 27, 28,31, 32,35 and f; > 1

otherwise: Setting p = pa, we have (p1, p2, p3, P4, D5, D6, 7, Ps) = (2D, D, P, P, P, D, D, 2D)
and

A= RIX,Y]/(X*-Y? X%V — )

fi=0fori=1,2,3,4,5,6,14,15,16,17,24,25 and f; > 1 otherwise: Set-

ting p = p; and ¢ = pg, we have (p1, p2, p3, P4, s, P6, P7,08) = (0, P, P, P, P, D, D> q)
and

A2 R[IX,Y]/(X? -1, Y8 — XcP79)

fi = 0 for i = 2,4,6,14,15,16,17,18,25,27,31,32 and f; > 1 other-
wise: Setting p = p1 and ¢ = pa, we have (p1,pa,ps, Pa, Ps, Pe, D7, Ps) =
(p,4,p,4,p, ¢ p,q) and

A2 R[IX,Y]/(X® —c1,Y? - XcP79)
fi = 0 for i = 2,6,10,11,14,17,18,20,27,28,29,32 and f; > 1 other-

wise: Settlng p=n and q = Pe, We have (pl7p2,p37p47p57p65p7ap8) —
(p,4:p,4,p — ¢,4,p, q) and

A= R[X,Y]/(X® —c?, Y% — X cP™2)
fi =0 for i =4,8,9,12,13,15,16,22,25,30,31,34 and f; > 1 otherwise:

Setting p = p1 and ¢ = ps, we have (p1,p2, 3, P4, D5, D6, P7,08) = (P, ¢, D —
4,94,p,4,p — q,q) and

A2 RIX,Y]/(X® —c1,Y? — XPcP21)
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19. f; = 0 for i = 1,3,6,11,19,20,21,22,27,29,33,34 and f; > 1 otherwise:

Setting p = p3, we have (p1, p2, P3, P4, D5, D6 P7: P3) = (2p, 2p, p, 2p, , P, 2P, p)
and

A= R[X,Y]/(X?-Y? X?Y?% —P)

20. f; = 0 for i = 1,4,7,9,12,19,20,21,22,27,31,34 and f; > 1 otherwise:

Settlngp = Pe6, WE have (plap23p33p47p57p67p77p8) = (3p’ 3p7pa 2p7 3p7pa 2p7 3p)
and

A= RIX,Y]/(X" - V3 XY — ¢P)

21. f; = 0 for i = 1,4,7,9,12,19,21,22,24,27,31,34 and f; > 1 otherwise:

Setting p = ps, we have (p1,p2, p3, P4, Ds, P, P7, Ps) = (5p, 5p, v, 4p, 5p, 2p, 3p, 5p)
and

A= RIX,Y]/(X" —Y? XY —P)

22. f; =0 for i = 7,8,10, 11,12, 14, 18, 21, 26, 28,33, 35 and f; > 1 otherwise:

Setting p = ps, we have (p1, p2, p3, P4, D5, De. D7, P8) = (3p, P, 2p, 2p, p, 2p, P, 3p)
and

AZRIX,)Y]/(XT-Y3 X3Y — )
23. f; =0 for ¢ =8,9,10,11,12,13, 20, 22, 28,29, 30, 34 and f; > 1 otherwise:

Setting p = p1 and g = p2, we have (p1,p2, P3, P4, P5, P6, P7,P8) = (P, ¢, P —
4,4, — 4,4,p — q,q) and

A2 R[X,Y]/(X® —c1,Y? — X3cP29)

The case of n = 17.
The integral matrix (w(i,n — j — 1))o<i,j<16 is of the form

0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 fi fo fz fi fs fo fr fr fe fs fa f3 fo S
p2 p2 0 fo fis fie fir fis fio feo fio fis fir fie fi5 [fe
ps fs p3 0 fz3 fie fee for fos foo foo fos for fas fie f3
pa fo fo pa O fo fir for fsa fas fse fas faa far fir Ja
ps fio far fio ps 0 fs  fis fos fas fao fze f3s fos fis fs
pe Ji1 S fa2 fir pe O fe  fio fao fae fzo fze Jo S0 fe
pr fiz faz fso fes fiz b 0 fr fao foo f3s fas fao fao f7
ps fiz foa fzr far fea fiz o ps O fr fio fes faa fas fio fr
p8 fia fos fa2 far fz2 fes fuia ps 0 fo fis for for fis fe
pr Ji3 fos faz fas fss faz fos fiz3 opr 0 fs  fir fee fir S
pe  fiz foa fi2 fas fao fas fz2 fou fi2 pe O fa fie fie fa
ps fir faz fasr far fss fas far fsr faz fu ps 0 fz fis f3
pa fio fo2 fao far fs2 faz fs2 fsr fzo feo fio pa O fo fo
ps fo for fo2 foz foa fos fas foa foz fo2 for fo D3 0 f
p2 fs fo fio fuu fiz fis fiu fis fiz fuu fio fo fs p2 O
b1 p2 PpP3 P4 Ps Pé6 Pr P8 P8 Pr Pé P5 P4 P3 P2 P1

with the p; > 1 and the f; > 0, where
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Ji=p1—p2, f2=p1 —p3, f3 =p1 — pa, fa = p1 — 5, f5 = p1 — e, fo = p1 — pr,
fr=p1 —ps,
fs = —p1+p2+ps3, fo=—p1+p3+pa, fro = —p1 +ps+ps, f11 = —p1 + 5 + Pe,
fi2 = —p1 +p6 + p7, f13 = —p1 + p7 + D8, fra = —p1 + ps + ps,
Jis =p1 +p2 — p3s — pa, fre = p1 + P2 — pa — ps, f17 = p1 + P2 — P5 — Pe,
Jis = p1 +p2 —pe — 7, fr9 = P1 + p2 — pr — P8, fao = p1 + P2 — Ps — Ds,
Ja1 = —p1 — p2 + p3 + ps + b5, foa = —p1 — p2 + pa + 5 + P,
f23 = —p1 — p2 +p5 + 6 + pr, foa = —p1 — P2 + pe + 7 + ps,
Jas = —p1 — p2 + pr + ps + ps,
J26 =Pp1+ P2+ P3 — P4 — Ps — D6, for = p1 + P2 +P3 — Ps — P — D1,
f2s = p1+ P2+ p3 —pe — p7 — Ps, f20 = P1 + P2+ p3 — pr — Ps — Ds,
J30 = —p1 —p2 — p3 + ps+ps +pe+pr, f31 = —p1 — p2 — p3 + ps + pe + pr + s,
f32 = —p1 —p2 —p3 +pe +p7+ s+ Ps, f33 = —p1 — P2 — p3 + pr + pr + ps + ps,
J34 =p1+p2+Dp3s+ps—ps —pe—Pr—Ds,
J35 =p1+p2+ps+Pps—ps —Pr—DPs — Ds;
J36 =p1+p2+ps+ps—pr—pr—Dps—Ds,
far = —p1 —p2 —p3 — pa+ D5 + P + pr + Ps + Ps,
J3s8 = —p1 — P2 — p3 — pa + pe + p7 + pr + Ps + Ps,
f39 =p1+p2+p3+ps+ps —ps —Pr—Pr—Ps — DPs,
Ja0 = —p1 —p2 — p3s — pa — p5 + pe + P6 + p7 + pr + ps + ps,
and the following cases are possible:
1. f; =0 for ¢ = 2,10,14,15,17,18,19,30,32,34,36 and f; > 1 otherwise:

Setting p = pa4, we have (p1, p2, p3, P4, Ps, D6, P7. P3) = (4p, p, 4p, p, 3p, 2p, 3p, 2p)
and

A2 RIX,Y]/(XT-Y? XY — cP)
2. fi =0 fori=5,8,10,13,20,21,23,26,28,33,35,39 and f; > 1 otherwise:

Settlngp = p7, W€ have (plap23p33p47p57p67p77p8) = (4p’ 2107 2p7 3pap7 4p7p7 3p)
and

A RIX,Y]/(X? - Y* XY — ¢P)
3. f; =0fori=5,8,10,13,15,20,23,26,28,33,37,39 and f; > 1 otherwise:

Setting p = ps, we have (p1, p2, 3, P4, Ps, Ds, P7,P8) = (Tp, 3p, 4p, 6p, p, Tp, 2p, 5p)
and

A= RIX,Y]/(XT =YY XY —¢P)
4. f; =0 fori=1,3,6,11,21,22,23,24,29,36,37,40 and f; > 1 otherwise:

Setting p = pg, we have (p1, p2, p3, P4, Ps, Pe. P7. P3) = (3p, 3p, p, 3p, 2p, P, 3p, 2p)
and

A2 R[IX,Y]/(X° -Y® XY — cP)
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10.

11.

12.

13.

£ =0fori=8,10,12,14,15,17,19, 30,32, 34, 36,40 and f; > 1 otherwise:

Setting p = p2, we have (p1, p2, p3, P4, Ps, D6, 7, Ps) = (8D, p, Tp, 2p, 6p, 3p, 5p, 4p)
and
A2 RIX,Y]/(X?-Y® XY —cP)

fi=0fori=1,2,4,5,6,14,17,18,25,27,32,33,34 and f; > 1 otherwise:

Setting p = ps, we have (p1, p2, p3, pa, Ps. D, D7, P8) = (2p, 2p, 2p, p, 2p, 2p, 2p, p)
and

A2 RIX,Y]/(X?-YT XY — cP)

f; =0 for i = 5,8,10,13, 15, 17, 18, 20, 26, 28, 33, 35,39 and f; > 1 other-

wise: Setting p = py, we have (p1, p2, p3, pa, D5, D, D7, Ps) = (3p, p, 2D, 2p, p, 3p, p, 2p)
and

A= RIX,)Y]/(X®-Y3 X3Y — )

f; =0 for i = 3,6,8,11,14,21,24,26,27,29,36,37,40 and f; > 1 other-

wise: Setting p = ps, we have (p1,p2, p3, P4, Ps, Ps, D7, P8) = (6p, 5p, p, 6p, 4p, 2p, 6p, 3p)
and
A= RIX,Y]/(X® - Y™ XY —P)

f; =0fori=8,10,11,12,13,15, 20,23, 30,31,37,38 and f; > 1 otherwise:

Setting p = p2, we have (p1, p2, p3, pa, Ps. P, D7, P8) = (3p, p, 2p, 2p, p, 2p, p, 2p)
and
A= R[X,Y]/(X° -V X3Y — cP)

£ =0fori=2,4,6,14,15,16,17, 18,19, 27, 32,34, 36,40 and f; > 1 other-

wise: Setting p = ps, we have (p1, p2, p3, P4, D5, D, D7, Ps) = (2p, p, 2p, D, 2p, p, 2p, D)
and

A2 RIX,Y]/(X° -Y3 XY — cP)

fi =0 fori=1,4,7,9,12,20,21,23,24,26,29, 34, 35,40 and f; > 1 other-

wise: Settlngp = p3, we have (plvp27p37p47p57p67p77p8) = (3]), 3papa 2p7 3p’ 2p7p7 3]))
and

A= RIX,Y]/(XM V3 X2V — cP)

£ =0 fori=1,4,7,9,12,20,21,23,24,26,33,34,35,40 and f; > 1 other-

wise: Setting p = p7, we have (p1, p2, p3, P4, D5, D6, 7, Ps) = (5p, 5p, 2p, 3p, 5p, 4p, p, 5p)
and
A= RIX,Y]/(X™ -Y? XY —cP)

fi=0fori=1,2,5,6,10,14,18,21,22, 25,30, 32, 33, 34,39 and f; > 1 oth-

erwise: Setting p = pa, we have (p1, p2, p3, P, D5, Pe, D7, Ps) = (4p, 4p, 4p, p, 3p, 4p, 4p, 2p)
and
A2 R[X,Y]/(X" —Y1 XY —P)
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14.

15.

16.

17.

18.

19.

20.

21.

22.

f; =0 for i = 2,6,10,11,14, 15,18, 19, 22, 30, 31, 32, 36,37,39 and f; > 1
otherwise: Setting p = ps, we have (p1, p2, p3, P4, s, D, P7, Ps) = (20, p, 2D, P, D, D, 2P, P)
and
A= RIX,)Y]/(X*—Y3, X3Y? - ¢P)
f; =0fori=1,2,5,6,10,14,18,21,22,25,30,31,32,33,37,39 and f; > 1
otherwise: Setting p = ps, we have (p1, p2, p3, P4, s, Ps, P7, Ps) = (2p,2p, 2p, p, p, 2p, 2p, D)
and
A= RIX,)Y]/(X! —Y? X3Y — cP)
f; =0fori=3,6,8,11,14,15,16,18,19,26,27,28,29,36,37,39 and f; > 1
otherwise: Setting p = pa, we have (p1, p2, p3, p4, s, Ps, P7,p8) = (20, P, P, 2p, p, P, 2p, P)
and
A= RIX,)Y]/(XT-Y? XY — ¢P)
f; =0fori=1,4,7, 9,12, 20, 21, 22, 23, 24, 29, 30, 34, 35, 36, 40 and
fi > 1 otherwise: Setting p = ps, we have (p1, p2, p3, pa, Ps. D6, D7, P8) =
(2p,2p,p, p, 2p, p, p, 2p) and

A~ R[X,Y]/(X° - Y2 XYY — P)
fi =0fori=5,8,9,10, 13, 14, 17, 18, 21, 25, 26, 27, 28, 33, 34, 35, 39 and

fi > 1 otherwise: Setting p = p4, we have (p1, p2, p3, P4, D5, D6, D7, P8) =
(2p,p, p, P, D, 2p, p,p) and

A= RIX,Y]/(X® -Y? X%V —¢P)
fi=0fori=1,2 36,7 11, 15,17, 20, 22, 23, 29, 30, 31, 36, 37, 39 and

fi > 1 otherwise: Setting p = ps, we have (p1, p2, p3, pa, D5, D6, D7, P8) =
(2p,2p, 2p, 2p, p,p, 2p, 2p) and

A2 RIX,Y]/(X" —Y? XY — ¢P)
fi=0fori=1,2, 36,7, 11, 15, 19, 20, 22, 23, 29, 30, 31, 36, 37, 40 and

fi > 1 otherwise: Setting p = ps, we have (p1, p2, p3, pa, Ps, D6, D7, P8) =
(3p, 3p, 3p, 3p, 2p, p, 3p, 3p) and

A2 RIX,Y]/(X™ Y3 XY —P)
fi=0fori=1,2,3,4,5, 6,14, 15, 16, 17, 18, 25, 26, 27, 32, 33, 37, 38 ,40

and f’L > 1 otherwise: Settingp = Ps, We have (plap23p3ap4ap57p67p77p8) =
(2p, 2p, 2p, 2p, 2p, 2p, 2p, p) and

A2 RIX,Y]/(XY —Y? XY —P)
fi = 0 for i =8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 30, 31,

32, 33, 37, 38, 40 and f; > 1 otherwise: Setting p = ps3, we have
(P1, P2, 3, P4, P55 P6s P75 Ps) = (2p, p, P, p, P, P, P, p) and

A2 RIX,Y]/(X?-Y2 XY — cP)
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The case of n = 18.
The integral matrix (w(i,n — j — 1))o<i,j<17 is of the form

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0o o
P1 0 f1 f2 f3 fa f5 fe f7 f8 f7 fe fs fa f3 fa fi 0
P2 P2 0 f2 fie  fiz fis  fie  f20 f21 f21 f20 S19  fi8  fi7z fie f2 O
P3 fo P3 o I3 fi7 f2s  f20  fao  f31 f32  fa1  fso f20 f2s fi7 fz3 O
ra  fio  Jf10 P4 o fa fi8  f29  f37r  fas fzg  f39 fas f37r f20 f18 fa O
ps f11 f22 fu1 Ps 0 fs fio fso f3s faz  faa  faz  f3s  fz0 Sfi9 S5 O
re  fi2  f23  f23  Jfi2 P6 0 fe f20  fa1 f39  faa  faa  f39  fz1  f20 fe O
p7  fi13  Jf24  faz  f24 fiz  p7 0 fr o f21 fa2  fzo  faz  f39 fz2  f21  f7 O
pg  fi4  f25  f3a  fza  f25 f14 P8 0 fs  f21 f31  fzs  f3s f31  f21 fg O
po  fi5  f26 f3s  fa0 35 f26 f15 P9 0 fr f20 f30 f3r  f30 f20 fg O
pg  fis  f2r  f3e far  fa1  f36 f27  fi15 P8 0 fe  fi9  f29 f20 f19 fe& O
p7  fia  f26  f36 fa2  fas  fa2  f36 f26 fia  P7 0 fs  fig  fag  f18  f5 O
re  fi13  f25  f3s  fa1  fas  fas  far  f35  f2s  f13 P6 0 fa fir fir fa O
ps  fi2  f2a  f3a4  fao fa1 fa2  far fao  fza  f2a  Jf12 Ps5 0 I3 fie f3 O
pa  f11 f23  f33 fza f3s fze f3e f3s  f3a fzz  f23 Sf11 P4 0 f2 f2 0
p3 fio S22 f23  Jf2a  fas  fae  far f26  f25  f24  f23 S22 fi0  P3 0 S0
P2 fo fio fir fi2 fiz fia f1is fis fia f13 fi2 S Sio fo P2 0 0
Pl P2 P3 P4 P5 P6 7 P8 Pg P8 p7 P6 P5 P4 P3 p2 P10

with the p; > 1 and the f; > 0, where

J1=p1—p2, fa=p1 —p3, f3 =p1 —pa, fa = p1 — 5, f5s = p1 — P, fo = p1 — p7,
fr=p1 —Dps, fs =p1 — po,

fo = —p1+p2+ps3, fro = —p1 +p3 + pa, f11 = —p1 + pa + b5, fr2 = —p1 + s + P,
J13 = —p1 +pe + pr7, fia = —p1 + p7 + ps, fi5 = —p1 + ps + po,

Ji6 = p1 +p2 — p3 — Pa, frr = p1 + p2 — pa — ps5, f18 = p1 + P2 — P5 — s,

Ji9 =p1+p2 — pe — p7, f20 = p1 + P2 — p7 — Ps, for = p1 + p2 — Ps — Po,

J22 = —p1 — p2 +p3 + ps+ ps, f23 = —p1 — P2 + pa + Ps + Pes

Jaa = —p1 — p2 + ps + pe + 7, fa5 = —p1 — P2 + pe + p7 + s,

J26 = —p1 — p2 + p7 + ps + P9, for = —p1 — P2 + ps + ps + po,

f2s = P14+ P2+ p3 — pa — s — Pe, f20 = P1 + P2+ p3 — P5 — Pe — D1,

f30 =p1+p2+Pp3s —ps —pr — Ps, f31 = p1 + P2 +p3 — pr — Ps — Po,

f32 = p1+p2+p3—ps —Pps — Ppo,

J33 = —p1 —p2 — p3 + pa+Dps + P + P, f34 = —p1 — p2 — p3 + Ps + pe + pr + s,
J35 = —p1 —p2 — p3 + pe + P7 + ps + Po, f36 = —p1 — P2 — P3 + pr + ps + ps + po,
fsr =p1+p2+p3+ps—ps —pe — P — s,

fss = p1+ P2+ p3+pa—ps — pr — Ps — Do,

f39 =1+ p2+p3+ps—p7r —ps — ps — po,

fao = —p1 —p2 — p3 — pa+ ps + ps + p7 + ps + po,

Ja1 = —p1 — p2 — p3 — pa + e + pr + Ps + Ps + P,

faz = —p1 —p2 — p3 — pa + p7 + P74 ps + s + P,

Jaz =p1+p2+p3+pa+ps —ps —pr—Ps — P8 — Po,

Jaa =p1+p2+p3+pa+ps —pr—pr—ps — P — Po,

Jas = —p1 —p2 — p3s — pa — p5 + pe + p7 + p7 + ps + ps + po,

and the following cases are possible:

1. f; = 0for i =8,9,11,12,14, 19, 22,27,31,34, 38, 43,44 and f; > 1 other-
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wise: Setting p = p1, we have

(p1, P2, P3, P4, 5, D6, D7, P8, Do) = (4p, 2p, 2p, 3p, p, 3p, 3p, p, 4p)

and
A2 R[X,Y]/(X® -Y® XY — cP)

. fi=0fori=3,8,9,12,14,16,19,27,28,31,34,40,41,42 and f; > 1 oth-
erwise: Setting p = pg, we have

(p1, P2, D3, P4, 5, D6, P75 D8, Do) = (4p, 2p, 2p, 4p, p, 3p, 3p, p, 4p)

and
A= RIX,)Y]/(X —Y* XY — P)

. fi=0fori=3,8,9,12,14,19,22,27, 28,31, 34,40,42,43 and f; > 1 oth-
erwise: Setting p = p5, we have

(plap25p3ap47p57p6ap7ap8ap9) = (7p3 4p7 3p7 7p7p7 6pa 5pa 2pa 7p)

and
A2 RIX,Y]/(X" YT, XY — )

. fi = 0 for ¢ = 4,8,10,13,14,18,21,25,32,33,37,38,39,45 and f;
otherwise: Setting p = p4, we have

Y
—_

(p1, P2, 03, P4, D5, D6, D7, P8, Do) = (3p, 2p, 2p, p, 3p, 2p, p, 2p, 3p)

and
A2 RIX,Y]/(X* -YT X% — cP)

. fi = 0 for ¢ = 9,10,11,13, 14,15, 18, 26, 33, 35, 36, 37,42,45 and f;
otherwise: Setting p = p4, we have

Y
—

(p1, D2, 3, P4, P5, D6, P75 P85 Do) = (3p, P, 2p, , 2p, 2p, P, 2p, p)

and
A= R[X,Y]/(X®-Y* X?Y? —P)

. fi=0fori=1,2,3,4,6,7,8,16,17,20,21,31,32,39,44 and f; > 1 other-
wise: Setting p = p; and ¢ = pg, we have

(P1, P2, D3, P45 P55 D65 D7, D8, P9) = (D Ds D D5 D, 4, D, D5 D)

and
A2 R[X,Y]/(X? -1, Y0 — XcP79)
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10.

11.

12.

fi = 0 for i = 1,3,4,6,7,17,20,28,29,30,31,32,37,39,44 and f; > 1
otherwise: Setting p = p; and g = p3, we have

(php27p37p47p57p67p77p8»p9) = (p7p7 q,P,P,4,Ps P, q)

and
A2 R[IX,Y]/(X® -1, Y3 — XcP79)

fi =0 for i =1,4,7,10,13,22,23,24,25,26,32,35,37,39,45 and f; > 1
otherwise: Setting p = p; and g = p3, we have

(P1, D2, D3, P4 P56, P7, P8, P9) = (P, D4, — 41, ¢, P — 4, P, q)

and
A= RIX,Y]/(X® — 1,V — XPcP™29)

fi =0 for i = 3,6,9,12,15,17,20,27,28,29,30,31,40,41,44 and f; > 1
otherwise: Setting p = p; and g = ps, we have

(p1,p2,P3, P4, P5, P65 P75 P8, Do) = (0,40 — 4,0, 4P — ¢, 1,4, P — q)

and
A2 R[X,Y]/(X® — P70 V3 - X1c217P)

f; =0 for i = 9,10,12,13,15, 22, 23, 24, 25, 26, 27, 35, 40,41, 45 and f; > 1
otherwise: Setting p = p; and g = p2, we have

(p1, P2, 3, P4, P5, D6, D7, P8, Do) = (P, 4P — 4,4, 4P — 4,0, 4, P — q)

and
A= R[X,Y]/(X® — P9 V? - X2217P)

fi = 0 for @ = 3,8,9,12,14,22,24,25,27,28,31,34,40,41,42 and f;
otherwise: Setting p = ps3, we have

v
—

(plap2ap3ap4ap5ap67p77p87p9) = (3p? 2pap7 3p7p7 2pa 2pap7 3p)

and
A= RIX,Y]/(X? Y3 X3Y — )

fi =0 fori=3,812,13,16,17,21,24,25,31,32,34,40,41,45 and f;
otherwise: Setting p = p; and g = p2, we have

Y
—_

(p1, D2, D3, P45 D5, D6, P7, P8, P9) = (P, 44, D, 4, P — 4,4, 4, D)

and
A R[X,Y]/(X? - P71 YVC - X2217P)
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13.

14.

15.

16.

17.

18.

fi = 0fori=1,2,3,4,56,7,16,17,18,19,20,28,29,30,37 and f; > 1
otherwise : Setting p = p; and ¢ = pg, we have

(p17p27p37p47p57p67p7»p8»109) = (p7pap7p7papvp7pa q)

and
A2 RIX,Y]/(X? -1, Y? — XcP79)

fi=0for:=1,4,7,10,13,22,23,24,25, 26,32, 33,35,37,39,45 and f; > 1
otherwise: Setting p = p3, we have

(P1, D2, 3, P4, P55 D6, P7, P8, Do) = (20, 2D, D, P, 2D, s P, 2D, P)

and
A= RIX,Y]/(X? Y3 X3Y — )

fi=0fori=1,4,5,8,10,14,18,22,25,26,32,33,37,38,42,45 and f; > 1
otherwise: Setting p = p7, we have

(p17p2ap3ap4ap5ap63p7ap83p9) = (5pa 5p7 3p’ 2pa 5}7, 5p7pa 4pa 5p)

and
A2 R[X,Y]/(X —Y5 XY —P)

fi=0fori=1,4,5,8,10,14,18,22,25,26,33,36,37,38,42,45 and f; > 1
otherwise: Setting p = p4, we have

(p1, 2,03, P4, D5, D6, D7, P8, Do) = (3p, 3p, 2p, p, 3p, 3p, p, 2p, 3p)

and
A= RIX,)Y]/(X'? —V3 X2V — cP)

fi=0fori=2,6,11,12,15,16,19, 20, 23, 27, 33, 34, 35, 36,41, 44 and f; >
1 otherwise: Setting p = p; and ¢ = po, we have

(P1,D2, D3, P4; P55 P6, P7,P8,P9) = (P, 4P, 4P — 4, 4,05 4, P — q)

and
A2 RIX,Y]/(X? =1, Y? - XTcP29)

fi=0fori=2,4,6,816,17,18,19,20,21,29,31,37,38,39,44 and f; > 1
otherwise: Setting p = p; and g = p2, we have

(P1, D2, D3, P4y D55 D6 D7, D8, P9) = (D 45D, 4, D, 4 D5 4, D)

and
A2 R[IX,Y]/(X? -1, Y? - XcP79)
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19. f; =0fori =2,4,6,15,16,17,18,19,20,27,29,35,36,37,41,45 and f; > 1
otherwise: Setting p = p; and g = p2, we have

(php27p37p47p57p67p77p87p9) = (p7Qap7q7paq7p7q7p - q)

and
A= R[X,Y])/(X? —c1,Y? — cP79)

20. f; =0fori=4,8,9,10,13,14,17,18,21,25,29,31,37,38,39,45 and f; > 1
otherwise: Setting p = p; and g = p2, we have

(P1, P2, D3, P4y 5, D6, D7, D8, P9) = (D49 — 4,4, D, 4P — 4,4, D)

and
A= RIX,Y]/(X? -1, Y? — XOcPm29)

21. f; =0fori=28,9,10,11,12,13, 14, 21, 23,25, 31, 33, 34, 38,39,44 and f; >
1 otherwise: Setting p = p; and ¢ = po, we have

(p1, P2, P3, P4, P55 D6, D7, P8, P9) = (04,0 — 4, 4,0 — 4,4, P — 4,4, D)

and
A2 R[X,Y]/(X? -1,V — X4cP29)

22. fi = 0 for i = 9,10,11,12,13,14, 15,23, 25,27, 33, 34, 35, 36,41, 45 and
fi > 1 otherwise: Setting p = p; and g = ps, we have

(p1,p2, 03, P4, D5, D6, P7: P8, P9) = (D54, P — ¢, 4D — 4¢P — 4,4, P — q)

and
A2 RIX,Y]/(X? —c1,Y? — X3cP29)

23. f; = 0 for i =2,6,11,12,15,16, 19, 20, 23, 27, 33, 34, 35, 36,40, 41,44 and
fi > 1 otherwise: Setting p = ps, we have

(plap27p3ap4ap5ap6ap7ap8ap9) = (2p,p7 2p7p7p7p7 2p7pap)

and
A2 RIX,Y]/(XT - Y2 X%Y?% — ¢P)

24. f; = 0 for ¢ = 3,6,9,12,15,16,17,19, 20, 27,28, 29, 30, 31, 40,41, 44 and
fi > 1 otherwise: Setting p = pg, we have

(plap21p37p47p57p67p77p87p9) = (2p1pvp7 2p7papv 2p7p7p)

and
A R[X,Y]/(X?-Y* X3Y? — P)
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25.

26.

27.

28.

29.

30.

fi =0fori=1,4,5,8,10,14,18,22, 25, 26,27, 28, 29, 36, 37, 38,42, 45 and
fi > 1 otherwise: Setting p = pg, we have

(plvp27p3»p47p5ap6ap71p81p9) = (210, 2pvp7p7 2pa 2p7p7p7 2p)

and
A2 RIX,)Y]/(X™ Y -2 XY — P)

fi=0fori=4,8,9,10,13,14,17,18, 21, 25,28, 29, 31, 32, 37, 38, 39, 45 and
fi > 1 otherwise: Setting p = pg, we have

(P1, P2, P3, P4y P55 D6 D7, P8, P9) = (20, p, P, P, 20, D, s D, 2P)

and
A= R[X,Y]/(X® -V X?YV? — P)

fi=0fori=3,89,12,13,14,16,17,21,24, 25,28, 31, 32, 34,40, 41,42, 45
and f; > 1 otherwise: Setting p = pg, we have

(p1, D2, D3, P4s P55 D6, P7, P8, D9) = (20,1, P, 2D, P, P, D, D5 2D)

and
A= R[X,Y]/(X® -Y% XOV — cP)

fi=0fori=5,9,10, 11, 14, 15, 18, 19, 22, 26, 27, 28, 29, 30, 36, 37, 38,
42, 43 and f; > 1 otherwise: Setting p = p7, we have

(p1, D2, P3, P4, P5. D6, P7: Pss Do) = (20,0, 0,0, D, 2D, P, P, D)

and
A= RIX,Y]/(X? Y3 X°Y — cP)

fi=0fori=8,9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 31, 32, 33, 34, 38
,39 ,43, 44 and f; > 1 otherwise: Setting p = pg, we have

(pl7p27p37p47p57p67p77p85pg) = (2p7p7pap7p7pap7p7 2p)

and
A R[X,Y]/(X?-Y* XYY — P)

fi =0for¢=9,10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 33, 34, 35, 36,
40, 41, 42 45 and f; > 1 otherwise: Setting p = pg, we have

(P1, P2, D3, P45 P55 D65 D7, D8, D9) = (2D, 0, P, D, D, D, D Ds D)

and
A= R[X,Y]/(X?-Y? XV?% — P)
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The case of n = 19.

j » is of the form
I matrix (w(i,n —j — 1))0§17]§18
The integra

0
Pl
P2
p3
P4
P5
P6
p7
P8
P9
P9
pg
r7
Pe
P5
P4
P3
P2
pP1

0
f1
0
P3
f10
f2a
f25
f26
fa7
f28
f29
f29
fag
far
f26
f25
f24
f1o0
P3

0
f2
f2

0

P4
f11
f25
I35
f36
fa7
738
739
738
f37
136
I35
f25
f11
P4

0
73
fi7
73
0
P5
f12
f26
f36
faa
fas
fa6
fa6
fas
faa
136
f26
f12
P5

0
fa
f18
f18
fa
0
P6
f13
fa7
fa7
fas
fa9
750
fa9
fas
fa7
fa7
f13
P6

0
f5
f19
730
f19
fs
0
P7
f1a
f28
738
fa6
750
750
fa6
f38
f28
f1a
P7

0
fe
f20
f31
f31
f20
fe
0
P8
f1s
f29
739
fa6
fa9
fa6
f39
f29
fis
P8

0
fr
f21
f32
fao
f32
f21
f7
0
P9
f16
f29
738
fas
fas
f38
f29
f16
P9
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0
78
f22
733
fa1
fa1
fa3
f22
I8
0
P9
f15
fag
f37
faa
fa7
f28
fis
P9

0
78
f23
f34
fa2
far
fa2
faa
fo23
I8
0
P8
f1a
far
136
f36
far
f1a
P8

0
fr
f22
f34
faz
fag
fag
faz
f3a
fa2
i
0
P7
f13
f26
I35
f26
fi3
P7

0
fe
f21
£33
fa2
fag
fs1
fag
fa2
£33
f21
fe
0
P6
f12
fa5
fa2s5
f12
P6

0
f5
f20
f32
fa1
far
fag
fag
far
fa1
f32
f20
75
0
p5
f11
f2a
f11
Ps5

0
fa
f19
f31
fao
fa1
fa2
fas
fa2
fa1
fa0
f31
f19
fa
0
P4
f1o
fio
P4

0
f3
f18
f30
fa1
f32
fa3
faa
f3a
f33
f32
f31
f30
f18

P3
fo
P3

0
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f18
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fa1
fa2
fa23
faz2
f21
f20
f19
f18
fi7
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P2
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with the p; > 1 and the f; > 0, where

J1=p1—p2, fo=p1 —p3, f3 =p1 —pa, fa = p1 — 5, f5s = p1 — P, fo = p1 — p7,
Jr=p1 —Dps, fs =p1 — po,

fo = —p1+p2+p3, fro = —p1 +p3 +pa, f11 = —p1 + pa +P5, fr2 = —p1 + p5 + ps,
Ji13 = —p1 +pe + pr, f14 = —p1 + p7 + Ps, f15 = —p1 + Ps + Po, f16 = —p1 + P9 + Po,
Ji7 = p1+p2 — p3 — pa, fis = p1 + p2 — pa — ps5, f19 = p1 + P2 — P5 — Pe,

f20 =p1+ P2 —p6 — pr, fa1 = p1 + p2 — pr — P8, fo2 = p1 + P2 — Ps — Po,

fa3 = p1+p2 — po — po,

Jaa = —p1 — p2 + p3 + pa+ ps, fas = —p1 — p2 + pa + 5 + Pe,

Ja6 = —p1 — p2 + ps + pe + 7, far = —p1 — P2 + Pe + p7 + s,

Jas = —p1 — p2 + p7 + ps + po, f20 = —p1 — P2 + ps + P9 + Po,

f30 =Dp1+p2+P3s —ps—Pps —Pe, f31 = p1 +Pp2+p3—Pps — P — Prs

f32 =p1+p2+p3—Dp6 —pr — Ps, f33 = p1+p2 +p3 — pr — Ps — Po,

J34 = p1+p2+p3—ps —Ppo — P,

J35 = —p1 —p2 — p3 + pa+Dps + P + P, f36 = —p1 — P2 — P3 + Ps + pe + pr + s,
Js3r = —p1 —p2 —p3s+pe+ p7+Dps + Po, f3s = —p1 — P2 — p3 + pr + ps + Py + po,
f30 = —p1 —p2 — p3 + ps + ps + P9 + po,

Ja0 = p1 +p2+p3+Dp1—ps —ps — Pr — Ps;

fa1 =p1+p2+p3+ps—ps —pr — Ps — Do,

J12 = p1 + p2 + p3 + ps — pr — Ps — P9 — Do,

Ja3 = p1+p2+p3+ps—ps —ps — po — Po,

faa = —p1 — P2 — p3 — pa + Ps + pe + pr + Ps + po,

fas = —p1 — p2 — p3 — pa + pe + p7 + P8 + P + Po,

fa6 = —p1 — P2 — p3 — ps + p7 + pg + Ps + Pg + o,

Jar =p1+p2+p3+Ppas+ps —ps—pr—pPs— DP9 — Po,

fas =p1+p2 +p3+ps+ps —pr —pPs — Ps — Py — P,

fa9 = —p1 —p2 — p3 — pa — p5 + p6 + p7 + ps + ps + Py + po,

J50 = —p1 —p2 — p3s — pa — p5 + p7r + p7 + ps + ps + po + po,

f51 =p1+p2+p3+ps+ps+ps—pr—pr—DpPs—DPs— Py — Pos

and the following cases are possible:

1. fi =0fori=9, 10, 11, 12, 13, 14, 15, 16, 24, 25, 26, 27, 28, 29, 35, 36, 37,
38, 39, 44, 45, 46, 49, 50 and f; > 1 otherwise: Setting p = py, we have

(P1, P2, D3, P4y P55 D6, D7 D8, Do) = (2D, , P, D, D, D, D D5 D)

and
A2 RIX,Y]/(X?-Y? X®Y — cP)
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. fi=0fori=5,9, 10, 11, 14, 15, 16, 19, 20, 24, 28, 29, 30, 31, 32, 38, 39,
40, 41, 46, 47, 50 and f; > 1 otherwise: Setting p = ps5, we have

(p1, D2, D35 P4 D5, D6, D7, P8, Do) = (2D, D, P, D D5 2D, D, D, P)

and
A2 RIX,Y]/(X° Y3 XY — cP)

. fi=0for¢=3,7,9, 12, 13, 16, 17, 18, 21, 22, 26, 30, 32, 33, 34, 43, 44,
45, 48, 51 and f; > 1 otherwise: Setting p = p7, we have

(P1, P2, P3, P4y P55 D6 D7, P8, o) = (20, p, P, 2D, D, D, D5 2P, P)

and
A= RIX,Y]/(X* —Y3 X°Y — cP)

. fi=0fori=3,6,9, 12, 15, 16, 17, 18, 20, 21, 29, 30, 31, 32, 33, 39, 44,
45, 46, 49, 51 and f; > 1 otherwise: Setting p = pg, we have

(p1, D2, D3, P4s P55 D6, P7, P8, D9) = (20,15 P, 2D, P, P, 2D, P, D)

and
A2 RIX,Y]/(XT Y% XV — cP)

. fi=0fori=25,7 11, 16, 17, 19, 20, 21, 22, 32, 35, 38, 40, 41, 43, 47,
48 and f; > 1 otherwise: Setting p = p4, we have

(p1, D2+ D35 Pas P55 D6, P7, P8, Do) = (2D, P, 2D, D, P, 2D, P, 2P, D)

and
A= RIX,)Y]/(X® -Y3 X3Y? — ¢F)

. fi=0fori=1,4,7, 10, 13, 16, 24, 25, 26, 27, 28, 29, 35, 37, 38, 40, 43,
45,49 and f; > 1 otherwise: Setting p = py, we have

(p17p27p37p47p57p67p77p87p9) = (2p7 2p7pap7 2p7pap7 2p7p)

and
A= RIX,Y]/(X?-Y? X°Y — cP)

. fi =0for i =1, 4, 5,8, 10, 14, 19, 23, 24, 27, 28, 30, 31, 34, 40, 41, 42,
43, 47, 50 and f; > 1 otherwise: Setting p = p3, we have

(plvp27p3»p47p5ap6ap71p81p9) = (210, 2pvp7p7 2pa 2p7p7p7 2p)

and
A2 RIX,Y]/(X" - Y2 XY — ¢P)
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10.

11.

12.

13.

fi=0fori=1,3,4,6,7, 16, 18, 21, 29, 30, 31, 32, 33, 40, 45, 49, 51 and
fi > 1: otherwiseSetting p = pg, we have

(p1, P2, D3, P4, D5, D6, P7: D8, Do) = (2D, 20, P, 2p, 2p, P, 2p, 2D, D)

and
A2 RIX,Y]/(X* -Y° X3 — cP)

fi=0for =9, 10, 11, 12, 13, 14, 15, 23, 25, 27, 35, 36, 37, 39, 42, 49, 51
and f; > 1 otherwise: Setting p = pg, we have

(p1, D2, 3, P4, D5, D6, P75 P85 Do) = (3p, P, 2D, , 2p, P, 2p, P, 2p)

and
A= RIX,Y]/(XT-Y3 XY —cP)

fi=0fori=1,2,5,6,7, 11, 16, 20, 21, 24, 25, 29, 32, 35, 38, 39, 40, 41,
47, 48, 51 and f; > 1 otherwise: Setting p = p4, we have

(plap23p3ap47p57p67p77p87p9) = (2pa 2pa 2pap,p7 2p7 2pa 2pap)

and
A2 R[IX,Y]/(X" —Y? X3Y — ¢P)

fi=0fori=1,2 3,5,6,7, 16, 17, 20, 21, 29, 32, 38, 39, 44, 45, 46 and
fi > 1 otherwise: Setting p = pg, we have

(p1, D2, P3, P4, P5, D6, P7, P8, Do) = (20, 2p, 2p, 2p, p, 2p, 2p, 2p, p)

and
A= RIX,Y]/(X? Y8 XY — cP)

fi=0fori=1,2 34,7, 8, 13,17, 18, 22, 23, 26, 27, 34, 35, 36, 37, 43,
44, 45, 49, 50 and f; > 1 otherwise: Setting p = p7, we have

(pl7p27p37p47p57p67p77p87p9) = (2p7 2p7 2p7 2pa 2papap7 2p7 2p)

and
A= RIX,Y]/(XY - Y2 X?Y —¢P)

fi=0fori=1,2,3,4,5 6,7 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, 38,
39, 40, 45, 46, 49, 50 and f; > 1 otherwise: Setting p = pg, we have

(P1, P2, D3, P4, D5, D6 D7, D8, Do) = (2p, 2p, 2p, 2p, 2p, 2p, 2p, 2p, p)

and
A2 RIX,Y]/(XY —Y?, XY —P)
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14.

15.

16.

17.

18.

19.

fi=0fori=2,4,13,17, 18, 19, 21, 22, 23, 35, 37, 40, 42, 43, 49, 51 and
fi > 1 otherwise: Setting p = pg, we have

(p1, P2, D3, P4, D5, D6, P7: D8, Do) = (3P, P, 3p, P, 3p, P, 2p, 2p, 2p)

and
A2 RIX,Y]/(XT-Y* X3Y — cP)

fi =0for i =3, 6,9, 12, 15, 20, 24, 29, 30, 31, 32, 33, 39, 44, 46, 47, 51
and f; > 1 otherwise: Setting p = ps5, we have

(plap2ap3ap4ap5ap6ap77p87p9) = (Sp? 2pap7 3p7pa 2pa 3pap7 2p)

and
A= RIX,Y]/(X™ - V3 X3Y — ¢P)

fi =0 for i =1, 3, 4, 7, 13, 18, 26, 27, 30, 33, 34, 43, 45, 49, 51 and
otherwise f; > 1 otherwise: Setting p = pg, we have

(p1, P2, P3, P4, 5, 6> D7, P8, Do) = (3p, 3p, v, 3p, 3p, p, 2p, 3p, 2p)

and
A2 RIX,Y]/(X° -YT, X% — cP)

f; =0fori=1,4,5,8, 10, 14, 19, 23, 24, 27, 28, 31, 39, 40, 41, 42, 47, 50
and f; > 1 otherwise: Setting p = pg, we have

(p1, P2, D3, P4, 5, D6, P75 P8, Do) = (3p, 3p, 2p, , 3p, 3p, 2p, p, 3p)

and
A= RIX,)Y]/(X? -V3 X2V — cP)

fi=0for i =57 11, 16, 17, 22, 26, 32, 35, 38, 43, 44, 47, 48 and f; > 1
otherwise: Setting p = ps5, we have

(pl7p27p37p47p57p67p77p87p9) = (4p7 2p7 3p7 3pap7 4p7p7 4p7 2p)

and
A2 R[X,Y]/(XT-YS XY — P)

fi=0fori=3,06,9, 12, 15, 24, 27, 29, 30, 31, 33, 39, 44, 46, 49, 51 and
fi > 1 otherwise: Setting p = p3, we have

(php27p37p47p57p67p77p87p9) = (4]97 310717; 4]9, 2pa 2p7 4p7p7 3p)

and
A2 RIX,Y]/(X" —Y* XY — ¢P)
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20.

21.

22.

23.

24.

25.

fi=0fori=1,2 34,7, 8,13, 17, 18, 22, 23, 26, 27, 34, 35, 36, 37, 43,
44, 45, 49, 51 and f; > 1 otherwise: Setting p = pg, we have

(pl7p2ap3ap41p51p67p77p87p9) = (3pa pr 3p7 3pv 3p7p7 2p7 3p7 3p)

and
A2 R[X,Y]/(X' - Y3 XY —P)

fi=0for ¢ =9, 10, 11, 13, 14, 15, 19, 23, 35, 37, 39, 40, 42, 49 and f; > 1
otherwise: Setting p = p4, we have

(p1, P2, 03, P4, P5, D6, D7, P8, Do) = (5p, p, 4p, p, 4p, 2p, 3p, 2p, 3p)

and
A= RIX,Y]/(X? -V X?Y — cP)

fi=0fori=1,2,5, 6,7, 11, 16, 20, 21, 24, 25, 29, 32, 35, 38, 39, 44, 47,
48, 51 and f; > 1 otherwise: Setting p = p5, we have

(p17p2ap3ap4ap5ap63p7ap83p9) = (4pa 4p7 4p’ 3pap7 4p7 4pa 4pa 2p)

and
A2 R[X,Y]/(XY —Y* XY —P)

f; =0fori=1,4,5,8, 10, 14, 19, 23, 24, 27, 28, 35, 39, 40, 41, 42, 47, 50
and f; > 1 otherwise: Setting p = p4, we have

(P1, P2, D3, P4, D5, D6 D7, D8, Do) = (5p, 5p, 4p, p, 5p, 5p, 3p, 2p, 5p)

and
A2 RIX,Y]/(X™ Y5 XY —P)

fi=0fori=1,4,7, 10, 13, 16, 24, 26, 27, 29, 30, 33, 40, 43, 45, 49, 51
and f; > 1: otherwise Setting p = p3, we have

(plap25p3ap47p57p6ap7ap8ap9) = (6p3 6p7p7 5p7 6p7 2pa 4pa 6pa Sp)

and
A= RIX,Y]/(X® Y% XY —¢P)

fi=0fori=3,6,9, 12, 15, 23, 24, 27, 30, 31, 33, 39, 44, 46, 47, 51 and
fi > 1: otherwise Setting p = pg, we have

(p1, P2, P3, P4y 5, D6 D7, P8, Do) = (Tp, 5p, 2p, Tp, 3p, 4p, Tp, p, 6p)

and
A2 RIX,Y]/(X2 -Y", XY —¢P)
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26. f; = 0 for i =5, 9, 11, 14, 16, 17, 22, 26, 30, 32, 38, 43, 44, 47, 50 and

fi > 1 otherwise: Setting p = p7, we have

(pl7p2ap33p4ap57p67p77p87p9) = (Spa 3p7 5p7 6pv 2p7 8p7p7 7p7 4p)

and
A2 RIX,Y]/(X" - Y8 XY —P)

27. fi = 0 for i =9, 11, 13, 15, 17, 19, 21, 23, 35, 37, 39, 40, 42, 49, 51 and

fi > 1 otherwise: Setting p = po, we have

\Y

(p1, P2, 3, P4y D5, D6 D7, D8, Do) = (9p, p, 8p, 2p, Tp, 3p, 6p, 4p, 5p)

and
A= RIX,Y]/(X™ -Y? XY —P)

The case of n = 20.
The integral matrix (w(i,n — j — 1))o<i,j<19 is of the form

0 0 0 0 0 0 0 0 0 0 0 0 0
P1 0 f1 f2 f3 fa /5 fe f7 f8 fo f8 f7
P2 P2 0

f2 fis  fio  f20 f21 f2a  faz  foa  faa  fo3
p3  fio  P3 0 f3  fi9  f32 f33  f34 f35 f3e f3r f36
Py fir o f11 Pq 0 fa foo  f33  faz  faa  fas  fae  fae
ps  fi2 f2s  fi2  ps 0 fs  f21 f3a  faa  fs1 fs2 f53
P6 f13 f26  f26 13 P6 0 fe f22  fas  fas  fs2  fs6
7 fia  for  f3g  f2r fia 7 0 f7 fo3  fse  fae  fs3
P8 fis  f2s  f39  fao9  f28  Jfis P8 0 I8 foa  f37  fae
P9 fie  f20  fao  far  fao f20 16 P9 0 fé) f2a  f36

rio fiz fzo  far fas  fas  fa1  fz0 fi7 P10 fg  fa23
P9 fir far fa2 fao  fsa  fao  Ffa2  f31 fi7 P9 0 f7
pg  fie fzo fa2z  fso fs5  fs5  fs0  fa2  fzo  fie P8 0

p7  fis  f20  fa1  fa9 S5 fs7  f55  fa90  fa1 f20  f15  p7
pe  fi4  f28  fao fas fsa  f55  f55  fsa fag  fa0  f28  f14
ps  f13  fer  f39  fav  fag8  fao  fs0 fa9  fag  far  f39  f2r
P4 fi2 f26  f3s  fzo  fao far  faz  fa2  fa1  fao f30  [f38
P3 fi1 fes f26  fer f28  f20  f30  f31  f30 f29 f2g  fao7
P2 fio fir Sz fiz fia fis fie fir fir fie fis f1a
P1 P2 P3 P4 P5 P6 p7 P8 P9 Pl0 P9 P8 P7
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fe
fa2
135
fas
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with the p; > 1 and the f; > 0, where

J1=p1 —p2, fo=p1 —p3, f3 =p1 — pa, fa = p1 — ps5, f5 = p1 — pe,

fe =p1 — pr, fr =p1 — ps, fs = p1 — po, fo = p1 — P10,

Ji0 = —p1 +p2 + p3, f11 = —p1 + p3 + pa, fi2 = —p1 + pa + ps, f13 = —p1 + 5 + Pe,
Jia = —p1 +pe + p7, fis = —p1 + p7 + ps, fie = —p1 + ps + po, f17 = —p1 + P9 + P10,
fis = p1 + P2 — p3 — pa, fro = p1 + P2 — pa — ps, f20 = p1 + P2 — P5 — Pe.

Jo1 =p1+p2 — P — P71, fo2 = Pp1 + p2 — pr — P8, faz = p1 + P2 — Ps — Do,

faa = p1 + P2 — pg — P10,

Jas = —p1 — p2 + p3 + pa + b5, f26 = —p1 — P2 + pa + 5 + P,

for = —p1 — p2 + p5 + pe + P71, fos = —p1 — P2 + pe + P7 + ps,

Ja0 = —p1 — p2 + pr + ps + o, f30 = —p1 — P2 + ps + P9 + P1os

f31 = —p1 — P2 + Py + P9 + P10,

f32 =p1+p2+p3 —ps—Ps — Pe, f33 =p1 + P2+ p3 — p5 — Pe — D1,

f34 =p1+p2+p3s —ps —pr —ps, f35s = p1 + P2 +p3 — pr — Ps — Po,

J36 = p1+p2+p3 —ps — P9 — P10, f3r = p1 + P2+ P3 — P9 — P9 — P10,

J38 = —p1 —p2 — p3 +pa+ps + e + P, f39 = —p1 — P2 — P3 + Ps + pe + P + Ps,
Ja0 = —p1 — p2 — p3 + pe + P7 + Ps + Po, fa1 = —p1 — p2 — p3 + pr + Ps + P9 + P10,
Ja2 = —p1 — p2 — p3 + ps + P9 + po + P10,

fa3 =p1+p2+p3+Pps—Pps —Ppe — Pr — Ps,

Jaa = p1+p2 +p3 +Ppas—pe — pr — Ps — Po,

Jas =p1+p2 +Pps +ps—pr —Ps — P9 — Pios

fa6 =1+ P2+ Pp3 +pa—Pps — P9 — Po — P10,

far = —p1 — P2 — p3 — ps + ps + pe + Pr + Ps + o,

fas = —p1 — p2 — p3 — pa + pe + p7 + ps + Po + P10,

fa9 = —p1 —p2 — p3s — pa + p7 + ps + Py + po + P10,

fs0 = —p1 —Dp2 — p3 — ps + ps + P8 + P9 + P9 + P10,

Js1 =p1+p2+Pps+ps+ps—Dps—Ppr—DPs — Py — Pios

fs2 =p1+p2+p3+pa+ps —pr—ps — P9 — Py — Pio,

J53 =p1+Dp2+p3s+ps+ps—Dps—Pps— Py — P9 — Pio

Js4 = —p1 —p2 —Pp3s — pas— p5 + e + P7 + ps + po + po + P10,

Js5 = —p1 — P2 — p3 — pa — P5 + p7 + Ps + P8 + P + Py + Pio,

f56 =DP1+ P2+ p3+Ppa+Pps+Pps —Pr—Ps — Ps — P9 — P9 — P10,

Js7 = —p1 — P2 —p3 — pa— D5 — P + Pr + P7 + ps + Ps + P + Po + P10,

and the following cases are possible:

1. f; =0 fori =6, 10, 11, 13, 16, 25, 26, 28, 30, 31, 33, 35, 45, 50, 54, 56 and
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fi > 1 otherwise: Setting p = pg, we have

(pl7p2,p37p4ap5ap63p7ap83p93p10) = (4]77 3p7pa 3p7 3p,p7 4]97 2]9, 2pa 3]3)

and
A2 RIX,Y]/(X® —YT X% — cP)

. fi =0 for i =10, 12, 14, 16, 17, 18, 20, 22, 31, 38, 40, 42, 43, 49, 54, 55
and f; > 1 otherwise: Setting p = po, we have

(pl,P27P37P4,PS,PG,P%P&Z?Q’plo) = (519’17’ 427; 217» 3P> 3]?7 2]77 4p7p7 4p)

and
A= RIX,Y]/(X® Y% XY — cP)

. fi =0fori =9, 10, 12, 14, 16, 18, 20, 22, 24, 36, 38, 40, 43, 45, 51, 53 and
fi > 1 otherwise: Setting p = po, we have

(pl;p27p3ap4ap5ap67p7ap8ap9ap10) - (5p7pa 4p7 2p7 3p7 3p7 2p7 4p7pa 5p)

and
A= RIX,Y]/(X —Y® XY — cP)

. fi =0 for i =9, 10, 12, 14, 16, 18, 20, 22, 31, 36, 38, 40, 43, 49, 51, 53, 57
and f; > 1 otherwise: Setting p = pg, we have

(p1, D2, D3, P45 D5, D6, P7, P8, P9, P10) = (9p, 2p, Tp, 4p, 5p, 6p, 3p, 8p, p, Ip)

and
A2 RIX,Y]/(X? -V XY —P)

. fi=0fori=1,2 5, 6,8, 12, 21, 25, 26, 30, 38, 39, 41, 42, 44, 50, 51, 52
and f; > 1 otherwise: Setting p = p; and ¢ = py, we have

(P1, D2, 03, P4, P55 P65 P7: P8 P9, P10) = (D0, D, 4D — 40D 45 P> P — Q)

and
A= R[X,Y]/(X? —c1,Y* —cP79)

. fi=0fori=1,2, 4,5, 6,8,9, 20, 21, 24, 33, 37, 43, 44, 45, 46, 51, 52
and f; > 1 otherwise: Setting p = p; and ¢ = p4, we have

(plap?ap3ap4ap5ap63p7ap83p97p10) = (pvpap>qap7p7pv Q7p7p)

and
A2 R[IX,Y]/(X® -1, Y* — XcP79)
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10.

11.

12.

fi=0fori=1,2, 3,5, 6,7, 8, 18, 21, 22, 23, 34, 35, 44, 51, 52, 53, 56
and f; > 1 otherwise: Setting p = p; and ¢ = p5, we have

(plap2ap31p41p57p67p77p87p97p10) = (p7p7p7p7 q,P,P, D, D, q)

and
A2 RIX,Y]/(X* =1, Y — XcP79)

£ =0fori=9, 10, 11, 13, 14, 16, 25, 26, 27, 28, 29, 31, 36, 40, 45, 47, 54,
56 and f; > 1 otherwise: Setting p = pg, we have
(P1, P2, D3, P4, P5, D6 P75 s, Pos P1o) = (3p, 2p, v, 2p, 2p, p, 2p, 2p, p, 3p)
and
A= RIX,Y]/(X® -V X3 — cP)
f; =0 fori =9, 11, 12, 15, 16, 24, 25, 26, 28, 29, 37, 38, 39, 40, 45, 46, 51,
52 and f; > 1 otherwise: Setting p = p; and ¢ = po, we have
(P1, P2, P3. Pa; D5, D6, P7: Pss P9, P10) = (P 4¢P — 4:4,9,9,P — 4,4 P)
and
A= R[X,Y]/(X? — P79V — X2217P)
f; =0 for i =6, 12, 13, 17, 21, 22, 25, 26, 30, 31, 34, 35, 42, 44, 50, 51, 52,
56 and f; > 1 otherwise: Setting p = p; and ¢ = po, we have
(plap2;p3ap4ap57p67p77p8ap9ap10) = (pa q,49,49,p —4,4,P,4,49,P — Q)
and
A= R[X,Y]/(X* — P9V — X2217P)
f; =0fori=2,5,7, 12, 17, 18, 21, 22, 23, 31, 34, 38, 41, 42, 44, 49, 51,
53 and f; > 1 otherwise: Setting p = p; and g = po, we have
(P1, P2, P3, Pas P5: D6, D7, Pss P9s P10) = (P, 4, P ¢: P — ¢: P, 4, P, 4P — q)
and
A= R[X,Y]/(X* = P79V — X3297P)
f; =0fori=1,4,6,9, 11, 16, 25, 26, 28, 29, 30, 33, 40, 42, 43, 45, 50, 55

and f; > 1 otherwise: Setting p = p; and ¢ = p3, we have

(P1, D2, D3, P45 P55 D6 D7, D8, P9, P10) = (DsDs @ P — 4,0, 4 DD — 454, D)

and
A2 R[X,Y]/(X® — P70V — XAc2T7P)
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13.

14.

15.

16.

17.

18.

fi =0 fori=3,6,9, 10, 13, 16, 19, 28, 32, 33, 35, 36, 37, 45, 47, 50, 54,
56 and f; > 1 otherwise: Setting p = pg, we have

(plap2»p37p4ap5ap61p71p87p97p10) = (4107 3]9717’ 4p7 3p7p7 4p7 2p7 2p7 4p)

and
A2 R[IX,Y]/(X2 - Y* XY — ¢P)

fi =0 for =3, 6,9, 10, 13, 16, 25, 28, 31, 32, 33, 35, 36, 45, 47, 50, 54,
56 and f; > 1 otherwise: Setting p = p3, we have

(P1,D2, D3, P4, D5, P6,> P7, P8, P9, P10) = (7p, 6p, p, Tp, 5p, 2p, Tp, 4p, 3p, Tp)

and
A2 RIX,Y]/(X® -Y", XY —P)

fi=0fori=1,3,4,7,8, 14, 19, 23, 27, 28, 32, 35, 36, 37, 46, 48, 53, 54,
56 and f; > 1 otherwise: Setting p = pg, we have

(plap?ap3ap4ap5ap67p7ap8ap9ap10) = (2p7 2p7pa 2pa 2pap,p7 2p7 2pap)

and
A2 R[X,Y]/(XT-Y3 X?Y? — P)

f; =0 for i =9, 10, 11, 12, 14, 15, 16, 20, 24, 29, 36, 38, 40, 43, 45, 46, 51,
53, 57 and f; > 1 otherwise: Setting p = p4, we have

(p1, P2, D3, P4, D5, D6, P75 D8, Pos Pro) = (3p, s 2p, p, 2p, 2p, p, 2p, p, 3p)

and
A2 RIX,Y]/(X® Y3 XY —cP)

fi=0fori=3,6,9, 10, 13, 16, 19, 22, 31, 32, 33, 34, 35, 36, 45, 47, 50,
54, 56 and f; > 1 otherwise: Setting p = pg, we have

(p17p27p37p47p57p67p77p87p97p10) = (Spa 2pap7 3p7 2p7p7 Spa 2p7p7 3p)

and
A= RIX,Y]/(XM" - V3 X3Y —¢P)

fi=0fori=2,4,7, 9,14, 18, 19, 20, 22, 23, 24, 36, 38, 40, 43, 45, 46,
53, 54, 56 and f; > 1 otherwise: Setting p = pg, we have

(p1,p2ap3,P4,p5»p67p7,p8,p971010) = (217717» 2p7p7 2p7p1p7 2p7p7 2p)

and
A= R[X,Y]/(X* -Y* X2V — P)
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19.

20.

21.

22.

23.

24.

fi =0 fori=2,4, 6,8, 18, 19, 20, 21, 22, 23, 24, 33, 35, 37, 43, 44, 45,
46, 52, 56 and f; > 1 otherwise: Setting p = p; and ¢ = po, we have

(p1, D2, 03, P4, D5, P65 P75 D85 P9, P10) = (P, 4, D, 4 D5 4> D, 4,5 q)

and
A2 RIX,Y]/(X' -tV — XcP™9)

fi=0for =1, 4, 6,9, 11, 16, 25, 26, 28, 29, 30, 31, 33, 40, 42, 43, 45,
50, 54, 55 and f; > 1 otherwise: Setting p = pg, we have

(p1, P2, 3, P4, P5, D6, P7- P8, P9, P1o) = (2, 2p, v, s 2p, P, 2p, P, P, 2p)

and
A= RIX,Y]/(X* -V XY — )

fi =0 for ¢ =10, 11, 12, 13, 14, 15, 16, 17, 26, 28, 30, 38, 39, 40, 41, 42,
48, 50, 54, 55 and f; > 1 otherwise: Setting p = p; and ¢ = po, we have

(p1, D2, 3, P4, P5, D6, P75 P8, P9, P1o) = (9,4, P —4: 4,9 — 4, 4P — 4,4, P — 4, q)

and
A2 R[IX,Y]/(X'0 -t Y2 - X3cP72)

f; =0 for i =6, 10, 11, 12, 13, 16, 17, 21, 22, 26, 30, 33, 35, 42, 43, 44, 45,
50, 52, 56 and f; > 1 otherwise: Setting p = p; and ¢ = pg, we have

(p1: D2+ P35 P4, D5, D6, P7, P8 P9 P10) = (D, 4P — 4,4, D — 4,4, P-4, P — 4:q)

and
A= RIX,Y]/(X0 — 1Y% - X5cP29)

fi=0fori=2, 4,8, 14, 15, 18, 19, 20, 23, 24, 28, 37, 38, 39, 40, 41, 46,
48, 54, 55 and f; > 1 otherwise: Setting p = p; and ¢ = pg, we have

(P1, P2, 3, P4y D5y D65 D75 P8, P9, P10) = (Ds 4, P, 45D 4P — 454, P, q)

and
A= RIX,Y]/(XY — 1, Y2 — X9cP29)

fi=0fori=1,2, 34,5 6,7, 8,18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 43,
44 and f; > 1 otherwise: Setting p = p; and g = p19, we have

(P1, P2, D3, P4y P55 D65 P7: D8 D9, P10) = (Ds D, D, D, D, D, D D5 D5 Q)

and
A= R[X,Y]/(X? -1, Y0 — XcPm9)
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25.

26.

27.

28.

29.

30.

fi=0fori=2 4,8, 14, 15, 18, 19, 20, 23, 24, 28, 37, 38, 39, 40, 41, 46,
48, 54, 55, 57 and f; > 1 otherwise: Setting p = p7, we have

(p1, P2, D3, P4, D5, D6, P7: D8, o> Pro) = (2p, p, 2p, p, 2p, p, P, P, 2P, D)

and
A2 RIX,Y]/(X?-Y? XY — cP)

fi=0fori=2 57, 12, 17, 18, 20, 21, 22, 23, 31, 34, 38, 41, 42, 43, 44,
49, 51, 53, 57 and f; > 1 otherwise: Setting p = p5, we have

(p1, P2, D3, P4s P5, D6 D7, P8, P9, P10) = (2P, P, 2D, D, D, 2P, P, 2D, D, D)

and
A= RIX,Y]/(X° -Y3 X°Y — cP)

fi=0fori=3,6,9, 10, 13, 16, 18, 19, 21, 22, 24, 32, 33, 34, 35, 36, 37,
45, 47, 50, 51, 52, 56 and f; > 1 otherwise: Setting p = po, we have

(P1, D2, D3, P4y P35, D6s P75 P8, P95 P10) = (2P, D, D, 2D, P, Dy 2D, D, P, 2)

and
A= R[X,Y]/(X®-Y% XOV — cP)

f; =0 for i =6, 10, 11, 12, 13, 16, 17, 21, 22, 25, 26, 30, 31, 33, 34, 35, 42,
43, 44, 45, 50, 51, 52 ;56 and f; > 1 otherwise: Setting p = pg, we have

(p1, P2, D3, P4, D5, D6, P75 D8, P9, P10) = (20, P, P, Ps D5 Dy 2D, D, D, D)

and
A= RIX,)Y]/(X® —Y? X°YV? - ¢P)

fi=0fori=1,2,3,4,7, 8 9,14, 18, 19, 23, 24, 27, 28, 36, 37, 38, 39,
40, 46, 47, 48, 53, 54, 56 and f; > 1 otherwise: Setting p = pg, we have

(p17p27p3ap4ap5apﬁap7ap8ap9ap10) - (2p7 2pa 2pa 2pa 2pap7p7 2pa 2pa 2p)

and
A= RIX,Y]/(X' - Y2 XY — ¢P)

fi=0fori=1,2,3,4,7 8, 9,14, 18, 19, 23, 24, 27, 28, 36, 37, 38, 39,
40, 46, 47, 48, 53, 54, 57 and f; > 1 otherwise: Setting p = p7, we have

(p1, D2, D3, P4 P55 D6, P7, P8, P9, P10) = (3p, 3p, 3p, 3p, 3p, 2p, p, 3p, 3P, 3p)

and
A2 RIX,Y]/(X?-YY XY —P)
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31. f; =0for¢=9,10, 11, 12, 13, 14, 15, 16, 24, 25, 26, 27, 28, 29, 36, 37, 38,
39, 40, 45, 46, 47, 51, 52, 53, 56 and f; > 1 otherwise: Setting p = pg, we
have

(p1, P2, D3, P4, D5, D6, P75 D8, P9, P10) = (20, P, P, Ps Dy Dy Dy D5 D5 2D)

and
A2 RIX,Y]/(X* -Y? X®Y — cP)

32. f; =0 for i =10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 38,
39, 40, 41, 42, 47, 48, 49, 50, 54, 55, 57 and f; > 1 otherwise: Setting
P = pa, we have

(plap23p37p47p57p67p7ap8ap9ap10) = (2p7papap7p7pap7papap)

and
A= R[IX,Y]/(X?-Y% XV — cP)
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