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Chapter 1 

General introduction 
  



1.1 Photosynthetic pigments as biomarker for assessment of aquatic environmental 

change 

1.1.1 Photosynthetic pigments originating in algae 

chlorophyll a

chlorophyll b chlorophyll c

 (Fig. 1, Jeffrey 1997) (Tables 1, 2, Weber and Wettern 1980, Rowan 1989)

Chlorophyll a (b) 4

Mg2+  (Fig. 1,  2003) chlorophyll

 (Fig. 2) Fig. 3 chlorophyll a (b)  (Jeffrey 1997, Matile et 

al. 1999) Chlorophyll a  (b) Mg2+ phytol methoxycarboxe

Mg2+ 2H+ pheophytin a (b) 

phytol phytol chlorophyllide a (b) 

pheophytin a (b) phytol phytol

chlorophyllide a (b) Mg2+ pheophorbide a (b )  (

 2004) pheophorbide a (b) methoxycarboxe

pyropheophorbide a (b) methyl ester  (Shioi et al. 1996) pheophytin a (b) 
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Fig.3. Typical transformation processes of chlorophyll pigments in aquatic environments. The first 
step of processes mainly occurs in living algae and death body ( ). Other steps mainly occur 
through grazing by zooplankton ( ).
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pyropheophorbide a (b) (SCEs-a (b))  (King and Repet a 1991, Prowse and Maxwell 

1991, Talbot et al. 1999, Soma et al. 2001)

Carotenoid  (Hooks et al. 

1988) -carotene fucoxanthin

alloxanthin diatoxanthin lutein zeaxanthin

-carotene  (Itoh et al. 2003) 

(Fig. 4)

 (Hooks et al. 1988)

Astaxanthin carotenoid xanthophyll

 (Kuhn et al. 1938) Astaxanthin

astaxanthin

astaxanthin  (ovoverdin :

crustacyanin : )  (Czeczuga 

et al. 2005) astaxanthin  (

2006)

 (Goodwin 1980) Astaxanthin

astaxanthin

8



OH

OH

OH

OH

O

A
llo

xa
nt

hi
n

D
ia

di
no

xa
nt

hi
n

OH

OH

O
O

OC
OC

H 3

Fu
co

xa
nt

hi
n

OH

OH

OH

OH OH

OH

-c
ar

ot
en

e

Ze
ax

an
tin

Lu
te

in

D
ia

to
xa

nt
hi

n

Fi
g.

4 
St

ru
ct

ur
es

 o
f a

lg
al

 c
ar

ot
en

oi
ds

.

O
O

H

O
H

O
A

st
ax

an
th

in

9



astaxanthin

 (Krinsky 1979)

1.1.2 Sediment as records for historical changes in aquatic environment 

 (Paerl 1988, Potts and Whitton 2000, Havens et al. 2001)

 (Persall 1932)

 (Yacobi and Ostrovsky 2012)

 (Edmondson 1974)

carotenoids

chlorophylls  (Leavitt and 

Hodgson 2001)

 (Smol and 

10



Cumming 2000)

  (Leavitt and 

Hodgson 2001)

 (Watt et al. 1975, Zuling 1981, Engström et al. 1985, Swain 

1985, Sanger 1988)

 (Hurley and Armstrong 1990)

 (>95% of all compounds; half-life of days)

 (Leavitt and Carpenter 1990a, Louda et al. 1998)

(McElroy-Etheridge and McManus 1999, Descy et al. 1999, Poister et al. 1999)

 (Leavitt and Carpenter 1990b)  (Louda et al. 1998) 

 (Cuddington and Leavitt 1999)

 (Tett 1982, Hurley 

and Armstrong 1990,Yacobi et al. 1991) 
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 (Leavitt and Carpenter 1989)

 (Brown 1969)

carotenoid

carotenoid

carotenoids 56000

 (Watts and Maxwell 1977) Hovsgol

carotenoids  (Tani et al. 2009)

1.2 Thermal Ice Ridge 

 (  1949,  1995)

 ( 2001)

 ( )  ( ) 

 ( ) 3
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 (12 1 2 ) 0.8

1.6  (

 1995)

1397  (  1995)

1443

 ( 2001)

1.3 Ultraviolet radiation

 (UV : ultraviolet ) UV UV-C UV-B UV-A 4

UV 200nm UV-C 200 280nm

UV UV-C

  (Nicolet 1989) 

UV-B (280-320 nm) UV-A 

13



(320-400 nm) Hartley  (200-300nm) Huggins

 (300-360nm) UV-B

UV-B 0.1 UV-A 6%

 ( ; Photosynthetically Active Radiation, PAR, 400-700 nm) 50

UV

 (Frederik et al. 1989)

UV DNA  (Harm 1980, Karentz et al. 1991a, 

Karentz et al. 1991b)  (Smith et al. 1980, 1992, Häder and Worrest 1991, Cullen and 

Neale 1994, Prezelin et al. 1994, Vincent and Roy 1993)  (Tevini and Teramura 1989, 

Tevini 1993)  (Sinha et al. 1996)

 (Sinha et al. 1996)

  (Donkor et al. 1993a, b, Donkor and Häder 1995) 
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1.4 Ultraviolet radiation screening mechanisms

UV

( ) 

(Cockell and Knowland 1999)

UV UV-B

UV  (Bebout and 

Garcia-Pichel 1995)

carotenoid  (Krinsky 1979) UV

UV (Cockell and Knowland 

1999)  (microorganisms) UV mycosporine-like 

amino acids (MAAs) (Fig. 5)  (cyclohexenone) 

 (cycloheximine) UV (Cockell and Knowland 

1999) Fig. 5 MAAs

mycosporine-glycine 310nm
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NH2

NH

CO2H

HOHO

OCH 3

NH

NH

CO2H

HOHO

OCH 3

NH

NH

CO2H

HOHO

OCH3

CH3

OH

Palythine (lamda max = 320 nm)

Palythene (lamda max = 360 nm)

Palythinol (lamda max = 332 nm) Porphyra (lamda max = 334 nm)

NH

NH

CO2H

HOHO

OCH3

CO2H

OH

NH

NH

CO2H

HOHO

OCH 3

CO2H

OH

Shinorine (lamda max = 334 nm)

O

NH

CO2H

HOHO

OCH3

Micosporine-glycine (lamda max = 310 nm)

Fig. 5 Structures of some of the principal micosporine-like amino acids (MAAs) found in nature. 
Lamda max for each compound represents wavelength at the ultraviolet absorption maximum.
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palythine 320nm

UV-B MAAs

UV-A MAAs

UV-A

MAA UV-A UV-B

MAAs

  (Karentz 2001, Shick and Dunlap 

2002) MAAs   (Moeller et al. 2005)

UV

 (DOM) UV  (Booth and 

Morrow 1997)

DNA  (Jagger 1985) DNA UV-B

DNA /UV-A

 (Sutherland 1981)
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 (DNA ) 

 (Hanawalt et al. 1979)

100

 (Cockell and Knowland 1999)

1.5 The relationship of photoprotection and photosynthetic pigments on planktons  

Carotenoids UV

 (Krinsky 1979, Demmig-Adams and 

Adams 1992) carotenoid UV

Ehling-Sculz et al. (1997) Nostoc commune carotenoids 

(echinenone and myxoxanthophyll) UV-B (1Wm-2) 5

40-50 Carotenoids UV PAR

2000 g g-1 dry mass   

(Cerda-Olmedo et al. 1996) carotenoids UV

MAAs  (Karentz et al. 1991b)

MAAs UV

Carotenoids UV UV carotenoids

UV
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UV carotenoids

 (Cockell and Knowland 1999) UV carotenoids

MAAs

carotenoids   

(Moeller et al. 2005) 1.1
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Chapter 2

Historical change of phytoplankton assemblage in a eutrophic 

lake in Japan as determined by analysis of photosynthetic 

pigments in a lakebed sediment core past 100 years 

  



2.1 The object of this study

1890

1906

100

1977

1960

1969 1977

chlorophylls carotenoids

Griffiths (1978) Lake District Esthwaite Water

carotenoid
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79 cm

2.2 Materials and methods 

2.2.1 Study area 

 (Fig. 6) 759 6.3

4.1 13.3 km2 6 × 107 m3  (Okino and Kato 1987)

26 512 km2  ( 40

) 75 

40 120

 ( 3 ) 

NO3-N PO4-P

 (Sakamoto et al. 1975)
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35oN

40oN

130oE 140oE

Tenryu River

0  1 km

5.0 m
2.5 m

(36o02'53.4''N, 138o05'06.0''E)

Sampling site

Fig.6 Map of Lake Suwa and the sampling site of sediment core.

NYokokawa River

Kami River

Miya River

Tokawa River

Kamaguchi
water gate
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2.2.2 Sediment core 

2003 8 1  ( 36 02 53.4 138 05 06.0 ) 

79cm   

(Fig. 6)

1cm

 (HPLC) 

2.2.3 Analysis of photosynthetic pigments 

HPLC Soma et al. (1993) Itoh (2003) 

HPLC  (LC-10ATVP, Shimadzu, Kyoto, Japan) 

(RF-10AXL,  Shimadzu, Kyoto, Japan)  (C-R8A, Shimadzu, Kyoto, Japan)

SPD-10A  (Shimadzu, Kyoto, Japan) COSMOSIL 

5C18-AR  (4.6×150mm, Nacalai, Japan) 

chlorophyll a (Sigma Chemical Co. USA)

-carotene (Wako Pure Chemical Industries, Japan)  (retention time) 

UV

0.1g acetone 5mL  

(90 HPLC grade) 15

chlorophyll a HPLC

24



A ( : 0.5 : MeOH 63:7:30 v/v/v ) B (

) A 100% 25 B 100%

30 B 100 1.0 mL min-1

 (RF-10AXL, Shimadzu, Kyoto, Japan) 440nm 660nm

chlorophyll a SPD-10A 

(Shimadzu, Kyoto, Japan) 440nm SPD-M10A (Shimadzu, Kyoto, Japan) 200

600nm

2.3 Results  

2.3.1 Chlorophyll a in the sediment core  

Chlorophyll a profile Fig. 7 22-26cm

40-48cm 59-62cm Chlorophyll a 8cm

chlorophyll a pheophytin a

 (Fig. 7b, c) 32cm pheophytin a 20.5 nmol g-1 dry weight

chlorophyll a, pyropheophytin a 44.8 nmol g-1 dry weight

2.3.2 Algal carotenoids in the sediment core

Fig. 8 carotenoids -carotene (Fig. 8a)

zeaxanthin (Fig. 8b) fucoxanthin (Fig. 8c)
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diadinoxanthin diatoxanthin (Fig. 8d, e) 

carotenoids TACs (Total Algal Carotenoids)  (Fig. 8f) Fig. 8 (a) 

-carotene 34.9 nmol g-1 dry weight 19cm

5.47-35.9 nmol g-1 dry weight 66cm

0.62 nmol g-1 dry weight

Fig. 8 (b) zeaxanthin 62.2 nmol g-1 dry weight

3cm 83.0 nmol g-1 dry weight 14cm

Zeaxanthin 59cm 53cm 41cm

32cm 76.7nmol g-1 dry weight 24cm

Fig. 8 (c) fucoxanthin 44.7 nmol g-1 dry weight

carotenoids 10cm

2.75 nmol g-1 dry weight diadinoxanthin 28.3 

nmol g-1 dry weight 10cm  (Fig. 8d) 30 34cm

7.09 10.4 nmol g-1 dry weight Diatoxanthin (Fig. 8e) 

20.6 nmol g-1 dry weight carotenoids 10cm

 ( 5.28 nmol g-1 dry weight) 34cm

TACs 191 nmol g-1 dry weight

zeaxanthin
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2.4 Discussion

2.4.1 Effect of floods 

1950 6 11  ( 282mm) 1961 6 28  ( 368mm) 1983

9 28  ( 216mm) 

 (Kumon and Ikenaka 2004)

 (Fig. 7 and 8)

C/N  (Fig. 7A) 

2.4.2 Change in algal composition

-carotene 32cm 36cm

32cm
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zeaxanthin fucoxanthin zeaxanthin 76.7 nmol 

g-1 dry weight fucoxanthin 4.90 nmol g-1 dry weight 32cm

diatoxanthin, diadinoxanthin carotenoids

carotenoids 36cm

2.4.3 Reconstruction of phytoplankton biomass in the past water column

2.4.3.1 Vertical distribution of the carotenoids/TAC ratio 

Fig. 9 carotenoids TACs  

(Total Algal Caroteniods) 210Pbexcess, 137Cs

Zeaxanthin 1957 1970

Fig. 8 (b) 1970

1970 zeaxanthin carotenoids

 (Fig. 8)

 (Fig. 9)

Microcystis aeruginosa M. viridis 1948
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60 1970 1977 99

1986 65  (Okino 1990) 1990 90

 (Park et al. 1993a, 1998a) 

1948

1911 Aulacoseira

1948 Microcystis  (Kurasawa and Okino 

1983) 1969 1977 Microcystis

zeaxanthin

zeaxanthin  (Soma 

et al. 1995) zeaxanthin

 (Soma et al. 1996)

 (Leavitt and Carpenter 1990a, 

1990b, Hurley and Armstrong 1990, Steenbergen et al. 1994) 5, 6-epoxide

fucoxanthin carotenoids

carotenoids  (Repeta and Gagosian 1987, Millie et al. 

1993, Leavitt and Findlav 1994)
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 (Leavitt and Carpenter 1989)

zeaxanthin

1936

50-58

zeaxanthin

1979 10

1986

 (Fig. 9) 

zeaxanthin

carotenoids

Fukushima et al. (2005) 

COD, TN

TP TP
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diversion

2.4.3.2 Predict phytoplankton biomass in the past water column 

TCh-a TCh-a COD, Chl a

 (Fig. 10)

Fig. 10 (c) Brugam (1978) 

TCh-a chlorophyll a pheophytin a, pyropheophytin a

210Pbexcess, 137Cs

2003 TCh-a 37.2 g cm-2

1993 1992 1992 2.47 

- 14.6 g cm-2 6.41 g cm-2

TCh-a carotenoids TCh-a carotenoids
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1969 1977

TCh-a carotenoids 1973

TCh-a carotenoids TCh-a

carotenoids

carotenoid 0.1 % (Scheuer 1978) 

0.25-2.0  (Young and Britton 1993) chlorophyll

3.3-6.6  (Lewin 1962) TCh-a TACs

r2 = 0.80 Carotenoids TCh-a

1977

1977 chlorophyll

1977 Chl a

TCh-a 1977 Chl a

Chl a TCh-a

 (y = 37.6x + 151; y: estimated value of Chl a in water column, x: concentration of TCh a in 

sediment, r2 = 0.55, n = 16) (Fig. 11) 

 (Fig. 10b)
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y = 37.63 x + 151.10 
R² = 0.55 
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Fig. 11 Relationship between total chlorophyll a (TCh-a ;
sum of chlorophyll a and degradation products
(pheophytin a and pyropheophytin a) in water column
and in sediment core ( g cm-2 year-1). There is a positive
relationship between in water column and in sediment.
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 (e.g. Zülling 1989, Tani et al. 2002, Itoh et al. 2003, Fietz et al. 2007)

chlorophyll

10cm

Chl a TCh a
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