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Abstract

Let B′ f−→ B
p←− E be a diagram in which p is a fibration and the pair (f, p)

of the maps is relatively formalizable. Then, we show that the rational
cohomology algebra of the pullback of the diagram is isomorphic to the
torsion product of algebras H∗(B′) and H∗(E) over H∗(B). Let M be a
space which admits an action of a Lie group G. The isomorphism of algebras
enables us to represent the cohomology of the Borel construction of the space
of free (resp. based) loops on M in terms of the torsion product if M is
equivariantly formal (resp. G-formal). Moreover, we compute explicitly the
S1-equivariant cohomology of the space of the based loops on the complex
projective space CPm, where the S1-action is induced by a linear action of
S1 on CPm.
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1.1 Introduction

Let f : B′ → B be a morphism between simply-connected spaces and p :
E → B a fibration. Then we have a fibration B′ ×B E → B′ which fits into
the pullback diagram

B′ ×B E E

B′ B.

//

��
p

��f //

Vigué-Poirrier [VP81, Proposition 4.4.5] has constructed the Eilenberg-
Moore spectral sequence associated with the pullback diagram mentioned
above by using a Sullivan representative for the map f : B′ → B. Moreover
she proved that, as a graded vector space,

H∗(B′ ×B E; Q) ∼= TorH∗(B;Q)

(
H∗(B′; Q),H∗(E; Q)

)
if p : E → B and f : B′ → B are formalizable maps; see also [Tho82,
Section V] and [FT88, Section V]. For an arbitrary underlying field, Anick
constructed the Eilenberg-Moore spectral sequence with the Adams-Hilton
model and exhibited existence of such an isomorphism; see [Ani85, Theorem
5.1].

One of the aims of this article is to establish an isomorphism of algebras
between the cohomology H∗(B′×B E; Q) and the torsion product mentioned
above provided the given pair (p, f) of maps is relatively formalizable; see
Definition 1.2.2 below.

Let M be a simply-connected space with an action of a connected Lie
group G. Suppose that x is a base point of M which is fixed by the action
of G. Then the space ΩM of loops based at x on M admits the action of G
induced by that of G on M . By using the bar construction, Lillywhite has
shown that there is an isomorphism,

H∗ (EG ×G ΩM) ∼= TorH∗(EG×GM) (H∗(BG),H∗(BG))

if M is G-formal at x; see [Lil03, Proposition 6.1]. We can obtain such an
isomorphism in our setting since the G-formality induces the relative formal-
izability of the pair of appropriate maps; see Theorem 3.2.2. Moreover we
describe the Borel cohomology H∗ (EG ×G LM) of the free loop space LM
of an equivariantly formal space M in the sense of Goresky, Kottwitz and
MacPherson [GKM98], in terms of the torsion functor; see Definition 3.2.3
and Theorem 3.2.6. This completes the program concerning the computation
of the cohomology H∗ (EG ×G LM), which is suggested in [Lil03, Remark
6.3]. In consequence, the torsion functor description allows us to compute
explicitly the rational cohomology of the Borel construction of ΩCPm en-
dowed with an S1-action; see Theorems 1.2.4 and 1.2.5. We expect that
our explicit computations of the Borel cohomology and our models for the
Borel constructions of loop spaces advance the development of equivariant
rational homotopy theory.
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1.2 Results

In this section, we describe our results more precisely. In what follows, we
assume that a differential graded module M is non-negative and connected,
that is, Ai = 0 for i < 0 and H0(A) = Q. We write H∗(X) for the cohomol-
ogy H∗(X; Q) of a space X with coefficients in the rational field.

We first recall the definitions of the torsion product and of a relatively
formalizable pair of maps.

Definition 1.2.1. Let B, M and N be a differential graded algebra, a right
B-algebra and a left B-algebra, respectively. The morphism ϕ : B → N
defined by ϕ(b) := b · 1N satisfies the condition that H0(ϕ) is the identity
and H1(ϕ) is injective. Let m : B ⊗ΛV → N be a Sullivan model for ϕ; see
Section 2.4. Then the torsion product Tor∗B (M,N) of M and N over B is
defined to be the homology of the derived tensor product M ⊗L

B N , namely

Tor∗B (M,N) := H∗
(
M ⊗L

B N
)

.

Remark. Let m : B ⊗ ΛV → N be a Sullivan model for ϕ. Then we see
that

M ⊗L
B N = M ⊗B (B ⊗ ΛV ) .

Definition 1.2.2 (c.f.[Kur02, Definition 3.1]). Let α : X → Z and β : Y →
Z be maps with the same target. The pair (α, β) is a relatively formalizable
pair if there exist Sullivan algebras ΛVE , ΛB and ΛB′ , quasi-isomorphisms
mE , mB, mB′ , θE , θB and θB′ and differential graded algebra morphisms ϕ
and ψ which fit into the following homotopy commutative diagram

APL(E) ΛVE H∗(E)

APL(B) ΛVB H∗(B)

APL(B′) ΛVB′ H∗(B′).

mE

'
oo θE

'
//

APL(α)

OO

APL(β)
��

ϕ
OO

mB

'
oo θB

'
//

ψ
��

α∗
OO

β∗
��mB′

'
oo θB′

'
//

The relative formalizable pair (α, β) is nothing but to say that

APL(E)
APL(α)←−−−−− APL(B)

APL(β)−−−−−→ APL(B′)

is quasi-isomorphic to the diagram

H∗(E) α∗
←− H∗(B)

β∗
−→ H∗(B′).

Indeed, the standard argument in the model, we have Lemma 3.1.1. Then
we have the following proposition. One of our main results is described as
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follows. Let p : E → B be a fibration with fiber F over a simply-connected
space and f : B′ → B a map between simply-connected spaces. Suppose
that one of H∗(B), H∗(F ) has finite type and one of H∗(B′), H∗(F ) has
finite type. The main theme of this article is concerned with the rational
cohomology of the space B′ ×B E.

Proposition 1.2.3. Under the same assumption as above, suppose fur-
ther that (p, f) is a relatively formalizable pair. Then there exists a quasi-
isomorphism ϕ : APL(B′ ×B E) −→

'
H∗(B′) ⊗L

H∗(B) H∗(E) of ΛVB-algebras
and ΛVB is a minimal model for B. In particular, one have

H (ϕ) : H∗(B′ ×B E) −→∼= TorH∗(B)

(
H∗(B′),H∗(E)

)
is an isomorphism of H∗(B)-algebras. Here the cohomology is considered a
differential graded algebra with the trivial differential.

We now discuss the cohomology of the Borel construction of the based
loop space of the complex projective space CPm. We regard CPm as a
homogeneous space in the form U(m+1)

U(m)×U(1) whose base point is U(m)×U(1)
U(m)×U(1) .

A homomorphism µ : S1 → U(m + 1) induces an S1-linear action of CPm.
Then µ gives rise to the action on ΩCPm. The Borel construction of ΩCPm

associated with the action is denoted by ES1 ×µ
S1 ΩCPm.

Since U(1) × · · · × U(1) is a maximal torus of U(m + 1) and µ(S1) is
an abelian group, it follows that there exists an element g ∈ U(m + 1)
such that gµ(S1)g−1 ⊂ (U(1) × · · · × U(1)). Let µ : S1 → U(m + 1) be
the map defined by µ

(
e2πiθ

)
= gµ

(
e2πiθ

)
g−1. Then there exist integers

µ1, . . . , µm+1 such that µ
(
e2πiθ

)
=

(
e2πiθµ1 , . . . , e2πiθµm+1

)
. We define a

map ϕ : ES1 ×µ
S1 ΩCPm → ES1 ×µ

S1 ΩCPm by ϕ(x, m) = (x, gm). It is
readily seen that ϕ is an isomorphism of the bundles over BS1

ES1 ×µ
S1 ΩCPm ES1 ×µ

S1 ΩCPm

BS1.

ϕ

∼=
//

%%LLLLLLL

yyrrrrrrr

Theorem 1.2.4. The differential graded algebra

(Q[z] ⊗ Λ(w1) ⊗ Q[w2], dw2 = g(µ)zmw1)

is a Sullivan model for ES1 ×µ
S1 ΩCPm, where |z| = 2, |w1| = 1, |w2| = 2m

and g(µ) = (µm+1 − µ1) · · · (µm+1 − µm). Moreover, this yields that

H∗ (
ES1 ×µ

S1 ΩCPm
) ∼= H∗

(
ES1 ×µ

S1 ΩCPm
)
∼={

Q[z, w2] ⊗ Λ(w1) (µm+1 ∈ {µ1, · · · , µm})
Q[z] ⊕ Q{w1w

l1
2 zl2 |l1 ≥ 0, 0 ≤ l2 ≤ m − 1} (µm+1 6∈ {µ1, · · · , µm}),

as H∗(BS1)-algebras.
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Remark. If m = 1, µ1 and µ2 can be reordered. Indeed,

P (−)P−1 :
U(2)

U(1) × U(1)
−→ U(2)

U(1) × U(1)

is a morphism which preserves the base point, where P =
(

0 1
1 0

)
.

In the case where m ≥ 2, the cohomology H∗ (
ES1 ×µ

S1 CPm
)

does not
characterize the integer µm+1, which appers in the representation (µ1, . . . , µm+1)
of the action µ; see Lemma 4.1.2. On the other hand Theorem 1.2.4 asserts
that the cohomology H∗ (

ES1 ×µ
S1 ΩCPm

)
characterizes µm+1.

We obtain a model for the Borel construction of the free loop space of
the complex projective space CPm with the S1-action which is induced by
the action on U(m + 1) mentioned above. In consequence, we establish the
following theorem.

Theorem 1.2.5. The differential graded algebra(
Q[c, z]

(ρ)
⊗ Λ(c) ⊗ Q[w], dw =

∂ρ

∂c
c

)
is a rational model for ES1×µ

S1LCPm, where |c̄| = 1, |c| = |z| = 2, |w| = 2m
and ρ := (c − µ1z) · · · (c − µm+1z). Moreover, this yields that

H∗ (
ES1 ×µ

S1 LCPm
) ∼= H∗

(
ES1 ×µ

S1 LCPm
)

∼= H∗
(

Q[c, z]
(ρ)

⊗ Λ(c) ⊗ Q[w], dw =
∂ρ

∂c
c

)
,

as H∗(BS1)-algebras.

The layout of the rest of this paper is as follows. In Section 3.1, we
prove Proposition 1.2.3. In Section 3.2, we develop a general method for
computing the Borel cohomology of loop spaces. Section 3.3 is devoted
to investigating the Borel cohomology of the loop space of a homogeneous
space. By relying on the results in Sections 3.2 and 3.3, we prove Theorems
1.2.4 and 1.2.5 in Sections 4.1 and 4.2.
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Chapter 2

Rational homotopy theory
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In this chapter, we recall briefly important facts in rational homotopy
theory, which are used in this paper.

2.1 Sullivan algebras

Let V =
∞⊕
i=0

V i be a graded module over Q. The quotient graded algebra

ΛV :=
TV

(x · y − (−1)degx degyy · x)

is called the free commutative graded algebra on V , where TV is the tensor
algebra. If {vi} is a basis of V , we may write Λ({vi}) for ΛV .

A differential graded algebra is a graded algebra together with a linear
map d : R → R of a degree 1 such that d(xy) = d(x)y + (−1)degxxd(y) and
d2 = 0.

Definition 2.1.1 (relative Sullivan algebra). A relative Sullivan algebra is
a commutative differential graded algebra of the form (B ⊗ΛV, d) for which

• (B, d) = (B⊗1, d) is a sub differential graded algebra, and H0(B) = Q,

• V =
⊕

p≥1 V p, (i.e. V 0 = 0)

• there exists an increasing sequence of graded modules 0 = V (−1) ⊂

V (0) ⊂ V (1) ⊂ · · · ⊂
∞∪

k=0

V (k) = V

such that d : V (k) → B ⊗ ΛV (k − 1).

In particular, if B = Q, we call (ΛV, d) a Sullivan algebra.

2.2 The simplicial commutative cochain algebra
APL

The first step is construction of the simplicial commutative cochain alge-
bra, APL. To this end, we consider the free graded commutative algebra
Λ(t0, . . . , tn, y0, . . . , yn) in which the basis elements ti have degree zero and
the basis elements yj have degree 1. Thus this algebra is the tensor product
of the polynomial algebra in the variables ti with the exterior algebra in the
variables yj . A unique derivation in this algebra is specified by ti 7→ yj and
yj 7→ 0.

Now define APL = {(APL)n}≥0 by:
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• The cochain algebra (APL)n is given by

(APL)n :=
Λ(t0, . . . , tn, y0, . . . , yn)(
1 −

∑n
i=0 ti,

∑n
j=0 yj

) ,

where dti = yi and dyj = 0.

• The face and degeneracy morphisms are the unique cochain algebra
morphisms {

∂i : (APL)n → (APL)n−1 (0 ≤ i ≤ n)
sj : (APL)n → (APL)n+1 (0 ≤ j ≤ n)

satisfying

∂i : tk 7→


tk , k < i

0 , k = i

tk−1 , k > i

and sj : tk 7→


tk , k < j

tk + tk+1 , k = j

tk+1 , k > j.

The simplicial commutative cochain algebra {(APL)n}n≥0 has differen-
tial d, face map ∂i, and degeneracy map sj fit into the following diagram,

(APL)0 (APL)1 (APL)2 (APL)3 · · ·
··
·

··
·

··
·

··
·

··
·

(APL)2(APL)02 (APL)12 (APL)22 (APL)32 · · ·

(APL)1(APL)01 (APL)11 (APL)21 (APL)31 · · ·

(APL)0(APL)00 (APL)10 (APL)20 (APL)30 · · ·

��������

OO OO OO

∂i������
sj

OO OO

∂i����
s0

OO

�������� �������� �������� ��������

OO OO OO

d //

∂i������

OO OO OO

d //

∂i������

OO OO OO

d //

∂i������

OO OO OO

//

∂i������
sj

OO OO

d //

∂i����

sj

OO OO

d //

∂i����

sj

OO OO

d //

∂i����

sj

OO OO

d //

∂i����
s0

OO

d //
s0

OO

d //
s0

OO

d //
s0

OO

d //

d // d // d // d //

satisfying following formulas

∂id = d∂i (for any i),
sjd = dsj (for any j),
∂i∂j = ∂j−1∂i (for i < j),
sisj = sj+1si (for i ≤ j),

∂isj =


sj−1∂i (for i < j),
id(APL)n

(for i = j, j + 1),
sj∂i−1 (for i > j + 1).

Observe that
{
(APL)p

n, {∂i}, {sj}
}

n≥0
is a simplicial set.
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2.3 The commutative cochain algebra APL(X)

Let X be a topological space. Then we define a cochain algebra

APL(X) = {(APL)p(X)}p≥0

by
APL

p(X) = HomSet∆
op

(
S∗(X), APL

p
)
;

that is, the set of morphisms of simplicial sets, where S∗(X) is the singular
simplicial set on a space X.

Proposition 2.3.1 ([FHT01, Corollary 10.10]). For topological spaces X
there are natural quasi-isomorphisms of cochain algebras

C∗(X) D(X) APL(X),'
//

'
oo

where D(X) is a third natural cochain algebra.

2.4 Sullivan models

Definition 2.4.1. 1. A Sullivan model for a commutative differential
graded algebra (A, d) is a quasi-isomorphism

m : (ΛV, d) −→
'

(A, d)

from Sullivan algebra.

2. If X is a path-connected space, then a Sullivan model for APL(X),

m : (ΛV, d) −→
'

APL(X)

is called a Sullivan model for X.

3. Let ϕ : (B, d) → (C, d) be a morphism between commutative differen-
tial graded algebras such that H0(B) = Q. A Sullivan model for ϕ is
a quasi-isomorphism of the form

m : (B ⊗ ΛV, d) −→
'

(C, d)

where (B ⊗ ΛV, d) is a relative Sullivan algebra with base (B, d) and
m|B = ϕ.

4. If f : X → Y is a continuaus map then a Sullivan model for APL(f)
is called a Sullivan model for f .
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Example 2.4.2. The spheres, Sk.
Let [Sk] be the fundamental class of Hk(Sk). This determines a unique

class ω ∈ Hk
(
APL(Sk)

)
such that < ω, [Sk] >= 1, where < ·, · >, and

{1, ω} is a basis for H∗(Sk). Let Φ be a representing cocycle for ω.
Now if k is odd then a Sullivan model for Sk is given by

m : (Λ(e), 0) −→
'

APL(Sk),

where deg e = k and me = Φ. Indeed, since k is odd, 1 and e are basis for
the exterior algebra Λ(e).

Suppose, on the other hand, k is even. We may still define m : (Λ(e), 0) −→
'

APL(Sk), where deg e = k and me = Φ. But now, deg e is even, Λ(e) has
as basis {1, e, e2, e3, . . . } and this morphism is not a quasi-isomorphism.
However, Φ2 is certainly a coboundary. Write Φ2 = dΨ and extend m to

m : (Λ(e, e′), d) −→
'

APL(Sk),

by setting deg e′ = 2k − 1, de′ = e2 and me′ = Ψ. This is a Sullivan model
for Sk.

Lemma 2.4.3 ([FHT01, Propositions 12.1 and 14.3]). 1. Each commu-
tative differential graded algebra (A, d) satisfying H0(A) = Q has a
Sullivan model

m : (ΛV, d) −→
'

(A, d).

2. A morphism ϕ : (B, d) → (C, d) of commutative differential graded
algebras has a Sullivan model if H0(B) = H0(C) = Q, H0(ϕ) = idQ,
and H1(ϕ) is injective.

(B, d)

(B ⊗ ΛV, d) (C, d)

_�

��
ϕ

**TTTTTTTTTTTTT

m
'

//

2.5 Models of fibrations

Let Y be a simply-connected space. Consider a Serre fibration of path
connected spaces

p : X → Y,

whose fibres are also path-connected. Let j : F → X be the inclusion of
the fiber at y0 ∈ Y . By applying the contravariant functor APL(−) to the
commutative diagram

F X

{y0} Y,

j //

��
p

��//
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we have a commutative diagram

APL(F ) APL(X)

Q APL(Y ),

APL(j)oo
OO

APL(p)

OO

εoo

where ε is the augmentation corresponding to {y0}.
Since Y is a simply-connected, it follows that H1(APL(p)) = 0. By

virtue of Lemma 2.4.3, we have a commutative diagram,

APL(Y ) APL(X) APL(F )

(ΛVY , d) (ΛVY ⊗ ΛV, d).

APL(p) // APL(j) //

mY '
OO

� � //
m '

OO

The augmentation ε : ΛVY → Q defines a quotient Sullivan algebra

(ΛV, d) := Q ⊗(ΛVY ,d) (ΛVY ⊗ ΛV, d),

Then we have a commutative diagram of differential graded algebras,

APL(Y ) APL(X) APL(F )

(ΛVY , d) (ΛVY ⊗ ΛV, d) (ΛV, d).

APL(p) // APL(j) //

mY '
OO

� � //
m '

OO

ε·id //
m

OO

Proposition 2.5.1 ([FHT01, Proposition 15.5]). Suppose one of the graded
spaces H∗(Y ; Q) and H∗(F ; Q) are of finite type. Then

m : (ΛV, d) −→
'

APL(F )

is a quasi-isomorphism.

2.6 Models of pullbacks of fibrations

Consider the pullback diagram

Z X

A Y

g //

q
��

p
��f //

in which p and q are Serre fibrations with fiber F , Z and X are path con-
nected and A and Y are simply-connected. Choose basepoints a0 and y0 so
that f(a0) = y0. Assume further that one of H∗(F ; Q) and H∗(A; Q) has
finite type and so is one of H∗(F ; Q) and H∗(Y ; Q).

Choose Sullivan models mY : (ΛVY , d) → APL(Y ) and nA : (ΛWA, d) →
APL(A). Let

ψ : (ΛVY , d) → (ΛWA, d)

12



a morphism of differential graded algebras satisfying nAψ = APL(f)mY . By
applying Proposition 2.5.1, we have a commutative diagram

APL(Y ) APL(X) APL(F )

(ΛVY , d) (ΛVY ⊗ ΛV, d) (ΛV, d),

APL(p) // //
mY

'

ggOOOOOOOO
//

m
'

ggOOOOOOOO
ε·id //

m
'

ggOOOOOOOO

in which all the slanting arrows are Sullivan models.
Since nAψ = APL(f)mY , we have

APL(Y ) APL(X) APL(F )

(ΛVY , d) (ΛVY ⊗ ΛV, d) (ΛV, d)

APL(A) APL(Z) APL(F )

(ΛWA, d).

APL(p) //

APL(f)

��

//

APL(g)

��

mY

'

ggOOOOOOOO
//

ψ

��

m
'

ggOOOOOOOO
ε·id //

m
'

ggOOOOOOOO

APL(q) // //
nA

'

ggOOOOOOOO

By definition, we see that

(ΛWA ⊗ ΛV, d) := (ΛWA, d) ⊗(ΛVY ,d) (ΛVY ⊗ ΛV, d)

is a relative Sullivan algebra with base algebra (ΛWA, d). The pushout
construction yields the morphism

ξ := APL(q)nA · APL(g)m : (ΛWA, d) ⊗(ΛVY ,d) (ΛVY ⊗ ΛV, d) → APL(Z),

which fits into the commutative diagram

APL(Y ) APL(X) APL(F )

(ΛVY , d) (ΛVY ⊗ ΛV, d) (ΛV, d)

APL(A) APL(Z) APL(F )

(ΛWA, d) (ΛWA ⊗ ΛV, d) (ΛV, d).

APL(p) //

APL(f)

��

//

APL(g)

��

mY

'

ggOOOOOOOO
//

ψ

��

m
'

ggOOOOOOOO
ε·id //

��

m
'

ggOOOOOOOO

APL(q) // //
nA

'

ggOOOOOOOO
//

ξ
ggOOOOOOOO

ε·id //

m
'

ggOOOOOOOO

Proposition 2.6.1 ([FHT01, Proposition 15.8]). Under the same assump-
tion as above, the morphism ξ is a Sullivan model for Z.
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Chapter 3

The Borel cohomology of
loop spaces
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3.1 The cohomology of the pullback with a rela-
tively formalizable pair

In this short section, we prove Proposition 1.2.3.
Let f : B′ → B be a map between simply-connected based spaces,

p : E → B a fibration with fiber F , and B′ ×B E the pullback

B′ ×B E E

B′ B.

//

��
p

��f //

(3.1)

Assume that one of H∗(B), H∗(F ) has finite type and one of H∗(B′), H∗(F )
has finite type. By using cofibrant replacements, we have the following
lemma.

Lemma 3.1.1. A relatively formalizable pair (p, f) induces a strictly com-
mutative diagram

APL(E) ΛVB ⊗ ΛWE H∗(E)

APL(B) ΛVB H∗(B)

APL(B′) ΛVB ⊗ ΛWB′ H∗(B′),

nE

'
oo ηE

'
//

APL(p)

OO

APL(f)
��

?�
i

OO

nB

'
oo ηB

'
//

_�

j ��

p∗
OO

f∗
��nB′

'
oo ηB′

'
//

in which ΛVB ⊗ ΛWE, ΛVB ⊗ ΛWB′ are relative Sullivan algebras with the
base algebra ΛVB, horizontal arrows are quasi-isomorphisms, i, j are the
inclusions and n∗

B = η∗B.

Proof. Recall the diagram mentioned in Definition 1.2.2. Put nB = mB

and ηB = m∗
B(θ∗B)−1θB. It is readily seen that n∗

B = η∗B. We then have a
diagram

APL(E) (ΛVE , d) H∗(E) H(ΛVE , d) H∗(E)

APL(B) (ΛVB, d) H∗(B) H(ΛVB, d) H∗(B)

APL(B′) (ΛVB′ , d) H∗(B′) H(ΛVB′ , d) H∗(B′),

mE

'
oo θE

'
//

(θ∗E)−1

∼=
//

m∗
E

∼=
//

APL(p)

OO

APL(f)
��

ϕ
OO

mB

'
oo θB

'
//

ψ
��

p∗
OO

(θ∗B)−1

∼=
//

f∗
��

H(ϕ)

OO

m∗
B

∼=
//

H(ψ)
��

p∗
OO

f∗
��mB′

'
oo θB′

'
//

(θ∗
B′ )

−1

∼=
//

m∗
B′

∼=
//

in which the left four squares are homotopy commutative and the right four
squares are strictly commutative.
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Consider the homotopy commutative squares consisting of solid arrows,

APL(E) (ΛVE , d) H∗(E)

(ΛVB ⊗ ΛW ′
E , d) (ΛVB ⊗ ΛWE , d)

APL(B) (ΛVB, d) H∗(B).

mE

'
oo

m∗
E(θ∗E)−1θE

'
//

α
'

ee
β

'

99
γ

'

99

δ
'

ooAPL(p)

OO

ϕ

OO

3 S

i′
ee

+ �

i
99

nB

'
oo ηB

'
//

p∗

OO

Since B is simply-connected, it follows from [FHT01, Proposition 14.3],
that there exists a Sullivan model α for APL(p)nB. We see that αi′ =
APL(p)nB ∼ mEϕ (homotopic rel (ΛVB, d)). By employing the Lifting
Lemma [FHT01, Proposition 14.6] and [FHT95, Lemma 3.6], we deduce
that there exists a morphism β such that βi′ = ϕ and mEβ ∼ α. We choose
a Sullivan model γ for p∗ηB. The Lifting Lemma enables us to get a mor-
phism δ. Put nE := αδ and ηE := γ. Then we see that nEi = APL(p)nB

and ηEi = p∗ηB. In the same way, we obtain quasi-isomorphisms nB′ and
ηB′ such that nB′j = APL(f)nB and ηB′j = f∗ηB.

Proof of Proposition 1.2.3. By Lemma 3.1.1, we have the following commu-
tative diagram

APL(E) ΛVB ⊗ ΛWE H∗(E)

APL(B) ΛVB H∗(B)

APL(B′) ΛVB ⊗ ΛWB′ H∗(B′),

nE

'
oo ηE

'
//

APL(p)

OO

APL(f)
��

?�
i

OO

nB

'
oo ηB

'
//

_�

j ��

p∗
OO

f∗
��nB′

'
oo ηB′

'
//

where n∗
B = η∗B. By applying [FHT01, Proposition 15.8] to the pullback

diagram (3.1), we have a quasi-isomorphism,

(nB′j) · (nEi) : (ΛVB ⊗ ΛWB′) ⊗ΛVB
(ΛVB ⊗ ΛWE) → APL(B′ ×B E)

of differential graded ΛVB-algebras. Consider the following pushout diagram

ΛVB ΛVB ⊗ ΛWE

H∗(B) H∗(B) ⊗ ΛWE

H∗(E).

� � i //

ηB '
��

ηB '
��

ηE
'

��

� � j //

p∗ //

u
' **
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It follows from [FHT01, Lemma 14.2] that ηB is a quasi-isomorphism. By
applying [FHT01, Theorem 6.10], we have a quasi-isomorphism ηB′ ⊗ηB ηB

and a commutative diagram

APL(B) APL(B′ ×B E)

ΛVB (ΛVB ⊗ ΛWB′) ⊗ΛVB
(ΛVB ⊗ ΛWE)

H∗(B) H∗(B′) ⊗H∗(B) (H∗(B) ⊗ ΛWE).

//

nB '
OO

� � //

ηB '
��

(nB′j)·(nEi) '
OO

ηB′⊗ηB
ηB '

��
� � //

This diagram yields a quasi-isomorphism ϕ : APL(B′×BE) −→
'

H∗(B′)⊗L
H∗(B)

H∗(E) of ΛVB-algebras. Moreover,[
H

(
ηB′ ⊗ηB ηB

)]
◦

[
H

(
(nB′j) · (nEi)

)]−1
:

H∗(B′ ×B E) −→∼= H
(
H∗(B′) ⊗L

H∗(B) H∗(E)
)

is an isomorphism as an H∗(B)-algebras.
On the other hand, H∗(B) ⊗ ΛWE is a free resolution of H∗(E) as an

H∗(B)-algebra because u is a quasi-isomorphism and uj = p∗. By definition,
we have

TorH∗(B)

(
H∗(B′), H∗(E)

)
= H∗

(
H∗(B′) ⊗L

H∗(B) H∗(E)
)

.

This completes the proof.

3.2 The G-equivariant cohomology of loop spaces

Let G be a compact simply-connected Lie group, M a G-space and x an ele-
ment of the fixed point set MG. The based loop space ΩM and the free loop
space LM are regarded as G-spaces with the actions induced by the action on
M . Denote mBG : H∗(BG) → APL(BG) by the quasi-isomporphism which
is constructed in [FOT08, Example 2.42]. The maps ξx : BG → EG ×G M
and ζ : EG ×G PM → EG ×G M are induced by the inclusion {x} ↪→ M
and the natural surjection PM → M , respectively. Let ∆ : M → M ×M be
the diagonal map and (e0, e1) : M I → M ×M the evaluation map. Then we
discuss appropriate conditions that (ζ, ξx) and (EG ×G (e0, e1), EG ×G ∆)
are relatively formalizable pairs. In consequence, we can describe the coho-
mologies of EG ×G ΩM and EG ×G LM in terms of torsion products.

Definition 3.2.1 (c.f.[Lil03, Definition 3.2]). We call a G-space M G-formal
at x if there are a relative Sullivan algebra H∗(BG)⊗ΛV with base H∗(BG),
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a morphism ϕ and quasi-isomorphisms m, θ which fit into the following
homotopy commutative diagram

APL(EG ×G M) H∗(BG) ⊗ ΛV H∗(EG ×G M)

APL(BG) H∗(BG) H∗(BG).

APL(ξx)
��

m
'

oo θ
'

//

ϕ
��

ξ∗x ��
mBG

'
oo

Remark. Strictly saying, Lillywhite describes the notion of G-formality in
terms of the Cartan model for the Borel construction EG ×G M .

Theorem 3.2.2 (c.f.[Lil03, Proposition 6.1]). If M is G-formal at x then
as an H∗(BG)-algebra

H∗(EG ×G ΩM) ∼= TorH∗(EG×GM) (H∗(BG),H∗(BG)) .

Remark. We stress that the G-formality of a G-space induces the relative
formalizable pair (ζ, ξx). This fact plays a key role in our proof of Theorem
3.2.2.

Proof of Theorem 3.2.2. Let χ : EG ×G PM → BG and ω : BG → EG ×G

PM be the homotopy equivalences induced by the natural surjection PM →
{x} and the inclusion {x} → PM , respectively. Then we see that

APL(ω)APL(χ)mBGϕ = mBGϕAPL(ξx)m ∼ APL(ω)APL(ζ)mBG.

The result [FHT01, Proposition 12.9] enables us to obtain APL(χ)mBGϕ ∼
APL(ζ)mBG. Because ω∗ζ∗ = ξ∗x and χ∗ is the inverse of ω∗, then we see
that χ∗ξ∗x = ζ∗. Then we have a homotopy commutative diagram

APL(EG ×G PM) APL(BG) H∗(BG) H∗(EG ×G PM)

APL(EG ×G M) ΛV H∗(EG ×G M)

APL(BG) H∗(BG) H∗(BG).

APL(χ)

'
oo mBG

'
oo χ∗

'
//

APL(ζ)

O O

APL(ξx)
� �

ϕ
OO

m
'

oo θ
'

//

ϕ
��

ξ∗x
jjTTTTTTTTTTT ζ∗

OO

ξ∗x��
mBG

'
oo

Therefore BG
ξx−→ EG ×G M

ζ←− EG ×G PM is a relatively formalizable
pair. Since ζ is a fibration, we can apply Proposition 1.2.3 to the following
diagram

EG ×G ΩM EG ×G PM

BG EG ×G M.

//

��
ζ

��ξx //

This completes the proof.

18



Remark. According to the proof, if it says strictly, the isomorphism is as
an H∗(EG ×G M)-algebras.

Next we consider the G-equivariant cohomology of the free loop space
LM .

Definition 3.2.3 ([GKM98, (1.2)]). We say that a G-space M is equivari-
antly formal if the spectral sequence

Hp(BG; Hq(M)) =⇒ Hp+q(EG ×G M)

for the fibration EG ×G M → BG collapses at the E2-term.

Definition 3.2.4 ([Lil03, Definition 3.2]). A G-space M is called G-formal
if there are a relative Sullivan algebra ΛV with the base H∗(BG) and a
morphism ϕ and quasi-morphisms m, θ fit into the following commutative
diagram

APL(EG ×G M) ΛV H∗(EG ×G M).m
'

oo θ
'

//

Lemma 3.2.5 ([Lil03, Proposition 4.8]). Let M be equivariantly formal. If
M is G-formal, then so is M × M .

Proof. We have a pullback diagram of the form

EG ×G (M × M) EG ×G M

EG ×G M BG,

EG×Gpr2 //

EG×Gpr1
��

π
��

π //

where π : EG ×G M → BG is the Borel fibration and pri : M × M → M
denotes the projection on the ith factor. By proposition A.2.1, EG×G pri :
EG ×G M → BG is a Serre fibration. Apply [FHT01, Proposition 15.8] to
the commutative diagram

APL(EG ×G M) APL(BG) APL(EG ×G M)

ΛV ⊗ H∗(BG) H∗(BG) H∗(BG) ⊗ ΛV.

APL(EG×Gpr1)oo APL(EG×Gpr2)//

m '
OO

mBG '
OO

? _oo � � //

m '
OO

19



We obtain a commutative diagram

APL(EG ×G (M × M)) APL(EG ×G M)

ΛW H∗(BG) ⊗ ΛV

P H∗(EG ×G M)

APL(EG ×G M) APL(BG)

ΛV ⊗ H∗(BG) H∗(BG)

H∗(EG ×G M) H∗(BG),

AP L(EG×Gpr2)oo
mW

'

ggNNNNN

θ⊗θ

' ''NNNNN

m

'

ggNNNNN
? _

i2oo
θ

' ''NNNNN

? _oo

A
P

L
(E

G
×

G
p
r
1
)

OO

A
P

L
(π

)

OO

AP L(π)oo

� ?

i1

OO

m

'

ggNNNNN

θ

' ''NNNNN

� ?

OO

mBG

'

ggNNNNN
? _oo

NNNNN
NNNNN

� ?

OO

H
(A

P
L
(π

)m
B

G
)

OO

H(AP L(π)mBG)oo

where mW is the quasi-isomorphism APL(EG×Gpr1)m·APL(EG×Gpr2)m,
ΛW and P = (P, 0) are the pushouts (ΛV ⊗H∗(BG))⊗H∗(BG) (H∗(BG)⊗
ΛV ) and H∗(EG×G M)⊗H∗(BG) H∗(EG×G M). Since M is equivariantly
formal, we see that

H∗(BG) ⊗ H∗(M) ∼= H∗(EG ×G M)

as a vector space. The H∗(BG)-module map % : H∗(BG) ⊗ H∗(M) →
H∗(EG ×G M) defined by %(x ⊗ y) = π∗(x) · y is an epimorphism. Thus
the map ϕ is an isomorphism of H∗(BG)-modules. So that H∗(EG ×G M)
is a free H∗(BG)-module. Since θ is a quasi-isomorphism, it follows from
[FHT01, Proposition 6.7(ii)] that θ ⊗ θ is a quasi-isomorphism.

We consider the Borel fibration π′ : EG ×G (M × M) → BG. Observe
that

π′ = π ◦ (EG ×G pr1) = π ◦ (EG ×G pr2) .

We have

APL(EG ×G (M × M)) ΛW P.
mW

'
oo θ⊗θ

'
//

In the cohomology, we have

H∗(EG ×G (M × M)) H(ΛW ) P.
H(mW )

∼=
oo H(θ⊗θ)

∼=
//

The two diagrams above enable us to conclude that M × M is a G-formal
space. In fact, we have

APL(EG ×G (M × M)) ΛW H∗(EG ×G M),
mW

'
oo θW

'
//

where θW = m∗
W [(θ ⊗ θ)∗]−1θ ⊗ θ.
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Theorem 3.2.6. Let M be a G-formal space. Suppose further that M is
equivariantly formal. Then as an H∗(BG)-algebra,

H∗(EG ×G LM) ∼= TorH∗(EG×G(M×M)) (H∗(EG ×G M),H∗(EG ×G M)) .

Proof. The same argument as in the proof of Lemma 3.2.5 enables us to
obtain a pullback diagram of fibrations

EG ×G LM EG ×G M I

EG ×G M EG ×G (M × M).

//

��
EG×G(e0,e1)

��
EG×G∆ //

It is enough to show that (EG ×G (e0, e1), EG ×G ∆) is a relatively formal-
izable pair. In fact, Proposition 1.2.3 deduces the result. We shall construct
morphisms ϕ, ψ, mI and θI which fit into the homotopy commutative dia-
gram

APL

(
EG ×G M I

)
ΛV H∗ (

EG ×G M I
)

APL (EG ×G (M × M)) ΛW H∗ (EG ×G (M × M))

APL (EG ×G M) ΛV H∗ (EG ×G M) ,

mI

'
oo θI

'
//

APL(EG×G(e0,e1))

OO

APL(EG×G∆)
��

ψ

OO

mW

'
oo θW

'
//

ϕ
��

(EG×G(e0,e1))∗
OO

(EG×G∆)∗
��

m
'

oo θ
'

//

where ΛW , mW and θW are the same maps of differential graded algebras
as in the proof of the Lemma 3.2.5.

Consider a pullback diagram of the fibrations

EG ×G (M × M) EG ×G M

EG ×G M BG.

EG×Gpr2 //

EG×Gpr1
��

π
��

π //

where pr1, pr2 : M × M → M are the projections.
Let i1, i2 : ΛV ↪→ ΛW be the inclusions and put ϕ = id · id. Because

APL(EG ×G prj)APL(EG ×G ∆) = id where j = 1 or 2, then we see that

mϕij = m = APL(EG ×G prj)APL(EG ×G ∆)m.

It follows from the proof of Lemma 3.2.5 that APL(EG ×G prj)m = mW ij .
Then we see that mϕij = APL(EG ×G ∆)mW ij and mϕ = APL(EG ×G

∆)mW . In the same way, we have θϕ = (EG ×µ
G ∆)∗θW .

Homotopy equivalence ρ : M I → M is defined by ρ(γ) = γ(0) if γ ∈
M I . We see that ∆ρ ∼ (e0, e1). This enables us to construct a homotopy
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commutative diagram

APL (EG ×G M) H∗ (EG ×G M)

APL

(
EG ×G M I

)
ΛV H∗ (

EG ×G M I
)
.

APL (EG ×G (M × M)) ΛW H∗ (EG ×G (M × M))

APL(EG×Gρ)

'wwoooooooo (EG×Gρ)∗

∼= ''OOOOOOOO
m

'

iiRRRRRRRRRR
θ
'

55llllllllll

A
P

L
(E

G
×

G
∆

)

OO

APL(EG×G(e0,e1))

ddIIIIIIIIIIII
ϕ

OO

mW

'
oo θW

'
//

(E
G

×
G

∆
) ∗

OO

(EG×G(e0,e1))∗

::uuuuuuuuuuuu

Define ψ = ϕ, mI = APL (EG ×G ρ) m and θI = (EG ×G ρ)∗ θ. It turns out
that (EG ×G (e0, e1), EG ×G ∆) is a relatively formalizable pair with mW

and θW constructed in the proof of the Lemma 3.2.5. Then we can apply
Proposition 1.2.3.

3.3 The Borel cohomology of the loop spaces of a
homogeneous space

Let G and H be compact simply-connected Lie groups, K a closed subgroup
of H and µ : G → H a morphism of Lie groups. The homogeneous space
H/K admits the action of G defined by g ·hK = (µ(g)h) K. Let EG×µ

GH/K
be the Borel construction defined by the action. We have the Borel fibration
of the form π : EG ×µ

G H/K → BG. Let Bµ : BG → BH and Bν : BK →
BH be the maps induced by µ and the inclusion ν : K ↪→ H, respectively.
Put ΛU = H∗(BG), ΛV = H∗(BH) and ΛW = H∗(BK). Let sV be
the graded vector space defined by (sV )i = V i+1 for any i. Then we have a
differential graded algebra of the from ΛU ⊗ΛW ⊗Λ(sV ), where d is defined
by dx = 0 if x ∈ U ⊕ W and d(sv) = (Bµ)∗(v) − (Bν)∗(v) if sv ∈ sV .

Recall the differential graded algebra map mBG : H∗(BG) → APL(BG)
mentioned in Section 3.2.

Proposition 3.3.1. With the same notation as above, the commutative
differential graded algebra ΛU ⊗ ΛW ⊗ Λ(sV ) is a Sullivan model for the
morphism APL(π)mBG.

Proof. Consider the following pullback diagram of the fibrations,

EG ×µ
G H/K EH/K

BG BH,

f //

π
��

π′
��Bµ //

(3.2)

where EH admits the action of K which is induced by the inclusion ν :
K ↪→ H. We construct a Sullivan model for APL(π′)mBH as follows.

We define a differential d on ΛV ⊗ΛW ⊗Λ(sV ) by dx = 0 if x ∈ V ⊕W
and d(sv) = (Bν)∗(v) − v if sv ∈ sV .
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In order to define a quasi-isomorphism(
ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v

)
→ APL(EH/K),

we observe that, for a base w ∈ W , there exists a cycle w′ in APL(EH/K)
such that (Eν/K)∗[w′] = w. In fact, Eν/K : BK → EH/K is a week
homotopy equivalence. Moreover, Bν is regarded as the composite

BK
Eν/K−−−−→

'
EH/K

π′
−→ BH.

It follows that (π′)∗ = (Bν)∗ : H∗(BK) → H∗(BH) and the element
m′(Bν)∗(v) − APL(π′)(v) is a boundary. Therefore, for a basis v ∈ V ,
there exists an element v′ of APL(EH/K) such that dv′ = m′(Bν)∗(v) −
APL(π′)(v). Let

m′ :
(
ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v

)
→ APL(EH/K)

be a differential graded algebra map defined by m′(v) = APL(π′)mBH(v) for
v ∈ V , m′(w) = w′ for a base w ∈ W and m′(sv) = v′ for a base sv ∈ sV .

We show that m′ is a quasi-isomorphism. Let {vi}m
i=1 be a basis of V .

Then (Bν)∗(v1) − v1, . . . , (Bν)∗(vm) − vm is a regular sequence. Therefore
H∗ (ΛV ⊗ ΛW ⊗ Λ(sV )) ∼= ΛW and H(m′) is the identity of ΛW . Then we
obtain the following commutative diagram

APL(BG) ΛU

APL(BH) ΛV

APL(EH/K) (ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v)

mBG

'
oo

APL(Bµ)

OO

APL(π′)
��

(Bµ)∗
OO

mBH

'
oo

� _

��
m′

'
oo

By [FHT01, Proposition 15.8], we have a Sullivan model m = APL(π)mBG ·
APL(f)m′ for EG ×µ

G H/K.

We describe the G-equivariant cohomology of the loop spaces Ω(H/K)
and L(H/K) in terms of torsion products under the following hypothesis.

Hypothesis 3.3.2. Let {vi}m
i=1 be a basis of V . Assume that there exists

an integer s such that (Bν)∗(v1) − (Bµ)∗(v1), . . . , (Bν)∗(vs) − (Bµ)∗(vs) is
a regular sequence and (Bν)∗(vs+1) − (Bµ)∗(vs+1) = · · · = (Bν)∗(vm) −
(Bµ)∗(vm) = 0.

Proposition 3.3.3. Under Hypothesis 3.3.2, H/K is a G-formal space.
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Proof. Consider the following diagram,

APL(EG ×µ
G H/K) (ΛU ⊗ ΛW ⊗ Λ(sV ), d) H∗(EG ×µ

G H/K),m
'

oo θ
'

//

where m is constructed in the proof of Proposition 3.3.1. Moreover the
differential d on ΛU ⊗ ΛW ⊗ Λ(sV ) is defined by d(sv) = (Bν)∗(v) − v.

Since (Bν)∗(v1) − (Bµ)∗(v1), . . . , (Bν)∗(vs) − (Bµ)∗(vs) is a regular se-
quence, it follows that the natural surjection

p : (ΛU ⊗ ΛW ⊗ Λ(sV ), d) → ΛU ⊗ ΛW

((Bν)∗(vi) − (Bµ)∗(vi))
⊗ Λ(svs+1, . . . , svm)

is a quasi-isomorphism. Then we define θ by the composite,

(ΛU ⊗ ΛW ⊗ Λ(sV ), d)
p−→
'

ΛU ⊗ ΛW

((Bν)∗(vi) − (Bµ)∗(vi))
⊗ Λ(svs+1, . . . , svm)

m∗(p∗)−1

−−−−−−→∼=
H∗(EG ×µ

G H/K).

Then the right triangle in the diagram above is commutative. This completes
the proof.

Theorem 3.3.4. Under Hypothesis 3.3.2, as an H∗(BG)-algebra,

H∗ (
EG ×µ

G Ω(H/K)
) ∼= TorH∗(EG×µ

GH/K) (H∗(BG),H∗(BG)) .

Proof. We recall the maps m and θ which is constructed in the proof of
Proposition 3.3.3. By virtue of the Lifting Lemma, we see that there exists
a map ϕ such that mBGϕ ∼ APL(ξpt)m; see the diagram below,

APL(EG ×G H/K) (ΛU ⊗ ΛW ⊗ Λ(sV ), d) H∗(EG ×G H/K),

APL(BG) H∗(BG) H∗(BG),

APL(ξpt)
��

m
'

oo θ
'

//

ϕ
��

ξ∗pt ��
mBG

'
oo

where the differential d on ΛU⊗ΛW⊗Λ(sV ) is defined by d(sv) = (Bν)∗(v)−
v. If x ∈ U ⊕ W , then (ξpt)∗θ(x) = (ξpt)∗m∗([x]) = [ϕ(x)] = ϕ(x). Since
H∗(BG) is a polynomial, it follows that (ξpt)∗θ(svi) = 0 = ϕ(svi). By
applying Theorem 3.2.2, we have the result.

Theorem 3.3.5. Under Hypothesis 3.3.2, as an H∗(BG)-algebra,

H∗ (
EG ×µ

G L(H/K)
)

∼= TorH∗(EG×µ
G(H/K×H/K))

(
H∗ (

EG ×µ
G H/K

)
,H∗ (

EG ×µ
G H/K

))
Proof. Since H∗(H/K) and H∗(BG) are generated by elements whose de-
gree are even, we see that H/K is equivariantly formal. Then we can apply
Theorem 3.2.6.
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We conclude this section with describing the S1-equivariant cohomology
of loop spaces of the complex projective space CPm. By the following lemma,
CPm with the basepoint [0, 0, . . . , 0, 1] is regarded as a homogeneous space

U(m+1)
U(m)×U(1) .

Lemma 3.3.6 ([Yok01, Proposition 27, Theorem 16]). We define a subspace
of M(m + 1; C) as follows,

CP (m) := {X ∈ M(m + 1; C)|X∗ = X, X2 = X and tr(X) = 1}.

1. The morphism f : U(m+1)
U(m)×U(1) → CP (m) which is defined by f(A) =

AEm+1A
∗ is a homeomorphism.

2. The morphism g : CPm → CP (m) which is defined by g

x1
...

xm

 =

1
Pm

K=0 |xk|2
(xixj)i,j is a homeomorphism.

A homomorphism µ : S1 → U(m + 1) induces an S1-linear action on
U(m+1). Then µ gives rise to the action on CPm = U(m+1)

U(m)×U(1) . We denote
by ES1 ×µ

S1 CPm the Borel construction of CPm. Since U(1)×· · ·×U(1) is
a maximal torus of U(m + 1) and µ(S1) is an abelian group, it follows that
there exists an element g ∈ U(m+1) such that gµ(S1)g−1 ⊂ U(1)×· · ·×U(1).

We denote by µ the composite S1 µ−→ U(m + 1)
g(−)g−1

−−−−−→∼=
U(m + 1). Note

that there exist integers µ1, . . . , µm+1 such that

µ
(
e2πiθ

)
=

(
e2πiθµ1 , . . . , e2πiθµm+1

)
.

We obtain the isomorphisms

H∗(BU(m + 1)) ∼= Q[a1, . . . , am+1], H∗(BU(m)) ∼= Q[b1, . . . , bm],

H∗(BU(1)) ∼= Q[c1], H∗ (
BS1

) ∼= Q[z],
and H∗(B(U(1) × · · · × U(1))) ∼= Q[t1, . . . , tm+1]

where ai, bi and c1 are the Chern classes and z and ti are the first Chern
classes. Since (Bσ)∗(ai) =

∑
1≤k1<···<ki≤m+1

tk1 · · · tki
and (Bµ̃)∗(ti) = µiz,

it follows that (Bµ)∗(ai) = λiz
i where λi =

∑
1≤k1<···<ki≤m+1

µk1 · · ·µki
, σ :

U(1) × · · · × U(1) → U(m + 1) denotes the inclusion and µ̃ : S1 → U(1) ×
· · · × U(1) is the map defined by g(−)g−1 ◦ µ. Observe that µ = σ ◦ µ̃.

Let ν : U(m) × U(1) ↪→ U(m + 1) be the canonical inclusion. Then we
see that (Bν)∗(ai) = bi + bi−1c1, where b0 = 1 and bm+1 = 0. Therefore the
sequence (Bν)∗(a1)− (Bµ)∗(a1), . . . , (Bν)∗(am+1)− (Bµ)∗(am+1) is regular;
see Lemma A.1.4 below.

By virtue of Proposition 1.2.3, we have
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Proposition 3.3.7. With the same notation as above, as an H∗(BS1)-
algebra

H∗
“

ES1 ×µ

S1 ΩCP m
”

∼= Tor
H∗

“

ES1×µ

S1 CP m
”

`

H∗(BS1), H∗(BS1)
´

and

H∗
“

ES1 ×µ

S1 LCP m
”

∼= Tor
H∗

“

ES1×µ

S1 CP m×CP m
”

“

H∗
“

ES1 ×µ

S1 CP m
”

, H∗
“

ES1 ×µ

S1 CP m
””

.

Proof. Theorems 3.3.4 and 3.3.5 yield the results.
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Chapter 4

Proofs of main theorems
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4.1 Proof of Theorem 1.2.4

In this section, we use the same notation as in Section 3.3. The purpose
of this section is to compute the rational S1-equivariant cohomology of the
based loop space of the complex projective space by using Proposition 3.3.7.

Lemma 4.1.1. Let π : ES1 ×µ
S1 CPm → BS1 be the Borel fibration. Then

(Q[c1, z] ⊗ Λ(sam+1), d) is the minimal Sullivan model for APL(π)mBS1,
where d is defined by d(c1) = d(z) = 0 and d(sam+1) = (c1 − µ1z) · · · (c1 −
µm+1z).

Proof. Let b0 = 1 and bm+1 = 0. Thanks to Proposition 3.3.1, we obtain a
Sullivan model (Q[b1, . . . , bm, c1, z]⊗Λ(sa1, . . . , sam+1), d) for APL(π)mBS1 ,
where d is the differential defined by d(bi) = d(c1) = d(z) = 0 and d(ai) =
bi + bi−1c1 − λiz

i.
We define differential graded algebra maps f and g over Q[z]

APL(ES1 ×µ
S1 CPm)

(
Q[b1, . . . , bm, c1, z] ⊗ Λ(sa1, . . . , sam+1), d(sai) = bi + bi−1c1 − λiz

i
)

(
Q[c1, z] ⊗ Λ(sam+1), d(sam+1) = (c1 − µ1z) · · · (c1 − µm+1z)

)
'

OO

f

OO
g

��

by

f(c1) = c1 and f(sam+1) =
m+1∑
j=1

(−1)j−1(c1)m−j+1 · (saj),

g(bi) =
i∑

j=0

(−1)i+jλj(c1)i−jzj , g(c1) = c1 and g(saci) =

{
0 (i ≤ m)
sam+1 (i = m + 1).

By Lemma A.1.4, we see that

H∗ (Q[b1, . . . , bm, c1, z] ⊗ Λ(sa1, . . . , sam+1)) ∼=
Q[b1, . . . , bm, c1, z]

(b1 + b0c1 − λ1z1, . . . , bm+1 + bmc1 − λm+1zm+1)

H∗ (Q[c1, z] ⊗ Λ(sam+1)) ∼=
Q[c1, z]

((c1 − µ1z) · · · (c1 − µm+1z))
.

By a straightforward computation, we see that g∗ is the inverse of f∗ and
hence f is a quasi-isomorphism.

Lemma 4.1.1 enables us to establish the following lemmas.

28



Lemma 4.1.2. As a Q[z]-algebra,

H∗
(
ES1 ×µ

S1 CPm
)
∼=

Q[c1, z](
(c1 − µ1z) · · · (c1 − µm+1z)

) .

Lemma 4.1.3. As a Q[z]-algebra,

H∗(BS1) = H∗
(

ES1 ×S1
U(m) × U(1)
U(m) × U(1)

)
∼=

Q[c1, z]
(c1 − µm+1z)

(∼= Q[z]) .

Lemma 4.1.4. Consider the isomorphisms in Lemmas 4.1.2 and 4.1.3, then
we have (ξpt)∗(c1) = c1 = µm+1z, where ξpt : ES1×S1

U(m)×U(1)
U(m)×U(1) → ES1×µ

S1

CPm is induced by the inclusion U(m) × U(1) ↪→ U(m + 1).

Proof of Lemma 4.1.4. See Appendix A.3.

Proof of Theorem 1.2.4. Thanks to Proposition 3.3.7, it suffices to com-
pute the torsion product Tor

H∗
“

ES1×µ

S1CP m
”

(
H∗ (

BS1
)
, H∗ (

BS1
))

. We

first construct a free resolution K of H∗ (
BS1

)
as a H∗

(
ES1 ×µ

S1 CPm
)
-

module.
We rewrite H∗

(
ES1 ×µ

S1 CPm
)

as follows,

H∗
“

ES1 ×µ

S1 CP m
”

∼=
Q[c1, z]

`

(c1 − µ1z) · · · (c1 − µm+1z)
´

=
Q[c1 − µm+1z, z]

“

`

(c1 − µm+1z + µm+1z) − µ1z
´

· · ·
`

(c1 − µm+1z + µm+1z) − µmz
´

(c1 − µm+1)
”

∼=
Q[c, z]

“

c ·
`

c − (µ1 − µm+1)z
´

· · ·
`

c − (µm − µm+1)z
´

”

∼=
Q[c, z]

`

c · f(c, z)
´ ,

where f(c, z) :=
(
c − (µ1 − µm+1)z

)
· · ·

(
c − (µm − µm+1)z

)
. By Lemma

4.1.4, we have (ξpt)∗(c) = (ξpt)∗(c1−µm+1z) = 0. See the following diagram.

Q[c, z](
c·f(c,z)

) Q[c1,z](
(c1−µ1z)···(c1−µm+1z)

)
K Q[z] Q[c1,z]

(c1−µm+1z)

∼=
//

K k

yyrrrrr
(ξpt)∗ %%LLLLL

(ξpt)∗��
κ
'

//
∼=

oo

Now we construct the resolution of Q[z] over Q[c, z](
c·f(c,z)

) . We define a

differential graded algebra (K , d) by K = Q[c,z]
(c·f(c,z)) ⊗Λ(w1)⊗Q[w2], d(c) =

d(z) = 0, d(w1) = c and d(w2) = f(c, z)w1, where |w1| = 1, |w2| = 2m.
Moreover we define a morphism κ : K → Q[z] by κ(c) = κ(w1) = κ(w2) = 0
and κ(z) = z. We show that K is a free resolution of H∗ (

BS1
)

as an
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H∗
(
ES1 ×µ

S1 CPm
)
-module. Since the triangle of the above diagram is

commutative, it is enough to show that κ is a quasi-isomorphism.
We denote by K ′ a differential graded algebra Q[c, z, w2] ⊗ Λ(w1, w3),

whose differential d is defined by dw1 = c, dw2 = f(c, z)w1 −w3 and dw3 =
c · f(c, z), where |w3| = 2m + 1. Moreover we define a morphisms κ′ :
K ′ → Q[z] by κ′(c) = κ′(w1) = κ′(w2) = κ′(w3) = 0 and κ′(z) = z, and
ε : K ′ → K by ε(c) = 0, ε(z) = z, ε(w1) = w1, ε(w2) = w2 and ε(w3) = 0.
Then we see that the diagram

K ′ K

Q[z]

ε //

κ′ ��:
::

::

κ����
��

�

is commutative. Claims 4.1.5 and 4.1.6 yield that κ is a quasi-isomorphism.

Claim 4.1.5. The morphism ε : K ′ → K is a quasi-isomorphism.

Claim 4.1.6. The morphism κ′ : K ′ → Q[z] is a quasi-isomorphism.

We see that

H∗
(
ES1 ×µ

S1 ΩCPm
)
∼= Tor

H∗
“

ES1×µ

S1CP m
”

(
H∗ (

BS1
)
,H∗ (

BS1
))

= H∗
(

Q[z] ⊗ Q[c,z]
(c·f(c,z))

K

)
= H∗ (Q[z] ⊗ Λ(w1) ⊗ Q[w2], dw2 = g(µ)zmw1) ,

where g(µ) = (µm+1−µ1) · · · (µm+1−µm). Therefore, we see that g(µ) = 0 if
and only if µm+1 is one of µ1, . . . , µm. Since dz = dw1 = 0, a straightforward
calculation deduces the result on the homology; see the figure (4.1) below.

We give now proofs of the claims. To this end, we compare appropriate
spectral sequences by making use of the technique in [KMN06] for computing
the cohomology of a differential graded algebra.

Proof of Claim 4.1.5. We assign the bidegree to each element in K ′ as fol-
lows: bideg c = bideg z = (0, 2), bideg w1 = (−1, 2), bideg w2 = (−2, 2m+2)
and bideg w3 = (0, 2m + 1). The bidegree of a monomial is defined as the
sum of bidegree of each indecomposable element. Consider the filtration F ∗

of K ′ defined by

F i = {x ∈ K ′|the first component of bideg x is grater than or equal to i}.

Then F ∗ induces a spectral sequence {K ′
Er, dr} converging to H(K ′) as

an algebra whose E0-term is given by K ′
E0 =

∑
F i/F i+1. We see that, as

a differential graded algebra,
K ′

E0
∼= Q[c, z, w2]⊗Λ(w1, w3) and d′0(w1) = d′0(w2) = 0, d′0(w3) = c·f(c, z).
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Moreover, we define the bidegree of each element in K by bideg c =
bideg z = (0, 2), bideg w1 = (−1, 2) and bideg w2 = (−2, 2m + 2). Then a
spectral sequence {K Er, dr} is constructed by using the same filtration of
K as that of K ′. Then we see that, as a differential graded algebra,

K E0
∼=

Q[c, z, w2] ⊗ Λ(w1)
(c · f(c, z))

and d0(w1) = d0(w2) = 0.

Since ε preserves the filtration, it follows that the map ε induces a morphism
of spectral sequences {εr.∗} : {K ′

Er, dr} → {K Er, dr}; see the figure below
for the first step.

•

•

•

•

•

• •

K ′
E0

0−1−2

ε0.∗ //

K E0

0−1−2

w3

w2

w1 c,z

w2

c,zw1

It is readily seen that ε1,∗ is an isomorphism of algebras

K ′
E1

∼=
Q[c, z, w2] ⊗ Λ(w1)

(c · f(c, z))
∼=K E1.

Thus we have the result.

Proof of Claim 4.1.6. We define the bidegree of each element in K ′ by
bideg c = bideg z = (0, 2), bideg w1 = (0, 1), bideg w2 = (−2, 2m + 2)
and bideg w3 = (−1, 2m + 2). The filtration of K ′ defined by the first
component as in the proof of Claim 4.1.5 constructs a spectral sequence
{K ′

Er, dr}. Then we see that, as a differential graded algebra,
K ′

E0
∼= Q[c, z, w2] ⊗ Λ(w1, w3) and d′0(w1) = c, d′0(w2) = d′0(w3) = 0.

Moreover, we define the bidegree to each element in Q[z] as follows: bideg z =
(0, 2). We construct a spectral sequence {Er, dr} by using the same filtration
of Q[z] as that of K ′. We see that, as a differential graded algebra,

E0
∼= Q[z] and d0 ≡ 0.

Since κ′ preserves the filtration, it follows that the map κ′ induces a mor-
phism {κ′

r.∗} of spectral sequences; see the figure below.

• •

•• •

K ′
E0

0−1−2

κ′
0.∗ //

E0

0

w2 w3

w1

c,z z
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A straightforward calculation yields that as an algebra,

K ′
E1

∼= H
(

K ′
E0, d

′
0

)
∼= Q[z, w2] ⊗ Λ(w3) and d′1(w2) = w3, d′1(w3) = 0;

see the figure below.

• •

• •

K ′
E1

0−1−2

κ′
1.∗ //

E1

0

w2 w3

z z

It turns out that κ′
2.∗ is an isomorphism of algebras

K ′
E2

∼= Q[z] ∼= E2.

This completes the proof.

4.2 Proof of Theorem 1.2.5

The purpose of this section is to construct a model for a Borel construction
associated with the free loop space LCPm.

Proof of Theorem 1.2.5. By Proposition 3.3.7, we see that as an H∗(BS1)-
algebra,

H∗
(
ES1 ×µ

S1 LCPm
)
∼=

TorH∗(ES1×µ

S1 (CP m×CP m))
(
H∗

(
ES1 ×µ

S1 CPm
)

, H∗
(
ES1 ×µ

S1 CPm
))

.

We put, respectively,

A := H∗
(
ES1 ×µ

S1 CPm
)
∼=

Q[c, z]
(ρ)

, A′ := Q[c, z],

B := H∗
(
ES1 ×µ

S1 (CPm × CPm)
)
∼=

Q[c] ⊗ Q[c] ⊗ Q[z]
(ρ1, ρ2)

,

B′ := Q[c] ⊗ Q[c] ⊗ Q[z].

Here ρ1 :=
m+1∑
i=0

λi cm−i+1 ⊗ 1 ⊗ zi and ρ2 :=
m+1∑
i=0

λi 1 ⊗ cm−i+1 ⊗ zi. We

define elements ζi ∈ A′ and ζ ∈ B′ by

ζi :=

{
1 ⊗ 1 (i = 0)
(−1)ici ⊗ 1 + ci−1 ⊗ c + · · · + 1 ⊗ ci (i = 1, 2, · · · ,m)

,

ζ :=
m∑

i=0

λm−iζiz
m−i.
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Assume that |w| = 2m and define a differential d on B⊗Λ(c, w) by d(b) = 0
if b ∈ B, dc = c ⊗ 1 − 1 ⊗ c and d(w) = ζc. We denote by E the differential
graded algebra (B ⊗ Λ(c, w), d). The same argument as in the proof of
[Smi81, Proposition 3.5] shows that E is a free resolution of A as a B-
module.

B

E A

ε : E −→ A
ε(b) = ∆∗(b), ε(c) = ε(w) = 0

Pp

����
��

� ∆∗

��:
::

::

ε
'

//

In fact, let K = B ⊗ Λ(c) be a differential graded subalgebra of E . We
assign the bidegree to each element in E as follows: bideg x = (0, deg x)
if x ∈ K and bideg w = (−1, 2m + 2). We construct a spectral sequence
{E Er, dr} by employing the filtration F ∗ of E defined by

F i = {x ∈ E |the first component of bideg x is grater than or equal to i}.

Then we see that, as a differential graded algebra,
E E0

∼= K ⊗ Λ(w) and dE
0 (w) = 0.

Moreover, we define the bidegree of element x of A by bideg x = (0, deg x).
The same filtration of A as that of E defines a spectral sequence {AEr, dr}.
We see that, as a differential graded algebra,

AE0
∼= A and d0 ≡ 0.

The map ε preserves the filtration so that we have the morphism of spectral
sequences {εr.∗} : {E Er, dr} → {AEr, dr}, which is induced by ε.

•

E E0

0−1

ε0.∗ //

AE0

0

w

K A

Then Lemma 4.2.1 below enables us to conclude that
E E1

∼= A ⊗ Λ(σ) ⊗ Q[w] and dE
1 (w) = σ.

Lemma 4.2.1. The morphism f : A ⊗ Λ(σ) → H∗(K ) defined by f(c) =
c ⊗ 1, f(z) = z and f(σ) = ζc is an isomorphism.

• •

E E1

0−1

ε1.∗ //

AE1

0

w σ

A A
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It is readily seen that ε2.∗ is an isomorphism of algebras

E E2
∼= A ∼= AE2.

We have the result.

Proof of Lemma 4.2.1. First we assume |α| = |β| = 2m + 1 and define a
differential d′ on B′⊗Λ(c, α, β) by d′(c) = c⊗1−1⊗c, d′(α) = ρ1 and d′(β) =
ρ2. We denote by K ′ the differential graded algebra (B′ ⊗ Λ(c, α, β), d′).
Let f̂ : A⊗Λ(σ) → H∗(K ′) be the morphism of algebras defined by f̂(a) :=
a ⊗ 1 and f̂(σ) = ζc̄ − α + β.

Claim 4.2.2. The morphism f̂ : A ⊗ Λ(σ) → H (K ′) is an isomorphism.

Next we define a differential d on B⊗Λ(c) by d(b) = 0 if b ∈ B and dc =
c⊗ 1− 1⊗ c and denote by K the differential graded algebra (B ⊗Λ(c), d).
Consider the morphism π : K ′ → K defined by π(b) = [b], π(c) = c and
π(α) = π(β) = 0.

Claim 4.2.3. The morphism π : K ′ → K is a quasi-isomorphism.

The map f is nothing but the composite A ⊗ Λ(σ)
f̂−→ H∗ (K ′)

(π)∗−−→
H∗ (K ). Then we have the result.

Proof of Claim 4.2.2. Let A the differential graded subalgebra B′ ⊗Λ(c)⊗
Λ(α) of K ′. Then we see that,

H∗ (A ) ∼=
Q[c] ⊗ Q[c] ⊗ Q[z]
(c ⊗ 1 − 1 ⊗ c, ρ1)

f1←−∼=
Q[c, z]

(ρ)
= A,

where f1(c) = c⊗ 1 and f1(z) = z. Moreover we have a sequence of isomor-
phisms

H∗ (
Q ⊗A K ′) f2−→∼= H∗ (Λ(σ), 0)

f3−→∼= Λ(σ),

where f2 (1 ⊗ ζc − α + β) = σ and f3(σ) = σ. This enables us to obtain
isomorphisms

A ⊗ Λ(σ)
f1⊗f3f2−−−−−→∼=

H∗(A ) ⊗ H∗ (
Q ⊗A K ′) −→∼= H∗ (

A ⊗ Q ⊗A K ′) .

The natural quasi-isomorphism f4 : A ⊗ Q ⊗A K ′ → K ′ induces the
following isomorphism

f̂ : A ⊗ Λ(σ) −→∼= H∗ (
A ⊗ Q ⊗A K ′) (f4)∗−−−→∼= H∗ (

K ′) ,

which coincides with f̂ .
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Proof of Claim 4.2.3. We define the bidegree of each element in K ′ by
bideg c ⊗ 1 = bideg 1 ⊗ c = bideg z = (0, 2), bideg c = (−1, 2) and
bideg α = bideg β = (0, 2m+1). The filtration associated with the bidegree
constructs a spectral sequence {′Er, dr}. Then we see that, as a differential
graded algebra,

′E0
∼= B′ ⊗ Λ(c, α, β) and d′0(c) = 0, d′0(α) = ρ1, d′0(β) = ρ2.

We define the bidegree to each element in K by bideg c⊗1 = bideg 1⊗ c =
bideg z = (0, 2) and bideg c = (−1, 2). Then we have a spectral sequence
{Er, dr} converging to H∗(K ). We see that, as a differential graded algebra,

E0
∼= B ⊗ Λ(c) and d0(w1) = d0(w2) = 0.

Since π preserves the filtration, it follows that the map π induces a morphism
{πr.∗} of spectral sequences.

•

•

• •

′E0

0−1

π0.∗ //

E0

0

c

α,β

c⊗1,1⊗c,z c⊗1,1⊗c,z

Then π0.∗ induces an isomorphism of algebras

π1.∗ : ′E1
∼= B ⊗ Λ(c) ∼= E1.

This completes the proof.
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A.1 Regular sequences

We describe a proposition on regular sequences.

Definition A.1.1. A sequence a1, . . . , an of elements of differential graded
algebra A and whose dimensions are natural number is A-regular when it
satisfies the following conditions

1. a1 is a non-zero-divisor on A,

2. ai is a non-zero-divisor on
A

(a1, . . . , ai−1)
for any i = 2, . . . , n.

Definition A.1.2. Let a1, . . . , an be a sequence of elements of differential
graded algebra A and whose dimensions are even. Then we define the Koszul
complex of a1, . . . , an written by K∗(a1, . . . , an; A) as follows

K∗(a1, . . . , an; A) := (Λ(b1, . . . , bn) ⊗ A, dbi = ai, da = 0(a ∈ A)) ,

where |b1| = · · · = |bn| = −1 and |a| = 0 for any a ∈ A.

Lemma A.1.3. [BH93, Corollary 1.6.19] Suppose a1, . . . , an is a sequence
of elements of a differential graded algebra A and whose dimensions are
even. Then the following are equivalence

1. a1, . . . , an is A-regular,

2. K∗(a1, . . . , an; A) is acyclic.

Proposition A.1.4. Let A and B be a differential graded algebra, a1, . . . , am

elements of A and b1, . . . , bm+n elements of B. Suppose that dimensions
of a1, . . . , am and b1, . . . , bm+n are even. If a1, . . . , am is A-regular and
bm+1, . . . , bm+n is B-regular, then a1 + b1, . . . , am + bm, bm+1, . . . , bm+n is
A ⊗ B-regular.

Proof. By virtue of Lemma A.1.3, in order to prove Proposition A.1.4, it
suffices to show that the Koszul complex

K∗(a1 + b1, . . . , am + bm, bm+1, . . . , bm+n;A ⊗ B)
:= (Λ (α1, . . . , αm, βm+1, . . . , βm+n) ⊗ A ⊗ B, dαi = ai + bi, dβj = bj)

is acyclic. We assign the bidegree to each element in the Koszul complex as
follows

bideg αi = (0,−1) bideg a = (0, 0) (a ∈ A),
bideg βj = (0,−1) bideg b = (1,−1) (b ∈ B).

We define a filtration degree by F i consists the elements of the Koszul com-
plex whose first component of the bidegree is gather then or equal to i. We
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construct a spectral sequence {Er, dr} associated with the filtration F ∗ con-
verging to H(K∗(a1 +b1, . . . , am +bm, bm+1, . . . , bm+n;A⊗B)) as an algebra
whose E0-term is given by E0 =

∑
F i/F i+1. We see that, as a differential

graded algebra,

E0
∼= Λ(α1, . . . , αm, βm+1, . . . , βm+n)⊗A⊗B and d0(αi) = ai+bi, d0(βi) = 0,

see the figure below.

•

• •
(a ∈ A, b ∈ B)

E0

??
??

??
??

??
??

??
??

?

0

a

αi,βj
b

??
??

??
??

?

The sequence a1, . . . , an is A-regular. Then we have

E1 = H∗(E0) = Λ(βm+1, . . . , βm+n) ⊗ A

(a1, . . . , am)
⊗ B and d1(βj) = bj .

•

• •
(a ∈ A

(a1,...,am) , b ∈ B)

E0

??
??

??
??

??
??

??
??

?

0

a

βj
b

??
??

??
??

?

It is readily seen that as an algebra,

E2
∼= H∗(E1) ∼=

A

(a1, . . . , am)
⊗ B

(bm+1, . . . , bm+n)
and E∞ ∼= E2.

Thus we see that

Tot(E∞) ∼= Tot
(

A

(a1, . . . , am)
⊗ B

(bm+1, . . . , bm+n)

)
.

Since Tot(E∞)i = 0 (i 6= 0), it follows that

H i (K∗(a1 + b1, . . . , am + bm, bm+1, . . . , bm+n;A ⊗ B)) = 0 (i 6= 0).

This implies that K∗(a1 +b1, . . . , am +bm, bm+1, . . . , bm+n; A⊗B) is acyclic.

A.2 The functor EG ×G −
Proposition A.2.1. Let E and B are G-spaces. If G-map p : E → B is
a Serre fibration with fiber F , then EG ×G p : EG ×G E → EG ×G B is a
fibration with fiber F up to homotopy.
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Proof. By virtue of [Nei10, Proposition 3.2.2], we have the following com-
mutative diagram

EG ×G E

Ẽ BG

EG ×G B BG,

' ,,YYYYYYYYY
πE

��

EG×Gp //

fπE //

ep
��

idBG

πB //

where the lower right side square is a totally fibred square. Because EG×G

E −→
'

Ẽ is a weak homotopy equivalence, π̃E is a fibration with fiber E up

to homotopy. By [Nei10, Proposition 3.2.3], F → F̃ → ∗ is a fibration, see
the following diagram;

F F̃ ∗

E Ẽ BG

B EG ×G B BG.

//

��

//

�� ��
//

p ��

fπE //

ep �� idBG

// πB //

Then we have the conclusion.

A.3 Proof of Lemma 4.1.4

The following Lemma gives the proof of Lemma 4.1.4.

Lemma A.3.1. Under Hypothesis 3.3.2, the same argument as in the proof
of Proposition 3.3.3, enable us to obtain

(ξpt)∗ : H∗ (EG ×G H/K) → H∗(BG); (ξpt)∗[w] = [1 ⊗ w]

where ξpt : EG×GK/K → EG×GH/K is induced by the inclusion K ↪→ H.

Proof. Remember the construction of Sullivan model of EG ×µ
G H/K. We

use the following pullback diagram of fibrations,

H/K H/K

EG ×µ
G H/K EH/K

BG BH,

�� ��f //

π �� π′
��B(ν◦µ) //

where G K H
µ //, � � ν // and ν is the inclusion. Moreover, their Sullivan models

are the following,

APL(BG) APL(BH) APL(EH/K)

ΛU ΛV
(
ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v

)
.

APL(B(ν◦µ))oo APL(π′)//

mBG '
OO

mBH '
OO

(
B(ν◦µ)

)∗
oo � � //

m′ '
OO
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Especially, if H = K, the above diagram replaced the following diagram,

APL(BG) APL(BK) APL(BK)

ΛU ΛW
(
ΛW ⊗ ΛW ⊗ Λ(sW ), d(sw) = 1 ⊗ w − w ⊗ 1

)
.

APL(B(µ))oo

mBG '
OO

mBK '
OO

(
B(µ)

)∗
oo � � //

m′′ '
OO

Consider the following diagram,

H/K H/K

K/K K/K = ∗

EG ×µ
G H/K EH/K

EG ×µ
G K/K EK/K = BK

BG BH

BG BK.

�� ��

iiRRRRRRR

��

iiRRRRRRR

��

f //

π

��
π′

��

ξpt
iiRRRRRRR

//

��

Eν/KiiRRRRRRR

idBK

��

B(ν◦µ) //
RRRRRRR
RRRRRRR

BνiiRRRRRRRBµ //

Now we construct a model of right side square of above diagram. See the
following diagram,

APL(BH) APL(EH/K)

ΛV
(
ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v

)

APL(BK) APL(BK)

ΛW
(
ΛW ⊗ ΛW ⊗ Λ(sW ), d(sw) = 1 ⊗ w − w ⊗ 1

)
.

APL(π′) //

A
P

L
(B

ν
)

��

A
P

L
(E

ν
/
K

)

��

mBH

'

\\:::::
� � iΛV //

θ
1

��

m′
'

\\:::::

θ
2

��mBK

'
\\:::::

� � iΛW //
m′′

'
\\:::::

By employing the Lifting Lemma [FHT01, Proposition 14.6] and [FHT95,
Lemma 3.6], we obtain θ1 such that mBKθ1 ∼ APL(Bν)mBH (homotopic).
Moreover, there exists θ2 such that θ2iΛV = iΛW θ1 and m′′θ2 ∼ APL(Eν/K)m′.
On the other hand, because H(θ1) = (Bν)∗, θ1 = (Bν)∗. Since

(
(Eν/K)∗(m′)∗

)
[w] =

w = (m′′)∗[1 ⊗ w], H(θ2)[w] = [1 ⊗ w] see the following diagram

H∗(EH/K) H
(
ΛV ⊗ ΛW ⊗ Λ(sV ), d(sv) = (Bν)∗(v) − v

)
ΛW H∗(BK) H

(
ΛW ⊗ ΛW ⊗ Λ(sW ), d(sw) = 1 ⊗ w − w ⊗ 1

)
.

(Eν/K)∗ ∼=
��

(m′)∗

∼=
oo

H(θ2) ∼=
��(m′′)∗

∼=
oo
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Therefore, we have

(ξpt)∗[w] = H
(
idΛU ⊗(Bν)∗ θ2

)
[w] = [1 ⊗ w].

This complete the proof.
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