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Abstract

Let B L. B & Ebea diagram in which p is a fibration and the pair (f,p)
of the maps is relatively formalizable. Then, we show that the rational
cohomology algebra of the pullback of the diagram is isomorphic to the
torsion product of algebras H*(B’) and H*(FE) over H*(B). Let M be a
space which admits an action of a Lie group GG. The isomorphism of algebras
enables us to represent the cohomology of the Borel construction of the space
of free (resp. based) loops on M in terms of the torsion product if M is
equivariantly formal (resp. G-formal). Moreover, we compute explicitly the
Sl-equivariant cohomology of the space of the based loops on the complex
projective space CP™, where the S'-action is induced by a linear action of

St on CP™.
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Chapter 1

Introduction



1.1 Introduction

Let f : B' — B be a morphism between simply-connected spaces and p :
E — B a fibration. Then we have a fibration B’ x5 E — B’ which fits into
the pullback diagram
B'xgp E—— FE
i 7|
B’ B.

Vigué-Poirrier [VP81, Proposition 4.4.5] has constructed the Eilenberg-
Moore spectral sequence associated with the pullback diagram mentioned
above by using a Sullivan representative for the map f : B’ — B. Moreover
she proved that, as a graded vector space,

H*(B' xp E;Q) = Torp+(B,) (H*(B’; Q),H*(FE,; Q))
if p: E — Band f: B — B are formalizable maps; see also [Tho82,
Section V] and [FT88, Section V]. For an arbitrary underlying field, Anick
constructed the Eilenberg-Moore spectral sequence with the Adams-Hilton
model and exhibited existence of such an isomorphism; see [Ani85, Theorem
5.1].

One of the aims of this article is to establish an isomorphism of algebras
between the cohomology H* (B’ x g E; Q) and the torsion product mentioned
above provided the given pair (p, f) of maps is relatively formalizable; see
Definition 1.2.2 below.

Let M be a simply-connected space with an action of a connected Lie
group G. Suppose that x is a base point of M which is fixed by the action
of G. Then the space QM of loops based at z on M admits the action of G
induced by that of G on M. By using the bar construction, Lillywhite has
shown that there is an isomorphism,

H* (BEG x¢ QM) 2 Tor - (gax o) (H*(BG), H(BG))

f

if M is G-formal at z; see [Lil03, Proposition 6.1]. We can obtain such an
isomorphism in our setting since the G-formality induces the relative formal-
izability of the pair of appropriate maps; see Theorem 3.2.2. Moreover we
describe the Borel cohomology H* (EG X LM) of the free loop space LM
of an equivariantly formal space M in the sense of Goresky, Kottwitz and
MacPherson [GKM98], in terms of the torsion functor; see Definition 3.2.3
and Theorem 3.2.6. This completes the program concerning the computation
of the cohomology H* (EG X LM), which is suggested in [Lil03, Remark
6.3]. In consequence, the torsion functor description allows us to compute
explicitly the rational cohomology of the Borel construction of QCP™ en-
dowed with an S'-action; see Theorems 1.2.4 and 1.2.5. We expect that
our explicit computations of the Borel cohomology and our models for the
Borel constructions of loop spaces advance the development of equivariant
rational homotopy theory.



1.2 Results

In this section, we describe our results more precisely. In what follows, we
assume that a differential graded module M is non-negative and connected,
that is, A® = 0 for i < 0 and H(A4) = Q. We write H*(X) for the cohomol-
ogy H*(X;Q) of a space X with coefficients in the rational field.

We first recall the definitions of the torsion product and of a relatively
formalizable pair of maps.

Definition 1.2.1. Let B, M and N be a differential graded algebra, a right
B-algebra and a left B-algebra, respectively. The morphism ¢ : B — N
defined by ¢(b) := b - 1, satisfies the condition that H%(y) is the identity
and H'!(yp) is injective. Let m : B®& AV — N be a Sullivan model for ¢; see
Section 2.4. Then the torsion product Tory (M,N) of M and N over B is
defined to be the homology of the derived tensor product M ®Hé N, namely

Tor’, (M, N) := H* (M oL N) .

Remark. Let m : B® AV — N be a Sullivan model for ¢. Then we see
that
M@gN=M®cp(BaAV).

Definition 1.2.2 (c.f.[Kur02, Definition 3.1]). Let @ : X — Z and 5:Y —
Z be maps with the same target. The pair («, ) is a relatively formalizable
pair if there exist Sullivan algebras AVg, Ap and Aps, quasi-isomorphisms
mg, mp, mp, O, O and O and differential graded algebra morphisms ¢
and v which fit into the following homotopy commutative diagram

R T
Arste)] ot o
m ; 9
AonB) <" AV ()
APL(/B)\L , ¢v | ﬂ*i
APL(B/) ~.B AVB’ ,,,,,, B . H*(B/)

The relative formalizable pair («, () is nothing but to say that

Apr(a) ApL(B)
— ) —

Apr(E) Apr(B Apr(B')

is quasi-isomorphic to the diagram

a*

v (B) <~ 1*(B) 2 H*(B).

Indeed, the standard argument in the model, we have Lemma 3.1.1. Then
we have the following proposition. One of our main results is described as



follows. Let p : E — B be a fibration with fiber F' over a simply-connected
space and f : B’ — B a map between simply-connected spaces. Suppose
that one of H,(B), H.(F) has finite type and one of H,(B’), H.(F) has
finite type. The main theme of this article is concerned with the rational
cohomology of the space B’ xg E.

Proposition 1.2.3. Under the same assumption as above, suppose fur-
ther that (p, f) is a relatively formalizable pair. Then there exists a quasi-
isomorphism ¢ : Apr(B' xp E) — H*(B') QL «(B) H*(E) of AVg-algebras

and AVp is a minimal model for B. In particular, one have

H(¢): H*(B' xp E) — Tory-(s) (H*(B), H*(E))

is an isomorphism of H*(B)-algebras. Here the cohomology is considered a
differential graded algebra with the trivial differential.

We now discuss the cohomology of the Borel construction of the based

loop space of the complex projective space CP™. We regard CP™ as a

homogeneous space in the form % whose base point is %

A homomorphism g : S' — U(m + 1) induces an S'-linear action of CP™.
Then g gives rise to the action on QCP™. The Borel construction of QCP™
associated with the action is denoted by ES! ng QCpP™.

Since U(1) x --- x U(1) is a maximal torus of U(m + 1) and u(S!) is
an abelian group, it follows that there exists an element g € U(m + 1)
such that gu(St)g=' ¢ (U(1) x---x U(1)). Let @ : S* — U(m + 1) be
the map defined by & (627”9) = gu (62”9) ¢g~'. Then there exist integers
U1y .-y fhm+1 such that ﬁ(e%w) = (€2ﬂi0“1,...,62ﬂi9“m+1). We define a
map ¢ : ES! xk, QCP™ — ES! xgl QCP™ by ¢(x,m) = (z,gm). It is
readily seen that ¢ is an isomorphism of the bundles over BS!

ES' xi, CcPm I EST X, aCcpm
BS!.
Theorem 1.2.4. The differential graded algebra

(Qfz] ® Awr) ® Qwz], dws = g(fr)z""w1)

is a Sullivan model for ES' Xgl QCP™, where |z| = 2, |wi| =1, |wa] =2m
and g(@) = (ftm+1 — 1) - -+ (Pm+1 — tm). Moreover, this yields that

H* (ES' X", QCP™) = H* (E51 <" Q(CPm) o

Qlz, wa] ® A(w) (tm+1 € {p1, -+ tm })
Q[Z] ©® @{wlwélzbul 2 07 0 S l2 S m — 1} (,U'm-i-l g {,U'lv T 7/11771})’

as H*(BS"Y)-algebras.



Remark. If m =1, y; and pg can be reordered. Indeed,

1
is a morphism which preserves the base point, where P = <? 0>.

In the case where m > 2, the cohomology H* (ES1 x’gl CPm) does not
characterize the integer fi,,+1, which appers in the representation (fi1, . . ., fim+1)
of the action fi; see Lemma 4.1.2. On the other hand Theorem 1.2.4 asserts
that the cohomology H* (ES1 ng QCPm) characterizes fim41.

We obtain a model for the Borel construction of the free loop space of
the complex projective space CP™ with the S!'-action which is induced by
the action on U(m + 1) mentioned above. In consequence, we establish the
following theorem.

Theorem 1.2.5. The differential graded algebra

Qle, 2] B _ @E
( ) ® A(C) ® Qw], dw = e >

is a rational model for ES? xglL(CPm, where |¢| = 1, |c| = |z| = 2, |w| = 2m
and p:= (¢ — u12) -+ (¢ — pm+12). Moreover, this yields that

H* (ES' X", LCP™) =~ H* (Esl <" LCPm)

as H*(BS')-algebras.

The layout of the rest of this paper is as follows. In Section 3.1, we
prove Proposition 1.2.3. In Section 3.2, we develop a general method for
computing the Borel cohomology of loop spaces. Section 3.3 is devoted
to investigating the Borel cohomology of the loop space of a homogeneous
space. By relying on the results in Sections 3.2 and 3.3, we prove Theorems
1.2.4 and 1.2.5 in Sections 4.1 and 4.2.



Chapter 2

Rational homotopy theory



In this chapter, we recall briefly important facts in rational homotopy
theory, which are used in this paper.

2.1 Sullivan algebras

[o.¢]
Let V = @ V' be a graded module over Q. The quotient graded algebra
i=0
TV

AV =
V= Gy~ (Crydees desuy )

is called the free commutative graded algebra on V| where T'V is the tensor
algebra. If {v;} is a basis of V, we may write A({v;}) for AV.

A differential graded algebra is a graded algebra together with a linear
map d : R — R of a degree 1 such that d(zy) = d(z)y + (—1)%8%2d(y) and
d? =0.

Definition 2.1.1 (relative Sullivan algebra). A relative Sullivan algebra is
a commutative differential graded algebra of the form (B ® AV, d) for which

e (B,d) = (B®1,d) is a sub differential graded algebra, and H°(B) = Q,

o V=0, VP, (ie VO=0)

e there exists an increasing sequence of graded modules 0 = V(—1) C
V(0)cv( . C U V(k
such that d: V(k) — B ® AV (k—1).

In particular, if B = Q, we call (AV,d) a Sullivan algebra.

2.2 The simplicial commutative cochain algebra

Apr

The first step is construction of the simplicial commutative cochain alge-
bra, Apr. To this end, we consider the free graded commutative algebra
A(toy ... tn, Yo, --.,Yn) in which the basis elements t; have degree zero and
the basis elements y; have degree 1. Thus this algebra is the tensor product
of the polynomial algebra in the variables ¢; with the exterior algebra in the
variables y;. A unique derivation in this algebra is specified by ¢; — y; and
yj — 0.
Now define APL = {(APL)n}>0 b



e The cochain algebra (Apr), is given by

Ato, - tnstos - -+ Un
(App)n = (to Yo Yn)

(=220t 2j—0Yi)

where dt; = y; and dy; = 0.

e The face and degeneracy morphisms are the unique cochain algebra

morphisms
0i: (App)n — (Apr)n—1 (0<i < n)
sj (App)n — (App)ny1 (0575 <n)
satisfying
tr k< tr Jk<j
O; it — <0 Jk=1 and sj 1t — St +tep1 k=17
te1 S k>1 tkt1 k> 7.

The simplicial commutative cochain algebra {(Apr)n}n>0 has differen-
tial d, face map 0;, and degeneracy map s; fit into the following diagram,

(Apr)*—2(App) 2 ~(Ap)2—L~(Apy)*?

(Apr)S——(Apr)i—(ApL (Apr)s (Apr)2
atfldor efthlyer otllde =ty ik
(APJ)QH(AQLHH(AW)% (AﬂL)i)’ (Am)l
S0 0; S0 0; S0 0; S0 0 S0 0;
(ApL)d—(ApL)i—(ApL)i— (AP )3 (ApL)o

satisfying following formulas

0;d = do; (for any 1),

s;d = ds; (for any j),

aiaj = 8]-_1&- (fOI" 1< j),

$iSj = Sj415i (for ¢ < j),
ijlai (fOl“ 1< ]),

8¢Sj = id(APL)n (fori=yj, j+1),
Sjai_l (fOI‘ 1> 7+ 1).

Observe that {(Apr)n, {8i}, {s;}}, -, is a simplicial set.

9



2.3 The commutative cochain algebra Ap;(X)

Let X be a topological space. Then we define a cochain algebra

APL(X) = {(APL)p(X)}pzo

by
APLP(X) = HomsetAOP (S* (X)7 APLp);

that is, the set of morphisms of simplicial sets, where S,(X) is the singular
simplicial set on a space X.

Proposition 2.3.1 ([FHTO01, Corollary 10.10]). For topological spaces X
there are natural quasi-isomorphisms of cochain algebras

—Apr(X),

C*(X)——=—=D(X)

where D(X) is a third natural cochain algebra.

2.4 Sullivan models

Definition 2.4.1. 1. A Suwllivan model for a commutative differential
graded algebra (A, d) is a quasi-isomorphism

m : (AV,d) = (A, d)

from Sullivan algebra.

2. If X is a path-connected space, then a Sullivan model for Apy (X),

is called a Sullivan model for X.

3. Let ¢ : (B,d) — (C,d) be a morphism between commutative differen-
tial graded algebras such that H°(B) = Q. A Sullivan model for ¢ is
a quasi-isomorphism of the form

m: (B®AV,d) — (C,d)

where (B ® AV,d) is a relative Sullivan algebra with base (B, d) and
m] B = .

4. If f : X — Y is a continuaus map then a Sullivan model for Apr(f)
is called a Sullivan model for f.

10



Example 2.4.2. The spheres, S*.

Let [S*] be the fundamental class of Hy(S*). This determines a unique
class w € H*(Apr(S¥)) such that < w, [S¥] >= 1, where < -, >, and
{1, w} is a basis for H*(S*). Let ® be a representing cocycle for w.

Now if k is odd then a Sullivan model for S* is given by

m: (A(e), 0) = Apr(S¥),

where deg e = k and me = ®. Indeed, since k is odd, 1 and e are basis for
the exterior algebra A(e).
Suppose, on the other hand, k is even. We may still define m : (A(e), 0) —

Apr(S*), where deg e = k and me = ®. But now, deg e is even, A(e) has
as basis {1, e, €2, €2,...} and this morphism is not a quasi-isomorphism.
However, ®? is certainly a coboundary. Write ®?> = d¥ and extend m to

m: (A(e, €'), d) o APL(Sk)7

by setting deg e/ = 2k — 1, de/ = €? and me’ = U. This is a Sullivan model
for S*.

Lemma 2.4.3 ([FHTO01, Propositions 12.1 and 14.3]). 1. Each commu-
tative differential graded algebra (A,d) satisfying H°(A) = Q has a
Sullivan model

m: (AV,d) - (A,d).

2. A morphism ¢ : (B,d) — (C,d) of commutative differential graded
algebras has a Sullivan model if H*(B) = H°(C) = Q, H°(p) = idg,
and HY(p) is injective.

(B, d)

\

(B® AV, d)

3 /s

(C,d)

12

2.5 Models of fibrations

Let Y be a simply-connected space. Consider a Serre fibration of path
connected spaces
p: X —Y,

whose fibres are also path-connected. Let j : FF — X be the inclusion of
the fiber at yp € Y. By applying the contravariant functor Apy(—) to the
commutative diagram

j

{vo}—Y,

11



we have a commutative diagram

APL(F) Apr(j)

Apr(X)
Apr(p)
= Apr(Y),

where ¢ is the augmentation corresponding to {yo}.
Since Y is a simply-connected, it follows that H'(App(p)) = 0. By
virtue of Lemma 2.4.3, we have a commutative diagram,

Apr(p) Apr(j)

APL(Y) APL(X)
WYT: m |~

(AVy,d) ——(AVy ® AV, d).

Apr(F)

The augmentation € : AVy — Q defines a quotient Sullivan algebra
(AV,d) := Q @ vy ,a) AVy @ AV, d),
Then we have a commutative diagram of differential graded algebras,

Apr(p) Apr(j)

Apr(Y) Apr(X) Apr(F)
my |~ m | m
(AVy,d) ———=(AVy @ AV, d)—=" (AV,d).

Proposition 2.5.1 ([FHTO01, Proposition 15.5]). Suppose one of the graded
spaces Hy(Y;Q) and H.(F;Q) are of finite type. Then

m: (AV,d) — Apr(F)

1S a quasi-isomorphism.

2.6 Models of pullbacks of fibrations

_ 9
qf f )Vrp
A——Y
in which p and ¢ are Serre fibrations with fiber F', Z and X are path con-
nected and A and Y are simply-connected. Choose basepoints ag and g so
that f(ap) = yo. Assume further that one of H,(F;Q) and H.(A;Q) has
finite type and so is one of H,(F;Q) and H.(Y;Q).

Choose Sullivan models my : (AVy,d) — Apr(Y) and ng : (AWa4,d) —
APL(A). Let

Consider the pullback diagram

v (AVy,d) — (AW 4,d)

12



a morphism of differential graded algebras satisfying navy = Apr(f)my. By
applying Proposition 2.5.1, we have a commutative diagram

A
Apr(Y) PO A (X) Apr(F)
my m ™m
(AW, d) (AVy @ AV, d)—= = (AV,d),

in which all the slanting arrows are Sullivan models.
Since nay = Apr(f)my, we have

A
Apr (}()\ prL(p) APL()g)\ Apr (F;)\
my m m
T (AW, d) (AVy @ AV, )= ———(AV, d)
Apr(f)
¥ Apr(g)
A
APL(A)\ e Apr(2) Apr(F)
na
(AW, d).

By definition, we see that
(AWA @ AV, d) := (AW4,d) @avy 0y (AVy @ AV, d)

is a relative Sullivan algebra with base algebra (AWjy,d). The pushout
construction yields the morphism

§:=Apr(g)na-Apr(g)m : (AWa,d) @y, a) (AVy @ AV, d) — Apr(Z),
which fits into the commutative diagram

A
Apr(Y) PO ppn(X) Apr(F)

o S T
= - e-id =

(AVy, d) (AVy ® AV, d) (AV, d)

Apr(f)
Apr(9)

Apr(q)
Apr(A) P ApL(2) Apr(F)

na 13 m

~ ~

(AW, d) (AW3 ® AV,d)—="1——~(AV, d).

Proposition 2.6.1 ([FHTO01, Proposition 15.8]). Under the same assump-
tion as above, the morphism & is a Sullivan model for Z.

13



Chapter 3

The Borel cohomology of
loop spaces
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3.1 The cohomology of the pullback with a rela-
tively formalizable pair
In this short section, we prove Proposition 1.2.3.

Let f : B — B be a map between simply-connected based spaces,
p: E — B a fibration with fiber F', and B’ x g FE the pullback

B xpE — E (3.1)
v

Assume that one of H.(B), H.(F) has finite type and one of H,(B'), H.(F)
has finite type. By using cofibrant replacements, we have the following
lemma.

Lemma 3.1.1. A relatively formalizable pair (p, f) induces a strictly com-
mutative diagram

Apr(E) <= AVp @ AW = H*(E)
APL(p)T UA p*T

Apr(B) o5 AV3 e H*(B)
APL(f)\L ﬂv f*l/

App(B) <2 AV @ AWp —2~ H*(B),

in which AVg @ AWg, AV @ AWp: are relative Sullivan algebras with the
base algebra AVp, horizontal arrows are quasi-isomorphisms, i, j are the
inclusions and ny = ng.

Proof. Recall the diagram mentioned in Definition 1.2.2. Put np = mp
and np = m}(0%) '0p. It is readily seen that n’; = nj. We then have a
diagram

Apr(B) 25 (AVi,d) 2= 1(B) Bl H(AVE, 05 HY(E)
Ars(®)] o o] ) A

Apr(B) L2 (AVs,d) 2~ m(B) “EeH(AVy,d) 2 HY(B)
Aps() | vl ; | o )_IH(M oo

Apr(B') <2~ (AVp,d) 2> H*(B') Z>H(AVp,dy2> H*(B),

in which the left four squares are homotopy commutative and the right four
squares are strictly commutative.

15



Consider the homotopy commutative squares consisting of solid arrows,

m m*(6%)716
Apy(E) 5 (AV, d) i )
~ - 7 - 7
> - ¥ ~
ApL(p) (AVp @ AW}, d) < O (AVB @ AW, d) P
A y . 7
ng o o | nB
Apr(B) ' (AVg,d) Iz H*(B).

Since B is simply-connected, it follows from [FHTO01, Proposition 14.3],
that there exists a Sullivan model « for App(p)ng. We see that ai’ =
Apr(p)ng ~ mge (homotopic rel (AVp,d)). By employing the Lifting
Lemma [FHTO1, Proposition 14.6] and [FHT95, Lemma 3.6], we deduce
that there exists a morphism (3 such that 3 = ¢ and mgf ~ a. We choose
a Sullivan model v for p*np. The Lifting Lemma enables us to get a mor-
phism 6. Put ng := aé and ng := 7. Then we see that ngi = Apr(p)np
and ngi = p*np. In the same way, we obtain quasi-isomorphisms npgs and
np such that np j = Apr(f)np and npj = f*np. O

Proof of Proposition 1.2.3. By Lemma 3.1.1, we have the following commu-
tative diagram

ApL(E) <% AV @ AWg " H*(E)
APL(p)T zj\ p*T

Apr(B) = AVp 2 H*(B)
ApL()] i) |

App(B) <2 AVp®AWp — 2 H*(B),

where n}; = nj. By applying [FHTO1, Proposition 15.8] to the pullback
diagram (3.1), we have a quasi-isomorphism,

(nB/j) . (’I’LE’L) : (AVB ® AWB/) RAVE (AVB ® AWE) — APL(B, XB E)
of differential graded AVg-algebras. Consider the following pushout diagram
AV > AV ®AWE

UB\LZ ‘ nTgi/: =~
H*(B)~ H"(B)® AWp \!

16



It follows from [FHTO1, Lemma 14.2] that 75 is a quasi-isomorphism. By
applying [FHTO01, Theorem 6.10], we have a quasi-isomorphism np' ®,, 75
and a commutative diagram

Apr(B) Apr(B' xp E)

nBTf_v (nB/j)-(nEi)T:
AVgp ————»  (AVB®@AWp/) Qpav, (AVE @ AWE)
ﬂsi: 7]B’®7IB777B\L2

H*(B) ¢ H*(B') @) (H*(B) ® AWE).

This diagram yields a quasi-isomorphism ¢ : Apy(B'xpE) — H* (B “(B)
H*(FE) of AVp-algebras. Moreover, -

1 0079 [ )]

H*(B' x5 E) — H (H*(B’) S H*(E))

is an isomorphism as an H*(B)-algebras.

On the other hand, H*(B) ® AWg is a free resolution of H*(F) as an
H*(B)-algebra because u is a quasi-isomorphism and uj = p*. By definition,
we have

Tory(p) (H*(B'), H*(E)) = H* (H*(B’) () H*(E)) .

This completes the proof. ]

3.2 The G-equivariant cohomology of loop spaces

Let G be a compact simply-connected Lie group, M a G-space and z an ele-
ment of the fixed point set M. The based loop space QM and the free loop
space LM are regarded as G-spaces with the actions induced by the action on
M. Denote mpg : H*(BG) — Apr(BG) by the quasi-isomporphism which
is constructed in [FOTO08, Example 2.42]. The maps &, : BG — EG xg M
and ¢ : EG xg PM — EG xg M are induced by the inclusion {z} — M
and the natural surjection PM — M, respectively. Let A : M — M x M be
the diagonal map and (eg,e1) : M I'— M x M the evaluation map. Then we
discuss appropriate conditions that ((,&,) and (EG Xg (eg,e1), EG xg A)
are relatively formalizable pairs. In consequence, we can describe the coho-
mologies of EG xg QM and EG xXg LM in terms of torsion products.

Definition 3.2.1 (c.f.[Lil03, Definition 3.2]). We call a G-space M G-formal
at x if there are a relative Sullivan algebra H*(BG)® AV with base H*(BG),

17



a morphism ¢ and quasi-isomorphisms m, 6 which fit into the following
homotopy commutative diagram

App(EG xg M) <" H*BG)@ AV - > H*EG x¢ M)

APL(fx)\L <PV f;l/
Ap(BG)~——"2¢ H*(BG) ———— H*(BG).

Remark. Strictly saying, Lillywhite describes the notion of G-formality in
terms of the Cartan model for the Borel construction EG xg M.

Theorem 3.2.2 (c.f.[Lil03, Proposition 6.1]). If M is G-formal at x then
as an H*(BG)-algebra

H*(EG x¢ QM) 2 Tor . (pax o) (H(BG), H*(BG)) .

Remark. We stress that the G-formality of a G-space induces the relative
formalizable pair (¢, &;). This fact plays a key role in our proof of Theorem
3.2.2.

Proof of Theorem 3.2.2. Let x : EG xg PM — BG and w: BG — EG xX¢g
P M be the homotopy equivalences induced by the natural surjection PM —
{z} and the inclusion {x} — PM, respectively. Then we see that

Apr(w)Apr(X)mpay = mpapApr(&x)m ~ Apr(w)ApL({)mpa.

The result [FHTO01, Proposition 12.9] enables us to obtain Apr(x)mpae ~
Apr({)mpg. Because w*(* = £ and x* is the inverse of w*, then we see
that x*¢; = ¢*. Then we have a homotopy commutative diagram

Apr(EG x¢ PM) L2 A0 (BG) 226 g*(BG) — X~ H*(EG ¢ PM)

APL(C)T WT TQ& TC*

APL(EG Xaq M) : AV ~ H*(EG Xaq M)
APL(gz)\L Wi \LE;
Apr(BG) mea H*(BG) ——— H*(BG).

Therefore BG LiN EG xg M & EG xg PM is a relatively formalizable
pair. Since ( is a fibration, we can apply Proposition 1.2.3 to the following
diagram
EG XaG QM — EG XaG PM
| |
BG — =BG xg M.
This completes the proof. ]
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Remark. According to the proof, if it says strictly, the isomorphism is as
an H*(EG x¢ M)-algebras.

Next we consider the G-equivariant cohomology of the free loop space
LM.

Definition 3.2.3 ([GKM98, (1.2)]). We say that a G-space M is equivari-
antly formal if the spectral sequence

H?(BG; HY(M)) = HPT1(EG xg M)
for the fibration EG xg M — BG collapses at the Es-term.

Definition 3.2.4 ([Lil03, Definition 3.2]). A G-space M is called G-formal
if there are a relative Sullivan algebra AV with the base H*(BG) and a
morphism ¢ and quasi-morphisms m, 6 fit into the following commutative
diagram

ApL(EG xg M) <" AV P> H*(EG x¢ M).

~

Lemma 3.2.5 ([Lil03, Proposition 4.8]). Let M be equivariantly formal. If
M is G-formal, then so is M x M.

Proof. We have a pullback diagram of the form

EG x¢ (M x M) — 2952 pGisg M
EGXGPTI\L i/ﬂ'
EG x¢ M ™ BG,

where m : EG xg M — BG is the Borel fibration and pr; : M x M — M
denotes the projection on the ith factor. By proposition A.2.1, EG X pr; :
EG xg M — BG is a Serre fibration. Apply [FHTO01, Proposition 15.8] to
the commutative diagram

pPL(EGXgpri)
LA er

APL(EG Xaq Msx APL(BG%}MQAPL(EG Xaq M)

m = mic | m=

AV ® H*(BG) = H*(BG) = H*(BG)® AV.
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We obtain a commutative diagram

AprL(EGXxgprz)
B S —

APL(EG Xa M

~

APL(EG Xa (M X M))

mw m
% :\ in T 2\
’:E AW < H*(BG)®AV
0®0 3 0
Q
: B 3 [
2 P H*(EG x¢ M)
) i1 m
APL(TF) ~—
APL(EG Xa M) < APL(BG) Ef
m mMmpBaG t~
AV ® H*(BG) =< > H*(BG) 3
6 Q
ﬁ\j H(ApL(m)mpe) N .
H*(EG x¢ M) H*(BG),

where myy is the quasi-isomorphism Apr,(EG xgpr1)m-Apr(EG Xgpra)m,
AW and P = (P,0) are the pushouts (AV ® H*(BG)) @+ pa) (H*(BG) ®
AV) and H*(EG xg M) ®@p+pa) H*(EG xg M). Since M is equivariantly
formal, we see that

H*(BG) ® H*(M) = H*(EG x¢ M)

as a vector space. The H*(BG)-module map p : H*(BG) @ H*(M) —
H*(EG xg M) defined by o(x ® y) = 7*(x) - ¥ is an epimorphism. Thus
the map ¢ is an isomorphism of H*(BG)-modules. So that H*(EG xg M)
is a free H*(BG)-module. Since 6 is a quasi-isomorphism, it follows from
[FHTO1, Proposition 6.7(ii)] that  ® 6 is a quasi-isomorphism.

We consider the Borel fibration 7’ : EG xXg (M x M) — BG. Observe

that
7 =mo (EG xgpr1) =mo (EG Xg pra).

We have
mw 060
APL(EG XaG (M X M)) = AW ~ P.
In the cohomology, we have
H(EG xq (M x M)) < goawy 200 p

The two diagrams above enable us to conclude that M x M is a G-formal
space. In fact, we have

App(EG xg (M x M)) <=2 AW W HYEG x¢ M),
where Oy = mj, [(0 ® 0)*] 710 @ 6. O
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Theorem 3.2.6. Let M be a G-formal space. Suppose further that M is
equivariantly formal. Then as an H*(BG)-algebra,

H*(EG XaG LM) = TOYH*(EGX@(MXM)) (H*(EG XaG M),H*(EG Xa M)) .

Proof. The same argument as in the proof of Lemma 3.2.5 enables us to
obtain a pullback diagram of fibrations

EG x¢ LM EG xqg M!
\L EGXg(eo,el)\L
EG xe¢ M — 2952 BG xg (M x M).

It is enough to show that (EG x¢ (eg,e1), EG xg A) is a relatively formal-
izable pair. In fact, Proposition 1.2.3 deduces the result. We shall construct
morphisms ¢, ¥, my; and 67 which fit into the homotopy commutative dia-
gram

App (BG xg MY <"1 Ay s H* (BG xg MY)
APL(EGXG(eo,el))T wA T(EGXG(eo,el))*
App (BG xg (M x M)2Y AW "% H* (BG xq (M x M))
APL(EGXGA)i sov i/(EGXGA)*

APL (EG XgM) T AV

~

—— H"(EG xg M),
where AW, myy and Oy are the same maps of differential graded algebras
as in the proof of the Lemma 3.2.5.

Consider a pullback diagram of the fibrations

EG x¢ (M x M) 2952 pa e M
EGXGPTI\L Wi
EG xg M ~ BG.

where pri, pro: M x M — M are the projections.
Let i1, i : AV — AW be the inclusions and put ¢ = id - id. Because
Apr(EG xg prj)AprL(EG xg A) = id where j =1 or 2, then we see that

myi; =m = Apr(EG xg prj)Apr(EG xg A)m.

It follows from the proof of Lemma 3.2.5 that Apr(EG xg prj)m = myi;.
Then we see that myi; = Apr(EG xg A)mwi; and me = Apr(EG xg
A)myy. In the same way, we have 0 = (EG x7, A)*Oyy.

Homotopy equivalence p : M1 — M is defined by p(y) = v(0) if v €
M?'. We see that Ap ~ (eg,e1). This enables us to construct a homotopy
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commutative diagram

APL(EGXGM) H* EG XGfM)

APL<E% \ / \gfp)*

Apr (EG xg MT) H* (EG xg M').

RO F5%))

APL(EGXG(eo,el
APL (EG Xaq (M X

EG’XG(eO,el))

%
~

S

Q

X

Q @
L

M) <2 AW M B (BG x¢ (M x M))
Define ¢ = ¢, my = Apr, (EG xg p)m and 0; = (EG X p)* 6. It turns out
that (EG x¢g (ep,e1), EG xg A) is a relatively formalizable pair with my,
and Oy constructed in the proof of the Lemma 3.2.5. Then we can apply
Proposition 1.2.3. O

3.3 The Borel cohomology of the loop spaces of a
homogeneous space

Let G and H be compact simply-connected Lie groups, K a closed subgroup
of H and p : G — H a morphism of Lie groups. The homogeneous space
H/K admits the action of G defined by g-hK = (u(g)h) K. Let EGx, H/K
be the Borel construction defined by the action. We have the Borel fibration
of the form 7 : EG x4, H/K — BG. Let Bu: BG — BH and Bv : BK —
BH be the maps induced by p and the inclusion v : K — H, respectively.
Put AU = H*(BG), AV = H*(BH) and AW = H*(BK). Let sV be
the graded vector space defined by (sV)! = Vi*! for any i. Then we have a
differential graded algebra of the from AU @ AW @ A(sV'), where d is defined
by de =0if x € U® W and d(sv) = (Bp)*(v) — (Bv)*(v) if sv € sV.

Recall the differential graded algebra map mpg : H*(BG) — Apr(BG)
mentioned in Section 3.2.

Proposition 3.3.1. With the same notation as above, the commutative
differential graded algebra AU @ AW ® A(sV') is a Sullivan model for the
morphism Apr(m)mpq.

Proof. Consider the following pullback diagram of the fibrations,

;
EG <" H/K —' - EH/K (3.2)
BG — " . BH,

where FH admits the action of K which is induced by the inclusion v :
K — H. We construct a Sullivan model for Apy (7" )mppy as follows.

We define a differential d on AV @ AW @ A(sV) by de =0ifx e VW
and d(sv) = (Br)*(v) — v if sv € sV.
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In order to define a quasi-isomorphism
(AV @ AW @ A(sV), d(sv) = (Bv)*(v) —v) — AprL(EH/K),

we observe that, for a base w € W, there exists a cycle w’ in App,(FH/K)
such that (Ev/K)*[w'] = w. In fact, Ev/K : BK — EFH/K is a week
homotopy equivalence. Moreover, Bv is regarded as the composite
BK 2% pH/K = BH.

It follows that (n')* = (Bv)* : H*(BK) — H*(BH) and the element
m/(Bv)*(v) — App(7’)(v) is a boundary. Therefore, for a basis v € V,
there exists an element v’ of App(EH/K) such that dv' = m/(Bv)*(v) —
ApL(W/)(U). Let

m': (AV @ AW @ A(sV), d(sv) = (Bv)*(v) —v) — Apr(EH/K)

be a differential graded algebra map defined by m/(v) = App(7")mpy(v) for
v eV, m'(w) =w for a base w € W and m/(sv) = v’ for a base sv € sV.

We show that m' is a quasi-isomorphism. Let {v;}/; be a basis of V.
Then (Bv)*(v1) — vi,...,(Bv)*(vm) — vp, is a regular sequence. Therefore
H* (AV @ AW @ A(sV)) =2 AW and H(m') is the identity of AW. Then we
obtain the following commutative diagram

m

Apr(BG) — AU
APL(BM)T T(BM)*
Apr(BH) —oH AV

APL(W/)\L J

Apr(EH/K) ~—™(AV @ AW @ A(sV), d(sv) = (Bv)*(v) — )

~

By [FHTO1, Proposition 15.8], we have a Sullivan model m = App(7m)mpg -
Apr(f)m’ for EG x, H/K. O

We describe the G-equivariant cohomology of the loop spaces Q(H/K)
and L(H/K) in terms of torsion products under the following hypothesis.

Hypothesis 3.3.2. Let {v;}["; be a basis of V. Assume that there exists
an integer s such that (Bv)*(vy) — (Bp)*(v1),..., (Bv)*(vs) — (Bu)*(vs) is
a regular sequence and (Bv)*(vst1) — (Bu)*(vs+1) = -+ = (Bv)*(vm) —
(BU)*<'Um> =0.

Proposition 3.3.3. Under Hypothesis 3.3.2, H/K is a G-formal space.
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Proof. Consider the following diagram,
App(EG x¥ H/K) <2 (AU @ AW @ A(sV),d) —>H*(EG x% H/K),

where m is constructed in the proof of Proposition 3.3.1. Moreover the
differential d on AU @ AW @ A(sV) is defined by d(sv) = (Bv)*(v) — v.
Since (Bv)*(v1) — (Bu)*(v1), ..., (Bv)*(vs) — (Bu)*(vs) is a regular se-
quence, it follows that the natural surjection
AU @ AW
((Bv)*(vi) = (Bu)*(vi))
is a quasi-isomorphism. Then we define 6 by the composite,
AU @ AW
((Bv)*(vi) = (Bu)*(vi))
m*(p*)71 "
— H*(EG x{, H/K).

p: (AU @AW @ A(sV),d) — ® A(SUs+1,- .-, SUm)

(AU @ AW @ A(sV),d) = @ A(5Vsi1,. .., SUM)

Then the right triangle in the diagram above is commutative. This completes
the proof. O

Theorem 3.3.4. Under Hypothesis 3.3.2, as an H*(BG)-algebra,
H* (EG xg Q(H/K)) &~ TorH*(EGXgH/K) (H*(BG),H*(BG)) .

Proof. We recall the maps m and 6 which is constructed in the proof of
Proposition 3.3.3. By virtue of the Lifting Lemma, we see that there exists
a map ¢ such that mpgy ~ Apr(§y¢)m; see the diagram below,

App(EG xg H/K) <2 (AU @ AW @ A(sV),d) ——>H*(EG x¢ H/K),

APL@pt)i sov &;ti

ApL(BG) — H*(BG) H*(BG),

where the differential d on AUQAW A (sV) is defined by d(sv) = (Bv)*(v)—
v. If z € U@ W, then (§)*0(z) = (&) m*([z]) = [¢(x)] = ¢(x). Since
H*(BG@) is a polynomial, it follows that (&,)*6@(sv;) = 0 = ¢(sv;). By
applying Theorem 3.2.2; we have the result. O

Theorem 3.3.5. Under Hypothesis 3.3.2, as an H*(BG)-algebra,

H* (EG x" L(H/K))
~ Tory ety ) (B (EG x H/K)  H (EG x H/K))

Proof. Since H*(H/K) and H*(BG) are generated by elements whose de-
gree are even, we see that H/K is equivariantly formal. Then we can apply
Theorem 3.2.6. O
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We conclude this section with describing the S!-equivariant cohomology
of loop spaces of the complex projective space CP™. By the following lemma,

CP™ with the basepoint [0,0,...,0,1] is regarded as a homogeneous space
U(m+1)
Tm)xU(D)"

Lemma 3.3.6 ([Yok01, Proposition 27, Theorem 16]). We define a subspace
of M(m + 1;C) as follows,
CP(m):={X e M(m+1;C)|X* =X, X?=X and tr(X) = 1}.

1. The morphism f : % — CP(m) which is defined by f(A) =

AFE,,+1A* is a homeomorphism.
1
2. The morphism g : CP™ — CP(m) which is defined by g | : =
Tm
ﬁ (xlxﬁ)” is a homeomorphism.
K=0 >
A homomorphism p : S' — U(m + 1) induces an S!-linear action on
U(m+1). Then p gives rise to the action on CP™ = % We denote

by ES? x/ey CP™ the Borel construction of CP™. Since U(1) x --- x U(1) is
a maximal torus of U(m + 1) and u(S*) is an abelian group, it follows that
there exists an element g € U(m+1) such that gu(S')g=! c U(1)x---xU(1).

-1
We denote by 7 the composite S' £ U(m + 1) ), U(m + 1). Note

o)

that there exist integers p1, ..., tmy1 such that
i (ezww) _ (62m'9u1’ o 762moum+1> '
We obtain the isomorphisms
H*(BU(m+1)) 2 Qla,...,ams1], H*(BU(m)) = Q[b1,...,bnl,
H*(BU(1)) = Qler], H* (BS') = Qlz),
and H*(B(U(1) x --- x U(1))) 2 Q[t1,- -, tm+1)

where a;, b; and ¢; are the Chern classes and z and ¢; are the first Chern

classes. Since (Bo)*(a;) = Z iy - ty, and (BR)*(t;) = piz,
1<k <<k <m+1
it follows that (Bf)*(a;) = \;2* where \; = Z Py - [oheys O

1<ki <--<k;<m+1
U(1) x -+ x U(1) — U(m + 1) denotes the inclusion and fi : S* — U(1) x
---x U(1) is the map defined by g(—)g~! o u. Observe that i = o o fi.

Let v : U(m) x U(1) — U(m + 1) be the canonical inclusion. Then we
see that (Bv)*(a;) = b; + bj—1c1, where by = 1 and by, +1 = 0. Therefore the
sequence (Bv)*(a1) — (Bp)*(a1), ..., (Bv)*(am+1) — (BR)*(am+1) is regular;
see Lemma A.1.4 below.

By virtue of Proposition 1.2.3, we have
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Proposition 3.3.7. With the same notation as above, as an H*(BS")-
algebra

H* (BS" X%, acp™) = Oy (it o) (H(BS'), H' (BS"))
and
H* (ES' X%, LCP™)
= Tor,,. ) (H* (Esl xE, «:Pm) H (E51 xE, CPm)) 4

BS!x%, CP™xCP™

Proof. Theorems 3.3.4 and 3.3.5 yield the results. O
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Chapter 4

Proofs of main theorems
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4.1 Proof of Theorem 1.2.4

In this section, we use the same notation as in Section 3.3. The purpose
of this section is to compute the rational S'-equivariant cohomology of the
based loop space of the complex projective space by using Proposition 3.3.7.

Lemma 4.1.1. Let 7 : ES? xgl CP™ — BS! be the Borel fibration. Then
(Qle, 2] ® A(same1),d) is the minimal Sullivan model for Apr(m)mpg,
where d is defined by d(c1) = d(z) = 0 and d(sam+1) = (c1 — p12) -+ (c1 —
Hm+17)-

Proof. Let by = 1 and b,,4+1 = 0. Thanks to Proposition 3.3.1, we obtain a
Sullivan model (QIby, ..., by, c1, 2] @ A(saq, ..., Samy1),d) for Apr(m)mpgr,
where d is the differential defined by d(b;) = d(c1) = d(z) = 0 and d(a;) =
bi + bi_lcl - )\12’2

We define differential graded algebra maps f and g over Q|z]

Apr(ES* xk, CP™)

E

(Qbr, ... by c1, 2] ® A(saq, . .., Samy1), d(sa;) = b + bi—1c1 — \iz")

i s

(Qler, 2] @ A(samsr), d(sami1) = (1 — p12) -+ (1 = pm+12))

by
ml . .
fler) =c1 and f(sami1) = Z(—l)"l(cl)m_ﬁ'l - (saj),
N — i —1D)"IN (1) 727, g(ey) = ¢q and g(sac;) = 0 (¢ < m)
900 = S (e0) s fen) = and o) {Samﬂ o

By Lemma A.1.4, we see that

H* (Q[by,...,bm,c1, 2] @ A(say, ..., Samy1)) =

Q[bh DRI bma C1, Z]
(b1 4+ boct — Azt . g1 + ber — Apgp12™m )

Q[CLZ]
((c1 — p1z) -+ (e1 — /im-HZ))‘

By a straightforward computation, we see that g* is the inverse of f* and
hence f is a quasi-isomorphism. O

H* (Qler, 2] @ A(samy1)) =

Lemma 4.1.1 enables us to establish the following lemmas.
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Lemma 4.1.2. As a Q[z]-algebra,

Qlcy, 2]
((01 —mz)- (a1 — Mm+1z)) .

H* (BS* X%, CP™) =

Lemma 4.1.3. As a Q[z]-algebra,

U(m) x U(l)) N CIEN

Ulm) xU(1)) — (e1— pm+12)

Q[2]) -

H*(BS') = H* <E51 X g1

Lemma 4.1.4. Consider the isomorphisms in Lemmas 4.1.2 and 4.1.3, then
we have (Ept)*(c1) = ¢1 = fmt12, where &y : BESY x g1 % — ES? ><“

CP™ is induced by the inclusion U(m) x U(1) — U(m + 1).
Proof of Lemma 4.1.4. See Appendix A.3. O

Proof of Theorem 1.2.4. Thanks to Proposition 3.3.7, it suffices to com-

pute the torsion product TorH* (Eslxgl(CP"L) (H* (BSl) , H* (BSl)). We

first construct a free resolution ¢ of H* (BSl) as a H* (ESl xgl (CPm)-

module. 7
We rewrite H* (ES1 X1 (CPm) as follows,

H* (BS" X%, cP™)
~ Qler, 2]
((e1 = p2) -+ (e1 = prm+12))

Qler — pm+12, 2]
(((Cl — prmt12 + pmg12) — paz) - (61 = pmt1z + pms12) — pmz) (¢1 — Mm+1))
~ Qle, 2] Qle, 7]
(e (e= G = pms1)2) -+ (= (m — pms)2) ) (€1 /(62))]

R

where f(c,z) == (¢ — (1 — pm4+1)2) -+ (¢ = (ftm — pm41)2). By Lemma
4.1.4, we have (§y¢)*(c) = (§p¢)*(c1 — tm+12) = 0. See the following diagram.

Q[C Z] Qle1,7]
/ Cf c,2) ((Cl—ulz)"'(cl—#mﬂz))
(&pt)*
i (5\ @{iv;
~ Q[7] = (c1—fim+12)

over ~¥U& 2 We define a
(c~f(c,z))

]
differential graded algebra (¢, d) by # = (C%[(CC’ZZ])) ®A(wr) @ Qwa], d(c) =
d(z) = 0, d(w1) = ¢ and d(w2) = f(c,z)w1, where |wi| = 1, |wa| = 2m.
Moreover we define a morphism « : # — Q[z] by k(c) = k(w1) = k(w2) =0
and k(z) = z. We show that % is a free resolution of H* (BSl) as an

Now we construct the resolution of Q[z
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H* (ES 1 xgl (CPm>—rnodule. Since the triangle of the above diagram is

commutative, it is enough to show that  is a quasi-isomorphism.

We denote by #” a differential graded algebra Q[c, z, wa] ® A(wy,ws),
whose differential d is defined by dw; = ¢, dws = f(¢, z)w; — w3 and dws =
¢+ f(e,z), where |ws| = 2m + 1. Moreover we define a morphisms &’ :
A — Q[z] by K'(c) = K'(w1) = K'(w2) = K'(w3) = 0 and k'(z) = 2z, and
e: X" — A by elc) =0, €(2) = 2z, e(wy) = wy, €(wy) = we and e(ws) = 0.
Then we see that the diagram

%/;)r%/

AN S
Q[<]

is commutative. Claims 4.1.5 and 4.1.6 yield that  is a quasi-isomorphism.
Claim 4.1.5. The morphism ¢ : ¥’ — J# is a quasi-isomorphism.
Claim 4.1.6. The morphism ' : #’ — Q[z] is a quasi-isomorphism.
We see that
H* (Esl <" Q(CPm) = Tor

H*(ESlxgl(CPm) (H* (le) , H (BSI))

=H* <Q[Z] ® Qle,z] Ji/)

@ f(e.2)
= H* (Q[z] ® A(w1) ® Qwa], dws = g(f1)z"w1),

where g(71) = (tm+1—11) * +* (fm+1—tm). Therefore, we see that g(zz) = 0 if

and only if ;41 is one of py, ..., . Since dz = dwy = 0, a straightforward
calculation deduces the result on the homology; see the figure (4.1) below.
O

We give now proofs of the claims. To this end, we compare appropriate
spectral sequences by making use of the technique in [KMNO06] for computing
the cohomology of a differential graded algebra.

Proof of Claim 4.1.5. We assign the bidegree to each element in ¥ as fol-
lows: bideg ¢ = bideg z = (0, 2), bideg w; = (—1, 2), bideg wa = (-2, 2m+2)
and bideg ws = (0,2m + 1). The bidegree of a monomial is defined as the
sum of bidegree of each indecomposable element. Consider the filtration F*
of " defined by

F' = {z € % |the first component of bideg x is grater than or equal to i}.

Then F* induces a spectral sequence {# E,,d,} converging to H(%") as
an algebra whose Eo-term is given by #' Ey = 3" F*/Fit!. We see that, as
a differential graded algebra,

'X/IEO =~ Qle, 2, wa] @A (w1, ws) and djy(w1) = di(we) = 0, dj(ws) = c- f(c, 2).
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(4.1)

Zm-&-li w2zm w3z
\ ‘ 1 ‘ 1 2‘ 1
wy 2™ wiwe 2™t wiwa M

Z"Tli — 7w2‘z | — 7w2f _
w1z \wlwﬁz wlwﬁz S
! \ whe— N\ b
\ \ N
w‘l ?.Ul’JJUQ LU11U%Z* ,,,,,,,,,,
]L\ w“\ w%\ ,,,,,,,,,,
w1 Wi W2 wlwgi ,,,,,,,,,,
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Moreover, we define the bidegree of each element in J# by bideg ¢ =
bideg z = (0,2), bideg w1 = (—1,2) and bideg wy = (—2,2m + 2). Then a
spectral sequence {# E,,d,} is constructed by using the same filtration of
A as that of #’. Then we see that, as a differential graded algebra,

Q[Ca 2y w?] ® A(wl)
(c- f(c 2))
Since € preserves the filtration, it follows that the map € induces a morphism

of spectral sequences {e,.} : {* E,.,d.} — {* E,,d,}; see the figure below
for the first step.

JL//EO {%/EO
w2 e

%Eo = and do(wl) = do(’wg) =0.

€0.x
I W10 @C,2

-2 -1 [

It is readily seen that €;  is an isomorphism of algebras

L%/’El ) Q[Ca 2, U)Q] ® A(wl) o~ E.
(C ' f(C, Z))
Thus we have the result. O
Proof of Claim 4.1.6. We define the bidegree of each element in #” by
bideg ¢ = bideg z = (0,2), bideg w; = (0,1), bideg wy = (—2,2m + 2)
and bideg w3z = (—1,2m + 2). The filtration of .#”’ defined by the first

component as in the proof of Claim 4.1.5 constructs a spectral sequence
{7 'E,, d,}. Then we see that, as a differential graded algebra,

7' By = Qle, z,we] @ A(wr, ws) and dh(w1) = ¢, diy(ws) = db(ws) = 0.

Moreover, we define the bidegree to each element in Q[z] as follows: bideg z =
(0,2). We construct a spectral sequence { E,, d,} by using the same filtration
of Q[z] as that of #”. We see that, as a differential graded algebra,

Ep = Qz] and dy = 0.

Since k' preserves the filtration, it follows that the map ' induces a mor-
phism {x] .} of spectral sequences; see the figure below.

)
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A straightforward calculation yields that as an algebra,
By 2 H (% Bo,dy) = Qls, ws] @ Auwg) and di(ws) = ws, di(w5) =0

see the figure below.

#' g wo w3 E

It turns out that % , is an isomorphism of algebras
Jg/,E‘Q = Q[Z] = EQ.

This completes the proof. ]

4.2 Proof of Theorem 1.2.5
The purpose of this section is to construct a model for a Borel construction
associated with the free loop space LCP™.

Proof of Theorem 1.2.5. By Proposition 3.3.7, we see that as an H*(BS")-
algebra,
H* (ES' xE, LCP™) =
7 * 1 or m * 1 o m
TOr 1. (51 ¢, (e xcm) (1 (BS' x5 CP™)  H* (BS' x5, CP™)).

We put, respectively,

A:=H" (ES1 Xgl (CPm> ~ Q([;’)Z], A= Qle, 2],
. 7 Qlc] ® Q[c] ® Q[#]
B:=H*(ES' x, (CP™x CP™)) =
( St Xk (C x C )) (o1, p2)

B = Qld @ 0ld ®Qlz].

m+1 m+1

Here p; := Z N Tl 91 @2t and py = Z Nl ™l 2l We
i=0 =0

define elements (; € A’ and ¢ € B’ by

gi;:{l(g’l (i = 0)

)

(-Did@l+c @ct - +1@c (i=1, 2, ,m)

m

C = Z A’rn—z'CiZmii-
=0
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Assume that |w| = 2m and define a differential d on B® A(¢,w) by d(b) =0
ifbeB,dc=c®1—1®cand d(w) = (c. We denote by & the differential
graded algebra (B ® A(¢,w),d). The same argument as in the proof of
[Smi81, Proposition 3.5] shows that & is a free resolution of A as a B-
module.

B €:86— A
S ONE ) = (), () = e(w) = 0
& —— A

In fact, let # = B ® A(¢) be a differential graded subalgebra of &. We
assign the bidegree to each element in & as follows: bideg = = (0, deg )

if x € # and bideg w = (—1,2m + 2). We construct a spectral sequence
{¢E,,d,} by employing the filtration F* of & defined by

F' = {z € &|the first component of bideg z is grater than or equal to i}.
Then we see that, as a differential graded algebra,
Fo = # @ Aw) and df (w) = 0.

Moreover, we define the bidegree of element x of A by bideg x = (0, deg z).
The same filtration of A as that of & defines a spectral sequence {4 E,,d,}.
We see that, as a differential graded algebra,

AFEy =~ A and dy = 0.
The map € preserves the filtration so that we have the morphism of spectral

sequences {¢,+} : {¢E,,d,} — {AE,,d,}, which is induced by e.

AEO

Then Lemma 4.2.1 below enables us to conclude that
‘F,~ A® Alo) ® Qw] and df (w) = o.

Lemma 4.2.1. The morphism f : A® A(o) — H*(X') defined by f(c) =
c®1, f(z) =z and f(o) = (¢ is an isomorphism.

5@ B AE N
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It is readily seen that €s . is an isomorphism of algebras
By Ax AR,
We have the result. O

Proof of Lemma 4.2.1. First we assume |a] = || = 2m + 1 and define a
differential d’ on B'®A(¢, o, §) by d'(¢) = c®1—1®c¢, d'(a)) = py and d'(3) =
p2. We denote by " the differential graded algebra (B’ ® A(c, a, 3),d’).
Let f : A9 A(o) — H*(#") be the morphism of algebras defined by f(a) :=
a® 1 and f(a) =(c—a+f.

Claim 4.2.2. The morphism f: A® A(6) — H (") is an isomorphism.

Next we define a differential d on B® A(¢) by d(b) = 0if b € B and dc =
c®1—1®c and denote by % the differential graded algebra (B ® A(¢), d).
Consider the morphism 7 : %’ — % defined by w(b) = [b], 7(¢) = ¢ and
m(a) =7(B) = 0.

Claim 4.2.3. The morphism 7 : #’ — J# is a quasi-isomorphism.

The map f is nothing but the composite A @ A(o) ERYE (A7) by,

H* (¢). Then we have the result. O]

Proof of Claim 4.2.2. Let </ the differential graded subalgebra B’ @ A(¢) ®
A(a) of #'. Then we see that,

~ Qld ® Q[ ® Q[z]

" 1 Qle, 2]
" (%)_(c@)l—l@c, p1)

(p)

where fi(c) = c® 1 and fi(z) = z. Moreover we have a sequence of isomor-
phisms

~

o]
Il
s

H* (Q@y #") L H* (A(0), 0) £ A(0),

where fo(1®(¢—a+ ) = o and f3(0) = o. This enables us to obtain
isomorphisms

A@ No) LELL, () o B (Qey ') — H (4 © Q@ A7)

o)

The natural quasi-isomorphism f; : & ® Q ®, #' — ¥’ induces the
following isomorphism

f:A@A(J)jH*(&/@Q@@/J{/’) @;H*(Jiﬂ),

o

which coincides with f . O
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Proof of Claim 4.2.3. We define the bidegree of each element in ¢’ by
bideg ¢ ® 1 = bideg 1 ® ¢ = bideg z = (0,2), bideg ¢ = (—1,2) and
bideg oo = bideg 5 = (0,2m+1). The filtration associated with the bidegree
constructs a spectral sequence {'E,., d,}. Then we see that, as a differential
graded algebra,

'Ey 2 B' @ A(¢,a, 3) and djy(e) = 0, dy(a) = p1, dy(B) = po.

We define the bidegree to each element in 2" by bideg c® 1 = bideg 1 ® ¢ =
bideg z = (0,2) and bideg ¢ = (—1,2). Then we have a spectral sequence
{E,,d,} converging to H*(#"). We see that, as a differential graded algebra,

Ey = B® A(¢) and dp(w;) = do(wz) = 0.

Since 7 preserves the filtration, it follows that the map 7 induces a morphism
{7} of spectral sequences.

—

c®1,18¢,2
0
Then g, induces an isomorphism of algebras
ma: B12 B®A[C) X E;.
This completes the proof. O
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A.1 Regular sequences

We describe a proposition on regular sequences.

Definition A.1.1. A sequence aq,...,a, of elements of differential graded
algebra A and whose dimensions are natural number is A-reqular when it
satisfies the following conditions

1. a7 is a non-zero-divisor on A,

A

—— forany i =2,...,n.
(al,...,ai_l)

2. a; is a non-zero-divisor on

Definition A.1.2. Let aq,...,a, be a sequence of elements of differential
graded algebra A and whose dimensions are even. Then we define the Koszul
complex of ay,...,a, written by K*(a1,...,a,; A) as follows

K*(ai,...,an; A) == (A(b1,...,b,) ® A, db; = a;,da = 0(a € A)),
where |by| =--- = |by| = —1 and |a| = 0 for any a € A.

Lemma A.1.3. [BH93, Corollary 1.6.19] Suppose ay,...,a, is a sequence
of elements of a differential graded algebra A and whose dimensions are
even. Then the following are equivalence

1. ay,...,a, is A-reqular,
2. K*(ay,...,an;A) is acyclic.

Proposition A.1.4. Let A and B be a differential graded algebra, a1, ..., am

elements of A and by,..., bty elements of B. Suppose that dimensions
of ai,...,am and by,... by are even. If ai,...,anm is A-regular and
bm+1y- -, bmin s B-reqular, then a1 + b1,...,am + by, bt1s -« o, bgn 1

A ® B-regular.

Proof. By virtue of Lemma A.1.3, in order to prove Proposition A.1.4, it
suffices to show that the Koszul complex

K*(al+b17‘--aam+bmabm+1u-~7bm+n;A®B)
= (A (a1, am, Bty -+ -5 Bn) ® A® B, doy = a; + by, dBj = bj)

is acyclic. We assign the bidegree to each element in the Koszul complex as
follows

bideg a; = (0, —1) bideg a = (0,0) (a € A),
bideg 8; = (0, —-1) bideg b = (1,—1) (b e B).

We define a filtration degree by F* consists the elements of the Koszul com-
plex whose first component of the bidegree is gather then or equal to i. We
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construct a spectral sequence {E,, d,} associated with the filtration F™* con-
verging to H(K*(a1+b1,...,@m~+bm,bm+1, ..., bmin; AR B)) as an algebra
whose Fop-term is given by Ey = > F'/FiT!. We see that, as a differential
graded algebra,

Eo = Alat, ..., am, Bmtt, - - Bgn) QA® B and do (o) = a;+b;, do(8;) = 0,

see the figure below.

|

(a€ A, be B)
The sequence aq,...,a, is A-regular. Then we have
N A
Ey = H*(Eo) = ABmt1, - -+ Bmn) ® (@ am) ® B and di1(53;) = b;.

(a€ gioy bEB)

A B
By =2 H"(E)) = d Ey =2 BEs.
2 ( 1) (alv . 7am) © (bm+1u 7bm+n) o 2
Thus we see that
A B
Tot(Fs) = Tot X .
( ) ((ala"'7am) (bm+1>-~-7bm+n)>

Since Tot(Ewx)! = 0 (i # 0), it follows that
H (K*(ay 4+ b1, .., Gm =+ by, b1y - s binan; A® B)) =0 (i # 0).

This implies that K*(a140b1, ..., Gm+bm, bmti1s- -, bmin; A® B) is acyclic.
O

A.2 The functor EG xg —

Proposition A.2.1. Let E and B are G-spaces. If G-map p: E — B is
a Serre fibration with fiber F', then EG xgp: EG xg E — EG xXg B is a
fibration with fiber F' up to homotopy.
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Proof. By virtue of [NeilO, Proposition 3.2.2], we have the following com-
mutative diagram

TE

EG xg B
| x ~ TE

| E BG

\—) ﬁl idpa
EGxap EG xg B —2 = BG,

where the lower right side square is a totally fibred square. Because EG X ¢
E — E is a weak homotopy equivalence, g is a fibration with fiber E up

to homotopy. By [Neil0, Proposition 3.2.3], F — F — x is a fibration, see
the following diagram;

F r %
y Vo~
~ E
FE E BG
w 5 Jidse
B EG xg B —2 - BqG.
Then we have the conclusion. O

A.3 Proof of Lemma 4.1.4

The following Lemma gives the proof of Lemma 4.1.4.

Lemma A.3.1. Under Hypothesis 3.3.2, the same argument as in the proof
of Proposition 3.3.3, enable us to obtain

(&pt)" - H" (EG xg H/K) — H*(BQ); (&pt) " [w] = [1 ® w]
where §pr : EGxgK/K — EGxgH/K is induced by the inclusion K — H.

Proof. Remember the construction of Sullivan model of EG XZ H/K. We
use the following pullback diagram of fibrations,

H/K ———H/K
P
EG x% H/K —~ E.Ei/K
BG B(vop) BH,

where GG E\ K <% H and v is the inclusion. Moreover, their Sullivan models
are the following,

App(BGY YR L (BH D Apy (BH/K)
mBGTE mBHTE m'Tz
AU - AV C (AV @ AW ® A(sV), d(sv) = (Bv)*(v) — v).

(B(Voﬁ))
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Especially, if H = K, the above diagram replaced the following diagram,

Apr(BGY 2P L (BK) —— Apr(BE)
mBGTZ mBKT: m//T:
AU — AW AW @ AW @ A(sW), d(sw) =1®@w—w®1).
(B@m)
Consider the following diagram,
H/K H/K
\ ‘
K/K K/K =x
z f
[
EG x¢ H/K — EH/K\\EV/K
- EG xl, K/K EK/K = BK
B(von .
BG (vom) BH _, idpr
\ Bn \
BG BK.

Now we construct a model of right side square of above diagram. See the

following diagram,

Apr(BH) 222 40 (BH/K)

X S
N AV L AV ® AW @ A(sV), d(sv) = (Bv)*(v) — v)

s B

S = :

\J = :

s :

= z E

APL(BK =S APL(BK

Ny

AW(L(AW(X)AW@A(SW), dsw) =1 w—w®1).

By employing the Lifting Lemma [FHTO1, Proposition 14.6] and [FHT95,

Lemma 3.6], we obtain ; such that mpg6; ~ Apr(Bv)mpy (homotopic).
Moreover, there exists 6o such that ixy = iaw by and m”0s ~ App(Ev/K)m/

On the other hand, because H(61) = (Bv)*, §; = (Bv)*. Since ((Ev/K)*(m/)*)[w] =
w = (m")*[1 ® w], H(f2)[w] = [1 ® w] see the following diagram

HY(BEH/K)<"2 H(AV @ AW @ A(sV), d(sv) = (Bv)*(v) - v)
(Eu/K)*i/% * H(ag)lg

AW — H*(BER" H(AW @ AW @ A(sW), d(sw) = 1w - we1).
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Therefore, we have
(gpt)*[w] = H(idAU X (By)* 92)[10] = [1 ® w].

This complete the proof.
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