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Abstract

The aim of this paper is to investigate relationships between relative free
loop spaces and the Hochschild (co)homology and to give its application to
relative string topology. In particular, we show that non-triviality of the
Whitehead product of a mapping space implies non~commutativity of the
loop product on the relative loop homology.

Let f: X — Y be amap from a Q-Poincaré duality space X to aspace Y
and Y7 the space consisting of all paths on Y. We denote by ev : L Y — X
the evaluation fibration which is the pullback of the free path fibration
Y1 =Y x Y along the map (f, f): X — Y x Y. Let Sec(ev) be the space
of sections of the evaluation fibration ev with base point s which sends to z
to (z,cf(z)), where cs(y) denotes the constant path at f(z). We show that
there exists a natural injective map my(Sec(ev)) ® Q — Hipdim x(L5Y; Q)
with degree of dim X. '

As an application of the result, we give a condition for the rational rel-
ative loop homology H,(LsY;Q) to be non-commutative provide X is a
closed oriented manifold. Let map(X,Y; f) be the connected component
of the mapping space map(X,Y) containing f. We prove that the non-
trivial Whitehead product of map(X,Y’; f) implies a non-commutativity of
the loop homology H,(L¢Y;Q). This enables us to obtain an example of
non-commutative algebra H.(L;Y'; Q) while the Chas-Sullivan loop homol-
ogy H,(LX;Q) is commutative in general.

Moreover, we describe the Whitehead products in the rational homotopy
group of a mapping space in terms of the André-Quillen cohomology. As a
consequence, an upper bound for the Whitehead length of a mapping space
is given.
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Chapter 1

IntroduCtion

1.1 Backgrounds and Motivations

The main players in this paper are the free loop space and the Hochschild
homology. Let X and Y be topological spaces and map(X,Y) the space
of all continuous maps from X to Y with compact-open topology. The
free loop space LM = map(S*, M) is one of crucial and interesting objects
in topology and geometry. For example, the unboundedness of the Betti
number of the free loop space LM implies infiniteness of geodesics on a
Riemannian manifold; see [19] and [46]. String topology initiated by Chas
and Sullivan [9] is the study of algebraic structures on the homology H.(LM)
of the free loop space. In particular, string operations on Hy(LM) gives rise
to 2-dimensional topological quantum fleld theory [8].

Relationships between free loop spaces and Hochschild homologies have
been considered by several authors. One of ingredients for the study is a
cosimplicial model for the free loop space. In [26], Jones has proved that
the cohomology H*(LM;K) with coefficients in a field K is isomorphic as a
vector space to the Hochschild homology of the simplicial cochain complex
S*(€] 1) of a cosimplicial model {27 ; for LM:

H*(LM;K) 2 HH,(S*(Q3 1;K)). (1.1.1)

In the rational case, a commutative model for LM induces an isomorphism
H*(LM) & HH.(AV,AV), where AV is a minimal Sullivan model for M
(see Chapter 2) and HH,(AV,AV) is the Hochschild homology of AV. Let
M be a closed oriented manifold of dimension d, then the dual of the iso-
morphism and a Poincaré duality of M allow us to obtain the isomorphism
Hyq(LM;Q) & HH™*(AV;AV). Félix and Thomas [17] have constructed
an injective map, which is defined topologically, from the rational homotopy



group of aut; M to the rational homology group of LM:
I':me(Qauty M) ® Q — Hyqq(LM;Q), (1.1.2)

where aut;M denotes the path component of the monoid of the self-
homotopy equivalences of M containing the identity map. In general, there
is a direct sum decomposition of the Hochschild cohomology (called the
Hodge decomposition or A-decomposition)

HH*(AV,AV) = (P HH};) (AV,AV).
’ >0

As for the summand HH 0 (AV, AV), Félix and Thomas [17] prove that the
first piece is isomorphic to m.(Qaut; M) ® Q and fits into the commutative
diagram

Hyya(LM; Q) —=— HH=(AV, AV)

I‘T ' Tinclusion (1.1.3)
mn(Qauty (M) ® Q —g= HHZF(AV, AV).

This yields a topological description of the inclusion H H(*l) (AV,AV) C
HH*(AV,AV). The results of Jones, Félix and Thomas mentioned above
motivate us to generalize them to their relative versions.

1.2 Results

In what follows, we assume that a topological space has the homotopy type of
a CW-complex whose homology with coefficients in a field K is of finite type.

Let X and Y be simply-connected spaces and f, g : X — Y continuous
maps. Let Y/ denote the space consisting of all continuous maps form the
closed unit interval I = [0,1] to the space Y. We denote by ev; : Y — Y
the evaluation map at 4. Consider the pullback diagram:

Ppg——vyI

evl l(evo,evl)

X ——>(f’g) Y xY.

We observe that Py, is homeomorphic to the space

{(m,7) e X x Y| f(z) =4(0), g(z) = v(1)}-



If f = g, then we write LY for Py y. For example, if X is the one point
space and f, g are the constant map c, to a base point of ¥, then P, .,
is nothing but the based loop space QY. If X = Y and both f, g are the
identity map ly, then Py, 1, is the free loop space LY.

Let O} , be a cosimplicial model for Py,g and Cy(S*(Q%,,)) a Hochschild
chain complex of a simplicial cochain complex S5* (Q},Q;K), that is a total
complex of the double complex associated to a cosimplicial space Q} g Here
S*(—; K) means the singular cochain functor over a field K (for proper def-
inition, see Chapter 2). Our first result is described as follows.

Theorem 1.2.1. Let X, Y be a simply-connected space and f, g: X — Y
a continuous maps. Then, there is a quasi-isomorphism

Cu(5™ (Q},g; K)) == S*(Pr,g; K).

Theorem 1.2.1is regafded as a generalization of Jones’ work (1.1.1) men-
tioned in §1.1. Chen [10] proved Theorem 1.2.1 in the case where the under-
lying field K is the field R of real numbers. We prove Theorem 1.2.1 relying
on the ideal due to Chen. )

Assume that X is a Q-Poincaré duality space of formal dimension d, that
is, the space X is equipped with a homology class [X] € Hy(X;Q) called an
orientation class for which the cap product

—N[X]: H*(X;Q) — Hyg—«(X;Q)

is an isomorphism. Let Sec(ev) be the space of all sections of the fibration
ev: LY — X with a base point s : X — LY which sends = to (z, cp(g)),
where cf(z) is the constant path at f(z). Then, for n > 1, we define I'y by
the composite

Ty : mn(Sec(ev)) @ Q —H>Hn(Sec(ev); Q) —r . n+d(LfY; Q).

Here, H is the Hurewicz map and I' is the map defined by
[(a) = He(Ev)(a ® [X]),

[X] € S4(X;Q) is the representative element of the orientation class of X
and Ev : Sec(ev) x X — LfY is the evaluation map.

Theorem 1.2.2. Let X be a simply connected Q-Poincaré duality space with
the homotopy type of o finite CW-complexz and Y a simply-connected space.
Let A be a Q-Poincaré duality model for X in the sense of Lambrechts and
Stanley [80] and (AV,d) a minimal Sullivan model for Y. Then one sees that



there exist isomorphisms Hyqq(LfY; Q) & HH*(AV, A) and m«(Sec(ev)) ®
Q= HH Ekl) (AV, A) such that the following diagram is commutative:

Hypa(LsY;Q) —=—> HH*(AV, A)

I T Tinclusion

Ta(Sec(ev)) ® Q — HH;,(AV, 4).

Let M be a closed oriented manifold of dimension d. In [9], Chas and
Sullivan introduced a product on H,(LM) of degree d called the loop product.
Moreover they have proved that the shifted homology H.(LM) = Hyyq(LM)
endowed with the loop product is a graded commutative algebra. Gruher
and Salvatore [20] generalized the loop product to that on a relative loop
space LY when X is a simply-connected d-dimensional closed oriented
manifold. It turns out that H,(L;Y) also has a graded algebra structure
similar to the construction of loop products. We now recall the construction
of Joop product on H,(LsY"). Consider the pullback diagram

LfY Xx LfY ——>LfY X LfY

l | lmw

X— s X x X
Ax .

where Ay is the diagonal map. Let Comp : LfY Xx LY — LfY be the
concatenation of loops, that is, Comp is defined by Comp((z,71), (z,72)) =
(z, 71 * 72).and

e ={ 260

for any (z,7v;) € LY and t € [0,1]. Gruher and Salvatore [20] constructed
a homomorphism

A Hy(LfY X LyY) — Hyog(LfY xx LfY)

with degree —d by using the Thom construction. Then the loop product on
H,(LsY) is defined by the composite

Ho(LsY) ® Hy(LsY) —> Hy(L;Y x LiY)

.
Hya(LsY % LiV) 228 B, (1Y)



The loop product on H,(LfY) is not necessarily graded commutative while
the Chas-Sullivan loop homology H, (LX) is graded commutative. Theorem
1.2.2 allows us to deduce a criterion for non-commutativity of the alge-
bra H, (LfY; Q). Let map(X,Y; f) denote the connected component of the
mapping space map(X,Y’) containing f.

Proposition 1.2.3. If the rational homotopy group m>o(map(X,Y; f)) @Q
has a non-trivial Whitehead product, then Hy(L¢Y; Q) is a non-commutative
graded algebra.

Examples of the spaces X and Y in which m>o(map(X,Y; f)) @ Q has a
non-trivial Whitehead product are described in ‘Chapter 5 and Chapter 6.

The three assertions mentioned above, Theorems 1.2.1, 1.2.2 and Propo-
sition 1.2.3 are stated in the article [38] by the author. However, there are’
some gaps in the proof of [38, Theorem 1.1, Theorem 1.2, Corollary 1.3].
Then modifying the proofs, we here refine these results and give proofs of
Theorems 1.2.1 and 1.2.2 and Proposition 1.2.3. '

Suppose that X is a finite CW-complex. Let AV be a minimal Sul-
livan model for Y, B a CDGA model for X andﬂf a model for f. De-
note by HA‘&(AV, B; f) the homology of the complex of f-derivations called
the André-Quillen cohomology ([2]). The nth rational homotopy group of
map(X,Y’; f) is isomorphic to HiG(AV, B; f) as abelian groups for n > 2.
This fact has been proved by Block and Lazarev [2], Buijs and Murillo [7],
Lupton and Smith [31]; see Chapter 5 for precise definitions and details. In
order to study of the Whitehead product of the mapping space from ratio-
nal homotopy theory point of view, Buijs and Murillo [7] defined a bracket
in the André-Quillen cohomology Hjq (AV, B; f) which coincides with the
Whitehead product in . (map(X,Y; f)) ®Q via the isomorphism mentioned
above. We remark that the isomorphism due to Buijs and Murillo is con-
structed relying on the Sullivan model for map(X,Y’; f) due to Haefliger [21]
and Brown and Szczarba [4]. To this end, the finiteness of a model B for
the source space X is assumed in the result [4, Theorem 1.3] and [21, §3].

On the other hand, the finiteness hypothesis on X assures that
mn(map(X,Y; f))®Q is isomorphic to 7, (map(X, Yg; 1 f)), wherel : ¥ — Yo
the localization map; see [25, II. Theorem 3.11] and [42, Theorem 2.3]. Then
the isomorphism constructed in [2] and [31] factors as follows:

Tn(map(X, Y; £)) ® Q —o mn (map(X, Yos 1f)) —o HFR(AV, B; ).

For the detail of the map ©, see Section 5.1. The proof of [31, Theorem
2.1] and the result [2, Theorem 3.8] show that the second map © is an
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isomorphism without the finiteness hypothesis on X. In this paper, we in-
troduce a bracket in the André-Quillen cohomology which coincides with the
Whitehead product in 74 (map(X, Yg; f)) up to the isomorphism © without
assuming that X has a finite dimensional commutative model. Thus cne
might expect a generalization of the result [7, Theorem 2] due to Buijs and
Murillo.

Let X be a simply-connected space with a CDGA model B and Y be
a Q-local, simply-connected space of finite type. Then we have a model
f: AV — B for a based map f : X — Y. Now, we define a bracket in
Hio(AV, B; ).

[, 1: HRq(AV, B; f) ® H{G(AV, B; f) — HLE™(AV, B; f)

by

o, ¢](v) = (1)1
X Z(Z —1)%4 fv1 - 03-1)(03) F (Vi - - v5-1)(05) Fuge - - -vs)),
i#]j
| (1.2.1)

where v is a basis of V, dv = > v1vg - -vs and

i—1 Jj—1
el O logl) + 91O vel) + el (G < 5)
£ = k=1 k=1

i—1 ] Jj—1 .
ol O lvel) + 11O lvel) (j <)
k=1 k=1

The following is our main result on the Whitehead product in the rational
homotopy group of a mapping space.

Theorem 1.2.4. The isomorphism © : mp(map(X,Y; f)) — H;g(AV, B; f)
is compatible with the Whitehead product in mn,(map(X,Y; f)) and the
bracket in HXS(AV, B; f) defined by the formula (1.2.1).

It is important to remark that if X is finite, then the bracket in
Hiq(AV, B; f) coincides with that due to Buijs and Murillo [7] up to sign.
Let map, (X,Y; f) be the path-component of the space of based maps from
X to Y containing the based map f: X — Y. We can apply the same ar-
gument as the case of the based mapping space map,(X,Y; f); see Section
5.1 for details.

As an application of the result, we study the Whitehead length of a
mapping space. The Whitehead length of a space Z, written WL(Z), is the
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length of non-zero iterated Whitehead products in m>2(Z). By definition,
WL(Z) = 1 means that all Whitehead products vanish. In [32], Lupton
and Smith give some results and examples related to a Whitehead length of
map(X,Y; f) using a Quillen model for the mapping space. In this paper,
we give another proof of their results using the bracket in the André-Quillen
cohomology; see Proposition 5.2.1. In order to describe an upper bound for
the Whitehead length of map, (X,Y; f), we introduce a ]_aumerica,l invariant.

Definition 1.2.5 ([14, p315]). The product length of a connected graded
algebra A, written nilA, is the greatest integer n such that ATAT ... A+ £ 0
(n factors). '

In [5], Buijs proved the following theorem.

Theorem 1.2.6 ([5, Theorem 0.3]). Let X andY be simply-connected spaces
with finite type over Q and B a CDGA model for X. If WL(Yg) = 1, then

WL(map,(X,Y; flg) < nilB — 1.

Using the bracket in the André-Quillen cohomology, we can prove the
following proposition, which refines the above result; see Remark 5.2.4.

Proposition 1.2.7. Let X and Y be simply-connected spaces with finite type
over Q, AV a minimal Sullivan model for Y and B a CDGA model for X.
Assume further that Y is Q-local and the differential of AV is non-trivial.
IfWL(Y) =1 and nilB > 2, then

WL(map, (X,Y; f)) <

— 1(nllB —1)+1,

where w = min{n > 2 | d(V) € AZ"V}.

We here remark that the equation WL(Y) = 1 implies that w > 3. Fur-
thermore, w is the largest number such that all Whitehead products of order
less than w vanish in Y [1, Proposition 6.4]. If ¥ has a minimal Sullivan
model with a zero differential, it is readily seen that WL(map, (X,Y;f)) =1
by the bracket (1.2.1).

As 'computational examples, we compute the Whitehead length of
map(CP*® x CP™,CF§° x CFY; f1)- Recall that (A(zg,xh, 1), d@onq1 =
z5*1) and (Q[z9],0) are the minimal Sullivan models for CP™ and CP®,
respectively. Let fi : CP® x CP™ — CP® x CP™ be the realization of the
CDGA map ‘

712 Qlza] ® Amz, B9, 41) — Qwa) ® AWz, Vi)

'd_eﬁned by fl(z2) = qi(wz ® 1), fl(wz) = @(wa ®1) + ¢g3(l ® y2) and
fi(zhy, . 1) = 0 for some g1, ¢2,93 € Q.



Proposition 1.2.8. Let m < n. Then one has

WL(map(CP®xCP", CPE X CES, f1)) = {i EZt;eTw ;s, go =0, g3 #0)

By Proposition 1.2.3, we have an interesting example.. Let X be a 3-
dimensional sphefe S% and Y be a space with a minimal Sullivan model
(AV,d) = (A(m1, 0, 23,y),d) with |z1| = 2, |z2] = |z3] = 3 and |y| = 7. The
differential d is given by dz; = 0 for any i and dy = z1293. Let fo: S° - Y
be a map which is the realization of the CDGA map fo : AV — M(S?) =
(A(es),0) defined as

fa(z1) =0, fa(ze) = fa(zs) =es, foly) =0.

In this setting, Lupton and Smith [32, Example 6.6] show that the White-
head length of map(S3,Y; f2) is greater than 2 by using a Quillen model.
We can give another proof of this result using the bracket (1.2.1) and have
the following result.

Proposition 1.2.9. One has
WL(map($%,Y; f2)) = 2
and hence Hi(Lz,Y; Q) s non-commutative.

The organization of this paper is as follows. In Chapter 2, we will give
preliminaries for our arguments in this paper. We will recall several fun-
damental definitions and results on rational homotopy theory. The precise
definitions of the Hochschild (co)homology and the cubical singular chain
complex are described in this chapter. Chapter 3 is devoted to proving
Theorem 1.2.1. In Chapter 4, we will begin with an introduction of a com-
mutative models for Sec(ev) and a Poincaré duality space. Theorem 1.2.2
and Proposition 1.2.3 are proved in this chapter. Chapter 6 will give a proof
of Theorem 1.2.4. The Whitehead length of mapping spaces is also investi-
gated. In the last section of this chapter, we will prove Propositions 1.2.8
and 1.2.9.



Chapter 2

Preliminaries

2.1 Rational homotopy theory

We refer the reader to the book [14] or [16] for the fundamental facts on
rational homotopy theory.

Let V be a graded Q-vector space of the form V = P, V. Then a free
commutative differential graded algebra (CDGA), (AV,d) is called a Sulli-
van algebra if V has an increasing sequence of subspaces V(0) c V(1) C ---
which satisfies the conditions that V' = J;5,V (%), d = 0 in V(0) and
d: V(i) — AV(i—1) for any 7 > 1. -

We recall a minimal Sullivan model for a simply-connected space X with
finite type. It is a Sullivan algebra of the form (AV,d) with V = @5, V?,
where each V*® is of finite dimension and d is decomposable; that is,
d(V) < AZ2V. Moreover, (AV,d) is equipped with a quasi-isomorphism
(AV,d) == Apr(X) to the CDGA Apy(X) of differential polynomial forms
on X. Observe that, as algebras, H*(AV,d) = H*(ApL(X)) & H*(X; Q).

Example 2.1.1. 1. A minimal Sullivan model for the n-dimensional
sphere S™, M(S™), has the form (A(ep),0) if n is odd and
(Alen,€an—1),dean—1 = €2) if n is even, where |e,| = n and |egn_1| =
2n — 1. '

2. A minimal Sullivan model for the complex projective space CP™ has
the form (A(z2, Yon+1), dze = 0,dysns1 = mg"'l), where |z2] = 2 and

|y2n+1[ =2n -+ 1.

A CDGA model for a space X is a connected CDGA (B, d) if there exists
a quasi-isomorphism from a minimal Sullivan model for X to B. Let A(t, dt)
be the free CDGA with [t = 0, [dt| = 1 and the differential d of A(¢,dt)
sends t to dt. We defined the map & : A(t,dt) — Q by &;(t) = i. Two



maps @ and @1 of CDGA’s from a Sullivan algebra AV to a CDGA A are
homotopic if there exists a CDGA map H : AV — A ® A(t,dt) such that
(1-€3)H = @; for i = 0,1. Denote by [AV, A] the set of homotopy classes of
CDGA maps from AV to A.

Let f: X — Y be a map between spaces of finite type. Then there
exists a CDGA map f from a minimal Sullivan model (AVy,d) for ¥ to a
minimal Sullivan model (AVx,d) for X which makes the diagram

Apr(f
Apy (V) —2D a4 (v
AVy _f—> AVx

commutative up to homotopy. Let p : AVx =, B a CDGA model for X,
we call pf a model for f associated with models AVy and B and denote it
by f. _

‘We now recall the following result.

Proposition 2.1.2 ([14, Proposition 12.9]). Let A and C be CDGAs, AV
a Sullivan algebra and 7 : A — C a quasi-isomorphism. Then the map

s 1 [AV, A] — [AV, ]
induced by 7 is bijective.

In particular, we use the proposition when constructing a model for the
Whitehead product of a mapping space in Chapter 5.

Remark 2.1.3. If 7 is a surjective quasi-isomorphism and AV is a minimal
Sullivan model, then we can construct a CDGA map ¢ : AV — A such that
w¢ = 1) for any CDGA map 9 : AV — C by induction on a degree of V' [14,
Lemma 12.4]. Let v be a basis of V' and assume that ¢ is constructed in
AV<Il. Then ¢d(v) is defined. Since  is a surjective quasi-isomorphism and
m¢d(v) = dip(v), we can find a € A such that d(a) = ¢d(v) and w(a) = ¥(v).
Then, we extend ¢ with ¢(v) = a.

2.2 The Hochschild homology and cohomology
Let B = {(En, d)}n>0 be a simplicial cochain complex, that is, (En,d) is a

cochain complex for any n > 0 together with cochain maps §; : Bp—1 — By,
and oy : Epy1 — By (0 <14 < n) satisfying simplicial identities. We then get
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a double complex Cpq(E) given by Cpq(E) = (Ep)? with the vertical and
horizontal differentials

d1 : Cpg(E) — Cpas1(E), di(x) = (~1)Pd(x),

dy : Cpg(B) — Cpo14(E), da(z) = (1771 3 (~1)igi(a).
=0

The total complex (Ci(E), D) of the double complex {Cp ¢(E)}p,q given by

Cn(B)= € Cpy(E), D=d1+ds
p—g=n
is called the Hochschild complex of a simplicial cochain complex F and its
homology, HH.(E), is called the Hochschild homology of F.

Let (4,d) be a differential graded algebra over a field k and M a dif-
ferential graded A-A bimodule. Denote by sA the suspension of A, that is
(sA)" = A" and T(sA) the tensor algebra on sA. The Hochschild chain
complez of A with coefficient in M is the complex Cy(A4; M) = M @ T(s4)
with the differential D = D1 + Dq defined by

Di(mla1]az| - - |ag]) =d(m)[a1laz| - - |ax]

k
= > (~1mlailas] - [d(ai)] -+ ]
i=1
Ds(mlaifag] -+ |ax]) =(=1)™mai [ag] - - - o]
k
+ Y (=1)%mlaa] - |ai—1as] - - ax]
=2
— (=1)Fla g mlas |ag) - - - |ag—1).
Here &; = |m)| +2 j<i|saj| and mla1|as| - - - |ag] the element m ® (sa1 @ 502 ®

- @ sax) of M ® T'(sA). The homology of the complex, HH,.(A; M), is
called the Hochschild homology. The bar construction of A is the complex

B(A;AA)=AQT(sA)® A
with the differential dg = dj + do defined by

di(alar]ag| - - - |ak]b) =d(a)[ai]az| - - - [ax]b
k

3" (~1)%afaslag| - - - |d(as)] - - - |ax]b

i=]1

+ (=1)*+ala1]ag| - - - [ax]d(b),

11



da(alarfas| -+ Jar]p) =(~1)laaz ag] - - - ax]b
k

+> (=1)%afa] - |ag-1a] - |ax]p

=2
— (=1)%*ala1]ag| - - - |ag—1]axd.

Let A be a differential graded algebra with an augmentation A — K and 4
the augmentation ideal of A. The normalized bar construction B(4, 4, 4)
of A is the complex A ® T(s4) ® A with the differential defined as with
the differential of B(4, 4, A). We then see that the inclusion B(4, 4 A)
B(A, 4, A) is a quasi-isomorphism.

Let A% Dbe the opposite graded algebra of A and A® the tensor algebra
A ® A%. Recall that any A-bimodule can be considered a left (or right)
A®-module.

Lemma 2.2.1 ([13, Lemma 4.3]). The left A®-module map
eq:B(A;A;A) — A

defined by e4(a[ |b) = ab and e4(alai|ag| - - - |ax)b) =0 for k > 0 is a semifree
resolution of A as a left A®-module. 0

We have an isomorphism
(Cu(4; M), D) = (M @00 B(A; A; A),d® 1+ 1®dp)

Therefore, the Hochschild homology is described by the torsion functor in
the sense of Moore, see [12, Appendix],

HH.(A, M) = Tor.(A, M).
Consider the complex |
C*(4; M) = (Homue(B(A; A; A), M), D",

where D/(p) = dar 0 — (=1)%lp o dp for € Homae (B(4; 4; A), M). We
call the complex the Hochschild cochain complexr of A with coefficient in
M. The Hochschild cohomology is the homology of the complex C*(A4; M),
HH*(A; M). We see that

HH*(A,M) =Ext}.(A, M).
Al
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2.3 The cubical singular chain complex

Let I™ = [0, 1] be the n times product of the closed unit interval [0,1]. An
n-cube in a topological space Z is a continuous map [™ — Z. An n-cube
o: I™ — Z is degenerate if there exist a integer 7, 1 <7 < n, and an (n—1)-
cube o/ : I"™! — Z such that o(t1,ta, -+ ,tn) = o/ (t1, + ,tic1, vty > tn)
for any (t1,%, - ,tn) € I™. Note that all O-cube are non-degenerate. We
denote by Cn(Z;K) the free K-module generated by the set of all non-
degenerate n-cubes in Z. We define the map

Af : In_l — In: (t1)t2>" : 7tn—1) — (t17" : 7ti—17€7t’ia' o ;tn—-l)

for e =0,land 1 < i < n Let & = 50,0 A : Cu(Z;K) —
Cn-1(Z;K). Then 8 is a well-defined differential of C(Z;K) ([33, p.13]) and
the chain complex (Cx(Z;K), 0) is called the cubical singular chain complexz
_of Z. The cubical singular cochain complez of Z over K is the complex
C™(Z; K) = Homg™(C4(Z), K). The differential d : C"1(Z;K) — C™(Z;K)
is defined by d(y) = @0 for ¢ € C* 1 Z;K).

The Alexander-Whitney map and the‘Eilenberg—Zilber map are also de-
fined in cubical singular chain complexes ([33, p.133, p137]). The Eilenberg-
Zilber map

EZ : Cn(21;K) ® Crm(Z2; K) — Cnym(Z1 x Z2;K)

is defined by EZ(p ® ¥) = ¢ X 1) where ¢ (resp. %) is an n (resp. m)-
cube. The Alexander-Whitney map is defined as follows. Let J be any
subset of {1,2,--- ,n+m} and J° the complementary subset of J. If J =
{71, 92, ++ 1 Ji}, then denote AG = A7 A% ---A%. For any (n + m)-cube o :
Int™ s 71 X Zg, we define a map AW : Cpyn(Z1 X Z9;K) — (Cy(Z21;K) ®

C*(Z% K))n+m by

AW (o) = > (=1 (prioA%) ® (pracA}) € (Cu(Z1;K) ® Cu(Z2;K)nm
J

where pr; 1 Z1 X Zy — Z; is the projection and &(J) is the cardinal number
of the set {(4,7) € J x J®| j < i}. We see that EZ and AW are chain maps;
see [33, p.133, pl38].

Remark 2.3.1. The cubical singular chain complex Ci(Z;K) is quasi-
isomorphic to the singular chain complex Si(Z;K). In fact, let

A" = {(t1,ta- ,tn) ER" [0St <tp <--- <, <1}
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be the standard n-simplex and &y : I™ — A™ be a non-degenerate cubical
chain defined by

En(ti, to, o ,tn) = (@1, 22, 1 Zn), s =1 —t1ta-- -t

The method of acyclic models [40, Theorem 5.2.3’] allows us to conclude
that the chain map ks« : Sk(Z;K) — C(Z;K) induced by & is a quasi-
isomorphism. Let BEZ : S,(Z1) ® Sm(Z1) — Spnem(Z1 X Z3) and AW :
Sntm(Z1 X Z3) — (S+(Z21) ® S«(Z2))ntm be the Eilenberg-Zilber map and
the Alexander-Whitney map defined in singular chain complexes, see [39,
§12] or [40, §5] for the definition. A straightforward computation shows
that the diagram is strictly commutative:

S*(Zl X ZQ) ﬂ> S*(Zl) ® S*(Zg)

Kox J/ lﬁz* RKx

C (Zl X Zg) — C*(Zl) ® Cy (Zz)
AW

We see that the map x* : C*(Z) — S*(2) 1nduced by kp, is an algebra map.
On the other hand, the diagram

S (Z1) ® Su(Z0) =25 S, (Z1 X Zs)

Rx QB l lfi*

C* (Z]_) &® O*(Zg) ? C*(Zl X ZQ)

does not commutes strictly, however commutative up to chain homotopy.
T'his fact is shown by the method of acyclic models. We can choose the
chain homotopy A : S«(Z1) ® Sx(Z2) — Cik(Z1 X Z3) so that the equation
(f1 X fo)xh = h(f1« ® fox) holds for any f;: Z; — W; (i =1,2).

In the rest of this section, we recall the integration map (the slant prod-
uct). Let 0 € Cy(Z1;K), then define a map [ : C"(Z; x Zy;K). —
C™(Z9;K) by ([, z)(p) = (o X @) for any ¢ € Cp(Z9;K). It is easily seen

the equality:
d(/ /dx-/ (2.3.1)
Oo

In fact, the following equations show the equality (2.3.1):

( / ) () = da(o x )

= 2(do X @) + (—1)%z(c x Op)

= ([ =)o)+ aa( [ =)o)

14



We note that the equation (2.3.1) is a particular version of Stokes’ theorem
and the integration map is also defined in the singular cochain algebra of a
space similarly.

15



Chapter 3

A cosimplicial model and the
"Hochschild homology

In this chapter, the ground field is an arbitrary field K. For any space Z,
we write S*(Z) (resp. C*(Z)) for S*(Z;K) (resp. C*(Z;K)).

3.1 Totalization of cosimplicial spaces

Let Z* = {Z™} be a cosimplicial space and A*® be the cosimplicial space
of the standard simplex, that is, A® is a family of the standard simplexes
{A™}p>0 (A% = {0}) together with coface operators §° : A" 1 — A™ and
codegeneracy operators o® : A" — A™ for 1 < i < n given by

' . (0>t17"' )tn—1> (7': O)
5Z(t17"')tn-—l): (tla"'vt’i:th”';tn—-l) (1SZ§n_1)
(tl:"' ’tn—l?l) (ZZTL)
and
U"(tl? Tt :tn+l) = (tla e 7tiat'i+2: e )tn'i‘l)-

The totalization (or geometric realization) of a cosimplicial space Z° is the
subspace

Tot(Z*) = {A* — Z* | a map of cosimplicial space} C H map(A”, Z™).
n>0

A cosimplicial model for a topological space W is a cosimplicial space Z*
such that the totalization Tot(Z*) is homeomorphic to W.

Example 3.1.1. Consider the cosimplicial space Q},g defined as Q% =
X x Y*". Coface operators §° : Qq}"gl — % , and Codegeneracy operators
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ot Q}L';l — Q7 are given by

. (m)f(m)>yla”' )yn—l) (7/:0);
51("27:9’17"' ayn—-l) = (maylo"' yYis Uiy o )y'n—l) (1S'L§n_1),
(muyla'” )y'n—lag(m)) (IL:TL)’
and .
O-'L(ma Y1, ,I‘;’n'—l-l) = (x’yla 5 Y Vi, e :yn+1)~

Then, we see that Q} gisa cosimplicial model for Fr,g.

Let Z° be a cosimplicial space. Applying the singular cochain complex
functor S*(—) over a field K to the cosimplicial space Z*, we get the sim-
plicial cochain complex S*(Z*). This gives rise to the Hochschild complex
(C(S*(Z*)), D), that is,

W(S*(2°) = P ST(2°).
T—8=N

with the differential D = D1 4+ Dg defined by
Dy : 8P(2%) — SPFY(Z9), Dy(z) = (—1)%dz,

Dy : SP(Z9) — SP(Z971), Dy(z q—lz V6™ (z
i=1
Let evyp : A" x Tot(Z*) — Z™ be the evaluation map and consider the
composite map for any n:

: vy o\ 2 Jias
& C(S*(2)) 25 D ST(A° x Tot(2")) ﬁﬁsn(m(z-)).
Here [A"] € Sp(A™) denotes the identity map of A”.
Lemma 3.1.2. The map ® is a chain map.

Proof. The Equation (2.3.1) and commutativity of the diagram

evs

As~L X Tot(Z%) —— zs-1

éixll lai

A® X Tot(Z*) ——> 2°

enables us to give

e = 3 ((-1y / dev? — (=1)® /6 [As]ev:)

T—5=n

=3 / . *Dy +/ - ev§_1D2> — D.

T—8=n

17



3.2 Proof of Theorem 1.2.1

" Recall the chain map @7, = @ in the case that Z*° is the cosimplicial model
Q} g for Prg. We show that the map @y,g is a quasi-isomorphism for proving
Theorem 1.2.1. Define a chain map & : TotC* (% ;) — C*(Pyg) as with
the map @4, and consider the diagram: :

£ 3 [ ] @ 1’ %
TotS*(Q} ;) ——2— S*(Py) (3-2.1)

Totr* T TH,*

TotC* (2} ,) T C*(Ptg).
+g

Then, the diagram is commutative up to chain homotopy. Indeed, given ¢
in TotC*(Q} )™ (¢ € CT(Q%,), 7 —s=mn). Let h: Su(A®) ® Su(Pry) —
Cy(A® x Pfg) be anatural chain homotopy between x.EZ and EZ (ks ® k)
stated in Remark 2.3.1. Then, the map & : TotC* (Q%,,) — S*(Pr,g) defined
as k() (0) = (—1)"p(evsch(las®0)) for o € Sp—1(Py,g) is a chain homotopy
from k*®’ to ®Totk*.

We also see that the map Totk* in (3.2.1) is a quasi-isomorphism by a
spectral sequence argument. Define the decreasing filtration of Tot5™ (02, g)
by

| 1 FP= (P S7(X x V) C TotS*(Q} )™

T—8=",
s<p

Let oF be the filtration of TotC’*(Q}’g) defined as with the filtration 1F.
Is is easily seen that the map Totk™ preserves the filtration. Denote by
(;Eridy) for i = 1,2 the second quadrant spectral sequences associated to
the filtration ;F and by (Totks)r :2Br —1E, the map induced by Totk,.
Then, it follows that (Totk,); is an isomorphism

QBT = (H*(X) ® H*(¥)®r)
(Totkx)1 (H*(X) ®@p=(vye2 BP(H*(Y), H*(Y), H*(Y)))*?
\E7P = (H*(X) @ H*(Y)®P)

and that the differential ;d; on ;B1 coincides with the differential 1 ® dy
on H*(X) ®p~(vye: B(H*(Y), H*(Y), H*(Y)), where ds is the horizontal
differential on the bar construction B(H*(Y), H*(Y), H*(Y)). The bar con-
struction B(H*(Y), H*(Y), H*(Y)) is quasi-isomorphic to the normalized
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bar construction B(H*(Y), H*(Y), H*(Y)) and simply-connectivity of ¥
implies that (H*(Y))S! = 0. We also see that if g < —2p,

(H*(X) ®p=(vyor B(H*(Y), H*(Y), H*(¥)))*? =0

by degree reasons. This enables us to obtain that 1F5? = 0 and o E5? =0
if ¢ < —2p and using this fact implies that the spectral sequences converge
strongly. Hence, by the comparison theorem [34, Theorem 3.9], the map
Totxk™ is a quasi-isomorphism.

By the commutative diagram (3.2.1), it is enough to prove that &' is
a quasi-isomorphism for proving Theorem 1.2.1. We recall a Serre spectral
sequence and construct a spectral sequence converging to H*(TotS *(Q} g))
before proving Theorem 1.2.1.

We first introduce the Serre spectral sequence associated to the fibration
ev : Pry — X. For any non-degenerate p-cube o : I — X, a (g -+ p)-cube
g:19x IP — Py is a fibered g-cube over o if the diagram

I¢x P —Z> Pyg

P—X

is commutative. Denote by F, the subcomplex of Cy(Pfq) generated by
non-degenerate cubes fibered by some o € C<p(X) and put

P = {p & C*(Prg) | plra = O} (3.2.2)

Then, we get a spectral sequence, written by (Er,d.), associated to the
filtration which is called the Serre spectral sequence.

Proposition 3.2.1 ([41, Chapter II 8 Proposition6]). There is an isomor-
phism of K-vector space

P9 = HP(X) @ HI(QY).

Recall the correspondence of the proposition. Let Kp, be a K-vector
space generated by all pairs (7, o), where 7 is (p + g)-cube on Py g which is
a fibered g-cube over o : IP — X. Define two maps 825 : Kpg — Kp—1.4 and
8%+ Kpgq — Kpg-1 as 525(53 o) = (G(1 x AF), 0 AF),

&

ISP =
79 % [Pl L;,Iq x P -2 Pf,g

pr2 l ev
A§

P . I? X
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and 825(5', o) = (G(A5 x 1),0),

1y e P p
I P——JI X [P —— Frq

| ml ) l

rP—sp—2 >x

fore=0,1,1<i<pand1<j<g Putdb =305 (~1)F8},—of,):
Kpgq — Kp_1,4 and d = Ezzl(—l)k(ﬁg’o — 0 1)- It is readily seen the
isomorphic ,

ER9 = ((FP/FPYIPH 40) & (Homg (Kp g, K), d2).
Let 0= (0,0,---,0) € I? be a base point. Then, we obtain the map

Kpg— . ColFo(0))s (8,0) ¥ Glraxio}

o:IP— X :mondegenerate

where Fy(g) is a fiber of o(0). By the definition of the differential dy, of Kp g,
the map induce a map

Hq(Kp,qa dy) — EB Hq(Fa(o))

o:IP— X :nondegenerate

in homology. We see that the map is an isomorphism by the homotopy
lifting property. For any o, let 71, 72 be paths between o(0) and the base
point * of X, and ¥; and 7, the induced map from Fy(gyto Fi = QY. Simply
connectivity of X shows that the equality J1« = Jox : Hi(Fp)) — Hi(QY),
and it implies that

IR

Hy(Kp.gy ) —> D Ho(Fo0) 2, 0,(X) @ Hy(QY).

o:IP— X nondegenerate

Apply the dual functor Homg(—,K) to the isomorphism, we then obtain
the isomorphism CP(X) ® HI(QY) =, EP. The map compatible with the
differentials di on EP? and d ® 1 on CP(X) ® HI(QY), we hence see the
assertion of Proposition 3.2.1.

In a similar fashion, we construct a spectral sequence converging to
HH,(C*(Q},)). For each s > 0, the projection on the first factor pry :
0%, = X xY* — X is a fibration. Denote by F, the subcomplex of

Cu(QF, g)_ generated by nondegenerate cubes fibered by some Cp(2%,) and
put

FP = {p e C(C" (%) | ols,_, =0} (3:2.3)
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Proposition 3.2.2. Let (E,,d,) be the spectral sequence associated to the
filtration F*. Then,

EPY= gP(X)® HH,(C* Qe )

CoyCx

Proof. The assertion is shown by a similar argument of the proof Theorem
3.2.1. Let f{p,q be a direct sum

r—sep-+q Fr,s, Where each direct summand
K, s is a K-vector space generated by pairs (&,0) for which the following

diagram commutes:

IT._&;.X XYXS

pr2 l lp"'l

P X.

Differentials dy, : Kpq — Kp-1,4 and dy : Ky g — Ky 41 are defined as with

the definition of dj and d,. By the same argument above, we obtain a map

Kpg — & D C-({o(0)) x Y>*), (3,0) ¥ &lrr-rxioy-
o:IP—X:nondegenerate 7—s=¢

Moreover we see- that the dual of the map induces the isomorphism of the

assertion. O

Proposition 3.2.3. The map Q)},g preserves the filtration defined in (3.2.2)
and (3.2.3). Moreover, the morphism of spectral sequences induced by C[)’f g
is of the form

1® HY(®,, ,,): EB? — BB
at the Eo-term.

Proof. Given ¢ € C5(X x Y) (s —r = n). Assume that ¢ € FP. Then,
for any 6 : I™ — Py in FP~L there exists a nondegenerate m-cube o
(m < p—1<n) such that the following square commutes:

JnTm oy M _5'> Pf,g
PTZl : lev
m—X.

Since evy(k, X &) is in Fp_1, ®(9)(@) = @(evy(sr x 7)) = 0. This fin-
ishes a proof of the first assertion. The second assertion is shown by the
commutativity of the diagram:

Kp,q Kp,q

| l

Q¥ ColFo() D P C-{o(0)) x Y*).

o:/P— X :nondegenerate o:IP—X:nondegenerate r—s=q
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Here, the top horizontal mep Kp, — Kpq sends (5,0) to 3. .uq(evs(ss X
7),0). The bottom horizontal map is also defined as with the top map. O

Before proving Theorem 1.2.1, we recall the following theorem.

Theorem 38.2.4 ([34, Theorem 3.26)). Let E. and E, be first quadrant
spectral sequences of cohomological type over a field K and ¢, : B, — E,
a morphism of spectral sequences such that ED? = EFP @ Eg’q, Era =
EP0 @ B0 gnd 57 = ¢’2”0 @ ¢9L. Then any two of the following conditions
imply the third:

1. 8% BP0 — EPO is an isomorphism for all p.
2. ¢ : ES? — E2Y is an isomorphism for all q.
3. B : BB — EBY is an isomorphism for all p, g.

End of proof of Theorem 1.2.1. Since the both spectral sequences F, and

E, are strong convergent, it is only enough to show that H(®,,.,) is an
‘ isomorphism to prove the proposition. We consider the following pull back
diagram

PlY,C* — YI

evl l(@vo,e'vl)

Y —-——>(1Y’c*) Y xY.
The space Piy ., is contractible, we see that H*(Pi,,c) = K. On the
other hand, the homology HH.(C*(Q1, . ))s isomorphic to K. In effect,
let hy @ Y x Y*+) 5 ¥ x Y*7 be the projection on the last (r 4 1)
factors, that is, Ar(y,v0, - ,¥r) = (%0, - ,%r). Then, for face operators

St Wy e — Q{;‘}c*, we see that

18 =1, hp18 = 6"th, 1 <i<r+41). (3.2.4)

D)) = GO, ) with
degree —1 and the formula (3.2.4) enables us to give Dh + hD = 1. It
implies that HH.(C*(Q3, . )) & K and thus, by Theorem 3.2.4, the map

ly,cx

H(®, ..) is an isomorphism. O

The map h, induces the map h : Cy(C*(QS
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‘Chapter 4

Topological description of
Hodge decomposition

41 A model for the space of sections

In this section, we introduce commutative models for the space of sections
of a fibration and for its connected component given by Brown and Szczarba

[4].

Let p : E — X be a nilpotent fibration with X a finite complex and
Sec(p) the space of all sections of p. Let (B,d) denote a finite dimensional
commutative model for X and (B,d) — (B ® AV,D) a relative Sullivan
model for p. The dual space B* of B is the complex Homg(B, Q) with the
differential d* which sends ¢ to —(—1)l?lod. We note that B* is a Z-grading
vector space equipped with the coproduct

5:B* 2~ (B® B)* <" B*® B*,

where pp is the product of B. Now, consider the free commutative graded
algebra A(B ® AV ® B*) with the differential d induced by D and d*. Let
I be the differential ideal of A(B® AV ® B*) generated by (1®1)®1* — 1,

ajas ® B — Z(“l)m”ﬁl[(al ® (') (a2 ® B").

for a1, ag € B® AV, b€ B, 8 € B*, where 6(8) = >, 8’ ® 7. We denote
by J the differential ideal of A(B ® AV ® B*) generated by the ideal I and

b@1®p— (—1)Pa)
It follows from [4, Theorem 4.4] that the map

p: A(V®B*) — A(B®AV @ B*)/J
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induced by the inclusion V ® B* — B ® AV ® B* is an isomorphism of
graded algebra.

We now remark that the sign of the generator b® 1® f — (—=1)PIG(B) in
J is different from the generator introduced by [4, §4]. It is caused by the
difference of the differential of the dual space B*, that is, the differential of
B* in [4] sends ¢ to ¢d. We can show that the above map p is an isomorphism
by the same argument as that in [4, §3] even if we change the differential of
B* in [4] into d*. In consequence, we have the following theorem.

Theorem 4.1.1 ([4]). The algebra (A(V®B*),d = p~tdp) is a commutative
model for Sec(p).

Pix a section ¢ : X — FE of p and denote by Secg(p) the connected
component of Sec(p) containing o. Let ¢ : B® AV — B be a model for s
and ¢ : A(V ® B*) — Q is the map defined by

$v@p)=(-1llp(p(1®v), ve eV e®B"
~ Consider the differential ideal Kz of A(V ® B*) generated by

(Ve B)ud(Ve B u{w-éw)|we (Ve B}

Theorem 4.1.2 ([4]) The algebra (A(V ® B*),d)/Ky is a commutative
model for Secy(p) and the projection

(AMV ® B*),d) — (AM(V ® B*),d)/K3
is a model for the inclusion Secq(p) — Sec(p).

In the last of this section, we give a model for the evaluation map Ev :
Sec(p) x X — E. Brown and Szczarba [4] have proved that the algebra
(A(B ® AV ® B*),d)/I is the model for the mapping space map(X,E),
where [ is the ideal described above, and we see that the projection

proj : A(B® AV ® B*),d)/I — A(B® AV ® B*),d)/J

is a commutative model for the inclusion Sec(p) < map(X, E) by the con-
struction of commutative models. Buijs and Murillo [6] and Kuribayashi
[28] have given a model for the evaluation map map(X, E) x X — E. Let
{b;}¥, be a homogeneous basis of B and denote by {8;}%.; a its dual basis
of B*, that is, {#;}), is a basis of B* satisfying £;(b;) = 8;; where §;; is the
Kronecker’s delta.
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Theorem 4.1.3 ([6], [28]). The algebra map
’ N
w:B®AV — AB®AV®B*)/I® B,wa) =Y (-1)laes)eb;
i=1

fora € B®AV is a model for the evaluation map map(X, E) x X — E.
Theorem 4.1.3 yields that the composite

" BQAV 2+~ AB®AV®B*)/I®B (4.1.1)

lproj@l

—1
AMB®AV ®B*)/J® BL_>A(V & B*) @ B

is a model for the evaluation map Sec(p) x X — E.

4.2 A Poincaré duality space and its commutative
model

We recall the result [30] due to Lambrechts and Stanley in this section.

Definition 4.2.1. An oriented differential Poincaré duality algebra over

Q of formal dimension d is a triple (4,d,e4) that satisfies the following
properties

1. (4,d) is a connected commutative differential graded algebra,

2. (A4,e4) is an oriented Poincaré duality algebra; that is, 4 : 49 —» Q
such that the induced bilinear forms A* ® 49% - Q, a @b e A(ab)
are non-degenerate,

3. e4a(d4) =0.

The map €4 is called an orientation of A. We see that the map 04 :
A — A* with degree —d defined by 64(a)(b) = e4(ab) for a,b € A is a right
A-linear isomorphism which commutes with differentials.

In [30], Lambrechts and Stanley have proved the following results.

Theorem 4.2.2 ([30]). Let X be a simply-connected Poincaré duality space
and AV a Sullivan model for X. Then, there are a simply-connected oriented
differential Poincaré duality algebra A and o quasi-isomorphism

p: AV — A
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4.3 Proof of Theorem 1.2.2

Let (AV,d) be a minimal Sullivan model for ¥. Consider the commutative
graded algebra AV ® AV @ A(sV) with the differential D given by

Du®l®l)=dv)®1e®1,D(1evel)=1®dv)®1,
o (sD)f
D1@I®sv)=(—v@1+18v)®1- )

i=1

i vel®l),
where sV denotes the suspension of V' and s is the unique derivation of the
algebra AV ® AV @ A(sV) defined by

svelel)=101Q0sv=s5(1Qvel), s(1®1®sv)=0.

Then, by [14, §15, Examplel], (AV @ AV ® A(SV))D) is a Sullivan model
for Y1 and
E=p-e: AVQAVQA(SV) = AV

is a semifree resolution of AV as a AV @ AV-module. Here 1 is the product
of AV and € : AV — Q is the canonical augmentation. The map £ is a
model for the map ¢ : Y — Y7 which sends y in ¥ to the constant path
¢y at y. Denote by (AW, d) a minimal Sullivan model for X. Observe that
AW is a AV-module via a map f : (AV,d) — (AW, d) which is a model for
f: X — Y. Then, the commutative differential graded algebra

(AW @ A(sV),d) = (AW, d) ®avesy (AV @ AV @ A(sV), D)

is a Sullivan model for the free loop space L;Y. Here, the differential d is
defined as

k
d(w) = d(w), disv) == > F(vr-+- 0 vg) ® sv5,
7=l

where w € V, v € V, dv = > v1vg - - - U, and the sign & denotes a Koszul
sign convention.

Since X is a Q-Poincaré duality space, by Theorem 4.2.2, it follows that
there exists a quasi-isomorphism p from AW to a oriented Poincaré duality
algebra (4, d). Since '

p®1: (AW @ A(sV),d) —> (A ® A(sV), d)

is a quasi-isomorphism by [14, Lemma 14.2], the inclusion (4,d) —» (A ®

A(sV),d) is a commutative model for ev : LY — X.
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Let {el} 1, bea homogeneous basas of A with ey = wy a basis of A% =
Qw 4, and denote by {e 1 aits dual basis of A*. The composite in (4.1.1)

Ev:AQA(sV) = AV A*) @A

is a model for the evaluation map Ev : Sec(ev) x X — L;Y. An explicit
calculation shows that

N
Ev(a® sv) = Z(~1)lei|p_l(a Rsu®e;)®e;
i—l
_ EZ ]ez|+|€_1[ |5v|+1)>\z (a)(sv ® ez) ® e,
i=1 4,k

where d(ef) = > )\j’kej ®ej, for )\;-)k € Q. We now note that the differential
d on A(sV ® A*) is defined by

Hsvmep) = 303 S 1) 0N et (oo ) @]

r=1 4,7
+ (-1)lsy @ d*ey, (4.3.1)
for sv @ e}, € sV ® A*, where dv =) v1v2 - - - U, and

Zml ool (3 fl) +1,

I=r+1

5(6.1@) Z/\'Lje ® e

Let 7 : (4,d) — (4/A<%,0) = (Qwg,0) be the projection and €4 : A% — Q
the orientation of A. We then see that the dual of the composite

H(Ev)

FED g a5V @ 4%) @ A) LS54T

H*(A® A(sV)) —— H*U(A(sV ® 4%))

coincides with the composite I" stated in §1.2.
Let s : X — LfY be a section defined by s(z) = (z,cp()) for z € X,

where cf(z) : I — Y is the constant path at f (a:) Consider the commutative
diagram '

X\f v

= c\

LiY _ I ‘

T | e
X Y xY,

(£,5)
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where Ay denotes the diagonal map. Since the top and bottom squares of
the diagram are pullback diagram,

5: (A®@A(sV),d) = (4,d) ®uyaee (AV ® AV @ A(sV), D) 2 (4, d)
is & model for s. It follows that the map 5 is the identity on A and send
sV to 0. Hence, the differential ideal K5 of A(sV ® A*) described in §4.1 is
generated by the set of the form

(sV®A")VUud(sV ® A" U (sV @ 4%)°.

The result [6, Proposition 4.2] implies that the ideal Kj coincides with the
kernel of the surjective map

g1 (A(SV @ A%),d) — (A(V @ A7) @ (sV ® A*)22), )

given by

_ 0 (z[ £0),
”ﬂ‘{m<&zn

for z € sV @ A*. Here, (sV® A*)l is the quotient vector space (sV ®
A*)1/d(sV ® A*)°. Therefore, we see that (A(sV ® A*),d)/K is isomorphic
to (A((5V ® A7) @ (sV ® A*)22),d).

Since a base point of Sec(ev) is the section s, it follows that the inclusion
induces an isomorphism

mn(Secs(ev)) @ Q L;*> mn(Sec(ev)) ® Q.
We now note that Secs(ev) is a homotopy associative and homotopy com-
mutative H-space. Given s; and sy in Secs(ev) and, for any z € X, we may
write s;(z) = (z,;) for some ; € Y!. Then, a multiplication u of Secs(ev)
is defined by p(s1,52)(x) = (2, 7,0) and -

_[m@)  (0<t<y),
Hence the fundamental group m(Secs(ev)) is abelian. Therefore the result

(3, Lemma 11.8] deduces an isomorphism
Tn(Secs(ev)) ® Q 2 Homg(H™((sV @ A7) & (sV ® A*)22, dp), Q)

for n > 1, where dp is the linear part of the differential d on A((sV ® A*)l ®
(sV ® A*)Z2). Moreover, we see that the dual of the map H*(p;) induced
by the canonical projection '

o (AT @A) @ (sV ® 4)22),d) — (GV @ A7) @ (sV ® A4%)22, dp)
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on the indecomposable elements in homology coincides with the Hurewicz
map H : mi(Secs(ev)) ® Q — H,(Secs(ev); Q). It is readily seen that the
homology H™((sV & A*)l ® (sV ® A*)22 dy) for n > 1 is isomorphic to
the homology H™(sV ® A* dg) of the linear part of the commutative model

(A(sV ® A*),d) for Sec(ev) via the map H(p). Observe that the diagram

HMA(sV @ 4),d) 25 oA (57 @ A7) © (s ® 4%)22), d)

H(m)l lH (e1)
H™(sV © A*, dp) % HY 5V @ A7) @ (sV ® A%)>2, dp)

is commutative. By combining the results described above, we have com-
mutative diagrams for n > 1:

Hyia(L5Y;Q) (4.3.2)

Tinc«
T
incs

Hp+d(Sec(ev); Q) <—— Hpq(Secs(ev); Q)

inc«

7 (Sec(ev)) ® Q <= mn(Secs(ev)) ® Q,

Hpya(L5Y'; Q) — > Homg(H™ (A @ A(sV)), Q) (4.3.3)
Tinc« T . ' THom(H((1®E AT)EV),1)
Hy(Secs(ev); Q) Homg(H™(A(sV ® A4%)), Q)
HT ‘ THom(H(pl),l)
mn(Secs(ev)) ® Q = Homg(H™(sV ® A*),Q).

On the other hand, since £ : (AV @ AV ® A(sV), D) — AV is a semifree res-
olution of AV as a AV®2-module, the Hochschild cohomology HH*(AV, A)
is isomorphic to the homology of hom-complex Homjye2(AV @ AV ®
A(sV), A). ’

Consider the canonical isomorphism

¢ : Homyyes (AV ® AV @ A(sV), A) — Homg(A(sV), A)

and define D = (D¢, where D’ is the differential of the hom-complex
Homyye2(AV & AV ® A(sV),A). Then, for € Homg(A(sV),4) and
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sU18Vg - - - sUp € A(sV), we have

D(¢)(su1svs - - - sUp)

=dip(svisvy - - svp)

]¢IEZZ

=1 v; k=1
(ipf(wil Wi Wiy e Wi, ) (8L - - - SV Swiy Sy - - - svp)),

where dv; = ). w{lwiQ - -wy, and the sign & is the Koszul sign convention.
In fact, for example p=1and v=v1 € V with dv =3, w1 - - - wp,

D) (sv) = d(M @) (1® 1@ sv) — ()T ()d(1 @ 1 ® sv)
= dp(sv) + (~1)MI¢ () > %(u ®101)

7=

(sv) + (—1) W"ZZ wi—1wig1 - wp)P(swy)
v j=1
i) > be100),
oi=2 il

where
e = (|| +1)(lwa]+ - -+ |wjma | Flwspal+- -+ |wpl) + |ws] (wgaa] +- - -+ ]wp))-

An induction on the degree of v yields that (7} () ((sd)*(v ® 1 ® 1)) = 0.
Therefore, we see that Homg(A(sV), A) decomposes into a direct sum of
complexes

(Homg(A(sV), A), D) = (B (Homg(AP(sV), 4), D). (4.3.4)
020
This decomposition is the dual of the result [45] due to Vigué which as-
serts that the decomposition of the Hochschild complex coincides with the
Hodge decomposition. Hence, the above decomposition of Homg(A(sV), A)
is precisely the Hodge decomposition of the Hochschild cochain com-
plex and denote by HH ) (AV, A) the homology of the direct summand
(Homg(sV, 4), D).
Consider the composite map

Hom(1,v4)
—

© : Homg(sV, 4) Homg(sV, (4%)*) ——— Homg(sV ® 4*,Q)

where v4 : A — (A*)* is the map given by va(a)(p) = (—1)¥llely(a) for
a € A, p € A* and ¢ is the adjoint map, that is, (¥) (sv®@¢') = P(sv)(¢). It
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is readily seen that ¢ is an isomorphism and that €4 is also an isomorphism
since A is finite dimensional.

Lemma 4.3.1. The map © is compatible with the differentials D on
Homg(sV;, A) and Hom; (dp, 1) on Homg(sV ® A*,Q).

Proof. The assertion is shown by a straightforward computation. We first

note that if e;e; = Zz aé’j g; for some aé’j € Q, then the definition of § shows
that

5(ep) = D _(—Dlelleslak ef @ e (4.3.5)
%)
Given v in Homg(sV, A) and sv.® €} in sV ® A*. We have

Hom; (dp, 1)O(p)(sv ® €)

=(—D)lH1(p) ((—1)Vlsv & def

m N

+ Z Z Z (_1)57"*']62(|(ISUT]+?)+|eil|ej|aé‘ije";(pf(vl e f{); . e 'Um))S'UT ® e})

r=114,7j=1
:(_1)lsol+1+lsvl+(lekI+1)(I<Pl+lsv|)d*ez(w(su))

N
FIS0 S (—a)lebetled s 2y Hele+es (o)

r=14,j=1

o~

x ef(pf(vr - 5 - vm))e} (0(svr))-

We see that efdp(sv) = 0 unless |eg| = |o|-+|sv|+1, e (oF (v1 -+ G- - - Um)) =
0 unless |e;| = [v1]| F -~ +|/Ur\|+ “+++ |um| and ef(p(svr)) = 0 unless |e;| =
lo| +|svr|. Moreover, the equations [e;] = |vg| + -+ + |/'UT\| + o+ |uml,
ej(p(svr)) = 0 and |ex| = |e;] + |e;] imply that

ol + 1+ r + leal ([svr| + 1) + |esllej| + lej] ([l + [svr])

lol + lex]+ (ol + (3 o) + ol 3 o) moa2
=1

=1, l=r+1
l#r
=o| + [ex] +€F

and |ex| = || + [v|. Therefore, it turns out that

Homyj (dp, 1)O () (sv ® €f)

=—d*ef(p(sv)) + D > (L)t et (o F (w5 um)p(sv,).
r=1
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On the other hand, we have

©D(p)(sv ® ef)
=(—1)lexllelH1+HsvD et (B ) (sv))

=(=1)letle; (dip(sv) + ( "P'ZZ DF pf (v 5 om)p(svr))-

This completes the proof. O

End of the proof of Theorem 1.2.2. By the commutative diagrams (4.3.2)
and (4.3.3), the commutativity of the following diagram yields the asser-
tion:
: r
- Homg(A ® A(sV),Q) —;> Homg(A(sV), A*) <§ Homg(A(sV), A)
Homl(p1(1®eA7r)E_v,l)T Tfl

Homg(sV ® A*,Q) Homg(sV, 4),

@ IR

where the map [7 is the inclusion and ¢ is the adjoint map. It is readily seen
that for ¢ in Homg(sV, 4),

0% 11 () (svy -+ - sU) = 0 = Homjy (p1647Ev, 1)O(p)(sv1 - - - 5Um),

which satisfies the condition m = 0 or m > 2. We may write e;e; =
Zk_l ”ek and ¢(sv) = ch\rzl Brer Tor any sv € sV and some o:,’f’j, B; in
Q. Then, for a generator e in A with |eg] = —[¢| — [sv| — d, we see that

0% 11 () (5v) (ex) = ealp(sv)er)
— (__1)(I‘P|+15”|)l‘3kISA(ek(p(sv))
= (—1)lebHswlesl S Gl g,

lej|=d—lex|

= (—1)Hexltlex] Z ai\,’jﬂj‘

Jejl=d—|ex|
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On the other hand, the equation (4.3.5) shows that

‘Hom (p1 (1 ® eam)Ev, 1)@ (1) (sv) (e
=(~1)llestlelo ) (3 (1 @ e Bv(er @ sv))
=(—1)lovllexl+dle]

x O(p) (Y (—p)leHealle i Hlellelod 0, (1 @ ¢ am)ef(ex)(sv @ €f) @ &)
g
ze(@( Z (_1)IsvllekI+dlsol+d+|ekl(lsvl+1)+|ekllezI+d(lsvl+lez|)a;c\fl(sv®67)>
lei|=d—|ex|
= Z (_1)[5"’]|ekl+dl¢|+d+lekl(|3”|+1)+|ek”el|+d(lsvl+]el|)+lell(]‘P|+|3'”l)ai\{ll@l

Jer|=dex|

= Z (‘Ddlekl_{_leklafc\[z,@l-

lot]=dex]

The equations yield the assertion. O

4.4 Non-commutativity for H,(L;Y;Q)

We retain the notation described in the section above. Let X be a simply-
connected d-dimensional closed oriented manifold, ¥ a simply-connected
space of finite type and f : X — Y a based map. We see that the shifted
homology H.(LfY) has a graded algebra structure by Gruher and Salvatore
[20].

Proof of Proposition 1.2.8. We define a homeomorphism
P : Sec(ev) — Qmap(X,Y; ), ¥(s)(t)(z) = s(z)(¢)

by ¥(s)(t)(z) = s(z)(¢t) for s € Sec(ev), t € [0,1] and z € X. Note that the
map 7 is a morphism of H-spaces. For n > 2, we have isomorphisms

Tn(map(X, Y f)) &= -1 (Qmap(X, Y f)) = mn—1(Sec(ev)).

By [44, Chapter X Theorem (7.10)], the rational homotopy group
m>o(map(X,Y; f)) ® Q has a non-trivial Whitehead product if and only
if there is a non-trivial Samelson product on 7>1(2Sec(ev)) ® Q. We denote
{61, B2) by the non-trivial Samelson product for some (1 and B2. Then,
by [44, Chapter X Theorem (6.3)], we have the equality H((f1,2)) =
H(B1)H (B) — (—1)BllB2l 7 (8,) H (1), where H denotes the Hurewicz map.
We observe that a graded algebra structure on H,(Qmap(X,Y;f);Q) is
determined by the H-space structure on Qmap(X,Y; f). Since the map
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Ev : Sec(ev) x X — LY is a morphism of fiberwise monoids from the pro-
jection Sec(ev) x X — X to the map ev : LY — X, it follows from [20,
Theorem 4.1 (ii)] that the map I' : Hy(Sec(ev); Q) — H,(L;Y; Q) stated in
Section 1 is an algebra map. Therefore, we see that

Ty ((B1, B2)) = T1(B1)T1(Ba) — (—1>'ﬁl“ﬁzlrl<ﬂ;)n(ﬁl>

and Theorem 1.2.2 shows that Ty (81)T1(8s) # (=D)BlET (6,)01(6;). O

We give a example of a map f : X — Y for which the loop homology
H,(LfY; Q) is non-commutative.

Example 4.4.1. Let CP™ be the complex projective space and ¢ : CP* ! —
CP™ the inclusion for n > 2. The existence of a non-zero Whitehead prod-
uct in 7« (map(CP™1,CP™ 1)) ® Q is showed by the results of Mgller and
Raussen [36, Example 3.4]. They proved that map(CP™,CP™ 1) is of the
rational homotopy type of % x §% x ST x ... x §?7*1 and the non-zero
Whitehead product comes from the S? factor. Therefore Proposition 1.2.3
implies that H,(L;CP™; Q) is a non-commutative algebra.
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Chapter 5

A model for the Whitehead
product in rational mapping
spaces

5.1 A model for the adjoint of the Whitehead
product

We begin by recalling the definition of the Whitehead product. Let o €
o (X) and B € mm(X) be elements represented by a : S* — X and b :
S™ — X, respectively. Then the Whitehead product [a, Sy is defined to
be the homotopy class of composite
n V(avbd)
gntm-l——gny gm——— X

where 77 is the universal example and V:XVX — X is the folding map.
Recall that the differential d of AV can be written by d = 37,5 d; with
di(V) € A¥1V. The map d; is called the quadratic part of d. We see that
the quadratic part dj is related with the Whitehead products in 7. (X). We
denote by Q(g)™ : V™ — Qe, the linear part of a model § for g, where
7: AV — M(S™). Define a paring and a trilinear map

(; >:VX7F*(X)———>Q,
(5, ):A2V><7r*(X)><7r*(X)—>Q
by

e [ Q@™ (=)
(v e { 0 (o] #n)

and

(vw; o, B) = (v; ) (w; B) + (—1)lel(w; 0 (v; ),

35



respectively.

Proposition 5.1.1 ([14, Proposition 13.16]). The following holds

(drv; @, B) = (=1)"™(v; [, Bluw),
where v €V, a € mp(X), f € o (X).

We next recall the definition of the André-Quillen cohomelogy and the
isomorphism © from m, (map(X, Yo; f)) to Hyq(AV, B; f) defined in [2] and
[31]. We here recall the complex of f-derivations from a Sullivan algebra
(AV, d) to a commutative differential graded algebra(B, d) which denoted by
Der*(AV, B; f). An element 6 in Der™(AV, B; f) is a Q-linear map of degree
n with 8(zy) = 0(z) f(v)+ (1) F(2)0(y) for any =,y € AV. The differential
0 : Der®(AV, B; f) — Der™ 1 (AV, B; f) are defined by 8(0) = df — (—1)"4d.
The homology of Der*(AV, B; f), Hiq(AV, B; ), is called the André-Quillen
cohomology.

Let o € 7 (map(X, Yp; f)) and g : S*x X — Yg the adjoint of @. Denote
G :AVxy — M(S™) ® AVy a Sullivan model for g. Since S™ is formal, there
is a quasi-isomorphism ¢ : M (S™) — (H*(S™;Q),0) and, for any v € AV,
we may write '

(6®1)jv) =1® f(v) +e, @V
Then we put ©(a)(v) =v'.

Theorem 5.1.2 ( [2] [31]). The map

© : mn(map(X, Yg; f)) — Hyg(AV, B; f)
is an isomorphism.

In order to consider the image of the Whitehead product in
m«(map(X, Yg; f)) by the isomorphism ©, we construct an appropriate
model for the adjoint of the Whitehead product. This is the key to proving
Theorem 1.2.4. Let X be a simply-connected space, ¥ a Q-local, simply-
connected space of finite type and f : X — Y a based map. We denote by
(AV,d) and (B, d) a minimal Sullivan model for ¥ and a CDGA model for
X, respectively. Let f: AV — B be a model for f associated with such the
models. '

We prepare for proving Theorem 1.2.4. We see that a minimal Sullivan
model for S™V S™ has the form

M(S™V 8™ = (M(S™) ® M(S™) ® Atntm—1,%1, T2, "), d)

in which dinim—1 = enem and |ipym—1] =n+m —1 < |z;] for any 7 > 1;
see [14, p177].
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Lemma 5.1.3. Let g: S" X X — Y be a map with g|x = f. Then there
exists a model § for g such that the diagram is strictly commutative:

\/

where € : M (S™) — Q 1is the augmentation. Moreover, if g satisfy g|lx = f

") ®B

and glgn = *, where x : S® — 'Y is the constant map to the base point, then
there is a model § for g such that the following diagram commute strictly:

M(S™)
/
\

where u : Q — M(S™) is the unit map.

(S")® B

\i/

Proof. Let §’ be a model for g. We define the map g : AV — M (S,) ® B by
gw) =1® (f (- 1)F)(v) + 7 (v).

Then g and g’ are homotopic. Indeed, f and (€-1) o g are homotopic and
let H: AV — B ® A(t,dt) be a its homotopy. Then, the map H : AV —
M(S™) ® B® A(t,dt) defined by

Hw)=10HW)+7®e1l-1® (- 1)f(v)®1

is a homotopy from g’ to g. A similar argument shows the second assertion.
|

Given o € mp(map(X,Y; f)) and § € mp(map(X,Y; f)). Let g : S™ x
X =Y and h: 8™ x X — Y be the adjoint maps of « and f, respectively.
In order to consider the image of [a, ]y by ©, we construct a model for the
adjoint of {a, Blw

ad(er ) : 5™ x X L (smy sm) x x Iy

where (g|h) is a map defined by (g|h)(un, z) = g(un, z) and (g|h)(um,z) =
h(tm,z) for any u, € S™, uym € S™ and z € X. It is readily seen that the
canonical map

7w M(S™"VS™) — M(S™) xg M(S™)
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is a surjective quasi-isomorphism, where M (S™) Xq M (5™) is the pull-back
of the augmentations M (S™) — Q and M(S™) — Q. By Prop051t1on 2.1.2,
we have the following homotopy commutative square

{(ApL(i1),ApL (42))

APL(S"T% V8™ - Apr(S™) Xq ApL(S™)
M(8™v Sm™) — M(S™) xq M(S™),

where 71 : S — §®V 8™ and 79 : S™ — S™®V S™ are the inclusions. The

commutative diagram

smx X % (Snvsm) 29 gmy x

Y

enables us to give the following homotopy commutative diagram:
M(S"vS™) ® B

(glr)

l@l (5.1.2)
AV = e (M(8) X M(S™) ® B,
where (g, k) is the map defined by (7,h)(v) = —1 ® f(v) + (1 ® 1)g(v) +
(jo ® 1)h(v) for any v € V and 71 : M(S™) — M(S"™) xq M(S™) and
Jo : M(S™) — M(S™) xg M (S™) are the inclusions. Indeed, by the diagram
(5.1.1), we see that the diagram

M(S™) © BEE (1(5™) xq M(S™) @ B 2%

M(S™ @ B
_ AV

is homotopy commutative, where p; and ps are the projection. Let Hy and
Hj be homotopies from (py7 ® 1)(g[h) to § and from (por ® 1)(g[R) to &,
respectively. Then, a CDGA map H : AV — (M(S”) Xg M(S™)® B®
A(t, dt) defined by

Hu)=-1® f0)®1+ (1 ® 1@ 1)Hi(v) + (jo ® 1 ® 1)Hy(v)

for any v € V is a homotopy from (7 ® 1)(g]h) to (7, h). If there is a map
¢ : AV — M(S™V S™) ® B such that (r ® 1)¢ = (g,h), ¢ and (g|h) is -
homotopic by Proposition 2.1.2. Therefore, it is only necessary to construct '
of a lift ¢ of the diagram (5.1.2) for getting a model for (g[h).
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Lemma 5.1.4. There is a model ¢ for (g|h) such that for any v €V, $(v)
has no term of the form epe, ®u for some u € B and the following diagram
commautes strictly:

AV —— L M(SmVS™) @B

Proof. First, we recall the construction of a lift ¢’ in Remark 2.1.3. For
any basis v of V, we can find a € M (5™ V .S™) ® B so that da = ¢’dv and
(r ® D)a = (7, h)v. We may write

a=1Q f(a) +en®az + em ® ag + tntm—1 ® ag + enem ® as + Oy,
where a; € B and O, denote other terms. We put
o =1® f(a)+ e, ®as + em ® ag + tnrm—1 ® (a4 +dag) + Oq.  (5.1.3)

Then it follows that d(a) = d(a’) and (7 ® 1)(a) = (7 ® 1)(a’). Hence, the
" map ¢ defined by

Blv) = d |
satisfies the condition that (7 ® 1)¢ = (7,h). Thus we see that ¢ is a model
for (g|k). The second assertion is shown using the equation (5.1.3). O

Combining these results we prove our main result.

Proof of Theorem 1.2.4. Given two elements o € m,(map(X,Y; f)) and 8 €
Tm(map(X,Y; f)). Let g: S"x X — Y and h: S™ x X — Y be the adjoint
maps of o and §, respectively. First, by the proof of Proposition 5.1.1, we
see that a model 7 for the universal example 7 sends tppm—1 € M(S™V S™)
to (—1)"t™le, i mo1 € M(S™™ ). We choose a model ¢ for the map
(g|h) as in Lemma 5.1.4. We may write, modulo the ideal generated by
elements of M(S™V S™) of degree greater than n +m — 1 and generators
eon—1 and esn,_1 if there exists,

$(v) =1® F(v) + en @ U + €m ® Uz + L1 ® Ud,
¢(fuz) =1Q® f(Uz) +en ® Ui + em @ Ui + lntm—1 @ Uid

for any v € V and dv = > vive---vs. Since, (f® 1)¢(v) = 1 ® F(v) +
(=)™ e tm—1 ® uy, it follows that O([a, Blw)(v) = (1)t us On
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the other hand, ¢ is a CDGA map and satisfies the condition of Lemma
5.1.4. We then have

Enem Q Ug =

enem ® ) (Z 1)% Fvr - v )usa f (Vi - vj—1)uga f (Vg1 - - vs)> -
i]

By commutativity of the diagram (5.1.2) and the definition of ©, we see
that up = ©(a)(v;) and ujz = ©(F)(v;). Therefore,

O([er, Blw) () = (1) tug = [8(a), B(B)](v)-
This completes the proof. O -

In the rest of this section, we also consider the Whitehead product in
a. based mapping space map, (X,Y; f). Given a € m,(map,(X,Y; f)) and
let g : S™ x X — Y be the adjoint map of o. Since g satisfy g|x = f and
glgn = *, by Lemma 5.1.3, there exists a model for g, g, such that (¢-1)§ = f
and (1-£)g = ue. The second equation shows that ©(a) is a f-derivation of
degree —n from AV to the augmentation ideal Bt of B. We then get the
map of abelian groups

0 : mp(map,(X,Y; f) — HiG AV, Bt f); ©'(a) = 6(a)

for n > 2 and a straight-forward modification of Theorem 5.1.2 deduces the
following proposition: '

Proposition 5.1.5. The map © : my(map,(X,Y; f)) — Hyo(AV, Bt f)
is an isomorphism for n > 2.

This proposition also enables us to get the following corollary.

Corollary 5.1.6. The restriction of the bracket defined by the for-
mula (1.2.1) in HZQ(AV,B;f) to HKQ(AV,B'*';]‘T) corresponds  the
Whitehead product in m(map,(X,Y; f)) via the isomorphism ©' from
Tn(map, (X, Y f)) to Hyg(AV, BY; f).

Proof. Given a € mp(map,(X,Y;f)) and f € mp(map,(X,Y; f)). Since
@' (a) = 0 and €0’(8) = 0, it follows that £©’([a, f]w) = 0 by the formula
(1.2.1). 1
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5.2 The Whitehead length of mapping spaces

In this section, we consider the Whitehead length of mapping spaces. We
recall the definition of the Whitehead length; see Section 1. Now we consider
a upper bound of WL(map(X,Y; f)). The following result is proved by
Lupton and Smith.

Proposition 5.2.1 ([32, Theorem 6.4]). Let X and Y be Q-local, simply-
connected spaces with finite type. If Y is coformal, that is, a minimal Sulli-
van model for' Y of the form (AV,d1), then

WL(map(X,Y; f)) < WL(Y).

We give another proof of Proposition 5.2.1 using the bracket defined by
Theorem 1.2.4. Before proving the proposition, we introduce a numerical
invariant which is called the di-depth for a simply-connected space Z and
recall the relationship between the Whitehead length and the di-depth.

Definition 5.2.2. Let (AV,d) be a minimal Sullivan model for a simply-
connected space Z and di the quadratic part of d. The dj-depth of Z,
denoted by di-depth(Z), is the greatest integer n such that V,—; is a proper
subspace of V,, with

Voi=0,Vo={veV|dw=0tand V;={v eV |dveAV_1} (i >1).
Theorem 5.2.3 (27, Theorem 4.15][29, Theorem 2.5]). Let Y be a Q-local,
simply-connected space. Then di-depth(Y) 4+ 1 = WL(Y).

Proof of Proposition 5.2.1. Let AV be a minimal Sullivan model for ¥ and
m = di-depth(Y). For any v € V', we may write dy (v) = Z;-Lzl UL Ug2 * Uk
where uj; are basis of V. Then, put

Ti (v) = {ujnvge -~ up; | =1...n}
and

le (’I.LlUQ .- -us) = U {ul v ui_luluiﬂ s Ug I o S Tél (uz)}
i=1...8

‘We also set .
Ty, (U) = | Tay (w)

uelU

where U is a set of terms of AV. By the definition of d;-depth, Té:’”’l) (v) =
{0} and it follows that

[p1: [02: - [om1, o] -+ ] (v) = O
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] for any ¢1, 952, ceesOman € HE(SZ(AV, B; f). Hence, by Theorem 1.2.4 and
Theorem 5.2.3, we have WL(map(X,Y; f)) <m+ 1= WL(Y). O

We next prove Proposition 1.2.7.

Proof of Proposition 1.2.7. Let m = WL(map,(X,Y;f)). If m = 1, then
the assertion is trivial and so we may assume that m > 2. By Corollary
5.1.6, there are elements @1, s, -, m in HE&Q(AV, B7; f) such that

[o1, 02, s [om—1, m] -+ TJ(0) # 0 (6-2.1)

for some v € V. For any element uiug---us; € T7(v), the length s of
UUg - - - Us IS greater than or equal to (m — 2)(w'— 1) + w by the definition
of w. Therefore, the equation (5.2.1) implies that

nilB > (m—-2)(w—-1)4+w

and hence we have
m <

! 1(nilB -1)+1.

w —

|

Remark 5.2.4. Suppose that WL(Y) = 1 and WL(map,(X,Y; f)) > 1.
The proof of Proposition 1.2.7 enables us to conclude that nilB > w and
that w > 3 since V = Kerd;. Moreover we have

WL(map, (X, Y; f)) <

1
1 (nilB - 1)+ 1 < nilB — 1.
Thus our upper bound of the Whitehead length of the mapping space may
be less than that described in Theorem 1.2.6.
5.3 Computational examples

We shall determine the Whitehead length of the mapping space from CP* x
CP™to CFy’xCEg'. For this, we first compute the rational homotopy group
of the mapping space. Let f1 : CP*®® X CP™ — CF§° x CF§® be the map
stated in §1.2. Since CP™ is formal, that is the CDGA map p

(A2, Thn11)s dprn = 2577) — (Qlzal/(257),0) = H*(CP™ Q)

defined by p(z2) = 2, p(2h,,1) = 0 is a quasi-isomorphism, the CDGA
(Q[z2] ® Q[za]/(zF*),0) is a CDGA model for CP* x CP™.
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Proposition 5.3.1. Let k > 2 and m <n. Then
7 (map(CP™ x CP™,CRy’ x CFg; f1))

Q (k=2 and g2 # 0)
QeQ (k=2 and g =0)
. n—I+1
= P k=2-1,2<1<n+1)
0<i=n—m—I+1 .
0 (otherwise).

Proof. We put Der” = Der™(Q[z2]®A (22, 2hp41), Qlw2]®Qlye]/(v5°+); pf1)
for convenience. For any elements 0, € Der~2, we may write

Or,s(20) =1, Or,5(%2) = s and 9r,s(93/2n+1) =0
for some r, s € Q. Then,
B6r(22) = 01,5 (w2) = 0, Drs(@hnya) = —ns( > dhauwi @f).
i+j=n
When g5 # 0, we see that @, is a cycle if and only if s = 0, that is all cycles of
- Der™? generated by 619. When gz = 0, 0, 5(zh, +1) = O since y3 = 0. Hence,

61,0 and 0,1 are generators of all cycles of Der™2. In general, Der2 = 0 for
[ > 2 by degree reasons. It follows that

7oy (map(CP* x CP™, CAY x CPE, f1)) &2 H~2(Der*) = 0 (I > 2).

—2l+1

For any 6 € Der , We may write

n—I+1
6(z2) =0, O(mz) =0 and B(zh, ;) = > rewh@yp 0
‘ =0

Note that if I > n+1, Der %! = 0 by degree reasons. It is easily seen that
all elements of Der~2+*1 are cycles. Moreover, we see that yg“H'l_i =0 if
and only if 0 <1 <n —m — [. Therefore, we have

7r2(ma,p((CP°° X CP”,CP&O X (CPE’; fl))

Q (k=2and g #0)

~ 72 Y o
~H (Der)—{(@@(@ (k=2 and g2 = 0)

and

mo1—-1(map(CP™ x CP",CFy’ x CFY’; 1))
n—Il+1
o 2+ (Der*) & e @<isn+),
0<i=n—m—I+1

To1—1(map(CP™ x CP™,CP§ x CPF; f1)) 2 H 2 (Der*) = 0 (I > n+1).
!
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Proof of Proposition 1.2.8. By the definition of the bracket in H*(Der*),
we see that if ¢, € HS3(Der*), then [p,%] = 0 since p(zs) = 0 and
¥(z2) = 0. That is [¢/,¥'] # 0 means |¢'| = [¢/| = —2. It shows that

WL(map(CP® x CP",CP x CPF; f1)) < 2.

-

If go # 0, by Proposition 5.3.1, H~2(Der*) is generated by 61. The equality
[61,0, 61,0] = 0 shows that WL(map(CP*® x CP",CF§® x CFg; f1)) = 1. On
the other hand, if go = 0, g1 is a generator of H~2(Der*) and

[B0,1, 80,1] (2hn 1) = 05~ 5"
This completes the proof. O

Proof of Proposition 1.2.9. Let 81 and 65 be fa-derivations defined by

91(561) = 1, 91(:62) = 91(583) = 0, 91(@/) = O,
92(:‘[‘,1) =0, 91((1)2) =1, 91(.’1)3) =0, Ql(y) = (.

It is readily seen that 61 and 67 are non-trivial homology class of
HX(% (AV, A(es); f2) and HK(% (AV, A(es); fo), respectively. Then, we have

[01,02](z:) = 0, [01,02](y) = e3

for any 4, and [0, f2] is a non-trivial homology class. Therefore, the White-
head length of map(S3,Y; f2) is greater than 2 and also, by the definition
of the differential d on AV and the bracket (1.2.1), we see that

WL(map(S3,Y; f2)) = 2.

This implies that the loop homology H.(LY; Q) is non-commutative. O
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