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Abstract

‘We construct a model structure on the category of small categories which is
closely related to coverings and fundamental groups of small categories. It has mor-
phisms inducing isomorphisms on fundamental groups as weak equivalences and
categories fibered and cofibered in groupoids as fibrations. The class of fibrant ob-
jects in this model category is the class of groupoids, and coverings are characterized
as fibrations whose fibers are all discrete. This is Quillen equivalent to the cate-
gory of simplicial sets and spaces with the 1-type model structure, and the category
of groupoids with the Anderson model structure. We also prove that the model
structure is equipped with a factorization of morphisms, which induces universal
Ccovers.
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Introduction

The category Cat of small categories has a couple of interesting model structures.
One of them is introduced by Joyal and Tierney in [JT91] which has equivalences of
categories as weak equivalences. There also exists the restricted model structure of
the above on the category Grd of groupoids [And78]. On the other hand, Thomason
found another model structure [Tho80] on Cat which is Quillen equivalent to the
category Set®™ of simplicial sets with the Kan model structure, and the category
Top of topological spaces with the Quillen model structure [Qui67]. These model
categories are related to each other by the folowing adjunctions

L N |-
Cat Setd™ Top
c

Grd

_~— B
oy S*

where ¢, m, N, ¢, | — | and S, are the inclusion, groupoidification, nerve, categoriza-
tion, geometric realization and the singular simplicial set functor, respectively. In
[Qui68], Quillen shows that Serre fibrations in Top are related to Kan fibrations in
Set®™ by | — | and S,. Similarly, Gabriel and Zisman define coverings in Set®”
corresponding to coverings in Top through | — | and Sx [GZ67]. They also give the
notion of coverings of groupoids, and prove that the fundamental groupoid functor
Top — Grd preserves coverings.

In this paper, we consider coverings in Cat related to coverings in Set®”, Top
and Grd by the above functors. Our aim is to deal with coverings in Cat in terms
of model categories.

Main theorem 1 (Theorem 4.2.3). The category of small categories admits a
model structure by the following choices of morphisms:

e A morphism f is a weak equivalence if it is a weak l-egquivalence.
o A morphism f is a cofibration if it is injective on the set of objects.
o A morphism f is a fibration if it is a category fibered and cofibered in groupoids.

We call the above model structure the “I-type model structure” and denote the
category of small categories equipped with the model structure by Caty. This model
category has the following properties.

Main theorem 2. The model category Caty has the following properties:

1. This s a left Bousfield localization [Hir03] of the Joyal-Tierney model category
[Definition 4.1.1].



2. The class of fibrant objects is the class of groupoids [Corollary 4.1.7].

3. A covering of svﬁall categories coincides with o fibration whose fibers are all
discrete [Proposition 4.2.8].

4. There exists a factorization of morphisms in Caty which induces universal
covers and groupoidification [Corollary 4.3.2 and 4.5.5].

Elvira-Donazar and Hernandez-Paricio already discovered the 1-type model struc-
ture on Set®™ and Top in [DP95]. We prove that Cat; is Quillen equivalent to
the two model categories. Categories (co)fibered in groupoids appearing in the def-
inition of fibrations in Cat; are used for theory of stacks. Hollander gave a model
structure on the category of categories fibered in groupoids in order to characterize
stacks in [Hol07]. We compare the overcategory Cat | C with the category F(C)
of categories fibered in groupoids on C' as model categories for a site (C, J).

This paper is organized as follows. In chapter 1, we recall the basic background
in category theory and simplicial method. We prepare some notations and termi-
nologies for categories and functors used in the main text.

Chapter 2 provides the notion of fundamental groups and coverings in Cat
There exists a Galois-type correspondence between them, namely, subgroups of the
fundamental group of C are classified by coverings over C.

Chapter 3 describes the definition of model categories and how to obtain a new
model structure from already known model structures. We introduce two techniques
called the Bousfield localization and the transfer principle.

The 1-type model structure on Cat is defined as the left Bousfleld locahzatlon
of the Joyal-Tierney model structure in Chapter 4. After that, we verify that the
model structure coincides with the one described in Main theorem 1. A covering in
Cat is a spacial case of fibrations in Caty, and universal covers are induced from
a factorization of morphisms in Caty. Finally, we compare Cat; with other model
categories.
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Chapter 1

Preliminaries and Terminologies

We begin with an introduction to basic category theory and simplicial method.

1.1 Categories and functors

This section is a review of basic concepts in category theory. We present some
notations and terminoclogies for categories and functors used through this paper.

Definition 1.1.1 (Category). A category C consists of the following data;
1. a class Cy of objects,

2. aset C(X,Y) of morphisms from X to Y for every pair of objects X,Y € Cp.
A morphism f € C(X,Y) is also denoted by f: X — Y or X Ly
3. émap
0:C(Y,2) x C(X,Y) — C(X,2); (g, f) = go f
called composition for every three objects X,Y,Z € Cy. These data have to
satisfy the following axioms:
(a) Associativity: ho (go f) = (hog)o f for every composable triple of
morphisms f, g and h.
(b) Identity: There exists an identity morphism lx € C(X,X) for every
object X such that ly o f = folx = f whenever f € C(X,Y).

Remark 1.1.2. Note that the identity morphism 1x € C(X,X) exists uniquely. If
‘ 1 € C(X, X) satisfies the condition of identity morphisms, then

lx =1xolly =1%.

Definition 1.1.3. A morphism f: X — Y of C is called an isomorphism if there
exists an inverse morphism g:Y — X such that go f = 1x and fog=1y. We
denote X 2 Y if there exists an isomorphism between them. -

Example 1.1.4. Iere are some examples of categories.

e Set is the category of sets and maps.



e Top is the category of topological spaces and continuous maps.
e Set®” is the category of simplicial sets and simplicial maps (see Section 1.3).
e Cat is the category of small categories and functors (see Definition 1.1.8).

e Grd is the category of groupoids as a fullsubcategory of Cat (see Definition
1.1.8).

e Let C be a category and let X be an object of C. The overcategory C | X
has the set of objects consisting of morphisms f : Y — X of C, and the

set of morphisms from f:Y — X to g : Z — X consisting of morphisms
h:Y — Z of C such that goh = f.

Dually, the undercategory X | C has the set of objects consisting of morphisms
f: X — Y of C, and the set of morphisms from f: X — Y t0g: X — Z
consisting. of morphisms b : Y — Z of C such that g = ho f. '

e Given a category C, the opposite category C°P comsists of Cj¥ = Cp and
CP(X,)Y)=C(,X).

Definition 1.1.5. Let C be a category and let X be an object of C.

1. The object X is called an initial object if C(X,Y) consists of a single morphism
for any ¥ € Cp.

2. The object Y is called a terminal object if C(X,Y") consists of a single mor-
phism for any X € Cj.

Note that if there exists an initial object or a terminal object in a category, it is
determined uniquely up to isomorphism.

Example 1.1.6. The empty set ¢ is an initial object, and a single point set * is a
terminal object in Set.

Example 1.1.7. The undercategory X | C given in Example 1.1.4 has 1x as an
initial object and the overcategory C | X has 1x as a terminal object.

Definition 1.1.8. A small category is a category C' whose class of objects Cj is
a set. A small category C' is called a groupoid when every morphism of C is an
isomorphism.

Example 1.1.9. Here are some examples of small categories and groupoids.

e A monoid is a small category with a single object, furthermore, a group is a
groupoid with a single object.

e A poset (partially ordered set) (P, <) is a small category whose set of objects
is P and set of morphisms from z to y is a single point whenever z £ y, or
~ empty otherwise.

e For two small categories C' and D, the product C' x D is given by (C' x D)g =
Co X Do and (C X D)((Cl, d1>, (Cg, dQ)) = O(Cl, CQ) X D(dl,dz).



e We can regard a set S as a small category which has S as the set of objects
and only identity morphisms. We call such small categories consisting of only
identity morphisms discrete.

Definition 1.1.10 (Functor). Given categories C' and D, a (covariant) functor
F :C —> D consists of;

1. amap F: Cy — Dy,

2. amap F = Fyy : C(X,Y) — D(FX, FY) for each pair of objects X, Y € Cp
preserving composition and identities, that is,

(a) F(go f)=FgoFf for any composable morphisms f and g of C, and
(b) F(lx) = lpx for any object X of C.

Given functors F' : ¢ — D and G : D — FE, then the composition functor
GoF :(C — FE is given by composing maps on the set of objects and morphisms
respectively. For a small category C, the identity functor 1o : ¢ — C' is given by
the identity maps on the set of objects and morphisms of C.

Example 1.1.11. Let X be an object of a category.D. For any category C, the
constant functor on X
A(X):C—D

is defined by A(X)(Y) = X and A(f) = 1x for any object Y € Cy and morphism
fofC. ‘

Notation 1.1.12. We use the following notations for small categories:
e ¢ is the empty category.
e x is the category with a unique object * with the only identity morphism.
e [n] is the poset 0 < 1 < 2<.<n regarded as a category

0—=1—-2—..->mn.

e SY is the category with two objects {0,1} and the only identity morphisms.

e St is the category with two objects and having two parallel morphisms between
them 0 =2 1.

e I, isthe category 0 = 1+ 2 — .-+ < n (case n even).

o CS! is the category with three objects 0 — 1 =% 2 where 0 is the initial
object,

o 5% is the groupoid with two objects and two non-trivial morphisms 0 = 1.
Also we use the next notations for sets of functors:
o K ={k:%— S} where k(*) = 0. ’

e I ={p—%,i:58 — [1], ¢ : 5" — [1]} where both ¢ and i’ are the
identity maps on the set of objects.
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o Jy={j1:*%—[1], ji¥ : x — [1]°P} where j1(x) = 0.

o Jo={jo: I — 2], jgp : Igp — [2]°P} where j2(0) = 0, j2(1) = 2 and
72(2) = 1.

o J3={j3:C8" — 2], ja¥ : (CSY)°P — [2]°P} where js is the identity map
on the set of objects.

o J=J1UJUJs.

Definition 1.1.13 (Natural transformation). Given two categories C,D and
two functors F,G : C — D, a natural transformation t: FF — G assigns a
morphism tx : FX — GX of D to each object X &€ Cp making the following
diagram in D commutative

FX -2 gx

| Jos

FY ——+GY
Y

for a morphism f: X — Y of C. If {x is an isomorphism in D for any X, then
t is said to be a natural isomorphism. We denote F' = D if there exists a natural
isomorphism between them.

Definition 1.1.14. For a small category C and a category D, the functor category
D€ consists of functors from C to D as objects and natural transformations as
morphisms. An object of D is called a diagram in D indexed by C. In particular,
DM is denoted by Mor(D) and called the morphism category of D.

The following lemma mentions a relation between general categories and functor
categories. It allows the embedding of any small category into a functor category
valued in Set.

Lemma 1.1.15 (Yoneda lemma). Let C be a category and let X be an object of
C. Define a functor h* : C°P — Set by h* (V) = C(X,Y). If Nat(hX, F) denotes
the set of natural transformations from h¥ to a functor F' : C%° — Set, then there
exists a bijection Nat(h™, F) = F(X).

Proof. For a natural transformation ¢ : ¥ = F, we obtain a map
tx : R (X) = C(X, X) — F(X).
The map Nat(h*, F) — F(X) sending t to tx(1x) is a bijection. O

Corollary 1.1.16. The functor b~ : C — Set®” is an embedding, i.e, it satisfies
X2y if WX 2hY and b~ : C(X,Y) = Set®” (¥, 1Y) for any X,Y € C.

Definition 1.1.17. A functor F': C' — D is an equivalence of categories if there
exists an inverse functor G : D — C such that Go F =2 1lg and Fo G & 1p.

Definition 1.1.18. Let F : ¢ — D and G : D — C be functors. We say that
the functor F' is left adjoint to G or G is right adjoint to F if there exists a natural
isomorphism C(X,GY) & D(FX,Y) for any X € Cp and ¥ € Dq. In that case, we
write F': C <= D : G and call (F,G) to be a pair of adjoint functors.



Definition 1.1.19. Let F': C <= D : G be a pair of adjoint functors. For an
object X € Cp, the counit map n: X — GFX is a morphism corresponding to the
identity morphism 1gx under C(X,GFX) = D(FX,FX).

Dually, for an object Y € Dy, the unit map € : FGY — Y is a morphism
corresponding to the identity morphism lgy under C(GY,GY) =2 D(FGY,Y).

Proposition 1.1.20. If a functor F : C — D is an equivalence of categories, then
F is left and right adjoint to the inverse functor G of F.

Proof. For X € Cgy and Y € Dy, the natural isomorphism FG = 1 induces the
following isomorphism

F
C(X,GY) & D(FX,FGY) = D(FX,Y).

Therefore, F' is left adjoint to G. Similarly, we can show that F' is right adjoint to
G. v O

Proposition 1.1.21. A functor f : C — D between small categories is an equiv-
alence of categories if and only if the following two conditions hold: '

1. Essentially surjective: For anyy € Dy, there exists x € Cy such that fz = y.

2. Fully faithful: f : C(z,y) — D(fz, fy) is bijective for any pair of objects
z,y € Op.

1.2 Limits and Colimits

In this section, we study the notion of limits and colimits in a general category. A
model category requires to have limits and colimits for diagrams indexed by every
small categories.

Definition 1.2.1 (limit and colimit). Let F : C — D be a functor from a
small category C to a category D. A limit im(F) is an object of D together with
a natural transformation p : A(im(F)) — F satisfying the following universality.
For any object X € Dy and a natural transformation ¢ : A(X ) — F, there exists
a unique morphism f: X — lim(F) of D such that pc o f = £, for every c € Cp.

Dually, a colimit colim(F) is an object of D together with a natural transfor-
mation 7 : F — A(colim(F)) satisfying the following universality. For any object
X € Dp and a natural transformation ¢t : F — A(X), there exists a unique mor-
phism f : colim(F) — X of D such that f o, = ¢, for every ¢ € Cy.

If there exist (co)limits of diagrams in D indexed by every small categories, then
we say that D is closed under (co)limits.

Example 1.2.2. Many of our familiar examples of categories have limits and col-
imits. All of the categories Set, Top, Set®”, Cat and Grd introduced in Example
1.1.4 are closed under limits and colimits.

Definition 1.2.3. Let C be a category closed under limits and colimits.

e Let S be a set and regard it as a discrete sméll category. A (co)limit of a
diagram in C indexed by S is called a direct (co)productin C.



o A '(co)limit of a diagram in C indexed by S! in Notation 1.1.12 is called an
(co)equalizer in C. '

e A limit of a diagram in C indexed by Iz in Notation 1.1.12 is called a pullback
in C. '

e A colimit of a diagram in C indexed by I5* is called a pushout in C.
Proposition 1.2.4 ([Mac98]). Let C be a category.

1. If C has all equalizers and direct products, then C is closed under limits.

2. If C has all coequalizers and direct coproducts, then C is closed under colimits.

A natural transformation F' = F” induces morphisms lim(F) — lim(F”) and
colim(F) — colim(F”) by the universality. Hence, limits and colimits give the
following functors

lim, colim : D¢ — D.

Proposition 1.2.5. Let C be a small category and let D be a category closed under
limits and colimits. The functor lim : DY — D is right adjoint to the functor
A : D —s D¢ sending an object X of D to the constant functor A(X). Dually, the
functor colim : D¢ — D is left adjoint to A.

Proof. For F' € (D%)p and X € Dy, a natural transformation ¢ : A(X) = F
induces a unique morphism f : X — lim(F) by the definition of limits. It gives an
isomorphism DC(A(X), F) & D(X,lim(F)). Similarly, we obtain an isomorphism
DY(F,A(X)) = D(colim(F), X) by the definition of colimits. O

Proposition 1.2.6. If C is a category closed under limits and colimits, then C has
an initial object and o terminal object.

Proof. Let ¢ be an empty category, then the colimit of ¢ — C is an initial object
and the limit is a terminal object. O

Definition 1.2.7. Let C and D be categories closed under limits and colimits. Let
F : C — D beafunctor. Given a diagram X in C indexed by a small category, then
we have canonical morphisms ¢x : F(limX) — lIm(FX) and 9¥x : colim(FX) —
F(colimX) of D by the universality. The functor F is said to preserve limits if px
is an isomorphism for any diagram X, and said to preserve colimits if 1y is an
isomorphism for any diagram X.

Proposition 1.2.8. Let C' and D be categories closed under limits and colimits.
Suppose that there ezists a pair of adjoint functors F' : C <= D : G, then F
preserves colimits and G preserves limits.

Proof. By Proposition 1.2.5, colim : C! :— C' is left adjoint to A for a small
category I. Hence, Focolim : C! — D is left adjoint to A oG. On the other hand,
F' induces the functor Fj : CT — DI given by Fiu(X) = F o X. Also the functor
colim o F, : CT — D is left adjoint to A o @, therefore F o colim = colim o F.
Similarly, we have F'olim 2 lim o F. 4 |



1.3 Simplicial sets

The notion of simplicial sets is a generalized idea of simplicial complexes. It consists
of a set of n~simplices for each n = 0, and face and degeneracy maps satisfying the
simplicial identities.

Definition 1.3.1. A simplicial set K is a graded set indexed by non-negative in-
tegers with maps dj; : K — Ky called face maps and s; : K, — Kpyq called
degeneracy maps for 0 £ j < n, which satisfy the following simplicial identities:

1. didj = dj_1d; if © < J,
2. si5j = 8418 if ¢ <7,
disj = sj—1d; if 1 < J,

djsj = 1= djt1s5,

S

disj = sjdi—1 if i > 7+ 1.

Sometimes a simplicial set K is called a complex, and an element of K, is called an
n~simplex of K.

Remark 1.8.2. Let A be the small category consisting of posets [n] in Notation
1.1.12 for n 2 0 as objects and poset maps [n] — [m] as morphisms from [n] to
[m]. A simplicial set can be regarded as a functor A — Set.

Example 1.3.3. Here are some basic examples of simplicial sets.

1. For n 2 0, the standard n-complez An] : A% — Set is defined by A(—, [n]).
Denote the identity morphism in Afn], = A([n], [n]) by An.

2. For n 2 0, 8A[n] is the subcomplex of A[n] generated by {d;A, |0 < 7 S n}.

3. Forn 2 0 and 0 £ k £ n, the k-th horn A} is the subcomplex A[n| generated
by {den [ J# k}

4. For a space X, the singular simplicial set SxX is defined by S, X = Top(A™, X).

5. For two complexes K and L, the product K x L is given by (K X L), = KpX Ly,

Definition 1.3.4. A simplicial map f: K — L is a map of degree zero of graded
sets commuting with the face and degeneracy maps. Denote the category of simpli-
cial sets and simplicial maps by Set®™.

Lemma 1.3.5. Let K be a simplicial set, then Set®™ (An], K) & K.
Proof.. By Lemma 1.1.15 (Yoneda lemma). O

Definition 1.3.6 (Geometric realization). Let K be a simplicial set. The geo-
metric realization of K is defined as the following space

(K= | [TA™x Kn /N

n=0

10



where (u,¢*(z)) ~ (p«(w),z) for u € A", x € K, and ¢ : [n] — [m]. A simplicial
map f: K — L induces a continuous map |f| : |K| — |L| given by [f|(u,z) =
(u, fz). It gives a functor | — | : Set®” — Top.

Proposition 1.3.7. The geometric realization functor | — | is left adjoint to the
singular simplicial set functor Si.

Proof. See [May92]. |

Proposition 1.3.8. For two simplicial sets K and L, there exists an isomorphism
|K x L| = |K| x |L].

Proof. The projections p; : K X L ~ K and pe : K x L — L induce |p1] :
|K x L| — | K| and |pa| : |K x L| — |L|. The product of these maps

(Ipal; lp2l) « | K x L] — [K| % | L]
is an isomorphism. ' O

A simplicial set which has an extension condition is a useful object for homotopy
theory of simplicial sets. '

Definition 1.3.9 (Kan complex). A simplicial set K is called a Kan complex
if for every collection of n + 1 n-simplices g, -+ ,Zk—1, Tk+1," " , Ln+1 Satisfying
the compatibility condition dijz; = dj_12s, © < J, © # k, j # k, there exists an
(n + 1)-simplex « such that d;z = z; for j # k.

Remark 1.3.10. A simplicial set K is a Kan complex if and only if for every
simplicial map A} — K can be extended to A[n] — K forn 2 0and 0 S k S n.

Example 1.3.11. The singular simplicial set S,X is a Kan complex for any space
X.

Example 1.3.12. A simplicial group is a Kan complex.

Definition 1.3.13. A simplicial map p: E — B is said to be a Kan fibration if
for a commutative diagram .

| b
Afn] —— B,

there exists a simplicial map h : Aln] — F such that poh = g and hoi = f
forn =2 0 and 0 £ k £ n. If b denotes the complex generated by a vertex b of B,
the subcomplex F' = p~!(b) of E is called the fiber of p over b. Note that b gives a
simplicial map % — B from the terminal object * in Set®™ generated by a point.

Remark 1.3.14. A simplicial set K is a Kan complex if and only if K — % is a
Kan fibration.

Lemma 1.3.15. Letp: E — B be a Kan fibration.
1. The fiber F' is a Kan complez.

11



2. If B is a Kan complez, then E is a Kan complez.
3. If E is a Kan complez and p is onto, then B is a Kan complex.
Proof. See [May92]. O

Proposition 1.3.16 ([Qui68]). Ifp: E — B is a Kan fibration, then |p| : |E| —
|B| is a Serre fibration.

We can define homotopy groups for Kan complexes. See [May92] for details.

Definition 1.3.17. Let K be a simplicial set. For z,y € K,, define a relation
z ~ y by diz = diy for any 0 £ i < n and there exists z € K41 such that
dnz = z,dp412 =y and d;z = sp—1d;T = sp—1d;y for 0 £ i < n. The above simplex
z is called a homotopy from z to y.

Proposition 1.3.18. If K is a Kan complez, then ~ is an equivalence relation on
K.

Definition 1.3.19. Let K be a Kan complex and choose a vertex * € Kp. Define
a set (K, *)n as the subset {z € K, | diz =*,0 £ 1 < n} of K. The n-dimensional
homotopy group mn(K,*) of a pair (K, *) is defined by (K, *),/ ~. For n = 1, the
group structure of m,(K, %) is given by the following. For [z],[y] € mn (K, ), the
collection . '

*,000 %0, —, Y € (K,%), C K,

satisfies the compatibility condition in Definition 1.3.9, hence there exists z € K1
such that d,—12 = z, dpy12 =y and djz = % for 0 £ ¢ S n — 2. The multiplication
[z][y] is defined by [dnz] and this is commutative for n = 2. A simplicial map
f : K — L between Kan complexes induces a map fyx : mp(K, %) — w0 (L, f(*))
given by fi[z] = [f(z)]. This is a homomorphism of groups for n 2 1.

Proposition 1.3.20. The homotopy groups of spaces and simplicial sets are related
by S« and | — | as follows.

1. There is a natural isomorphism (X, %) & 7, (S X, %) for any space X.

2. There is a natural isomorphism mn (K, %) = m,(| K|, %) for any Kan complex
K.

Theorem 1.3.21. Let p : B — B be o Kan fibration between Kan complezes.
Choose vertices b € By and e € p~1(b)g = Fp, then there exists the following long
exact sequence

o T (Fre) — (B e) 25 mp(B,b) — w1 (Fe) — -

12



Chapter 2

Fundamental groups and
coverings of small categories

We define the notion of fundamental groups and coverings of small categories, and
study relations between them. The fundamental group of a small category C is
defined as the endomorphism group of the groupoidification 7w(C), and a covering is
defined as a functor satisfying the unique right lifting property with respect to Ji
given in Notation 1.1.12. ' '

2.1 Fundamental groups of small categories

Minian defined the fundamental group m(C, z) for a pointed category (C,z) as a
colimit of the set of strong homotopy classes of functors from I, to C for n 2 0
[Min02]. It is the endomorphism group of the groupoidification of C. The groupoid-
ification is an operation to add formal inverses to all morphisms of a small category.
We give a concrete construction in the following definition.

Definition 2.1.1. For a small category C, let (C%;a,b) be the set of functors
(€L ab) ={a: I, — C | a(0) = a,a(n) =b,n =0}

for a,b € Cy. An element of (C!;a,b) forms a zigrag sequence of morphisms from a
to b. Let ~ be the equivalence relation on (C7;a,b) generated by

1. (c—f—>d<—£— c)wcw(chLC)y.
2. (ci)didi)e)w(cﬂe), (ci—didie)m(cﬂe),
3. (¢ b= b) ~ (c-Lo ).
Define a small category 7(C) by 7(C)o = Co and 7(C)(a,b) = (C¥;a,b)/ ~
with concatenation of sequences of morphisms as the composition. Then, n(C) is a

groupoid since all of the morphisms are invertible, and it gives a functor 7 : Cat —
Grd.

Definition 2.1.2. For a category C, mp(C) denotes the set of connected components
Ch/ ~o, where = ~q y is defined by 7(C)(z,y) # ¢. We say that C is connected if
™ Q(O) = %k,
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A pointed category (C,z) is a pair of small category C' and an object = of C.
Define the fundamental group m(C,z) as the endomorphism group 7(C)(z,z) on
z of m(C). It is easy to show that the relation ~ on (CZ;a,b) is equal to the one
defined by strong homotopy in [Min02], hence the fundamental group coincides with
Minian’s. We say that C is simply connected if it is connected and 7r1(C', ) is trivial
for any = € Cp.

If C is connected, it is obvious that m(C,z) = m1(C,y) for all z,y € Cp, in
which case we write 71 (C, ) simply as 71 (C).

The groupoid #(C) is called the groupoidification of C. It is the minimal
groupoid containing C as a subcategory.

Proposition 2.1.3. The groupoidification functor m is left adjoint to the inclusion
t: Grd — Cat.

Proof. Let C be a small category and G be a groupoid. For a functor f: C — G,
f:m(C) — G

is defined by f(z) = f(z) for an object z € m(C)g = Cp and f(e) = f(a), f(oz”l)
f(a)! for a morphism « in C. The map f is the unique functor satisfying fol = f

where £ : C — 7(C) is the canonical inclusion. It gives a natural isomorphism
Cat(C, G) — Grd(n(C),G). O

Theorem 2.1.4 ([Min02]). Let (C,z) be a pomted category, then there exists a
natural isomorphism

m1(C, z) £ m(BC, z)
where BC' 1s the classifying space of C' (see Definition 2.2.17).

By the above theorem, m1(C,*) can be studied by using homotopy theoretic
properties of BC. However, we can describe 71 (C, *) in terms of morphisms in C in
certain cases.

Proposition 2.1.5. If the base point * of C is an initial or a terminal object, then
m1(C, %) is trivial.

Proof. Let * be an initial object and consider a sequence -y of the following form
(*:co—]il—>(:1<f—2cz£>~*<—%=*),

then there exists a unique morphism ag : % = ¢y — co. On the other hand, the set
C(cp, c1) consists of the single morphism fy o ag = f1. Therefore, =y is

an = fa fa I3
(k=" =%
faoaz
=(k=cp = 3 — -+ Cp = *).

By iterating this operation, the above sequence can be shown to be equivalent to
* — *, thus 71(C, %) is trivial. Similarly, we can prove that m1(C,*) is trivial if *
is a terminal object. O

14



Example 2.1.6. Recall the category ST given in Notation 1.1.12. It consists of two
objects 0,1 and two parallel morphisms f, g and identity morphisms

The fundamental group m1(S?) is generated by 0 T8 0, thus 71 (S') & Z.

Example 2.1.7. Let G be a group regarded as a groupoid with a single object. An
element of 1 (G) can be written as a sequence (g1, 92, , gn) Of elements of G. The
relations in Definition 2.1.1 imply that

_ —1\n—=1
(91,92, »9n) = 9195 -+ g5

in 1 (G). It follows that m (G) = G.

2.2 Coverings of small categories

The notion of ¢overings is already defined in the category of spaces, simplicial sets
[GZ67) and groupoids [GZ67], [May99]. We define coverings in the category of small
categories as functors which have the unique lifting property with respect to Ji in
Notations 1.1.12.

Definition 2.2.1. Let M be a category and let i : A — Band p: X — Y be
morphisms of M. We say that p has the right lifting property with respect to 4 or
i has the left lifting property with respect to p if for every commutative diagram in
M of the following form

A1 x

B?Y,

there exists a morphism A : B — X such that hei = f and poh =g. If such A
exists uniquely, then we say that p has the unique right lifting property with respect
" to 1 or 7 has the unique left lifting property with respect to p.

" Let S be a class of morphisms in M. A morphism is called an S-injection if
it has the right lifting property with respect to every morphisms in S. Denote the
class of S-injections by S-inj.

Dually, a morphism is called an S-projection if it has the left lifting property
with respect to every morphisms in S, and denote the class of S-projections by
S-proj.

Definition 2.2.2. A functor p : B — B is called a covering if it has the unique
right lifting property with respect to Ji given in Notation 1.1.12. A covering p :
E — B is called a universal cover if F is simply connected and B is connected.

A covering is also defined as a functor which induces bijections on stars [Hig05],
[CRS12).

15



Remark 2.2.3. A functor p: E — B is a covering if and only if p is surjective on
objects, and '

p:| [] Eex) | ] A]_[ E@e) | — | 1] BGw | I IT Bwb)

ecEy e€Ey beBg beBy
is bijective for any v € By and = € p~(y).

Lemma 2.2.4. A functor p: E — B is a covering if and only if p has the unique
right lifting property with respect to the inclusions * — [n] for alln = 0.

Proof. Since [n] =0 — 1 — .- — n, we can repeat taking lifts of 4 — {41
starting at the point of the image * — [n]. O

Example 2.2.5. Recall the category S given in Notation 1.1.12

Let I, be the poset Z with the partial order given 2n — 1 > 2n < 2n 4+ 1 for any
nez
re— (-2) — () —0—1—2— ...

Define a functor p : Io — S* by p(2n) = 0, p(2n-+1) = 1 and p(2n — (2n+1)) = £,
p(2n — (2n—1)) = g for n € Z, then p is a covering. Furthermore, this is a universal
cover since B(Iw) = R is contractible.

Next, we construct a universal cover over any connected category using the
Grothendieck construction [Tho79).

Definition 2.2.6. Let I be a small category. The Grothendieck construction of a
functor F' : I — Set is a small category Gr(F') defined as follows. The set of
objects of Gr(F) consists of pairs (¢, z) of an object 7 € Iy and an element = € F(3).
A morphism (4,z) — (4,v) in Gr(F) is a morphism f : ¢ — j in I such that
F(f)(z) = y. It is equipped with the canonical projection Gr(F) — I given by
(i,z) — 1.

Definition 2.2.7. Let (C, %) be a pointed and connected category, then the category
C is defined by the Grothendieck construction of

7 (C)(*,—) : C — Set.
The canonical projection 7" : C — C carries an object of C formed
(¢ —cpe—cg——p)

to the last object c,.

Lemma 2.2.8. The canonical projection T : C—Cisa covering:
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Proof. Suppose we have the following commutative diagram

The above x gives a class of zigzag sequence of morphisms in C and g gives a
morphism
9(0 — 1) : g(0) = @n — g(1)

in C where z, is the last object of z. Define h : [1] — C by h(0) = z, h(1) =
9(0 — Doz and A(0 — 1) = g(0 — 1). It makes the above diagram commutative
and exists uniquely. Similarly, 7" has the unique lifting property with respect to
G s — [1]%P. O

Proposition 2.2.9. The category C is simply connected.

Proof. For an object

() = (@) L (@) (@) — o L (@) = ()

in 1 (), it suffices to show that
(Lo Tel) 2 T(R) — o ) =1
in 71(C). By iterating the fqllowing process, we obtain
(2 1(el) BTl — - )

:*—c}i—chl <f—2Tc2 —)(f—n*
* ES

=(*C—Z>T(c£) —><fi*) =-..=1
O
Corollary 2.2.10. The canonical projection T : C — C is a universal cover.
Proof. By Proposition 2.2.9 and Lemma 2.2.8. ‘ O

We recall the definition of coverings of simplicial sets and groupoids [GZ67],
[May99].

Definition 2.2.11. A simplicial map p : E — B is called a covering if it has the
unique right lifting property with respect to the inclusions A[0] — A[n], n = 0.

Definition 2.2.12. A functor p : E — B in Grd is called a covering if it has the
unique right lifting property with respect to X in Notation 1.1.12.

Proposition 2.2.13 ([GZ67]). Both Sy : Top — Set®™ and | — | : Set?” —
Top preserve coverings. ’
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Proposition 2.2.14. Both . : Grd — Cat and « : Cat — Grd preserve
coverings.

Proof. Since ¢ is right adjoint to 7, it preserves the um’qﬁe right lifting property and
coverings. Conversely, assume that p : £ — B is a covering in Cat. Consider the
following commutative diagram in Grd

52> ()

lvr(p)

,S’°°—f—>-7r(B).

Let s be the image of morphism 0 — 1 in 8% by f. It is a zigzag sequence of
. morphisms of B starting at p o e(*). Since p is a covering, we can find lifts of
morphisms appearing in s, uniquely. It gives a functor S — #(E) making the
diagram commutative, therefore 7(p) is a covering. O

The category of simplicial sets and the category of small categories are related
with each other by the nerve functor and the categorization functor [GZ67].

Definition 2.2.15. The nerve NC of a small category C is defined by
N,C = Cat([n], C)
and

di(f1, - fn) = (fr,- o 5 fimts fawr 0 fis fivos oo fn)

and .
Sj(flu"' )fn) = (fla"' 7fj)17fj+1)"' afn)-

It gives a functor N : Cat — Set®™. .

The categorization cK of a simplicial set K is defined as follows. The set of
objects cKjy is Ky and the morphisms in cK are freely generated by the set K
subject to relations given by elements of K3, namely, x1 = zaxz in cK if there
exists a 2-simplex x such that doz = o, doz = 2 and diz = 1. It gives a functor
¢: Set?®” — Cat

Proposition 2.2.16 ([GZ67]). The pair of functors
c:Set®” «— Cat: N
is a pair of adjoint functors, and cN = loag-

Definition 2.2.17. For a small category C, the classifying space BC of C is given
by |[NC]|.

Proposition 2.2.18. A functor p is a covering in Cat if and only if N(p) is a
covering in Set™™.
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Proof. Since N is right adjoint to ¢, N preserves the unique right lifting property.
Therefore, Lemma 2.2.4 implies that N preserves coverings. Conversely, let N (p)
be a covering, then N(p) has the unique right lifting property for

0, d1 + A[0] — A[1].

Since eN & 1aat, the functor p has the unique right lifting property with respect to
J1. O

Before the end of this section, let us define a Galois-type correspondence between
subgroups of 71 (C) and coverings over C for a connected category C. In the case of
groupoids, Peter May proved the following [May99].

Theorem 2.2.19 ([May99]). For a connected groupoid G, let Covgra(G) be the
category of coverings over G in Grd and let O(m1(G)) be the category of subgroups
of m1(G) as objects and subconjugacy relations as morphisms. Then, there exists an
equivalence of categories between Covara(G) and O(m(G)).

Proposition 2.2.20. For a connected category C, let Covgat(C) be the category
of coverings over C in Cat. Then, there is an equivalence of categories between
Covgat(C) and Covara(w(C)).

Proof. The groupoidification. functor induces my : Covgat(C) — Covgra(n(C))
by Proposition 2.2.14. On the other hand, let ¢ be a covering in Grd over 7(C), the
pullback of ¢ along the canonical inclusion functor C — 7(C) induces a covering
over C in Cat. This correspondence gives an inverse functor Covgra(7w(C)) —
Covat(C) of ms. O

Corollary 2.2.21. For a connected category C, there is an equivalence of categories
between Covgat(C) and O(w1(C)).

Proof. By Theorem 2.2.19 and Proposition 2.2.20. O
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Chapter 3

Model categories

Model cafegories introduced by Quillen in [Qui67] form the foundation of homotopy
theory. This is a framework to do homotopy theory in general categories.

3.1 Model categories

Model category is a category equipped with three distinguished classes of morphisms
called weak equivalences, cofibrations and fibrations. We can do homotopy theory
in a general category using such three sorts of motphisms.

Definition 3.1.1. A model structure on a category M consists of three distinguished
subcategories, weak equivalences W, cofibrations C and fibrations F' satisfying the
following properties.

1. (2-out-of-3): If f and g are morphisms of M such that go fis defined and two
of f,g9 and g o f are weak equivalences, then so is the third.

2. (Retract) : BEach W, C and F is closed under retracts.

3. (Lifting): Every morphism in WNC has the right lifting property with respect
to F, and every morphism in C' has the right lifting property with respect to
WneEF. :

4. (Factorization): Every morphisms f can be written as po ¢ for ¢ € C and
p € WNF, moreover, f can be also written as gojfor j € WNC and g € F.

A morphism in W N C is called a trivial cofibration, and a morphism in W N F is
called a trivial fibration, respectively.

A model category is a category M closed under small limits and colimits together
with a model structure on M.

Cofibrations and fibrations are characterized as morphisms having lifting prop-
erty.

Proposition 3.1.2 ([Hov99]). Let M be a model category
1. (WnQC)-inj=F
2. C-ing=WnF
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<8 WndC=F-proj
4. C= (W n F)-proj

By the above fact, the class of cofibrations C' is determined from W and F', and
the class of fibrations F is determined from W and C. Moreover, by the 2-out-of-3
and factorization axioms of model categories, a weak equivalence can be factored as
composition of a trivial cofibration and a trivial fibration. Since WNC'is determined
by F, and W N F' is determined by C, the class W is also determined by F' and C.
After all, two classes of W, C, F' determine the third.

Example 3.1.3. The following are some basic examples of model categories.
 Topg is Top with the Quillen model structure [Qui67] given as follows:

1. A morphism is a weak equivalence if it is a weak homotopy equivalence.

2. A morphism is a fibration if it is a Serre fibration.
e Topg is Top with the Strgm model structure [Str72] given as follows:

1. A morphism is a weak equivalence if it-is a homotopy equivalence.

2. A morphism is a fibration if it is a Hurewicz fibration.
. Sétf‘;p is Set®™ with the Kan model structure [Hov99] given as follows:

1. A morphism is a weak equivalence if the geometric realization is a weak
homotopy equivalence in Top.

2. A morphism is a fibration if it is a Kan fibration.

o Catyr is Cat with the Joyal-Tierney model structure [JT91], [Rez00] given
as follows:

1. A morphism is a weak equivalence if it is an equivalence of categories.

2. A morphism is a cofibration if it is injective on the set of objects.
o Catr is Cat with the Thomason model structure [Tho80] given as follows:

1. A morphism is a weak equivalence if it induces a weak homotopy equiv-
alence between classifying spaces in Top.

2. A morphism is a cofibration if it is a pseudo Dwyer morphism [Rapl0].
e Grdy is Grd with the Anderson model structure [And78] given as follows:

1. A morphism is a weak equivalence if it is an equivalence of categories.

2. A morphism is a cofibration if it is injective on the set of objects.

¢ DGM; is the category DGM of bounded below differential graded modules
over a commutative ring R with the injective model structure [Hov99] given
as follows:

1. A morphism is a weak equivalence if it is a quasi isomorphism.

2. A morphism is a fibration if it is a surjection with injective kernel.
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e DGMp is DGM with the projective model structure [Hov99] given as follows:

1. A morphism is a weak equivalence if it is a quasi isomorphism.

2. A morphism is a cofibration if it is a injection with projective cokernel.

As we saw in Section 2.3, in the case of simplicial sets, Kan complexes play an
important role in homotopy theory. A model category provides two classes of such
good objects called cofibrant, and fibrant. Indeed, Kan complexes are fibrant in
Set8™. '

Definition 3.1.4. Let M be a model category.

1. An object X is called cofibrant if the unique morphism from the initial object
¢ — X is a cofibration. '

2. An object Y is called fibrant if the unique morphism to the terminal object
Y — x is a fibration.

Example 3.1.5. The followings are examples of cofibrant and fibrant objects of the
model categories in Example 3.1.3.

¢ In Topg, every objects are fibrant and CW-complexes are cofibrant.

e In Topg, every objects are fibrant and cofibrant.

In Seth{op, Kan complexes are fibrant and every objects are cofibrant.

In Cat yr, every objects are fibrant and cofibrant.

In Catr, posets are cofibrant.

In Grdy, every objects are fibrant and cofibrant.

e In DGM]j, injective complexes are fibrant and every objects are cofibrant.

e In DGMp, every objects are fibrant and projective complexes are cofibrant.
In order to compare model categories, we introduce functors between them.

Definition 3.1.6. Let M and N be model categories and let
F:M<+<=N:G

be a pair of adjoint functors. We say that (F, G) is a Quillen adjunction if F preserves
cofibrations and G preserves fibrations. Furthermore, a Quillen adjunction (F,G)
is called a Quillen eguivalence if for a cofibrant object X in M, a fibrant object Y
in N and a morphism f: X — GY in M, the morphism f is a weak equivalence
in M if and only if the morphism f: FX — Y is a weak equivalence in NV.

Proposition 3.1.7 ([Hir03]). Let M and N be model categories and let
F:M<=N:G

be a pair of adjoint functors. Then the following are equivalent:
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1. (F,G) is a Quillen adjunction.
2. F preserves both cofibrations and trivial cofibrations.

8. G preserves both fibrations and trivial fibrations.

Example 3.1.8. The pair of identity functors 1 : Topy <= Topg : 1 is a Quillen
adjunction. ,

Example 3.1.9. The pair of functors | — | : Set® <= Topg : Sk is a Quillen
equivalence.

3.2 Simplicial model categories

In this section, we introduce the notion of simplicial model categories. A simplicial
model category M is a model category enriched over Set®™ e, itis given a simpli-
cial set Map(X,Y) called the function complex such that Map(X,Y ) = M(X,Y)
for every pair of objects X and Y.

Definition 3.2.1. A simplicial category M is a category together with

1. a simplicial set Map(X,Y") called the function complex for every two objects
X and Y,

2. a morphism of simplicial sets called the composition of function complexes
Map(Y, Z) x Map(X,Y) — Map(X, Z2)
for every three objects X, Y and Z satisfying the associativity condition,

3. a morphism of simpliciél sets * — Map(X, X) for every object X satisfying
the unit condition, :

4. an isomorphism Map(X,Y ) = M(X,Y) commuting with the composition for
every two objects X and Y.

Example 3.2.2. Let X and Y be simplicial sets. Let Map(X,Y") be the simplicial
set given by Map(X,Y), = Set®™ (X x An],Y). This gives a simplicial category
structure on Set™™.

Definition 3.2.3. A simplicial model category is a model category M that is also
a simplicial category satisfying the following two axioms:

1. For every two objects X and Y of M and every simplicial set K, there exist
objects X ® K and Y¥ of M such that there are natural isomorphisms of
simplicial sets :

Map(X ® K,Y) = Map(K, Map(X,Y)) = Map(X,Y%).
2. Ifi: A — B is a cofibration and p : X — Y is a fibration in M, then the
map of simplicial sets induced from the pullback
Map(B, X) — Map(4, X) Xpap(a,y) Map(B,Y)

is a fibration in Set%”. Moreover, it is a trivial fibration when either i or p
is a weak equivalence.

Example 3.2.4. The Kan model category Se’c%Dp is a simplicial model category
with X ® K = X x K and X% = Map(K, X) for any simplicial sets X and K.
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3.3 Homotopy limits and colimits in a simplicial model
category

Let M be a model category and let I be a small category. The (co)limit functor
MT — M does not send an objectwise weak equivalence to a weak equivalence of
M in general. The homotopy (co)limit is an attempt to solve this problem of the
ordinary (co)limit.

Definition 3.3.1 (Homotopy limit and colimit). Let F' : I — M be a diagram
in a simplicial model category M indexed by a small category I.

1. The homotopy colimt hocolimF' of F' is defined to be the following coequalizer
[I Fe)eNwln®= ] Fla) o Nl )™,
| fel(zy) a€lo
where the above parallel maps are given by
fi®1:Fl@)®N(y | ) — F(y) @ N(y | I)°P
and
1 f*: Flz)®@N(y | I)® — F(z) @ N(z | I)°P.
2. The homotopy limif holimF' of F' is defined to be the following equalizer
[[Fa"& = [[ FEV,
where the above parallel maps are given by
£ 2 F(@)V01e) — p(y)Nas)
and .
1/« :F(y)N(Ily) — F(y)N(Ilw)‘
Homotopy (co)liinits have the following homotopy invariance.

Theorem 3.3.2. [Hir03] Let M be a simplicial model category and let I be a small
category.

1L Iff: F— G is a morphism of diagrams in M by indezed by I that is an
objectwise weak equivalence between coﬁbmnt objects, the induced morphism
of homotopy colimits

S« : hocolimF — hocolimG
18 a weak equivalence in M.

2. If f: FF — G s a morphism of diagrams in M by indexed by I that is an
objectwise weak egquivalence between fibrant objects, the induced morphism of
homotopy limits

fe - holimF' — holimG
is a weak equivalence in M.

Theorem 3.3.3. [Hir03] Let M be a simplicial model category and let I be a small
category. If F is a diagram in M indexzed by I and X is an object of M, then there
exists o natural isomorphism of simplicial sets

Map(hocolimF, X) & holimMap(F, X)
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3.4 The Bousfield localization of model categories

Tt tends to be difficult to prove that a category admits a model structure. The axioms
of model structure are always hard to check. Hence, we introduce two techniques
to construct a new model structure from another good model structure. These are
called the Bousfield localization and the transfer principle.

Definition 3.4.1. Let M be a model category and let S be a class of morphisms.

1. An object W is S-local if it is fibrant and for any morphism f: A — B
in S, the induced map on homotopy function complezes (see [Hir03]) f* :
map(B, W) — map(4, W) is a weak equivalence in Set® . If S consists of
the single map f: A — B, then an S-local object is called f-local.

2. A morphism g : X — Y is an S-local equivalence if the induced map on ho-
motopy function complexes g* : map(Y, W) — map(X, W) is a weak equiv-
alence in Set® for any S-local object W. If S consists of the single map
f:X — Y, then an S-local equivalence is called an f-local equivalence.

Note that the above homotopy function complex map(X,Y’) is not equal to the
function complex Map(X,Y) in Definition 3.2.1 of simplicial model categories. It is
defined in a general model category, however if X is cofibrant and Y is fibrant in
a simplicial model category, then map(X,Y") and Map(X,Y) are weakly equivalent -
as simplicial sets. '

Remark 3.4.2. Let M be a simplicial model category whose objects are cofibrant
and fibrant and let S be a class of morphisms.

1. An object W is S-local if and only if for any morphism f : A — B in S,
the induced map on function complexes f* : Map(B, W) — Map(A4, W) is a
weak equivalence in Set% .

2. A morphism g : X — Y is an S-local equivalence if and only if the in-
duced map on function complexes g* : Map(Y, W) — Map(X, W) is a weak
equivalence in Setf‘fop for any S-local object W.

Definition 3.4.3. Let M be a model category and let S be a class of morphisms.
The left Bousfield localization of M with respect to S is a model structure LgM on
‘the underlying category M such that

1. the class of weak equivalences of LgM equals the class of .S-local equivalences,
2. the class of cofibrations of LgM equals the class of cofibrations of M.

Proposition 3.4.4 ([Hir03]). Let LsM be the left Bousfield localization of M with
respect to S.

1. Every weak equivalence of M is o weak equivalence of LigM .

2. The class of trivial fibrations of LgM coincides with the class of trivial fibra-
tions of M.

3. Bwery fibration of LgM is a fibration of M.
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4. Bvery trivial coﬁbmtion of M is a trivial cofibration of Ligh.
6. The class of fibrant objects of LgM coincides with the class of S-local objects.

Proposition 3.4.5. The identity functors 1y : M <= LgM : 1p; is a Quillen
adjunction. '

Proof. By Proposition 3.4.4. O

Although a model structure consists of three classes of morphisms, the classes of
cofibrations and trivial cofibrations determine the model structure. Indeed, the class
of fibrations is determined by the class of trivial cofibrations by the lifting axiom of
model categories. Moreover, a weak equivalence can be written as composition of a
trivial cofibration and trivial fibration by the factorization axiom. Hence, the class
of weak equivalences is also determined by the classes of cofibrations and trivial
cofibrations. The following is a model category which has generators of cofibrations
and trivial cofibrations.

Definition 3.4.6. We say that a model category M is cofibrantly generated if there
exist sets A and B of morphisms such that

1. both A and B permit the small object argument (see [Hir03]),
9. WNF = Adnj and F = B-inj.

The above set A is called a generating cofibrations, and B is called a generating
trivial cofibrations. Moreover, we say that M is combinatorial if it is cofibrantly
generated and locally presentable [KLO1].

One of useful techniques to define a model structure on a category is transferring
another model structure to the category through a pair of adjoint functors.

Theorem 3.4.7 (Transfer principle). Let M be a cofibrantly generated model
category with generating cofibrations A and generating trivial coftbrations B. Let N
be a category closed under limits and colimits, and let F' : M <= N : G be a pair
of adjoint functors. If FA={Fa |a€ A} and FB={Fb | bec B} and if

1. both of the set FA and FB permit the small object argument,
2. G takes relative F B-cell complezes (see [Hir03], [Hov99]) to weak equivalences,

then there exists a cofibrantly generated model structure on N in which FA is a
set of generating cofibrations, F-B is a set of generating trivial cofibrations, and the
weak equivalences are the morphisms that G takes into a weak equivalence in M.
Furthermore, with respect to this model structure, (F,G) is a Quillen adjunction.

A model category is called proper if weak equivalences are preserved pushing
them out along cofibrations and pulling them back along fibrations.

Definition 3.4.8. Let M be a model category.

1. It is called left properif every pushout of a weak equivalence along a cofibration
is a weak equivalence.
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2. It is called right properif every pullback of a weak equivalence along a fibration
is a weak equivalence.

3. Tt is called proper if it is both left and right proper.
Proposition 3.4.9. Let M be a model category.

1. If every object is cofibrant, then M is left proper.

2. If every object is fibrant, then M is right proper.

Most of the examples in Example 3.1.3 are combinatorial, simplicial and proper
model categories. We focus on the Joyal-Tierney model category Cat jr here.

Example 3.4.10. The model category Catyr has the generating cofibrations I
and the trivial cofibrations K in Notation 1.1.12. Since Set is locally presentable,
so is Cat [KLO01]. For a small category C, let p(C) be the maximal groupoid
contained in C, i.e, p : Cat — Grd is right adjoint to the inclusion. The function
complex Map(C, D) = Np(DC) gives rise to a simplicial enrichment on Cat. Let
C®K =C xme(K) and CK = C7K) | then Catr is a simplicial model category
[Rez00]. Since every object in Catyr is fibrant and cofibrant, Catjr is proper.
Thus, Cat jr is a combinatorial and simplicial proper model category.

The following theorem guarantees the existence of the Bousfield localization for
nice model categories.

Theorem 3.4.11 ([Lur09)]). If M is a combinatorial and simplicial left proper
model category and S is a set of morphisms. Then the left Bousfield localization of
‘M with respect to S does exist as a combinatorial and simplicial left proper model
category.
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Chapter 4

The 1-type model structure on
Cat

4

This chapter provides a model structure on the category of small categories, which is
closely related to the notion of coverings, fundamental groups and groupoidification.

4.1 The 1-type model structure on the category of small
categories '

By Theorem 3.4.11 and Example 3.4.10, we obtain a new model structure on Cat
by the Bousfield localization of Joyal-Tierney model structure if we give a set of
functors.

Definition 4.1.1. Define the I-type model category on Cat as the left Bousfield
localization of the Cat yr with respect to the inclusion ¢ : [1] — 5. Denote the
category Cat with the 1-type model structure by Cat;

It has ¢-local equivalences as weak equivalences and cofibrations of Cat - as
cofibrations. We introduce the notion of weak l-equivalences in Cat, after that, we
show that weak l-equivalence coincides with ¢-local equivalence.

Definition 4.1.2. A functor f: C — D is called a weak 1-equivalence if the both
induced maps mp(C) — mp(D) and m1(C,z) — 7m1(D, f(z)) are isomorphisms for
all z € Cp.

Lemma 4.1.3. Let G be a gfoupoid, then the canonical inclusion G — w(G) is an
isomorphism of categories.

Proof. The inverse functor 7(G) — G is given by the identity map on the set of
objects, and

) ('i)v(f—z'£>~"(f—n-'>l—)f;10-'-0f30f2_10f1
on the set of morphisms. 0

Proposition 4.1.4. The canonical inclusion £ : C— m(C) is a weak 1-equivalence
for any small category C.
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Proof. The vmap £ on the set of objects is the identity map. By Lemma 4.1.3,
the functor 7(£) : w(C) — 7(w(C)) is an isomorphism of small categories. Thus
Ly m(C, %) — w1 (n(C), %) is an isomorphism for any base point . O

Lemma 4.1.5. A functor f : C — D is a weak 1-equivalence if and only if the
functor w(f) : #(C) — (D) is an equivalence of categories.

Proof. Assume that 7(f) is an equivalence of categories, then it is obvious that f is
a weak l-equivalence by Proposition 4.1.4 and the following diagram is commutative

f

C——D

L

TI'(C) TJ")>7T(D)'

Conversely, assume that f: C —— D is a weak l-equivalence. Since m,(BG,*) =0
for any pointed groupoid (G, #) and n 2 2, the induced map B7(f)x : mp(B7(C), %) —
mn(Bw(D),*) is an isomorphism for all n 2 0. This is a weak equivalence in Cat
with the Thomason model structure in Example 3.1.3. A functor between groupoids
is a weak equivalence in the Thomason model structure if and only if it is an equiv-
alence of categories [CGT04]. Thus 7(f) is an equivalence of categories. O

Lemma 4.1.6. A small category is p-local if and only if it is a groupoid.
Proof. If G is a groupoid,
Map([1], @) = Np(GM) = NG = NG5™ = Map(5%, G).

Therefore ¢* : Map(8®, &) — Map([1], G) is a weak equivalence in Set%”. Con-
versely, assume that G is p-local. Since ¢ is a cofibration in Cat s,

©* : Map(5%°, G) — Map([1], G)

is a trivial fibration in Set%c’p. Therefore, the map ¢* : Ggw — G’gl] is surjective
and G is a groupoid. . O

Corollary 4.1.7. A small category is fibrant in Caty if and only if it is a groupoid.
Proof. By Lemma 4.1.6 and Proposition 3.4.4. O

‘Proposition 4.1.8. A functor f: X — Y is a @-local equivalence if and only if
it 15 o weak 1-equivalence. :

Proof. Let f be a p-local equivalence, the induced map
F*: N(G¥) — N(G¥)

is a weak equivalence in Se’cl‘%\‘;’P for any groupoid G by Lemma 4.1.6. Since the both
GX and GY are groupoids, 7(f)* : ™) — G™X) is an equivalence of categories.
Take G = w(X), there exists an inverse functor of n(f). Thus, f is a weak 1-
equivalence. Conversely, we can prove that f* is a Weak-equivalence if f is a weak
l-equivalence using the reverse procedure above. O

29



The notions of weak 1-equivalences in Top and Set®” are already known.

Definition 4.1.9. A morphism f: X — Y in Top is called a weak 1-equivalence
if the both induced maps mp(X) — m(Y) and 71 (X,z) — m (Y, f(z)) are iso-
morphisms for all € X. On the other hand, a morphism f in Set®™ is called a
weak l-equivalence if the geometric realization |f| is a weak 1-equivalence in Top.
By Theorem 2.1.4, f is a weak l-equivalence in Cat if and only if the nerve N f is
a weak l-equivalence in Set®” .

Theorem 4.1.10 ([DP95]). There ezists a cofibrantly generated model structure
on Set®™ which
I'={0A[n] — Aln] [0S n <2}

15 a set of generating cofibrations,
J'={A} — Aln), A} — 0A[3] | 0<n<2,057Sn,05 kS 3)

is a set of generating trivial cofibrations, and the class of weak equivalences is the
class of weak 1-equivalences. We denote the category of simplicial sets equipped with
the above model structure by Set?™ .

Another way to define the 1-type model structure on Cat is to use the transfer
principle in Theorem 3.4.7. We can transfer the above 1-type model structure on
Set®” to Cat using the pair of adjoint functors ¢ : Set®” <= Cat : N.

Theorem 4.1.11. The category Cat admits o model structure which I is o set of
generating cofibrations, J is a set of generating trivial cofibrations, and the class of
weak equivalences is the class of weak l-equivalences, where I and J are given in
Notation 1.1.12.

Proof. We verify that the conditions in Theorem 3.4.7 are satisfied for
c: SetlAOP <= Cat : N.

The domain of any functor in ¢(I’) or ¢(J') is a small category consists of finite
objects and finite morphisms, thus ¢(I’) and ¢(J’) permit small object argument.
On the other hand, every functor in ¢(J’) is a trivial cofibration in Caty. Since trivial
cofibrations in a model category are closed under retracts, pushouts and sequential
colimits, a relative c(J')-cell is a weak l-equivalence. Hence, N sends relative c(J')-
cells to weak l-equivalences. We can obtain a cofibrantly generated model structure
on Cat with the set of generating cofibrations c(I’) and the set of generating trivial
cofibrations ¢(J’) by Theorem 3.4.7. Finally, we have c(I')-inj= I-inj and c(J’)-inj
= J-inj, therefore [ is a set of generating cofibrations and J is a set of generating
trivial cofibrations of the model category. O

Corollary 4.1.12. The model structure given in Theorem 4.1.11 coincides with the
1-type model structure on Cat given in Definition 4.1.1.

Proof. The class I generates cofibrations in Catyjr and Cat;. The two model
structures have the same classes of weak equivalences and cofibrations, thus these
model structures are equal. O
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4.2 TFibrations and coverings

In this section, we characterize fibrations in Cat;. By observing the set of gener-
ating trivial cofibrations in Caty, it turns out that fibrations in Cat; coincide with
categories fibered and cofibered in groupoids. Also we can see a covering in Cat as
a special case of fibrations.

Definition 4.2.1. A functor F': C — D is called a category fibered in groupoids
if the following two conditions are satisfled:

1. For every object z in C and every morphism f :y — F(z) in D, there exists
a morphism g : ' — z in C such that F(g) = f.

2. For every morphism f : ' — z” in C and every object = in C, the map
a: C(z,a') — C(x,2") X p(r(),rey) D(F (@), Fz))
given by g — (f o g, F'(g)) is bijective.
By reversing the above morphisms, we can define categories cofibered in groupoids.

Proposition 4.2.2. A functor F': C — D is a category fibered and cofibered in
groupoids if and only if it has the right lifting property with respect to J.

Proof. The first condition of categories fibered and cofibered in groupoids corre-
sponds to the lifting property for Ji. The map « is surjective if and only if I has
the right lifting property with respect to Jp. Finally, the map « is injective if and
only if " has the right lifting property with respect to Js. O

"Theorem 4.2.3. The 1-type model category Caty consists of the following structure.
If f: X — Y is a functor, then

1. f is a weak equivalence if and only if it is a weak 1-equivalence,

2. f is a cofibration if and only if it is injective on the set of objects,

3. f is a fibration if and only if it is a category fibered and cofibered in groupoids.
Proof. By Corollary 4.1.12 and Proposition 4.2.2. O

Theorem 4.2.4 ([Lur09]). A functor p is a fibration in Caty if and only if Np is
a Kan fibration.

Corollary 4.2.5. A category G is a groupoid if and only if N(G) is a Kan complez.

Proof. By Proposition 4.1.7, groupoids coincide with fibrant objects in Cat;, and
Kan complexes coincide with fibrant objects in Set%” . Theorem 4.2.4 implies that
G is a groupoid if and only if N(@) is a Kan complex since N preserves terminal
object. [l

Lemma 4.2.6. Ifp: E — B is a covering, then p is a fibration in Cat;.
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Proof. By the definition of coverings, p has the right lifting property with respect
to Ji. Suppose that we have the following commutative diagram

I2—f—>E

S

We obtain a morphism o : f(0) — f(2) over g(0 — 1) : g(0) — g(1) by the right.
lifting property of p. We have p (f(2 — 1)ca)=g(0 — 2) and f(2 — 1)oa =
f(0 — 2) by the unique lifting property, then p has the right lifting property with
respect to Jo. The unique lifting property also implies that p has the right lifting
property with respect to Ja, similarly. O

Definition 4.2.7. Let f: X — Y be a functor, then the category of fiber f~*(y)
over y € Yy is defined as the subcategory of X define by f~1(y), = f~1(y) and

FHw)(a,b) = p 1 (Ly)-

Proposition 4.2.8. A functorp : E — B s a covering if and only if p is a
fibration in Caty and the category of fiber p~1(b) is discrete for any b € By.

Proof. Letp: E — B be a covering, then p is a fibration by Lemma 4.2.6, and every
fiber has the only identity morphisms by the unique lifting property. Conversely,
let p be a fibration with discrete fibers. Since p is a fibration, p has the right lifting
property with respect to Ji. We will show that uniqueness of the lifting. For the
following commutative diagram :

e
——

=

= %
——
3

[

s3]

J—

we assume that g, h : [1] — FE satisfy pog = poh = f and g(0) = h(0) =
e(*). The right lifting property of p with respect to Jy implies that there exists
w : g(1) — h(1) such that wog = h and pow = lgqy). It follows that w is
a morphism in p~1(f(1)). However, p~1(f(1)) has only identity morphisms, thus
w = 1. Therefore, g = h. ' O

4.3 A factorization of morphisms in the 1-type model
category

The 1-type model'category Cat; is equipped with a pair of factorizations of mor-
phisms satisfying the set of axioms of model structure given by the small object
argument [Hir03], [Hov99]. It is obtained by taking many pushouts and sequen-
tial colimits. This section gives another factorization of Cat; which induces the
groupoidification in Definition 2.1.1 and universal covers in Definition 2.2.7.



Definition 4.3.1. Let f: X — Y be a functor. A category Ey is defined by

(Br)o = {(z. 1) € Xo x Mor(n(¥Y))o | £(z) = yo}

and

Er((z,95), (', 9)) = {(9%,9) € 7(X)(@,2") XY (Yn, Urn) | 0 F(g5) = goyw € m(¥)}

where y, and v/, are the last objects of y, ., respectively. When X = x, the
category Ey is precisely ¥ in Definition 2.2.7. Define a functor j : X — Ey by
j(x) = (z,1f()) and p: BEf — Y by p(, Y«) = Yn, then we have f =poj.

Proposition 4.3.2. The functorp: Ef — Y s a fibration in Cat;.

Proof. Suppose that we have the following commutative diagram
* — o By
jll lp
Let a(*) = (z,y«), then (0 — 1) : B(0) = y, — B(1). Define a functor
v : [1] — Ef by v(0) = a(x) = (z,3), 7(1) = (2,6(0 — 1) o y) and (0 —
. 1) = (1,8(0 — 1)). It makes the above diagram commutative, thus p has the right

lifting property with respect to Ji.
Next, suppose that we have the following commutative diagram

I, —%> E;

J

2
[ ] —,B> Y.
The image of o describes the diagram
( * ) h*ah‘
() € (z,9) 2 (0,4l
in Ff. Since f(1 — 2) is a morphism from the last object of g, to gy, the morphism
(h* o g;laﬁ(l — 2)) : (ml)y;) - (a"”uy:k/)

gives a functor [2] — E making the above diagram commutative. Thus, p has the
right lifting property with respect to Js.
Finally, suppose that we have the following commutative diagram

cst _9‘__>_Ef

N

[2] —ﬁ> Y.
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The image of « describes the diagram

)0 (ot )

(ﬂ?, Y=

in Ey. Since hy 0 g« = Rl 0 g« in (X)),
h*Zh*Og*og;l =hfk°9*°9*_.1 = h,

in w(X). Moreover, § implies that h = &/, then (h«, h) = (h}, ') and it gives a
functor [2] — Ef making the above diagram commutative, thus p has the right
lifting property with respect to Js. O

Proposition 4.3.3. The functor j : X — Ey is a trivial cofibration in Caty.

Proof. 1t is obvious that j is a cofibration, thus it suffices to prove that j is a weak 1-
equivalence. A functor r: mEf — 7.X is defined by r(z,y«) = = and 7(g«, g) = gs-
This is an inverse functor of 7j : #X — 7wEy, therefore j is a weak I-equivalence
by Lemma 4.1.5. O

Corollary 4.3.4. The factorization given in Definition 4.3.1 satisfies the factoriza-
tion aziom of model structure in Definition 8.1.1.
Corollary 4.3.5. Let C be a small category and let q : C — = be the unique

morphism to the terminal object % in Cat. Then ¢ is factored as C N E, £ %
The trivial cofibration j : C — Eg is the canonical inclusion C — 7(C) associated
to the groupoidification in Definition 2.1.1.

Corollary 4.8.6. Let (C,*) be a pointed connected category and let k : * — C be

the embedding functor to the base point. Therf\ k is factored as * 2, E, 25 C. The
fibration p : By — C is the universal cover C — C in Definition 2.2.7.

4.4 Relations between the l-fype model category and
other model categories

The model category Cat; is related to other model categories by the following pairs
of adjoint functors

L N 1=

Grd _ Cat _ Setd™ Top.
¥y [+ S*

Proposition 4.4.1. The pair of adjoint functors
7:Caty <= Grdg: ¢
is a Quillen equivalence.

Proof. Since 7 preserves weak equivalences and cofibrations, Proposition 3.1.7 im-
plies that (m,:) is a Quillen adjunction. Furthermore, (m,¢) is a Quillen equivalence
since the canonical inclusion C — =(C) is a weak l-equivalence for any small
category C by Proposition 4.1.4. . O
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Proposition 4.4.2. The pair of adjoint functors

A°P

c:Sety <= Cat: N

is a Quillen adjunction.

Proof. The functor N preserves fibrations by Proposition 4.2.4. For a cofibration
i:A— Bin Setmp, the map on the set of vertexes ig : Ag — By is injective. The
map on the set of objects of ¢i : cA — ¢B is iy : Ay — By, thus ci is a cofibration.
It follows that c preserves cofibrations, hence (¢, N) is a Quillen adjunction.

O

We will prove that Caty is Quillen equivalent to Setf‘()p. Recall the definition
of fundamental groups of simplicial sets (Kan complexes) in Definition 1.3.19. Let
(K,*) be a pointed Kan complex. Two l-simplices z,y € K, satisfying d;(z) =
di(y) = = for ¢ = 0,1 are homotopic, denoted by z ~ y, if there exists a 2-simplex
z € Ko such that dpz = #, d1z = z and dgoz = y. The fundamental group 1 (X, *)
is given by

{z e Ki|di(z)=%,1=0,1}/ =.

Note that w1 (K, *) is equal to the fundamental group of cK.
Lemma 4.4.3. If K is a Kan complez, then cK is a groupoid.

Proof. A morphism of ¢K from a to b is a class of sequence ejey - - - e, of l-simplices
of K. There exists e € K satisfying e = e1es---e, in cK since K is a Kan complex.
Furthermore, there exists d € K7 such that de = o and ed = b, thus all morphisms
of ¢K are invertible. O

Proposition 4.4.4. The counit map n : K — NcK is a weak 1-equivalence in
Set®” if K is a Kan complex. :

Proof. It is obvious that 7 : mo(X) — wp(NeX) is an isomorphism since Xp £
(NeX)o. The category cK is a groupoid by Lemma 4.4.3, hence the map 7, on
fundamental groups is the following isomorphism

1 (K, %) = cK (*,%) & cNcK (%, %) &2 m(NeK, *).
O

Corollary 4.4.5. The counit mapn : K — NcK is a weak 1-equivalence in Set®™
for any K.

Proof. By the factorization in Set}A{OP, there exists a Kan complex RK with a trivial
cofibration i : X — RK in Set?fop for any simplicial set K. The following diagram

K—2+ NeK

d |

RK — NcRK
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is commutative, and n : RK — NcRK is a weak l-equivalence by Proposition
4.4.4 and also 7 is a weak l-equivalence. By Proposition 4.4.2,

c: Setf{op < Caty : N

is a Quillen adjunction, therefore ¢ preserves trivial cofibrations by Proposition
3.1.7. Therefore, ci is a weak l-equivalence in Cat and Nc¢i is a weak 1-equivalence
in Set®”. The diagram follows that n:X — NcX is a weak l-equivalence. O

Theorem 4.4.6. The pair of adjoint functors

c: Seth” «= Caty : N

is a Quillen eguivalence.

Proof. By Theorem 4.2.3, (¢, N) is a Quillen adjunction. Suppose X is a cofibrant
object in Se’c‘i‘\‘c’p and @G is a fibrant object in Cat; and f : X — NG is a weak
equivalence in Setlep. We show that the map f# : ¢cX — @ given by X -,
cNG 2 G is a weak equivalence in Cat;. In the following commutative diagram

x—~neo

nl Js
7

NCXTCJ;NCJ\ G,

the map 7 is a weak l-equivalence from Corollary 4.4.5, so is Nc¢f. Thus, cf and f*
are weak equivalences in Cat;. Conversely, it is obvious that f is a weak equivalence
in Set?™ if f# is a weak equivalence in Cat;. O

4.5 The 1-type model category and stacks

Categories (co)fibered in groupoids appearing in the definition of fibrations in Cat;
are closely related to stacks. A stack is a generalized notion of sheaf for a category.
Although there are several definitions of stacks, Hollander gave one of them in terms
of homotopy limits [Hol07).

Definition 4.5.1 (Stack). Let (C,J) be a site (see [MM92]). A functor (or
presheaf) F': C°°P — Grd is a stack if

F(X) — holimF'(Uy)
(see in Definition 3.3.1) is an equivalence of categories for any cover {U; — X}.

In order to deal with stacks using homotopy theory, Hollander consider a model
structure on the category Grd®® of functors valued in groupoids and the category
F(C) of categories fibered in groupoids on a small category C. These categories are
related to each other by the Grothendieck construction and the section functor.

The Grothendieck construction appearing in Definition 2.2.6 can be defined for
a functor F: C°P — Cat. It gives a functor from the category Cat®” of functors
on C°P valued in small categories to the overcategory Cat | C.
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Definition 4.5.2. For a functor F' : C°° — Cat, the Grothendieck construction
GrF' is a category consisting of

(GrF)g = {(@,a) | z € Cy,a € (Fz)o}

and
GrF((z,0), (4,5)) = {(/,0) | f € Cla,y),u € Fa(a, Ffb)}.

It is equipped with the canonical projection pr : GrF — C. This correspondence
gives a functor Gr : Cat®” — Cat | C. There exists a right adjoint functor of
Gr. The section functor

I':Cat ] C — Cat®

is defined by
Ip(z)={s:Clz— E|pos=gq}

for any functor p: E — C, where ¢ : C' | x — C' is the canonical projection.
Proposition 4.5.3. Gr: Cat®” <= Cat | C: T is a pair of adjoint functors.

Proof. For a functor F' : C°° — Cat and a functor p : E — C, a natural
isomorphism
a: Cat®" (F,I,) — Cat | C(GrF, E)

is defined byl a(t)(z,a) = tz(a)(1g) for (z,a) € (GrF)o. ‘ O

Remark 4.5.4. The above pair of adjoint functors induces Gr : Grd®” <= F(C) :
T.

Let us consider the following model categories. At this time, we do not need a
site, but only a small category.

Definition 4.5.5. Let C be a small category, then we consider the following model
categories.

. Cat?op is the category of functors on C° valued in small categories with
the projective model structure which has objectwise weak equivalences (resp.
fibrations) in Cat; as weak equivalences (resp. fibrations).

. G‘rrdﬁop is the category of functors on C°P valued in groupoids with the projec-
tive model structure which has objectwise weak equivalences (resp. fibrations)
in Grdy4 as weak equivalences (resp. fibrations).

e F(C)g is the category of categories fibered in groupoids with the induced
model structure from Grd§ through the pair of adjoint functors (Gr,T),
namely, f is a weak equivalence (resp. fibration) if I'f is a weak equivalence
(resp. fibration) in Grd§ .

Theorem 4.5.6. The above three model categories Cat?™, Grd§G = and F(C)x
are Quillen equivalent to each other.

Proof. Hollander shows that Grd§" and F(C)g are Quillen equivalent by the pair
of adjoint. functors (Gr,T") in [Hol07]. Moreover, Grd§ = and Cat{™ are Quillen
equivalent since Grd g and Cat; are Quillen equivalent by Proposition 4.4.1. O
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Let us consider a small category C with a Grothendieck topology J to discuss
stacks. Hollander uses the left Bousfield localization of Grd§” or F(C)gy with
respect to a class of morphisms induced by homotopy colimits (see in Definition
3.3.1) of covers in J.

Definition 4.5.7. Let (C, J) be asite. For an object X € Cp, sometimes we identify
it with the functor C(—,X) : C°® — Set C Cat by Yoneda lemma. For a cover
{U; — X} on X € Cy, the nerve Uy is the cosimplicial object in Grd®*”

Un = HUio Xx U'il Xx " Xx Uin'
Let 57 be the set of morphisms
Sy = {hocolimU; — X | {U; — X }: cover},

the left Bousfield localization of Grd§" with respect to Sy is denoted by Grd%™.
Similarly, the left Bousfield localization of Catlcop with respect to S is denoted by
Catg”.

Also we can define a set S’ of morphisms in F(C) by

S = {hocolim (C | U) — C | X | {U; — X}: cover}.
The left Bousfield localization of F(C) with respect to S’ is denoted by F(C)y.
The following theorem is induced by Theorem 4.5.6

Theorem 4.5.8. The above three model categories Grd§ ", Cat$™ and F(C)r are
Quillen egquivalent to each other.

Theorem 4.5.9 ([Hol07]). 4 functor on C° wvalued in groupoids is a stack if and
only if it is fibrant in Grd%mp.

Proof. A fibrant object in Grdgop coincides with an Sjy-local object. Hence F' is
fibrant if and only if

Grd®" (X, F) — Grd“” (hocolimUy, F) & holimGrd®™ (U,, F)

is an equivalence of categories. The Yoneda lemma for 2-categories implies that
F(X) — holimF'(U,) is an equivalence of categories. O

We introduce one more model structure on the overcategory Cat | C. induced
from Cat;.

Definition 4.5.10. For a small category C, Cat; | C is the overcategory Cat | C
with a model structure, in which a map is weak equivalence, fibration or cofibration
if it is one of Catq.

Theorem 4.5.11. The pair of adjoint functors .
Gr: Cat{” <= Cat; | C: T

18 o Quillen adjunction.
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Proof. The Grothendieck construction sends the set of generating cofibrations of

Catlcop to '
{Ixi:ClzxX—ClaxY|iel}

in Cat | C. These morphisms are cofibrations of Caty, hence Gr preserves cofi-

brations. Similarly, Gr sends the set of generating trivial cofibrations of Catlcop

to trivial cofibrations of Caty | C. Hence, Gr preserves trivial cofibrations, and

(Gr,T) is a Quillen adjunction. O
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