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Abstract: 
We proposed the positive hypotheses of neural interferences based on physiological 
knowledge of neurons, ephapse and those quantum effects as engineering models.  We 
thought the neural interferences of axons and synaptic interactions as ephapse are 
propagated by polaritons, which were a kind of quasi particles.  The polaritons were 
essentially massive vector photon with spin 1.  The polaritons, whose particles were 
relativistic, were strictly governed by Proca equation or quaternary Schrödinger 
equation.  The polaritons were connecting between two ionic currents on phospholipid 
membrane of neuron. That membrane on their axons was propagating their excitations 
and action potentials by using polaritons.  The Na+ currents, into insides of 
membranes of axons, cause the K+ current’s flow to outside of axons, and a series of 
those processes can generate the quantized polarization waves (polaritons).  Various 
interferences as ephapse, synaptic and the other interactions were intermediated by 
polaritons. The polaritons were able to go through myelin sheaths by quantum effect. 
The one polariton makes possible to carry amount of information, 9.38X1012 
bits/polariton, at 300 Kelvin.  And we recognized to be required at least 0.693kBT 
joules of energy to convey one bit of information.  We thought that those quantum 
interferences were utilizing commonly to adjust our neural and brain’s functions.   

It is known, as neural networks are fundamentals of brain’s constructions.  So, we 
proposed path integral method in order to calculate quantum probability amplitude for 
various networks, i.e. Amida lottery, electrical circulations and classical neural systems.  
Our starting points of new basic theory and calculation methods for quantum 
bifurcation, quantum circuits, and neural computer are based on path integrals of 
quantum theory.  The problems of classical bifurcation were easily led to Schrödinger 
equation by considering Nelson’s stochastic quantization method.  Japanese Amida 
lottery was a kind of classical bifurcation models because of no interference between 
each path of lottery.  And so we showed how to quantize electric circuits, Amida lottery 
and complex neural network by applying the method of path integrals.  The bifurcation 
points of Amida lottery corresponded to diffraction point of polariton in quantum theory.  
Then we constructed the method of quantization of basic circuits as AND, OR and NOT.   
Moreover, we assumed that we could regard classical switches as scattering potentials 
(switch’s operators).  Those were quantization concepts, and those quantized circuits 
with switch operators corresponded to q-AND, q-NOT, and q-OR circuits.  The Proca 
equation of polariton, which was relativistic field equation, approached to the 
quaternary Schrödinger equation when the motion of polariton was much slower than 
light velocity.  The kernel K(b,a) for an integral, which was propagator and an 
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expression of the time development system, was related to an eigenfunction of 
Schrödinger equation.  We found that the neuro-synaptic junctions were regarded as a 
kind of switch’s potential, whose concepts led to quantization of neural networks by 
using path integrals.   

By expanding method of the classical networks to quantum systems with wave 
equation and path integrals of polaritons, we could obtain both some tools and 
descriptions for quantum calculations of arbitrary neural circuits.  The most important 
difference between the common (classical) neural network and quantum one are in with 
or without of an existence of interferences.  The quantum system had essentially many 
interference’s relationships in its system, and so its probability was related to the 
probability amplitude, wave functions and propagators, which were commonly complex 
functions.  On the other hand, the classical probability never contained any 
interferences since it had in the real number field.  And concretely we showed how 
those quantum methods, whose system contained much interference, were applied to the 
Bayes’ theory, entropy of information theory, and the two-step neural network as a kind 
of multi channels.  Moreover we succeed to obtain approximately output’s solution of 
the quantum network, with mixing many quantum states, and we expressed the feature 
of network by means of perturbation and path integral description.  And we found that 
our quantum neural network and polariton’s model were connected with the common 
quantum information theory, classical neural system, and we showed quantum network 
was including some aspects of soft science.  Concretely we showed that our methods 
were closely related to various areas as applications of fuzzy controls, classical neural 
systems, the classical Information theory and so on. 

 
 

Keywords: polariton, quasi particles, polarization vectors, sodium ionic currents, 
potassium ionic currents, wave function, axon, neural network, quantum interferences, 
ephapse, dielectric materials, Proca equation, quantum circuits, quantum lottery, path 
integral, Hamiltonian, quaternary Schrödinger equation, superposition, neural network, 
wave function, propagator, Bayes’ theory, entropy, quantum neuron, Schrödinger 
equation. 
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1. Artificial Neurons and Phenomena of Ephapse 
 
Many excellent experiments for neuro-function and neural conduction have been 
performed by usage of micro-needles for neurons, and we have understood notable 
phenomena of neuro-physiological functions and their structures.  Among all, one of 
the most famous researches is performed by Hodgkin & Huxley, who proposed 
physiological models based on physical cable theory, ionic currents (Na+, K+), local 
currents and conductions of action potentials [1].  Their model can be able to explain 
many phenomena of neuro-electrical physiology.  In pathological area, Arvanitaki 
discovered the phenomena of ephapse, which means an existence of interference 
between many neural axons.  When he stimulated one neuron and made action 
potentials (impulses) arise on the stimulated neuron, that impulses affected on another 
axon despite of having of no direct connections between two axons.  So his discovery 
and experiments are thought him to make up an artificial synapse and neurons.            

However, the ephapse have been believed not to be in the cases of healthy 
neuro-fibers[11].  It is said that ephapse was found in pathological neural axons, i.e., 
for examples, neuralgia, causalgia, and what we call, neuron’s diseases.  So, the axon’s 
or synaptic interferences have been regarded as an evidence of wrong neurons.  We 
have had negative images for the ephapse, whose sign are pathological neuron or 
symptom of demyelination[26]. 

We, however, would like to propose a positive hypothesis for ephapse or 
interferences of neurons in this paper.  So I put on those following presuppositions. 

Our healthy brain or normal neurons actively utilize electromagnetic interactions, (for 
examples, leakage current, polarization of membrane, noise current, ephapse, and so on), 
so as to adjust neuron’s functions between each neuron, and so as to accomplish an 
integration of brain’s functions.  Note that we do not intend to discuss whether our 
neuron’s model is correct or not, from standpoints of biology.  We would like to only 
discuss from to engineering views and functions.   

In the other word, we have an interest in following question: if it were the 
interferences between each neuron and the brain utilized those weak electromagnetic 
interactions so as to adjust its functions, we would like to show how neuron’s images 
does change and what biophysical principle governs our neural networks.  Moreover, 
we will propose how to get a mathematical expression of our neural networks.  We 
have been researching for suitable descriptions for those weak electromagnetic nano- or 
meso- phenomena.   

In following section, we intend to mention basic idea and theoretical requests in order 
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to introduce both quantum method and concepts of quasi particles polaritons.  Then we 
show quantum mechanism of neural-conduction based on dielectric of myelin sheath.    

We assert in this paper that information for neural interferences as ephapse is 
propagated by polaritons, which are a kind of quasi particles, i.e., quantized polarization 
waves.  We conclude that polaritons mean massive vector particle with spin 1, and 
shortly speaking, it is massive photon.  Moreover, polaritons are closely related to 
many ionic currents (Na+, K+, Cl—current) and those channels, when neurons and axons 
propagate action potentials (impulses).  Thus, polaritons run on neural membranes 
along to axon, and they go easily through myelin sheath by quantum tunnel effects.    

We would like to mention the concepts that those quantum interferences are useful to 
adjust and to harmonize our neural functions and brain’s situation [2]-[5].  So, One of 
our purposes is to study effects of quantum neural-interferences. And our computer 
(brain), which is constructed by many quantum neurons, and sometimes make mistakes 
and causes false illusions by quantum effect of polaritons.  
 
 
2. Polariton’s Model of Neural Conduction 
 
Axons of neurons have a series of polarization’s processes: in short, there are the 
polarization, depolarization and re-polarization by Na+- and K+ -currents penetrating 
axon’s membranes. 
 

 

  
  
  
  
  
 
 
  
 
 
If we observe the changes the polarization vectors, we notice approximately to able to 
describe the changes of action potentials on axons as the rotating polarization vectors 
(FIGURE 1-A-D).  The FIGURE 1-A shows the change of polarization vectors, which 

re-polarization 
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positive 
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polarization depolarization 

Change of polarization vectors 
A If we observe from this direction of

conduction of excitation (action
potentials), those processes can be
described as rotating vectors.
Those phenomena as polarization,
depolarization and re-polarization
are the quantized rotational vectors,
which are quasi particles, what is
called, polariton.   
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mean directions of ionic current and their magnitude.  If we observe those polarization 
vectors, we know it safety to express classically as rotation of those vectors.  

 
 
 
  
  
  
  
  
  
  
  
  
 

 
 
We regard neural conductions of action potentials (impulse) as propagation of the 
quantized polarizations vectors, which are correspond to the traveling quasi particles, 
polariton.  Their motions (rotation of vectors and propagating polarization vectors) and 
the series of processes (polarization -depolarization-repolarization, etc) are caused by 
mainly ionic currents (Na+-current, K+-current, etc.).  Those ionic currents are source 
of polaritons. 
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(FIGURE 1.-A,B,C,D)  Theory of rotating polarization vectors 
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vectors are described as spiral curves
on the axon.  The traveling of the
process,polarization-depolarization-rep
olariztion, makes polarization wave. 
The quantized polarization waves are
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Those currents become sources of polaritons, whose rotating vectors propagate on the 
neural membrane, and triggers of those two ionic currents arise the polarization waves, 
and the quantized polarization waves correspond to quasi particles, polaritons.  
(A) This figure-A shows the feature of “the changes of magnitude of polarization 

vectors”.  According to the conduction of action potentials along to axons, the 
polarization vectors rapidly change their shapes, directions and magnitude (Fig-A).  

(B) The process of conductions of action potentials hypothesizes to shown as rotation of 
polarization vectors, if we thought the polarization vectors travel along to 
longitudinal direction of axons (Fig-B).  

(C) This picture shows each phase of action potentials, which are mainly generated by 
those currents, sodium ion’s currents, potassium ion’s currents and sodium pomp 
(Fig-C).  Those currents are origins of polaritons. 

(D) The inverted phase of polarization vectors (depolarization phase, center of Fig,1-D) 
is pictured, and the polarization vectors are propagating on the membrane of axon.   

Those axon’s membranes are constructed by phospholipid bilayer, which has 
characteristics of strong dielectric materials.  Those dielectric materials can efficiently 
conduct the polariztion’s waves, or its quantized quasi-particles, polaritons. After all, 
the quantized and rotating polarization vectors run along to longitudinal direction of 
axon.  The real polaritons are quasi particles covered with a lot of water molecules and 
ions, which are made by electro-static interactions between bare polariton and waters’ 
molecules (FIGURE 3). 
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3. Characteristic of Polatriton as Quantum Depolarization Waves  
 
We are able to estimate physical characteristics of quasi polaritons.  Considering 
saltatory conduction of excitations and of action potentials, we can estimate a rage of 
the existence of polaritons to be almost equals to the width of Ranvier ring, whose 
length is said to be about 1μm (FIGURE 2).   
 

 

 

 

 
 
 
 
 
 
 
 
 
 
When the wave length of ground state of wave function is considered to be the width of 
Ranvier ring 1μm, the polaritons mass can easily calculate by following relation: the 
equation says 

 

 

(1)

If we adopt the conducting velocity of myelinated axon v = 100m/s, then the wave 
length of wave function of ground state of polaritons become about equal to the width 
of Ranvier ring 1μm.  This calculation for polariton’s bare mass results in 6.7X10-30kg.  
We know, mass of the bare polaritons has at most about ten times as heavy as that of 
electron mass.  And the kinetic energy of a free bare polariton moving along to an 
axon is estimated as 

2

2
1 mvEK = = 2.07 X 10-7 (eV per a polariton). (2)

That polariton’s kinetic energy is so smaller than any specific energies, i.e., thermal 
energy at 300K = 3.0 X10-2eV, ATP hydrolysis = 2.0 X10-1eV and etc. (Table 1). And 

If polaritons exist in the Ranvier
Ring, it is reasonable to assume
polaritons to be confined between
myelin sheaths.  

So, we are simply able to apply
box type of potential model for the
confinement of polaritons.  The
continuous line is the ground state
of polaritons, which are bosons,
the dashed line is correspond to
the first excited state. 

FIGURE 2. Polariton on Ravier Ring

Ranvier 
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D
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its energy is indicates 10-6 times smaller than hydrogen bonds of water molecules, and 
that energy is ten times larger than kinetic energy of electron moving at 100m/s speeds.  
Polaritons work as intermediates of electromagnetic interaction by propagation of 
polarization waves, and so those bare quantized waves (those are quantum particles), 
which are massive photons, have an average mass 6.7X10-30kg with spin 1.   

Those massive photons have serious problems. Generally speaking, biological 
nanomachines show good efficiency at room temperature, and their input energies 
almost equal to thermal fluctuation.  According to the above common nano-machine’s 
examples, we think that the polariton’s kinetic energy should be nearly equal to thermal 
noise energy.  If polaritons are always exposed under water rich circumstance, whose 
temperature indicates about room temperature T=300K, the energy of thermal noise 
reaches the value. 

TkB2/3 =6.3 X 10-21 J =3.9 X10-2 eV, (3)

Judging from standpoint both Eq.(2) and Eq.(3), we gauss the bare polariton’s kinetic 
energy is almost 10-5 times smaller than thermal noise.  Those conditions cause serious 
problems, because of preventing polaritons from normal neural conductions and from 
traveling action potentials.  Thus, the polaritons’ kinetic energy is so small that 
polartions cannot work efficiently under water rich environmental like as human body, 
since polaritons’ motions are interfered with thermal fluctuation and noise.  At least, 
the polaritons, which are against thermal noise, are needed to become 105 times heavier 
than their average mass.  Though that mass 6.7X10-30kg is bare polariton’s mass, we 
are able to estimate the quasi polariton mass (dressed mass), which mean the bare 
polariton to be covered with some ions and water molecules.  Thus, the bare polariton 
is requested to become average 105 times heavier than its bare mass (FIGURE 3).  
Then the bare polariton needs to wear the water molecules, and an average quasi 
polariton’s mass is guessed as     

2

3
v

Tkm B
T ≈ =1.3 X 10-24 (kg). (4)

And water molecule’s mass is 3.1X10-26kg, and the dressed polariton can sufficiently 
resist the thermal noise under room temperature at 300 Kelvin, if each bare polariton 
can attract the 41 water molecules at least.  Thus, the quasi particle, polariton means  
(dressed polariton; quasi polariton) = (bare polariton)+(dressed mass, water molecules). 

≈Tm 6.7X10-30kg + 1.3 X 10-24 (kg). (5)

Note that we can detect that dressed polariton’s mass, which are covered with many 
water molecules, however we cannot measure the bare polariton’s mass.  The polariton, 
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by the quasi particle’s mechanism, have energy of polariton as strong as that of thermal 
noise.   

 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
  According to statistical mechanics, it is said that an order of fluctuation of particles is 
almost N0.5.  If we assume the length of human’s axon to reach about 1m, and size of 
water molecule to be 2.0X 10-10m (2Å) at its length, about 5.0X 109 water molecules 
exist at the length 1 m per an axon at least.  In this case, the particles’ average 
fluctuation is about N0.5 , i.e., 7.0X 104 numbers’ water molecules.  The fluctuation of 
7.0X104 numbers’ particles correspond to about 10-5m at length, whose value is lager 
than the width of Ranvier ring, 1μm.  Since the quasi polariton’s size is much smaller 
than the width of Ranvier ring and both particles’ fluctuation and the width of Ranvier 
ring are less than the value of fluctuation, many of quasi polariotns can occupy their 
positions on both Ranvier ring.  Moreover, that result gives us a suggestion that wave 
functions of polaritons make an invasion to an interior portion of myelin sheath.   
Thus, polariton’s momentum fluctuation is given as 

(region of Polariton’s existence of ground state) < (length of fluctuation of statistics) 

quasi polariton 

bare polariton 

water molecule 

Axon 

The Fig.3 shows the bare polariton
to attract many water molecules by
the electrostatic forces.  And the
bare polariton changes into dressed
particle called quasi polariton. It is
difficult to measure the mass of the
bare polariton.   
So, commonly we don’t know the
bare mass, but we can only detect
the quasi(dressed) polariton’s mass.
The quasi polariton flows along to
an axon.  And many polaritons are
related to various phenomena, i.e., 
ephapse, neural conduction, tunnel
effect and an interference between
each neurons.  
Thus, polaritons mean quantized
polarization waves.   

FIGURE 3. Image of quasi particle (Polariton) 
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290.1 −→
∆

≅∆
x

p h
(kg m/s). (6)

That mass fluctuation is 1.0-31kg, whose value is hundredth part of bare polariton’s 
mass.   
 
 
4. Polariton Conveying Information 
 

Generally speaking, the thermal noise is against neural conductions of polariton being 
a kind of electrical signals.  On the other hand, heat generates some sort of undesirable 
electrical signals.  J.B. Johnson, who discovered the electrical fluctuations caused by 
heat, in terms of a fluctuation voltage produced across a resistor. That fluctuation 
voltage (noise voltage) is called thermal noise and a hot resistor is a potential source of 
noise power.  In this case, the most noise power N is described as  

TWkN B=  (7)

where kB is Boltzmann constant, T means temperature of resistor in degree Kelvin, and 
W is the band width of noise in cycles per second.  Obviously the bandwidth W 
depends only on the properties of our measuring device.  Notice that the noise power is 
given by Eq.(7), where T is temperature of the object.  And the thermal noise 
constitutes a minimum noise, which we should permit, and additional noise sources 
only make the situation of apparatus and measurement worse.  The noise determines 
the power required to send messages (conduct on axon).  And in order to transmit C 
bits/s, we must have a signal power P related to noise power N by a relation.  
Referencing Eq.(7), we have 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟

⎠
⎞

⎜
⎝
⎛ +

=
TWk

PW
N

PWC
B

1log1log . 
(8)

The P is a given signal power.  If the P/kBTW becomes very small compared with 
unity, the Eq.(8) gives the following relations: the Eq.(8) becomes  

Tk
PC

B

44.1
=  (9)

or 
TCkP B693.0= . (10)

The Eq.(10) says that, even when we use a very wide band width, we need at least a 
power 0.693kBT joule per second to send one bit per second, so that on the average we 
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must use an energy 0.693kBT joule for each bit of information we transmit (C=1).  At 
300 Kelvin, we obtain the signal power 1.7X10-2eV (per/s)/(bit/s) from Eq.(10).  The 
thermal noise of Eq.(3) is larger than the value of 0.693kBT, 1.7X10-2eV (per/s)/(bit/s), 
and so polariton needs have the same level of energy as or larger than thermal noise in 
order to convey the neural information according to classical mechanics.  However the 
polariton is a quantum particle and massive photon with spin 1, we should apply 
quantum effects to the Eq.(7).  Herry Nyquist proposed to give an expression for 
thermal noise applied to all frequencies of light.  His expression for thermal noise in a 
bandwidth Wi was   

1)exp( −
=

Tk
W

N
Bi

ii
i ω

ω
h

h
. (11)

Quantum effects become important when one polariton energy is comparable to or lager 
than kBT.  If a polariton energy >> kBT, then most noise power Ni is given as 
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We take sum for the suffix i and an average of the Eq.(12),   

TkWEN Bii= ,  (13)

Taking the relations Eq.(14), we will obtain the similar expression to classical result  

,,exp constW
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(14)

from the Eq.(13), and if <Ei> = 1. then Eq.(13) is 

TWkNTWkEN BBi =⇒= . (15)

Note that the Eq.(15) means approximately a quantum expression of the most noise 
power which is different from the Eq.(7).  And the frequency above, being the exact 
expression for thermal noise Eq.(11), depart fundamentally from the valid expression at 
low frequency Eq.(7).  It is said that there are the quantum limitations other than the 
imposed thermal noise as Eq.(11) or Eq.(13).  It turns out that ideally 0.693kBT joule 
per second to send one bit per second is still the limit, and it is impossible to change the 
above limiting value.  The energy per polariton is hν，and ideally the energy per bit is 
0.693kBT.  (We showed examples of maicro-scopic energy levels of various particles) 
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TABLE 
TABLE.1.  Kinetic energy & thermal fluctuation 

 Energy (eV) 

Polariton’s kinetic energy  2.0 X 10-7 eV 

Electron’s kinetic energy at 100 m/s 3.2 X 10-8 eV 

Hydrogen bond 1.0 X 10-1 eV 

Thermal energy at 300K 3.0 X 10-2 eV 

ATP hydrolysis 2.0 X 10-1 eV 

[Nano-machine shows good efficiency at room temperature, and an input energy almost 
equals to thermal fluctuation.] 

 
Thus, ideally polariton can carry information, and we can know the bits per polariton at 
300 Kelvin,  

νω 31031.2
693.0

−×=
TkB

h
 (bits/polariton). (16)

If we can use frequency of thermal noise, then the polariton carries amount of 
information, 9.38 X1012 bits/polariton, at 300 Kelvin from Eq.(15).  And we recognize 
to be required at least 0.693kBT joules of energy to convey one bit of information.   
 
 
5. Description of Polariton 
 

Polaritons, having an electromagnetic interaction, should be massive photon with spin1.  
If the polaritons are traveling along to z-axis, those polaritons having right-handed 
polarized light are expressed as summation and superposition between state of 
x-polarized light and that of y-polarized light.  This right-handed polarized photon is 
given as 
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 (17)

with theε i vectors of polarized light．We attempt to practice normalization 
right-handed polarized light: 

)(exp)(
2

1),( tkziitz yx ωππ −+=E . (18)

We obtain an expression for right-handed polarization state.  Using this expression 
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(18), we practice to differentiate with variable z, 

),(
),( 2

2

2

tzk
z

tz
E

E
−=

∂

∂
, (19)

and then we multiply both sides by m22h−  and add -V｜E(Z,t)＞. We notice 
following relation: 

VmkE +== 2/)( 2hhω  (20)

And we multiple the state vector to both side on Eq.(20).  Finally, we obtain 
Schrödinger equation, which describes motion of three components of polariton, with 
time dependent factors as shown in Eq.(21). 
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Performing derivations as well as the previous procedure, we obtain the relativistic 
expression of polariton. We use a relation  
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which is named Klein-Gordon equation.  And its quantum expression is given as 
.)()( 22422 Vkccm ++= hhω  (23)

The Eq.(23) means a relativistic spin 1 (vector) particle moving under potential V.  
Note that common Klein-Gordon equation has one component, scalar particle, however, 
the Klein-Gordon equation of Eq.(22) possesses three components vectors. An 
electromagnetic theory says, in quantum mechanics, that vector potential A and scalar 
potentialφis more essential elements than electric field E and magnetic field B. Thus, 
according to Maxwell equations, the electromagnetic fields E & B are related by the 
vector and scalar potentials A & φ: 

)),(),,((

),(1),(

),(),(

txtxA
t

tx
c

gradtx

txrottx

A

AE

AB

φ

φ

µ =
∂

∂
−−=

=

 

 

(24)

The Eq.(24) teaches that those vectors and scalar potential (A &φ ) obey the 
Klein-Gordon equation, because B & E is satisfied with the Klein-Gordon equation as 
shown in Eq.(22).  We introduce strength of an electromagnetic field Fμν, whose 
expression connects quaternary Aμwith both electromagnetic fields B & E.  The Fμν 

is defined as  
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The polariton of massive photon, quantized particle with spin 1, whose equation of four 
components is similar to the Klein-Gordon equation of massless photon.  The 
polariton’s Lagrangian density is given as 
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whose expression gives rise to Proca equation (relativistic massive vector’s equation),  
when we apply variational principle for Eq.(26). The Proca equation with an interaction 
between polariton and current jμ 
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is automatically satisfied with Lorentz condition, if that source term jμ= 0 or current 
conservation law holds correct. (in Eq.(27), we use natural unit system).  So under 
Lorentz condition, the Eq.(27) becomes simply form: 

.)( 2 ννµ
µ jAm =+∂∂  (28) 

Comparing Eq.(28) with Eq.(22), we notice the corresponding relation between term of 
VE(x,t) and the jμcurrent.  If we consider the current jμis generated by major two 
ionic currents, sodium current JNa and potassium current JK, the total current jμ through 
axon’s membrane becomes as 

ννµµ
µ KNa jjAm +=+∂∂ )( 2 . (29) 

And we notice those currents to be a source of generating many polaritons.  
  To derive non-relativistic polariton’s equation from relativistic equation (29), we 
need return from the wave function Aμof natural unite to that of MKS unite: 
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Then, we split the time dependent of Aμinto two terms, and then the one’s term is   
containing the rest polariton's mass, another is common wave term ),( txϕ .  In the 
non-relativistic limit, the kinetic energy Ek is so smaller than energy of rest mass that we 
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can reduce it to non relativistic form as  
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And non-relativistic kinetic energy Ek means 
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Hence we have  
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Inserting all above approximations into following relativistic relation: 
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we finally obtain the non-relativistic expression like as Schrödinger equation.  That 
result is non-relativistic polariton's relationship with quaternary components, 
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Then A0 is scalar potentialφ, and we remove the rest mass term in the non-relativistic 
limit, the final polariton's equations becomes a set of the quaternary Schrödinger 
equation: 
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   (36)

Notice that that equation describes a motion of non charged polariton.  As a charged 
polariton is expected to obey to the complex Klein-Gordon equation for electromagnetic 
interaction.  We multiply Eq.(28) by complex conjugate of Aν, and take the complex 
conjugate of Eq.(28) and multiple it by Aν   
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We can define a quaternary current vector Jμ using MKS unit system,  
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and we are able to define the polariron’s charge 
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Where the Q is time component of Aν. And the polariton’s field Aμ are divided into 
real part and imaginary part like as Eq.(40) 
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If the two fields A1
μand A2

μseparately satisfy a Klein-Gordon equation with having the 
same rest mass m, then the equations can be replaced by one equation for a complex 
field, 
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According to pi-mesons example, should pay attentions for expressions for positive 
charge’s polariton, negative charge’s polariton and for neutral particle.  And each of 
equations has following fields: 
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(42) 

We adopt the same procedure from Eq.(40) to Eq.(42), finally we will reach 
non-relativistic similar form to Eq.(36).  We would like to emphasize that the neutral 
polariton is characterized by a real eave function, and the charged polaritons have to be 
represented by complex wave functions.   

If the polariton with electric charge q, interacting with both sodium current JNa and 
potassium current JK, moves under electromagnetic fields, then a minimal interaction is 
written as 
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Then the above relation (43) is inserted into vector’s type of Schrödinger equation (35) 
or (36). Performing after simple calculations, we finally have the complex equation, 
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The complexity of Eq.(44) comes from possession of polariton’s electric charge and an 
electromagnetic interaction, and that equation cannot be reduced to simply form like as 
Eq.(36) because of containing self-energy of polariton.  The neutral polariton can 
convey only both momentum and energy, and do not carry electromagnetic charge, 
however, the charged polariton carries its momentum, energy and charged current.  We 
need address as many body problems or quantum field theory since the charged 
polaritons have many interactions among others.   
 

 

6. Necessity of Fundamental Equation and Concepts of Quantum Circuits 
 

Hitherto, we have been discussing functions of each neuron, for example, polorization, 
depolayzation, repolarization and quantization of those processes.  At following stage, 
we would like to refer to some connected neurons systems, what we call, and neural 
networks.   

 

6.1 Overview of Quantum Theory of Neuron 
The models of neurons, their networks and those conducting mechanism are not only 
important bases of biological brain’s functions, but also they have been producing many 
algorithms and their concepts of soft computing as neuro-fuzzy controls, and as 
mechanical learning models in many engineering’s and information’s branches 
[10]-[13].  However, those models have been based on an independence of each axon 
of neuron, and so we named those networks as classical ones.  We have been 
hypothesized in classical models that there was not an electromagnetic interference 
between axons of neurons or synaptic junctions.  So, a lot of physiological books say 
that, each neuron holds independence of each other, and there are not electromagnetic 
interactions between axons and synapses, because the neurons are governed the law of 
“all or nothing”, and those electromagnetic effects are much small since neurons are 
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covered with lipid nonconductor’s membranes, myelin sheath.  Action potentials 
traveling on the axon and the neural processes (polarization, depolarization, 
repolarization processes), have been believed not to affect on another axon and an ionic 
current for a long while [1],[10],[29].  They say that each neuron is independent and 
there is not the interference between each axon of neurons.        

According to our hypothesis, however, we have been proposing the other theory and 
new engineering models accompanied by quantum effect: Each neuron has a lot of 
interferences caused by polarization of the membrane, leak currents, and ionic currents 
(Na+, K+) and so on.  Neurons have many ionic channels, their currents, and 
polarizations, whose phenomena generate electromagnetic interactions on our brain’s 
surfaces and white matter as we are possible to detect its field by SQUID.  Thus, we 
know that each neuron gives rise to a holistic macro electromagnetic field, and that 
electromagnetic field governs the function of each neuron [10].   

In many previous sections, we referred to another evidence of neural interference, 
ephapse and the artificial neurons. And we mentioned Prof. Arvanitaki discovered the 
phenomena of ephapse, which was interference between two neural axons [10]-[13].  
When he stimulated one neural axon and generates action potentials, that signal affected 
on another neuron, despite of defection of direct connections between two neurons. He 
is said to be the first researcher who made up an artificial neuron. His experiments 
showed that each neuron had directly neural interferences based on the electromagnetic 
interactions.  Truly, we know that pathological states correspond to neuralgia and 
causalgia.  However we positively assumed that our normal brains always actively 
utilized those electromagnetic interactions so as to make up our holistic and harmonic 
neural system.  At next steps, we should obtain the basic equations for those 
electromagnetic interactions of between each of neuron.   

We mention those possible forms are the quaternary Schrödinger equations or its 
relativistic version, what is called, Proca equation.  Moreover, an agency for those 
electromagnetic interactions is polariton, which is a kind of massive photon.  The 
polariton is the quantized polarization wave on dielectric (cell membrane), and it has the 
spin-value of one (spin 1).  From the standpoint of the mesoscopic science, all 
electromagnetic interactions should be described as elementary processes based on the 
interactions of massless or massive photons (polariton), because macro electromagnetic 
phenomena can be reduced to an approximation of quantum electromagnetic dynamics 
(Q.E.D.).  In some previous sections, we referred to the necessity of polariton, and 
showed the quantization's process for macro electromagnetic phenomena of neurons 
[10].  The relativistic quantized electromagnetic field of neurons is fundamentally 
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governed by the Proca equation.  And we show that the Proca equation can be reduced 
to the quaternary Schrödinger equation of polariton, since a propagating velocity of the 
polariton (quantized polarization waves) on neurons was so much slower than that of 
light in vacuum [10].   

 
6.2 Total Picture of Quantum Network Systems  
We attempted to give the descriptions for the polariton‘s motions on neural axon by 
using both path integrals and the reduced Proca equation, that was quaternary 
Schrödinger equation of polariton[10]-[13].  So, we would like to make up the 
calculating toolbox for polariton’s motion, and to show applications for Amida lottery, 
bifurcations, circuits, scattering problems, and for network systems.  In order to 
describe the polariton’s theory (quaternary Schrödinger equation), we think the 
Feynman’s path integral is suitable for the neural conductions and of neuron’s 
interferences. We can automatically introduce quantum effects of polaritons to the 
network systems, and its expression is much similar to classical mechanical 
Lagrangian,[4],[38] (Reference to Appendix-1, A1-1, Equivalence to Schrödinger 
Equation).  Moreover, we know that the description of path integral is perfectly 
equivalent to that of Schrödinger equation. [2]-[4],[6],[19].   

At the beginning of section 7, we mention that a bifurcation’s problems of decision 
tree and multi step slit are related to Markov process.  So, according to probability’s 
theory, those processes can be expressed as the generalized stochastic equation, i.e., it is 
Ito equation.  Applying  Nelson’s method, we can reduce that stochastic equation to 
Schrödinger equation of the wave functionφ[14], whose process is called the stochastic 
quantization.  On the other hand, Proca equation approximately becomes the 
quaternary Schrödinger equation of electromagnetic potential (φ, A) in the case of the 
slow polariton’s movement [10],[2]-[3].  The polariton, which is massive photon, 
should obey quaternary Schrödinger equation in non-relativistic area.  And the 
quaternary Schrödinger equations approach to the ordinary Schrödinger equation--- we 
pay attention to one component’s equation of electromagnetic potential--- if a change of 
the magnetic field is so small (the vector potential A is constant, or δ A≈0)[10],[4],[2].     

Thus, the polariton’s motion can approximately expressed by Schrödinger equation of 
scalar potentialφ , and that φ is related to the bifurcation problems of classical 
mechanics, information theory and the stochastic equation[6],[4].  After we explained 
the principle of Feynman path integrals in subsection 7.2, and we calculated an action S 
for free polariton and for a harmonic oscillator, we apply those path integrals to the 
descriptions for the Amida lottery and a slit in section 8.  They are examples of 
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quantum bifurcation’s problems of polariton.   In section 9, we discuss some quantum 
descriptions for simple circuits (for examples, AND-, NOT-, OR-circuit and their 
complex ones) and switches by using path integral.  Then we know the path integral is 
one of the powerful tools so as to describe the quantum networks and circuits [20]-[23].     

The section 10 is mentioned to a perturbation method of Schrödinger equation.  
Then, we express that our description of neural network based on path integrals 
automatically lead to perturbation series.  Then we mention that the switches of 
network and circuits are regarded as synaptic junctions or scattering potential of 
polariton.  The section 11 is shared into an explanation of mathematical tools by using 
path integral’s descriptions.  

Main theme was to give the ways that we can express the quantum networks 
containing much interference.  Then we described the quantization tools for neural 
networks, Amida lottery, quantum circuits and many complex diagrams.  In our neural 
networks, the polariton conveyed physical information, and polariton was quantizatied 
particle of the action potentials (impulses) of neurons [4],[18].  Thus, our description’s 
method and its development mean the quantum theory of network, bifurcation and 
circuits.  For examples, one of great mathematician, R. Penrose said that our brain cell 
had many micro-turbines, which worked as conductors causing superposition of wave 
functions.  He thought that those wave functions made reduction to only one wave 
function when we determined something for various problems [24].   

We, however, don’t intend to discuss whether his theory is true or not, from 
biological standing points.  And we would like to only pick up his concepts that our 
brain utilizes quantum effect, and that the brain belongs to a kind of quantum circuit.  
We have been thinking that quantum interferences were playing important roles for our 
thinking processes.       

Therefore, we described the idea of a quantum circuit and new theory for quantum 
computers of neural computations in following some sections.  So we would like to 
show those quantization-methods of the bifurcation, Amida lottery and decision trees, 
which contained some fundamental ideas for quantum interferences and the reductions 
of wave functions. 
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7.Uncertainty and Superposition 
 
First we would like to discuss a classical bifurcation that contains fundamental 
problems.  The bifurcation is related to both probability and stochastic equations, and 
its theme leads to Schrödinger equation through Nelson’s method, (stochastic 
quantization) [5],[14]. 
 
7.1 Classical bifurcations and Nelson’s Stochastic Method 
 There is much difference between classical bifurcation and quantum bifurcation.  The 
farmer is related to classical probability whose value is always the positive and real 
number.  However, the latter takes complex number, whose function is called 
probability amplitude.  
 And the probability amplitude can be connected with a solution of Schrödinger 
equation.  The classical probability cannot automatically expressed interference by 
superposition principle. However, the probability amplitude essentially contains much 
interference between each bifurcated branch.  And the interference, which arises from 
superposition principle, plays a lot of important role in our quantum neural theory.   

In this section, we would like to show that problems of decision tree can be regarded 
as a kind of Brownian motion (Markov process), and then we should notice that 
Brownian motion is governed with Ito equation (general stochastic equation).  And 
according to Nelson’s method (stochastic quantization), the Ito equation reaches 
automatically Schrödinger equation.  Thus, the problems of the decision tree can be 
rewritten into Schrödinger equation of complex function ),( tXχ by both Fokker-Planck 
equation and Chapman equation.  
At first, we show that small particles (for example electrons or photons) are flowing on 
the branches of bifurcation-diagram (a kind of decision tree) (Fig.4).  We assume that 
the particles on the diagram diverge for each branch at an equivalent probability, 50%.  
 

 
 
 
 
 
 
 
 

FIGURE 5. Uncertainty and sensitive limitation  FIGURE 4. Multi-step bifurcation’s Problem
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When we attempt to deform the branch lines of bifurcation diagram FIGURE 4, then the 
diagram becomes a following feature: that bifurcation diagram can be represented as the 
random walk’s problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we concretely can show the path (from B to C), we obtain a sequence of numbers: the 
sequence is (-1, +1, +1, -1, +1, +1).  If we hypothesize that bifurcations of the diagram 
make an infinite series, the above finite bifurcation becomes an infinite random walk’s 
problem.  So we notice that the infinite sequence is much similar to Markov process or 
Brownian motion in one dimension. Thus that Brownian motion truly is expressed by 
stochastic differential equation [4]-[5].  

So, We would like to start from a generalized stochastic equation, what is called, Ito 
equation, 

dX t b X t t dt A t dw t( ) ( ( ), ) ( ) ( )= + , (45) 

then the dw(t) has following characteristics of Brownian motion.  (deviation A(t): 
diffusion coefficient, and an average b: drift coefficient). 

dw w t t w t t2 2= + − =( ) ( )∆ ∆β  
                     (46)

dw w t t w t= + − =( ) ( )∆ 0 .                      (47)

According to Nelson’s stochastic quantization method with stochastic variable X(t), the 
trace of a particle is divided into two parts.  The one is an anterior average derivative, 
and another is posterior average derivative.  Those terms are defined as  

(-1, +1, +1, -1, +1, +1) 

Reverse and extension 

-1 +1 

-1 

+1 

Then we give the value (-1) to the upper 
branch, and lower one is given the value (+1). 
So, the way from point B to point C is 
expressed as sequence of numbers by using 
those values. 

Time ordered series 

(-1, +1, +1, -1, +1, +1, -1, -1, +1・・・・ infinite series ) 

From B to C 

FIGURE 6. Random walk and bifurcation 
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and both average velocities for Brownian motion are calculated as 
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An acceleration a(t) of Brownian particle was defined by Nelson method, and the a(t),  
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is obtained by performing above derivative for Eq.(50) .  We introduce two new 
variables, u and v: those are 
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The symbol M means Brownian particle’s mass (we think polariton’s mass), and the V 
is potential energy.  The Eq.(53) corresponds to Newtonian equation of motion for 
Brownian particle, and it is said to be mechanical condition.  Applying the anterior 
derivative to Chapman equation, we can define an operator (ATf) of Eq.(55) [14]. The  
(ρ(X,t0|Y,t) means probability that the particle which existed in an initial condition (X, 
t0 ) reaches the point Y at time t ) [14].  The operator (ATf) is expressed as 
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Then we can obtain another expression of anterior derivative, 
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We multiple ρ( , | , )X t X t0 0  to Eq.(55) , and we practice an integration: we finally have 
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That is Fokker-Planck equation.  For the b*, we have a similar equation: 
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We add up both equations, Eq.(56) and Eq.(57), whose equations assimilate with one 
equation that represents a condition of motion for polariton: 
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To unify both condition of mechanics and that of motion, we would like to introduce a 
complex variable, χ( , )X t u iv≡ + .  We transfer two variables u,v into a single 
variable χ , 
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and the transcription into single equation is achieved as   
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If we take MA h→β2 , we find Eq.(60) to be the common Schrödinger equation.  So, 
the probability densityρ(X,t) is given as 

2),(),( tXtX φρ = , 
  (61)

by a complex probability amplitudeφ.  If we take itt → , Eq.(61) is reduce to 
Feynman-Kac equation.  However, there is difference between Schrödinger equation 
and Feynman-Kac equation.  The Feynman-Kac equation has always real number’s 
solution. On the other hand, the Schrödinger equation almost takes complex number’s 
solution.  Thus, the Feynman-Kac equation can describe only classical bifurcation and 
its probability.  However, the Schrödinger equation, whose solution is permitted to 
have the complex number (probability amplitude), is truly suitable for descriptions of 
interferences between each quantum state.  We should notice that the complex number 
is an essential characteristic for quantum theory, and that the real number is a character 
of classical bifurcation problem. And the classical bifurcation’s problem is always 
reduced to Weiner process (Brownian motion) and Markov process.  So the classical 
bifurcation is quantized through the Nelson’s method [14].  Thus, the classical 
stochastic problem can be translated into quantum one by introducing the complex 
variable and the probability amplitude. 

We would like to discuss effects of superposition of the probability amplitude, and we 
mention those of the sensitive limitation caused by uncertainties.   If all paths of 
FIGURE 5 are governed by uncertainty principle, we find the quantum fluctuations and 
interferences to exist between each bifurcation’s branches.  And the fluctuations of 



 29

positionΔx should satisfy the following relation, which is uncertainty: 
)/( px ∆≥∆ h . 

                                       (62) 

So, a path less than the rangeΔx , is directly governed by effects of quantum 
mechanics.   

We can easily explain the difference between quantum bifurcation and classical one.  
If particles obey to single-step’s bifurcation, a total state vector is written as the 
superposition and linear combination of all base state vectors.  Let’s consider two 
state’s model, i.e., those quantum states areφ1 andφ2.  If there are those states within 
uncertainty’s rangeΔx, then a total stateφ is the summation of the two states: 

 

21 φφφ ba += .                                        (63)

Thus the total probability density of the above state is expressed as 

2121
2

2
2222 ****

1
φφφφφφφ abbaba +++= . (64)

We notice that the first and second terms of Eq.(64) correspond to classical probability 
densities.  The their and fourth terms, which are expression of quantum effects, mean 
quantum interference’s terms.  Uncertainty principle tells us that we cannot detect 
them as the different two states, if their states do not keep away more than the 
fluctuations’ range Δx from each state (FIGURE 5).  As uncertainty of momentumΔ
p gradually goes to the large value, it is more difficult for us to observe an aspect of 
bifurcation of particles.  So, it will be more clear the difference of both the classical 
probability and the quantum one.   
 

 
 
 
 
 
 
 
 
 
(Explanation of FIGURE 7) 

To fix particles on the nano-scale conductors (wires), an external force or some potential is 

impressed on the particles.  If it were not for those restricting conditions, many of particles deviate 

Ｙ

Ｘ 

dendrimer monomer bifurcation slit

Strictly restriction Loosing or free

FIGURE 8. Various restricted conditionsFIGURE 7. Multi-step bifurcations & slits
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from their paths or conductors, and then they behave as free particles.  And we can apply an 

example of conductors to the model of slits.  So we look upon the bifurcation diagrams as 

multi-step slits when those restricted conditions are going to weaken. 

 

(Explanation of FIGURE 8) 

When the range of uncertaintyΔx is nearly equal to sizes of atoms (Å), those processes approach to 

molecular wires of dendrimer monomers.   
 
7.2 Description of Feynman path integrals 
We would like to mention the principle of Feynman path integrals, and intend to apply 
its method to the motion of free polariton.  Subsequently, we describe the scattering 
problem or the diffraction of the polariton, by its integrals in order to obtain 
mathematical tools.  At the beginning, we consider an action S of particle whose 
generalized Lagragian has the following form, 

)()()()()()( 22 tfxtextdxtcxxtbttaL +++++= && . (65)

An action S of its motion is given by the time’s integral of the Lagrangian between two 
fixed points, i.e. starting point a and ending point b.  We determine the Feynman’s 
kernel K(b,a) that is defined as                    
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(a: starting point of path, b: ending point of path), (Reference to Appendix-1, A1-2). 
Here if we attempt to define a quantum action S[x(t)] in an interval [a,b], then the 
quantum variable x(t) should be divided into two parts.  Thus, its variable x(t) is 
composed of classical path term xc(t) and quantum fluctuationδ(t), and so we have a 
relation, )()()( ttxtx C δ+= .  And the integral (Dx(t) ) should be performed over all 
paths in the interval [a,b].  Then the action S[x(t)] becomes 

].)2)(([)]()([)]([ 22 L&&&& +++=+= ∫ δδδ
tb

ta CCC xxtadtttxStxS  (67)

If it were not for allδterms, then Eq.(66) equals to just the classical mechanical action 
Sc.  Notice that Sc contains the only classical variable xc(t).  On the other hand, the 
quantum action S[x(t)] is composed of two parts.  They are the classical action Sc and 
the second quantum fluctuation’s term in Eq.(68), 

].[][)]([ 22∫ +++=
tb

taCC cbadtxStxS δδδδ &&  (68)

Thus, the kernel K(b,a), which is calculated in [a,b], can be written as 
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We would like to give an explicit S[x(t)] and kernel of free particle.  So the classical 
action Sc are described as 
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Thus, the kernel of Eq.(70) of the free particle are given as 
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Finally the existence probability of free polaritons at point b, P(b)dx, is becomes 
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Moreover, the wave function of Schrödinger equation Ψ(b) is expressed by the kernel 
K(b,a), and then we have a simple relation, 
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The quantum-polarized waves, which are composed of many photons (there are massive 
photons), are considered as assembles of harmonic oscillators.  The Lagrangian of 
harmonic oscillator, which means quantum particles of polariton’s field, is given as 
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Then the kernel is calculated by the same method as the free particle: 
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 We give some comments on the calculation of path integral.  The all paths (branches) 
of particle is divided into N divisions so as to obtain the kernel of the propagating 
particle from point a to point b.  The kernel means that we find out a particle at an 
initial point a, and then it goes to the point a to point x1.  Then it goes ahead from x1 to 
x2.  Finally the particle from xN-1 arrives at an endpoint b.  So, the final kernel K(a,b) 
is given by multi integrals and product of infinitesimal kernels K(i+1,i), i = a, 1,2,  ,b.  
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).,1(),1()1,(),( 11 aKiiKNbKdxdxabK N LLLL +−∫∫= −    (78) 

When the particles to go ahead from (xi,t) to (xi+1,t+ε) during an infinitesimal time 
intervalε, an explicit expression of Eq.(78) is 
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,  L : Lagrangian. (79)

The second term of kernel K(i+1,i) corresponds to an expression of an inner product 
using Dirac bra vector < i+1| and ket vector |i >.  Moreover, notice that the inner 
product＜B|A＞contains a time development operator, U-hat,  
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And the above H-hat is Hamiltonian of Schrödinger equation.  The motion of particle 
from point a to point b reduces to the Dirac bra & ket vector description, 
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The Eq.(81) mentions to take inter product between the (i+1)-th bra and the (i)-th ket 
vectors and we have got to perform integration over all variables xi.   

 

 

8. Description of Quantum Bifurcation and Diffraction  
 
I would like to discuss a relationship between path integral and bifurcation diagram in 
this section.  And I apply the path integral to descriptions of polariton’s motion on a 
slit and on Amida lottery.  The path integral is another expression of quantum 
mechanics, and it is perfectly equivalent of Schrödinger equation.  According to path 
integral, the probability P(a,b) is proportion to the absolute square of kernel K(b,a), i.e. 
P(b,a)∝ |K(b,a)|2.  So, the final amplitude K(b,a) is the sum of contribution of each 
pathφ[x(t)], 

∑= pathallover
txabK )]([),( φ . (82)

The weight of each path is proportional to an exponential of the action S: 
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At first we consider a bifurcation diagram of a single-step slit (FIGURE.5).   
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dtVTdttxxLtxS ∫ ∫ −== )(),,()]([ & . (84)

 
 
 
 
 
 
 
 
 
 
 
 
 
A particle goes through a hole G1 of slit A, and then it experiences the bifurcation by 
slit B.  Finally this particle reaches from the point A to the point B (FIGURE.5).  As 
shown in Eq.(81), the path is written as  
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I would like to show one example of diffraction in the point x+αc at time T.  When 
a free particle goes ahead from the point x to x+αc, it is diffracted in the point x+αc by 

a slit.  After that diffraction, the particle arrives at a point (x2,t2) on the screen.  The 
probability amplitudeφ[x(t)] with the diffraction becomes 
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b
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at the point (x+αc , T).  Note that the rage of that integral is limited by an interval 
[-b,b], which is a size of the hole of slit (not infinite).  If we assume a Gaussian slit of 
the width 2b whose shape is described by exp[-α2/2b], then we can perform integration 
of Eq.(86).  The result of probability amplitude is given by Eq.(87), since the particle 
goes through either hole G2-a or G2-b: that result is shown as 

⎥
⎦

⎤
⎢
⎣

⎡
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+×⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++=

−

W
im
im

T
xxim

mb
i

T
T

i
mtx 2

22
1

221

2 )2/(4
)/(

2
exp11

2
)]([

h

h

h

h

h ττ
τ

π
φ  

(87)

1222
1 ,,

)/(/1/1
// xxxTt

mbiT
TxxW −=−=

++
+−

= τ
τ

τ
h

. 

A 

G1
G2a

G2b 
B 

Slit A Slit B Screen  

FIGURE 9. Interference of a single-step slit 
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FIGURE 10. Quantum Amida Lottery Circuit

Where W means 
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Finally, the total wave function of FIGURE 9 becomes a summation of both paths, G1
→G2a→B and G1→G2b→B.  If there is not an interaction at point G1 on slit A and a 
particle (polariton) freely goes through the slit G1, the particle obeys complete 
condition at point G1,   

1111 =∫ GGdxG . (88) 

of kernel is calculated by Eq.(88).  Thus the total result of amplitude is given as 

.11221122)( 2121 AGGbGbGBdxdxAGGaGaGBdxdxx bGGaGGall ∫∫∫∫ +=φ   
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Notice that those ket vectors | ＞ in Eq.(89) are not a constant vectors, but they contain 
the time development factors which are related to Hamiltonian of Schrödinger equation.  
If a particle has no interaction with all slits, then Eq.(89) simply reduces to free 
particle’s (free polariton) expression from the point A to the B, 

∏ +===
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If a single slit is set in the point c and the particle is diffracted at that point c (A< c <B), 
then a trace of particle has following expression: 

C
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An Amida lottery is discussed as an example of complex bifurcations and that lottery 
is a kind of multi-slit(FIGURE 10).   So, Japanese Amida lottery is commonly 
regarded as one of the examples of classical probability problems.  To translate the 
classical lottery into quantum one, we apply the path integral for classical Amida lottery 
and introduce quantum interferences into classical Amida lottery. So, those processes 
are a kind of quantization of Amida lottery.  As represented in FIGFURE 10, the 
photon is diffracted at those following points, {G11, G12, G21, G22, G23, G24, G25, 
G31, G32, G33}.  This quantum Amida lottery has a lot of paths so as to go ahead 
from area A to area B, because of sum for all possible paths.  

]3,1[]2,1[]1,1[],1[ 312111 ABCABCABCAB AAA ϕϕϕφ ++= . 
 (91) 

An each term of right side of Eq.(91) is given by path integrals.  Theφ[A1→B1] is 

(89)

(90-1) 
, from point A → to point B. 

= A→(c)→B. (90-2) 
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Forφ[B1,A2], we obtain the relation: 
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Andφ[A3→B1] becomes an expression: 
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We apply the same method to the other paths and full total path, i.e.,φ[B2,A] andφ
[B3,A].  So, their descriptions are described as 
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]3,3[]2,3[]1,3[],3[ 332313 ABCABCABCAB AAA φφφφ ++= . 
 (96)

Finally, the total probability amplitude from area A to area B,φ[B,A], is a summation of 
those paths.  Its expression, 

],3[],2[],1[],[ 321 ABCABCABCAB AAA φφφφ ++= , 
(97) 

is given by substituting above equations, Eq.(91), Eq.(95) and Eq.(96) into Eq.(97).  To 
observe a part of interferences, we calculate a probability density ofφ[A→B1] of 
Eq.(91).   
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Clearly notice that quantum interferences contain those terms {C*A11CA21φ[B1,A1] *
φ[B1,A2] + ・・・}+{counter terms} in Eq.(91) and Eq.(98).  In quantum system, we 
can find also many interferences in following three terms, |CA11φ[A1→B1]|2, |CA21φ

[A2→B1]|2, |CA31φ [A3→B1]|2.  Because, for exampleφ [A1→B1], its path is 
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composed of the combination of many small paths, as [A1→G11→G12→B1] and [A1
→G11→G22→G23→G24→G12→B1].  The above those many terms, which vanish 
in the classical bifurcation problems, represent essential quantum effects and 
interferences. 
Really the classical probability has only one term, |CA21φ[B1,A2]|2, and there is not any 
interferences of probability (probability amplitude).  So normalization condition in that 
Amida lottery is Eq.(99),  

1],[],[* 1 =⋅∫ kdxdxABAB Lφφ .  (99)

And its transitional amplitude from stateφ[B1,A] to stateφ[B2,A] is defined by 

kdxdxABABABAB L1],1[],2[*],1[],2[ φφφφ ⋅≡ ∫ . (100)

in Eq.(100).  After all, that above transitional probability density becomes 
21 ],1[],2[]),1[|],2([ ABABdxdxABABP k ϕϕ=L . (101)

We can finally obtain the frameworks of quantum bifurcations and interferences by 
path integral.  This section is discussed problems of the diffraction and bifurcations of 
both the slit and the Amida lottery.  We refer to scattering problems of polariton by 
various potentials in the following section.  
 
 
9. Switch Operator and Circuit 
 
This section is referred to switch operator, which corresponds to potential (scattering 
potential) of quantum system.  And if we assume switches of circuits and networks as 
scattering potentials, we can easily express classical circuits (NOT, AND, OR) as 
quantum ones by path integral.  

The particle as photon or polariton goes ahead to point B from point A.  And that 
particle is not diffracted at point c but it is scattered by switch (potential) S at point c.  
This process is described by the bra and ket expression, and then kernel K(B,A) 
becomes 

CCCC dxAccScBASBABKAB )(ˆ),(],[ ∫===φ ＝  A→  S →B. (102)

Notice difference between Eq.(102) and Eq.(90-2).  The Eq.(102) includes the 
scattering process by switch potential S at point c, and on the other hand, Eq.(90-2) 
means the diffraction process at point c.  Moreover, Eq.(90-1) simply expresses a free 
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particle having no diffraction process and no scattering potential.   So, we show 
typical three classical circuits which are called as AND-circuit, OR-circuit and 
NOT-circuit. (FIGURE.11) -(FIGURE.13).  
 
 
 
 
 
 
 
 
 
To obtain quantum description, we apply both rules Eq.(102) and Eq.(90-2) to those 
circuits. The AND-circuit can change into quantum one, q-AND, whose schema is 
simply drawn: the particle goes ahead from point A to scattering center S1, and then it 
goes to point B. And after scattered by potential S2, it arrives at final destination, point 
C.  

[ A→  S1 →B → S2 →C ] .   

So we can obtain following expressions of quantum circuit FIGURE 11: 
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∫∫ == ββ ββββββ dxaKScKdxbScbcK ),()(),()(),( 222Q ; for S2 (103-2) 

∫∫ == αα αααααα dxaKSbKdxaSbabK ),()(),()(),( 111Q  ; for S1 (103-3) 

Above three equations does not correspond to the expressions of classical AND but they 
are quantum AND circuit. We would like to label q-AND.  The rule of path integral 
says that an amplitude of different paths works as the additive, and so we can perform 
superposition of each path (linear combination).  So, we apply that rule to classical 
OR-circuit, which has two parallel switches.  So, we can define quantum NOT circuit,   

.)()(],[ 2121 βα βββαααφ dxaScdxaScaScaScACOR ∫∫ +=+=

 

(104)

The OR diagram becomes [A→ ( S1  OR  S2 ) →C].  The NOT circuit is described 
by a following relation, 

NOT: S1 

A B C 

FIGURE 11. AND Circuit 

OR 
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FIGURE 13. NOT Circuit

S1 

S1
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A C

FIGURE 12. OR Circuit

AND 
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ααααααφ daSbabaSbABNOT )(ˆ1],[ 11 −=−= ∫ ,     (105)

whose diagram is [A→ 1-S1 →C].  If three logical gate are combined with each 
other, for examples NOT, AND & OR circuits (FIG.14) , we can make up complex 
various quantum circuits and we actually perform to calculate their probability 
amplitude.  Those switch’s operators are quite different from common classical 
switches.  Because, the classical switches are always expressed by c-number, but 
quantum switches take q-number and a potential operator.  Those three circuits belong 
to quantum circuits.  An example of combined circuits is showed in diagrams of 
FIGURE 14.  
 
 
 
 
 
 
 
 
Mathematical representation of above figure is given by using multiple integral: 
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Here if propagators (kernels) cause diffractions at points B, C, D, E, then we should 
perform integration over the slit width.  On the other hand, if switch operator S is 
regarded as a kind of scattering potential, then the range of integral becomes over an 
infinite range.  According to quantum mechanics, physical amount should be described 
by function of differential operator and time as Hamiltonian: switch operator should be 
described as   

( ) ),,(,ˆ,ˆˆˆ tixStpxSS jjj ∇−=≡ h . (107)

We, as you know, can freely make up an arbitrary circuit by combining those three 
gates., i.e. those elements are q-AND, q-NOT, and q-OR.    
  We would like to generalize those quantum gates to m number switch’s functions 
Fj(S1,S2・・SN), j = 1 to m, whose variables are composed of N number’s switch 

FIGURE 14. Complex circuit ( NOT, AND & OR CircuitφNAO)
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operators.  Where Fj means the arbitrary operator’s function of N number’s switch.  
Notice that each switch S is an operator and so each Fj is composed of various switch 
operators. The Fj means operator’s function. Thus, we can obtain a generalized 
description of q-AND switches in this case:  

.)ˆˆ(ˆˆ],[ 1111 aSSFbbFbbcdxdxAC NmmmmbmbAND LLL∫=φ  (108)

We can regard that a circuit has N number’s scattering potentials when there are N 
number switches in its circuit.  The rule of switch operator’s function Fj(S) is easily 
generalized as 
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When N number’s switches are connected in parallel, we have a generalized q-OR 
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Moreover, we given an expression of a multiple q-NOT,  
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Thus the logical switch can be represented by using kernels K(B,A), and so we need 
perform an integration at each switch points (scattering potential S).  And those 
procedure and consideration naturally lead us to similarity of perturbation methods.   
 

 

10. Similarity of Perturbation Method and Scattering Form of Switch Potentials 
 

Exactly speaking the massive photon (polariton) is governed by Proca equation.  We 
can reduce Proca equation to quaternary Schrödinger equation [36]-[37].  We can 
apply quaternary Schrödinger equation to many biological problems since the motion of 
polariton on neurons is much slower than the velocity of light.  The quaternary 
Schrödinger equation have been described as  
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by using quaternary vector potential, Aμ or φμ.  So, the quaternary potential Aμ

represents an total electromagnetic field of polariton (massive photon).  On the other 
hand, theφμmeans kinetic parts of the total field Aμ, and the exponential function of 
Eq.(113) contains longitudinal element of polariton because of having mass term.  So 
theφ0 is scalar potential, and each φa (a = 1,2,3) is called vector potential of polariton.  
The rest mass limits the range of an existence of polariton.  Moreover, we can reduce 
the quaternary Schrödinger equation to one component (scalar potentialφ 0)of 
Schrödinger equation [33],[36].  If a change of vector potential A is so slow or so 
small, the following derivative of vector potential A is nearly equal to zero. 
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From Eq.(112)-(114), the kinetic part of polariton obeys Schrödinger equation ofφ0.  
Then the residual terms become only an electric field as shown in Eq.(115), and 
quaternary Schrödinger equation has only one componentφ0 of polariton’s vector 
potential.  

0),( φgradtx −≈E ．                                                        (115) 
Considering from Eq.(108)-(111), we regard various switch operator’s function as a 

kind of potential.  So we add up those switch operators to the potential term of 
Hamiltonian, and finally we have the following form, 
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Applying the ordinary perturbation method to Eq.(116), the lowest perturbation’s 
expression with potential term V is given.  Comparing the results of Eq.(102)-(105) 
with perturbation method of quantum mechanics, we can find easily that those 
expressions of Eq.(102)-(105) are much similar to the first order and the second order 
term of perturbation method.  Thus, the second lowest amplitude of perturbation is 
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described as kernel’s expression.  As the q-AND circuit has two switch potential terms 
S1(α) and S2(β), the expression of perturbation is given in Eq.(117) and FIGURE 15. 
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We take same procedure for q-OR and q-NOT circuits in order to make up perturbation 
method of propagation for a particle, polariton.  According to the diagrams (FIGURE 
16 &17), the q-OR circuit corresponds to the first ordered perturbation of two potentials 
connected in parallel.  The Eq.(102) is similar to the first ordered process of 
perturbation.  We know that the scattering process at point C is given as 

.)(),()(),().(],[ CCCC dxaccScbdxacKcScbKABKAB ∫∫ ===ϕ  

＝ A→  SC →B 

 

(118)

Applying Eq.(118) for both circuits, q-OR and q-NOT, we can easily address the first 
order expressions of perturbation. 
 
 
 
 
 
 
 
 
 
 

K(a,α) 

S1(α) 

K(α,β)

S2(β)

K(β,c)

A B C 

FIGURE 15.  Perturbation for Second order Expansion and q-AND circuit 

FIGURE 16.  Perturbation of q-OR circuit 
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K(a,α) K(α,b) 

S2(β) 

K(a,β) K(β,b)

A B 1-S(α)
K(a,α) K(α,b) 

A B 

FIGURE 17. Perturbation q-NOT 
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The FIGURE.16 shows perturbation for first order of two parallel potentials, and we 
should notice that the point A or B is not diffraction’s center but ports of wave function 
or an appearance of propagator.  The first order’s perturbation of q-OR becomes 
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And we can know the first ordered amplitude of the switch operator q-NOT,   
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The q-NOT circuit contains only one scattering center, which is a potential (1-S).  
So, the q-NOT has the first order perturbation as well as the q-OR circuit.  According 
to perturbation method, we find that the q-AND is the second ordered switch system 
and that both q-NOT and q-OR mean the first ordered switch system.  Iterating those 
procedures, we can easily obtain the higher ordered perturbation expansions.  That 
perturbation series is given as  
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Thus, the complex form of kernel, which is propagator or Green’s function KT[B,A], 
expresses the higher multiple interactions or multi-scattering processes.  We notice 
that the perturbation of KT[B,A] becomes an infinite series of set of [K( y+1 ,y)S(y)K(y, 
y-1)]. We would like to apply those rules to constructing a neural network system.  
The synapses of FIGURE 18 are looked upon as switch’s operators or scattering 
potentials. So, we can rewrite FIGURE 15 as shown in FIGURE.18.   

The FIGURE.18 shows the similarity of the three models, and we can describe the 
propagation of polariton (quantized polarization wave) from one neuron to another 
neuron through synaptic junction (synapse).  If those above neuron-synapse model 
does not have any diffractions of polaritons at any points and synaptic junctions are 
expressed as some potentials, the neuron-synapse model enables us to calculate each 
propagator and total kernel KT[D,A], (FUGURE.18).  That total propagator of 
polariton is directly given by following expressions: Here is a kernel of FIGURE.18. 
 
 

(121)
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The expression of FIGURE 18 is given as 
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 Here, K[b,a] means that a free particle goes to point b from point a.  The structure of 
both switch operators S1 and S2 is expressed at functions of each coordinate point (x,y).  
If we do not have any diffraction's points in both intervals [A,η] and [ξ,D] and the 
particles are perfectly propagating freely, then both integral dB and dC become equals 
to 1.  Thus, we can remove the integrals of dB and dC from Eq.(122).  If a neural 
network is composed of some neurons as shown in FIGURE.19, then the probability 
amplitude can be calculated by above calculation procedure.  For example, probability 
amplitude of neuron D is given as 

)()().()(),(),()(),(][ AfASABKBSBHKHCKCSCDKdCdHdBdAD ABCA ⋅= ∫φ  (124)

The function f(A) of Eq.(124) means an arbitrary wave function.  And a free particle 
has the diffraction at point H and are scattered both points B and C (FIGURE.19).  For 
neuron G, we obtain the probability amplitude (propagator): 
 

S1 S2

A B C D

neuron 

switch 

synapse 

FIGURE 18.  Similarity of models

A B C D

E F G 

H

FIGURE 19. Quantum neural network  
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So, those two wave function,φA[D] andφA[G] show that an initial wave function f(A) 
will arrive at two endpoints D and G, after f(A) was divided into two waves at point A. 
The f(A) is scattered at many points, A,B,F,E and diffracted at points H,E, by some 
potentials. 
Japanese Amida lottery, which is bifurcation’s problem, has many diffraction points as 
multi-slit.  However, Amida lottery does not have any switch’s potentials S.  On the 
other hand, quantum circuits and neural networks include both switch’s potentials and 
diffraction’s points in their systems.   
 
 
11. Rules of Calculation for Some Paths 
 
We would like to construct mathematical tools for quantized circuits, neural network 
and Amida lottery so as to translate classical pictures into quantum ones.  Notice that 
the kernel K[b,a] and inner-product <B|A> are not ordinary wave functions but they 
describe the time development of propagation satisfying Schrödinger equation.  They 
truly express the propagating motion of a particle from point (A, tA) to point (B,tB).  
Thus, an expression of path integral corresponds to dynamics of particle as well as 
Newtonian second law of motion.  So we would like to summarize important 
descriptions of the particle’s propagation (motion of polariton) in order to calculate 
probability amplitude for any circuits .  If path integral is applied to classical neural 
networks, then their networks are directly quantized and come to contain a various 
quantum effects in their systems, i.e. for examples tunnel effects, fluctuations and 
interferences. 
 
1. free propagation of particle: point A → point B.    
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2. dividing into two parts: two paths are A → B and B→ C.  particle is free 
propagation.  B: relay point or diffraction point. 
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3. diffraction at point B, slit widthδ: A → (B) → C. 
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4. various switch’s potentials, for example, synaptic junction and scattering potentials 
for particles, electromagnetic potentials: A→  B → C. 
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5. general switch’s potentials : A →  f:B  → C,  f:B = f (S1(B), S2(B),・・, Sn(B)). 
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6. abbreviation for line and interaction points: A →B→ C →D→E, then free 
particle at both points B and D. 
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7. abbreviation for line, interaction and diffraction: A →(B)→  C → D→E,  B: slit 
or diffraction points.  C is scattering point.  Notice that we cannot abbreviate dB 
integral.  

∫
∫

⋅=

⋅===

),(),()(),(

),(),())(),(),(ˆ],[

ABKBCKCSCEKdBdC

ABKBCKCSCDKDEKdBdCdDASEAEAEK CCC
 

 

8. propagation and time-development : initial wave functionφ(A)→final state B, 
φA.[B]. 

)(),(][ AABKdABA φφ ∫ ⋅= .    (133-1)
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9. relationship between an eigenfunction of Schrödinger equation and its propagator. 
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We would like to show an above relationship between the kernel K[B,A] and 
eigenfunction of Schrödinger equation. The wave function of Schrödinger equation, 
whose solution is Aμorφμ( or static approximation of polaritonφ0), can be related to 
the kernel K[B,A].  The general solution of time dependent quaternary Schrödinger 
equation is represented as 
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And the quaternary wave function ΨJ
μ, which is an eigenfunction of stationary state, 

satisfies Eq.(112) or Eq.(116).  TheΨJ
μobeys the quaternary Schrödinger equation: 
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The wave function at point (A, tA) is written as 

( ).exp

)()exp()(];[

AJJJ

JJ JAJJJ JA

tiaC

AatiACtA
µµµ

µµµµµµ

ω

ψωψφ

=∴

≡−= ∑∑  
(137)

On the other hand, we have a similar expression at point (B,tB), 

)exp()()exp()(];[ AKBKKK KBKKK KB titiBatiBCtB µµµµµµµµ ωωψωψφ +−≡−= ∑∑ .   (138)

Where we substituted Eq.(137) into CK
μ of Eq.(138).  The Eq.(137) gives us 

coefficient aK
μ: 

dAtAAa AKK ];[)(* µϖµ φψ∫= . (139)

Substituting Eq.(139) into (137) and comparing that result with Eq.(133), we can obtain 
an expression of kernel K[B,A]. 
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The Eq.(141) is shown to be equal to Eq.(136). 

 
 
12. Polariton’s Equation and Rules of Quantum Neural Conduction 
 
In previous section, we made up useful tools for quantum calculation of various 
networks.  We mentioned, heretofore, three quantum expressions, which were both 
quaternary Schrödinger equation (Proca equation) and Feynman’s path integral method.  
 
12.1 Quaternary Schrödinger Equation and Proca Equation  
We showed the equation of polaritons on neural axons, and the polarities are exactly 
governed by Proca equation Eq.(142), which was relativistic one. 

,)),(),,(()(

)( 2

ννν

µµµ
µ

ρ KNa jjtitxJ

JAm

+≈≡

=+∂∂

xx
. 

(142) 

The symbol m is polariton’s mass, and the Jνmeans the quaternary vector currents.  
According to classical neural theory like as Hodgkin & Huxley model, the polariton 
means a quantized polarization wave, which is an impulse from neurons and an action 
potential.  So, the total current jμis generated by major two ionic currents(sources), 
which correspond to the sodium current JNa and to the potassium current JK through 
neural axon.  To derive non-relativistic polariton’s equation from relativistic equation 
(142), we need return from the wave function Aμof  natural unite to that of MKS 
unite: 
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Then, we split the time dependent of Aμinto two terms, then the one containing the rest 
polariton's mass, m.  In the non-relativistic limit, the kinetic energy Ek is so small that 
we can define it as  

22 , mcEmcEE K <<′−= . 
    (144)

non-relativistic kinetic energy Ek means 
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Inserting this result into following relativistic relation: 
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We finally obtain the 4-conponent non-relativistic expressions like as Schrödinger 
equation. The result is non-relativistic polariton's relationship, 
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We reach the final polariton's equation with 4-conponents.  The motion of polaritons is 
described by above 4-conponents’ equations: they are scalar potential A0 = φ and 
vector potential is A.  If the quaternary vector potential of electromagnetic field of 
polaritons are having A = constant or A changing much slowly (i.e., stationary magnetic 
field), then the Eq.(147) becomes common Schrödinger equation for polariton with only 
having the scalar potentialφ,   
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(148)

To simply our problem we discuss the near static magnetic field being accompanied 
with scalar potential case, whose quaternary solution nearly equals to Aμ= (φ, Constant 
A).   
 
12.2 Diagrams Expression 
We would like to propose how to describe diagrams of relationships between path 
integral and networks.  Those rules have following expressions. 
 
(1) The solutionφof Eq.(148) are written down by using kernel K(B,A) ofφfor free 
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propagation of polariton (φ(A) is an initial condition) : νA : quaternary vector potential. 
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The K(B,A) of free polariton is represented as 
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And the position B becomes  
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(2) If the kernel KC(B,A) is divided into two parts by a relay’s point C, then its kernel,  
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is given by Feynman path integral. 
If the polariton is diffracted by potentials at point D, then we have a similar relation 
with using slit width δ: 
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The kernel K(B,A) should be governed with Schrödinger equation: 
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(3)When a state vector |φ(t)＞ is projected into x-axis of Cartesian coordinate, the 
wave functionφ(x,t) has an expression, 
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(4) When we substitute Eq.(155) into Eq.(149), an explicit description of unitary 
operator U(t,t0) obeys the same Schrödinger equation.  The unitary operator,  
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(156) 

is finally applied for the kernel K(B,A), so the time-development’s form of kernel 
becomes 
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(5)The special case of kernel,  

AttUttUBABABK CCtCtC ),(ˆ),(ˆ),( == . 
(158) 

equals to this delta function at fixed time t, and we have 
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(6) If the free polariton is scattered by general potentials V as being observed in atomic 
structures or by switch function S of electronic circuit at point C, we have a similar 
scattering representation to the diffraction’s Eq.(153) by using Eq.(157): 
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(7) When the scalar potential of polariton is governed byφof that quaternary 
Schrödinger equation-(148), then a time-development state |φ (t)＞of the formal 
expression for Eq.(149) is  
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And completeness of the eigen-state vector |Ψi(t)＞, which is applied for Eq.(159), 
leads us to the kernel expression of proper wave functionΨi(x,t). 
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(8) Both Rules of the diffraction at point D and the potential scattering at point C are 
described by the form of path integral, and then we have the kernel KDC(B,A): 
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If we use those kernels descriptions, we can transform many classical neural networks 
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into quantum neural ones.  For example, we would like to obtain a quantum expression 
of the network by applying above relations for following classical neural network, 
 
 
 
 
 
 
 
 
 
We represent diagrams of three paths of FIGURE 20, which are constructed by above 
pictures (path 1, path 2 and path 3).  Those are following diagrams. 
 
(Diagram of Path 1) 
 
 
 
 
(Diagram of Path 2) 
 
 
 
 
 
(Diagram of Path 3) 
 
 
 
 
            
 
 
According to those diagrams, we can easily obtain expressions of kernel of path 
integral.  

When an action potential, which is quantized polarization vector (polariton in our 

FIGURE 20. Quantum calculation of neural network 
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FIGURE 21. Diagrams of three paths without current source 
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models), conducts from neuron-1 to neuron-5 (point F) or to neuron-11 (point G), we 
are able to calculate the state of wave function at the point F or the point G.  In the 
other word, an initial wave function Ψ(1) propagates from the point-1 to the point F or 
point G, and our methods enable to know the final wave function Ψ(F) or Ψ(G).  The
Ψ(F) is given as  

),()1,(,)1()1,()( 11 xFKFKdxFKF ≡= ∫ ψψ . 
(162-2) 

from using Eq.(149).  And if we can write down the expression of the kernel K(F,1), 
the final result of wave function at the point F: 
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We apply the same method for the point G, and the wave functionΨ(G) at point G 
becomes the sum of two different paths, which are both 1⇒2⇒3⇒7⇒11⇒G & 1⇒8⇒
9⇒10⇒11⇒G.  The one path is shown as 
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So, notice that the final wave functionΨ(G) is given as the sum of two paths, 
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(163) 

Then diagram of FIGURE 19 is pictured as shown in FIGURE 22.  In this case, φis a 
sources of current or generator of wave function. 
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Thus, we can rewrite various classical neural networks into the quantum ones by using 
above formulas, and those expressions are not the static expressions of quantum state 
but they are dynamic descriptions of the propagations and the time developments of 
systems, which correspond to polariton conductions and their motions.     
 
12.3 Relationship between Theory of Quantum Information and Polariton 
The following many sections are shared an explanation and practical calculations of 
some statistical theory, Bayes’ theory and entropy by using quantum mechanics.  By 
applying those previous mathematical tools to statistical problems, we could transform 
various neural networks and Beyes’ form into quantum styles [23],[27]-[28]. 
To show the differences between classical information theory and quantum information 
theory, we attempt concretely to calculate the classical and quantum Bayes’ theory, 
entropy, and outputs of neural networks.  And we would like to express those cases by 
applying polariton's theory and tools developed in previous sections.  The Bayes’ 
theory is applied for many network theory and control systems.  So, many excellent 
reports and books are published in the region of Information science [2],[11].  As you 
know, Bayes’sstatistics, which is often used in an inferential of causality, is said to be 
subjective probability when the Bayes’ method is compared with normal probability 
theory[26]-[30].  The classical mechanics has essentially an apparent pathway between 
causes and effects, and it is deterministic method.  However, the causality of quantum 
mechanics is essentially probabilistic phenomena since its time development of state is 
governed by the complex probability amplitude of Schrödinger equation and Proca 
equation[5],[13].  We have already shown, our polariton’s neural theory can be 
described by massive relativistic equation - Proca equation, or its reduction style of non- 
relativistic quaternary Schrödinger equations.  We know that quantum theory has an 
interference of phenomena, mixing principle of each pure state, superposition and 
tunnel effects.  Common Bayes’ theory, we call it classical theory, is not considered 
interferences of phenomena between each event.  In the other word, all events are 
independent of each other (no superposition).  We think it interesting to research how 
the quantum interference affects on the classical Bayes’ theory, the entropy and 
information.  So one of the purpose of following some sections are that we show a 
concrete expression of quantum Bayes’ form, instead of classical Bayes’ theory, by 
using a basic set of orthogonal state vectors for simple model.  And we clearly 
describe the differences between classical Bayes’ theory and quantum form.  In the 
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secondary stage, we compared their entropies of both systems.  In the two-step’s 
neural networks of multiple channels, we could approximately obtain a solution by 
means of perturbation method and path integrals.  
Finally, we would like to point out similarities of formal descriptions between soft 
scientific theories and quantum control systems.  The first example referred to 
similarity of between neural network control and quantum neuro system, and the second  
is refer to similarities of between fuzzy probability and quantum expectation values.      
 
 
13 Bayes’ Theory and Its Quantum Expression by State Vectors 
 
We would like to mention both the famous classical Bayes’ theory and our style of 
quantum Bayes’ form. 
 
13.1 Classical Form and Quantum Form 
When we know a final result for an event B, the Bayes’ probability is defined as the 
ratio that an event Ak (where k = 1 to N) arises.  Then we have the common formula of 
Bayes’: 
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(164) 

We are able to regard P(AK) as a probability of occurrence of event A, and P(B|AK) 
means to be a correspondence probability when initial probability is P(AK).  The 
probability P(B|AK) represents a condition that an event AK is propagated to the state B, 
when the event AK took place at an occurrence probability P(AK).  So, the symbol 
P(B|AK) is regarded as a kind of classical propagator of probability P(AK), or 
transitional probability.  We are commonly regarding Eq.(164) as the theory of 
classical Bayes’ theory.  And we attempted to expand the propagator’s concepts from 
the classical standpoint into the quantum mechanical one.  To expand from the above 
classical Bayes’ theory to the quantum versions, we need a rule that the classical Bayes’ 
theory should be reproduced by an expectation value of quantum operator’s equations if 
their expectation value are calculated.  The expectation value of quantum Maxwell 
equations (quantum electrodynamics) has to obey to the rule of the classical Maxwell 
equations.  Thus, P(AK) and P(B|AK) should be regarded as operators of quantum 
expression, and those eigen functions of both operators should be regarded as complex 
probability amplitudes.  Performing to re-interpret classical relation into quantum one, 
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we would like to show one of the simplest cases of quantum expressions.   
Notice that the simplest quantum form is given as following forms: 

  

(165)

The quantum form is similar to classical Bays’ theory; however, all probabilities’ 
relations are not c-numbers but q-numbers of operators in quantum Bayes’.   
One of initial state vectors is |AK >, and the final state vector is represented as |B >.  
The Eq.(165) should be more simplified by a relationship between the initial vectors 
and the final vector (FIGURE 23).  We know, the FIGURE 23 mentions that quantum 
neural network FIGURE 23-A is similar to natural neural one, FIGURE 23-B.  And 
some quantum neural networks are composed of many axons and many synapses, which 
cause the quantum interferences.  In order to calculate the Eq.(165), we would like to 
introduce some rules that define eigen state vectors having the completeness and 
orthonormality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13.2 Explanations of Classical and Quantum Bayes’ Expression without Errors 
The FIGURE 23-(A) means that initial state vectors |AK> converge at the final state 
vector |B>, and the each characters βK is probability amplitude of occurrence of the 
corresponding initial state vectors |AK>.  Theη-hat, which is described by P(B|A)-hat, 
is a propagating operator meaning a transitional state from A to B.  Theη-hat 
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FIGURE 23. Connection type of state vectors and Bayes’ form in quantum system 
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determines the propagating conduction’s rate of state vectors.  That figure 23-(B) 
shows a connectional type of many neurons, which is ordinary called as “convergence 
style of connection”.  Those two figure are so similar to each other that classical 
Bayes’ form can almost translate into the convergence type of connection of quantum 
neural networks.  For reducing Eq.(165) into simpler expressions, we introduce the 
following relation being used in ordinary quantum mechanics: we have completeness 
for bra & ket vectors, 

1=∑n

j jj AA . (166)

Utilizing Eq.(166) and substituting it into Eq.(165), we are able to rewrite the numerator 
of Eq.(165), and we obtain  

.)(ˆ)|(ˆ)(ˆ)|(ˆ ∑=⋅
n

j KjjK AAPAAABPBAAPABPB  (167)

We should note that the second term <Aj|P(A)-hat|AK> of the r.h.s. Eq.(167) is the 
occurrence amplitude of event AK at the state vector |AK>. (^, -hat: operator).  The 
state P(A)-hat|AK> transit to any states |Aj> by the potential operator P(AK)-hat, and 
finally the total occurrence amplitude becomes <Aj|P(A)-hat|AK>.  The first term 
<B|P(B|A)-hat|Aj> of Eq.(167) corresponds to the transitional and propagator’s 
amplitude.  For simplifying those expressions, we set the some rules.  The initial 
N-numbers’ vectors make a complete and orthogonal set {|AK>, k = 1,N}. 

jKKj AA δ= . (168)

So an arbitrary vectors |M> can be expanded by those initial vectors.   

j
n
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The initial state vectors |Aj> are in some pure states at start point t = 0, and then we 
assume that those vectors are satisfied with eigen equations.   
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(170)

Even if signals or information are propagating their communication channels and 
those processes are free from mistakes, we cannot escape an attenuation, exhaustion, 
dissipation at various junctions (neuro-synaptic junction, joining, etc.).  So, mixture of 
various state occurs at final states |B>.  Then the propagating states are expressed as 

jjjj AAAAABP ηη =≡ )(ˆ)(ˆ . (171)
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Both Eq.(170) and Eq.(171) tell us that two operators, those P(A)-hat and η(A)-hat are 
commutative each other.  So we know  

0ˆˆˆˆ)](ˆ),(ˆ[ =−≡ PPAAP ηηη . (172)

And we notice that final state vector |B> is not in pure state, but in a mixed state, and 
final state is given by superposition of initial pure states |A>.   We give an expansion 
of the final state by using superposition of the initial state, |A>.  The mixed state |B>,  

j
n

j j ACB ∑= . (173)

becomes summing up possible state vectors |AK> by using Eq.(169).   
Applying the Eq.(170)-(171) to Eq.(167), the numerator of Eq.(165) can be expressed 
by a simple relation, 
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and the same procedure are practiced to the denominator of Eq.(165), whose result is 
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Finally, we obtain quantum Bayes’ from: it is not probability but probability amplitude. 

j
n

j jj

KKK
n

j j

K
K

C
C

AAPABPB

AAPABPB
BBAPA

ηβ
ηβ

∑∑
=

⋅

⋅
=

*

*

|)(ˆ)|(ˆ
|)(ˆ)|(ˆ

|)|(ˆ  . 
 

(176)

 
The above result, Eq.(176) is almost similar to the classical calculation-Eq.(164), 
however, Eq.(176) has complex coefficient CK whose complex number causes an 
essential difference between the classical Bayes’ theorem and the quantum Bayes’ one 
of Eq.(176).  So, the classical Bayes’ probability has real numbers, on the other hand 
quantum Bayes' form becomes complex numbers.  Thus, the quantum Bayes’ form 
applied for polaritons on neurons has a lot of interferences among polaritons and neural 
networks.  The Eq.(176) shows polaritons to possess the phase and complex numbers, 
which mean to arise quantum effect interferences and probability amplitude.  However, 
the classical Bayes' form has real numbers, which directly mean the probability or 
probability density, and the real values can not cause the interferences between each 
neuron.  We would like to develop the calculation of Eq.(176) by using wave function.  
The state vector |AK> obeys Eq.(149), 

KK AHA
t

i ˆ=
∂
∂

h . (177) 

Projecting to coordinate system, we have Schrödinger equation for the wave function,  
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We will reach the simple form of the numerator of Eq.(165) by using Eq.(171), 
Eq.(173) and Eq.(178):  
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(179)

We can show that the result of state vectors calculation, Eq.(176), perfectly agrees to 
Eq.(179) of representation of the wave function.  The state vector |AK> obeying under 
Schrödinger equation can be looked upon as an explicit wave function φ(xK,tK).   

We would like to give the propagators and wave function at point B by using an 
initial wave function at point AK. The function at AK means the initial polaritonφ
K(xK,tK) =φ(AK), whose wave function is produced by the generating operator P(A)-hat 
of probability amplitude.  And polariton’s function reaches the scattering center at 
point Aj, and it is scattered here, and then the scattered polaritons travels on axon until a 
state |B>.  After all the final state of wave functionφ(xB, tB) =φ(B) can be described 
as 
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(180)

 
 
 
by using Eq.(149), Eq.(161) and Eq.(173). 

We can estimate an appearance of the wave propagation ofφK(AK) at final state |B> 
based on Eq.(180).  TheφK(AK) changes that initial phase by affection of CK 

containing the mixing state |B>.  The normalized inner product of state vectors |B> is 
calculated  

1
2
== ∑n

j jCBB . (181)

 Then we have the normalized vector |B> to be expressed by superposition of many 

AK B Aj 

P(B|A) P(A) 
φ
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pure state vectors.  That description is 
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Operating bra vector <x| from the l.h.s., so as to obtain a coordinate expression, the 
practical expressions are given as  
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Note that the Eq.(184) clearly obeys to Schrödinger equation(150) as shown in Eq.(178).  
After all, quantum Bayes’ from which is probability amplitude, is not probability, we 
haveφ 
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Thus, probability becomes  
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Those results are rewritten by using  

)|(),( BAPAP KKKK →→ ηβ . 
(187)

Because, bothβandηmean eigen values of operators and so they are a kind of 
probability amplitudes.  And the quantum Bayes’ probability,  

∑ +++⋅⋅

⋅
= n

j jj

KK
KQ

MNMNAPABP
APABPBAP

)1()}()|({
)()|()|(  

 

(188)

is written as similar to classical Bayes’ expression except the term of Re(Z), N and M.  
So the additional terms N and M are effects of the quantum interferences.  All of pure 
states are mixing each other, and the new mixed state |B> is generated at the above 
junction of FIGURE 23.  If we apply Eq.(188) for quantum neural networks, the mixed 

(186)
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state |B> represents the states of an information around neuro-synaptic junctions, or 
each of axon’s interferences (or cables of artificial neurons, ephapse).   
 We would like to obtain the entropy of both occurrence probabilities of the classical 
case and quantum one, since entropy is one of the most important elements of 
information theory.  Both of the classical occurrence probability and the propagating 
probability have their values of real numbers P(AK) and of non-negative ones P(B|AK).  
On the other hand, quantum case does not mean direct probability, but the quantum 
form corresponds to eigen values of operator P(AK)-hat and P(B|AK)-hat, and their 
counter probability amplitudes, βK andηK.  The FIGURE 24 shows concepts of the 
occurrence probabilities, quantum occurrence operators, and aspects of the propagation 
of the probabilities, and its quantum version of network’s path (they are really 
communication paths or axons).  
 
 
 
 
 
 
 
 
 
 
Thus, total entropy from all of A to B is given as 
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If we pay only attention to occurrence probability, its entropy is calculated by the result:  

k
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(190)

Notice the αk to be the real and positive number. 
However, the amplitude of entropy of quantum system σq(B|AK), which is not 

always real number, is defined as 
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When the occurrence probability is P(AK) at
point AK, and the information propagates from
Ak to B, the entropy is defined as 
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by using eigen-state vectors, Eq.(170)-(171), and by taking expectation values of 
operators.  Moreover, the amplitude of entropy for AK isσq(AK), which is related to 
the state AK : 
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by using eigen-state vectors, Eq.(170)-(171), and its result is the operation of 
expectation values. Then the entropy of the occurrence of quantum system, Hq(A) for 
AK, is written as 
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(193) 

We sum up the entropy of each pure state to obtain the total entropy of probabilities: 
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Comparing the above result of Eq.(194) with the classical result of Eq.(190), we 
immediately find the JK-term to be added to P(AK)log2P(AK), whose additional term is 
directly generated by a phase of the wave function of the Ak, and the phase affects on 
the occurrence probability, and it gives rise to an interference, reflexive interaction and 
transitional action.    

However, if both operators, P(AK)-hat and P(B|AK)-hat, are Hermitian and the 
counter states belong to their pure states, then their eigen values become real numbers 
since the their phaseγk reduce to zero.  Thus, the quantum result of Eq.(194) perfectly 
coincides with the classical case of Eq.(190).  Using those relations for Eq.(191), the 
total entropy amplitude of the final state |B> is given asσTq(B|AK), which is not pure 
state but it is clearly the mixed state superposed by many pure states.  theσTq(B|AK) is 
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And according to the method of Eq.(187)-(193), the total entropy is calculated by those 
equations, we obtain the final result of the quantum expression corresponding to 
classical relation (183): 
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Notice that entropy of quantum system has a lot of complex additional terms whose 
effects arise from much interference and a mixture of the pure states. Comparing 
Eq.(196) with classical entropy Eq.(190), we find the same expression of term, 
P(B|A)P(A)log2P(B|A)P(A) which means classical effect, and the other residual terms 
are corresponding to much interference of quantum system.  Considering of both 
results Eq.(193) and Eq.(196), we can conclude that generally the entropy of quantum 
system is greater than that of classical system since the other residual terms are 
additional and non-negative.  Thus, the quantum interference between pure states 
makes out an increase of entropy larger than the case of the classical system.   
 
13.3 Multi Classical and Quantum Channels with Errors 
We are discussing quantum channel without noise and its Bayes’ form, and here-from 
we would like to study the channels with multi-dimensional channels with errors in this 
subsection.  Now we have two channels, whose one is classical case and another 
means quantum system as shown in FIGURE 24-1 and 4-2.  According to explanation 
of previous section, the P(As) and the P(Bj|As) correspond to the occurrence of 
probability of an event As and the propagating probability from the event As to the final 
result Bj.  Thus, we know the classical channels of Bayes’ form: 
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That representation is a Bayes’ probability of multi channels as same as Eq.(164).  On 
the other hand, quantum case is acquired by practicing to change those probabilities into 
the corresponding quantum operators, P(As)-hat and P(Bj|As)-hat.  On the other hand, 
the classical event As is translated into a state vector |As＞.  The simplest multi 
quantum channels are given as following forms of FIGURE 24-2: 

  

(198)

We would like to introduce both classical and quantum expressions of error’s 
propagating probability, 1-P(Bj|As) and 1- P(Bj|As)-hat, into our Eq.(197) or Eq.(198).  
Thus, we define the similar rules to simplify quantum calculations and observations as 
previous subsection. 
 
1. Base set: the state vectors |As＞, (s = 1to n) make a complete set, and they are in pure 
state. States vectors |Bj＞, (s = 1to q) are in not pure states but they belong to the mixed 
states of all pure |As＞. 
 
2. Orthonormality of base set: the pure state vectors hold on orthonormality.  
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3.An eigen function and eigen state, and propagating operators.  The probability of 
occurrence of state As becomes as  

jjj AAAP β=)(ˆ . (200)
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4. Propagating operators with errors and correct propagation in quantum channels: If the 
correct probability P(Bj|As)-hat is in state |As＞, then the error probability’s operator is 
expressed as 1-P(Bj|As)-hat.  We have the p-numbers correct channels, and so the rests 
(n-p) numbers are in wrong.  Then the correct and wrong propagating case are 

Correct case: pjAAAAABP jjjjj ≤≤=≡ 1,)(ˆ)(ˆ ηξη , (201-1) 

Wrong case: .)1()(ˆ)}(ˆ1{ jjjj
w

j AAAAABP ηξη −=≡−  (201-2) 

The propagating operatorη-hat commonly conveys probability amplitude of a correct 
information and ξmeans a conduction’s rate of propagating processes, however 
sometimes we fails to transmit the correct information from |As＞ to |Bj＞.  We 
assume that the p numbers channels are in correct states and the other (n-p) numbers 
channels propagate the signals to be wrong.  Our propagating operator of neuron’s 
model is to have four effects, which mainly contain neural conductions, ephapse among 
axons, thermal noise, and interferences nearby synaptic junction.  And errors are 
induced by various interference and noise. The correct propagating operatorsη(A)-hat 
is composed of those factors: 
 
η(A) = (neural conduction)+(ephapse)+ (noise & attenuation)+(synaptic interferences). 
 
5. The each final state |Bj＞, ( j = 1 ~ q) is written down as summing up pure initial  
states. Thus, the |Bj＞, ( j = 1 ~ q), is mixed and superposed by a lot of pure states  
|As＞. So, final mixed states enable to be expanded by n-numbers bases of orthonormal 
pure states. 
 
So we have some final states written down as 

A final state of B: qjACB q

s s
j

sj ≤≤= ∑ 1.  (202)

As we assume that the p channels are in correct and the others (n-p) are in wrong 
conditions, the numerator of Eq.(198) becomes by applying Eq.(199)-(201),  
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The other the denominator’s Eq.(179) is given by same way as Eq.(180), except an 
existence of both channels being correct and wrong.  We can decide the expression of 
denominator, 

(203)
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and final quantum Bayes’ form for state |Bj＞ becomes  
  

(205) 

The denominator of Eq.(205) is similar to that of Eq.(176) except to the second error’s 
term.  So, the first term represents the correct propagating amplitude, the second term 
is the case of the wrong (an error) propagation or communication.  According to 
previous subsection 13-2, we easily notice that the result has complex interferences 
between correct channels (i.e. axons of neurons) and wrong ones, because of taking 
absolute value of Eq.(205).  They are two types of interferences: one type belongs to 
each of correct channel, and another is in wrong channels.  Moreover, we find that a 
new interference Zq, by using Eq.(186), appears in the probability of quantum Bayes' PQ 
as shown in Eq.(205): 

  

 

(206)

That Zq says an existence of interferences in between correct channels and wrong 
channels.  Next we calculate both an amplitude of entropy for all pathsσtA(Bj|A), from 
As (s = 1,n) to Bj, and finally we obtain the total amplitude of entropy for the mixed 
state for all Bj, (j = 1,q). That is described by the symbolσ(B|A).  We know the result
σ(Bj|As) by Eq.(176): 
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And thenσ(B|A) is expressed as 
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(ξmeans a conduction’s rate of propagating processes).  The total entropy H(B|A) 
from state A to state B is calculated as 
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From Eq.(209), we find not only interferences of correct channels and that of wrong 
ones, but also a lot of interferences between correct and wrong channels, which is truly 
quantum effects without being in classical systems.  In following section, we would 
like to discuss an approximate solution’s method, being generally called perturbation 
theory. 
 
 
14. Perturbation Method for Multi Quantum Channels 
 
In previous sections, I proposed various concepts, i.e. quantum bifurcations, quantum 
Amida lots, and quantum, quantum circuits, quasi-particle-polaritons, and quantum 
neural conductions (hypothesis of polaritons)[1]-[5],[9],[17].  Though we adopt 
mathematical expressions for model of polaritons, we would like to emphasize that 
quantum interferences play an important roles in our information system in order to 
adjust and to maintain homeostatic states of neural networks and brains [6]-[8].  Some 
important examples of polaritons are neural conductions and the coupling relationship 
between ionic currents (Na+, K+, Cl-) and quasi particles (polaritons).  Polaritons 
connect between many ionic currents of neural activities by many quantum 
interferences.  For examples, they are polarization waves, the carried charges, their 
momentum and energies.  And we showed polaritons, being massive photons, are 
governed by Proca equation, whose form is reduced into quaternary Schrödinger 
equation [17].  As far as magnetic field changes so slowly, its vector potential A takes 
nearly equal to constant value. Then the polariotns can be regarded as their motions 
(neural conduction: maximum velocity 100m/s) being much low velocity, comparing 
with light velocity.  Under those conditions, we simply have only to consider motions 
of the scalar component of the polaritons.  Finally, instead of both Proca equation and 
the quaternary Schrödinger equations, we have only to consider the common scalar 
Schrödinger equation, which has the only scalar potentialφof polaritons as Eq.(147).  
The time development of a final state |Bj＞, with the scalar potentialφand constant 
vector potential A, can be described as 
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We know various patterns of connections of neural networks, i.e. convergence as shown 
in FIGURE 25, divergence, recurrent and so on.  So we discuss the time development 
of the final state |Bj＞ by applying perturbation method for Eq.(210).   
 
14.1 Perturbation of Time Dependent for Final Sate Bj  
We would like to show an approximate method of FIGURE 25, and discuss physical 
descriptions from the middle layer to the output’s ones.  The FIGURE 25 contains a 
convergence’s type of neural network when we pay attention to one neuron |Bj＞.  And 
the neurons of the first layers are connected with those of the second layers.  Each 
neuron of first layer’s, |As＞, (s = 1,m), has N-number’s pure states, and each neuron of 
second layer’s, |Bj＞, (j = 1,q) is in a mixed state.  Polaritons are approximately 
governed by Schrödinger equation Eq.(210), and the final mixed state |Bj＞, with an 
initial sate at time t1, have the following expression 
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Generally we hypothesize that its non-perturbation part can be exactly solved, when we 
use a complete base set of N-number’s pure state vectors.  So we have following 
relationship, 
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and .)( tAtA ss =  

As a base set of pure state vectors is assumed to have the solutions of the non 
perterbation, then each state vector |As(t)＞ is regarded as an exact solution of Eq.(212). 
Each pure state’s expression is written down as 
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The Eq.(212) directly gives us one of final state vectors |Bj＞ belonging to the second 
layer.  The general solution of Eq.(199) is given by expanding and superposing of 
Eq.(213), we have 
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Then making an orthonormalization for basic vectors done, we have 

jKKj AA δ= . (215)

The full Hamiltonian H-hat is divided into two parts, and the one is a non-perturbation 
term H0, another has a perturbation effect HI:   

IHHH ˆˆˆ
0 λ+=  (216)

Substituting Eq.(214) into (210) and, we take an inner product for them by ＜Ap|, (p = 
1,m): each coefficient is given as 
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Hitherto we do not introduce any approximating methods, and now we are going to 

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

)( 01 tA

)( 0tAs

 
 

)( 0tAm  

)( 1tBj

Ĥ
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We consider all combinations between
first layers’ state vectors and second
layers’ ones as you know in branch of
information theory. One different point
is to quantum interference with each
vector.   And note that you find out
network system to contain both types,
i.e., convergence and divergence. It is
convergence type if you pay attention to
only second layer’s state vectors, |Bj(t)>,
i.e,. connection of bold real lines.  If
you regard those state vectors as
classical neuron array, you find a
familiar neural network system.  The
motion of polaritons are described by
Hamiltonian, which are separated into
two parts.  One is the part which we
can solve exactly, and another part
contains a complex interactions, and we
cannot be easily solved.  If we take
perturbation method, Hamiltonian
separated into both parts: we can get an
exact solution of term H0, and another is
difficult to solve the Schrödinger
equation for part HI.   
  

FIGURE 25. Quantum neural network and its Interactions
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practice to perturbation series.  That expansion of coefficients Cj
p(t) is represents as 
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We take the ordered (m+1)-th term into consideration, and gather the first ordered 
terms: 
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So, the second ordered perturbation term is described as 
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Those results are substituted into Eq.(214), and finally we reach the approximate 
solution of polariton’s with perturbation expansion for state |Bj＞:  
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The r.h.s of Eq.(221) means the zero-th ordered, the first ordered and second ordered 
perturbation term for an exact Hamiltonian H-hat.  If we pay attention to the processes 
of neural conduction with having an interacting Hamiltonian HI-hat (i.e. the processes 
of polarization, depolarization, and Na pomp, phenomena of the ephapse, etc.), and if 
the H0 -hat means free polariton’s motion, we can obtain an approximating solutions 
based on perturbation method Eq.(221).  As the final state |Bj＞ consists of many pure 
states |As＞, the rate bj

s(t) of probability amplitude for |As＞ is defined as   
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So, total amplitude of rate Rj becomes summing up all numbers' of possible states, 
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If the probability amplitude of an occurrence for an event Bj is in proportion to the 
above total amplitude Rj, whose probability is expressed by |Rj|.  Then the variation of 
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energies caused by perturbation HI-hat, from state As to Bj, is calculated by the relation, 
which is called as transition amplitude between those states:  
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Then it is important to notice, the above expression is much similar to the second term 
of Eq.(185) if we regard the interaction operator HI-hat as the propagating operator 
P(Bj|As)-hat.  So that reason enable to translate the relationship of Eq.(223) into an 
energy propagating expression of the probability amplitude when we translate the 
P(Bj|As)-hat into the HI-hat.  When an initial state |As＞, which is in pure state As, we 
assume that the amplitude of the occurrence obeys to Eq.(199).  So, we would like to 
discuss the propagation and relations between an initial phase, |As＞ and a middle 
phase as shown in FIGURE 25, in next subsection. 
 
14.2 Propagation from initial phase to middle phase 
Practically to calculate the propagation amplitude from state As to Bj, we should adopt 
path integral formula and the propagation of plane waveφs(x).  That eigen function is
φs(x): 
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x ss =φ free plane wave for state vector, |As＞ (224)

Then we can have a result of kernel for free propagation with applying Eq.(234) to 
Eq.(161), (162) and Eq.(149).  The Kernel K(Bj|As), Bj(x1, t1) and As(x0,t0), is given as  
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Changing sum of ks into an integral, the final result,  
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are corresponding to the Eq.(150).  And after (t1-t0), the wave function, with taking an 
initial condition of source for |As(x0,t0)＞=Ψs(x0,t0), is described as 

A B 
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That result says the propagation to change the phase of wave function when the plane 
wave arrives at the point Bj, though its momentum is conserved at same wave number ks.  
After all, the time development |Bj＞, by using path integral, is written at arbitrary time 
by unitary operator U-hat of Eq.(211): 
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Above expression of ＜x|Bj(t)＞ is truly the result of an output phase of FIGURE 25.          
So, summing up all initial conditions, we obtain a total probability amplitude of 
transition states from |As＞, (s = 1,m) to |Bj＞.  We would like to introduce the correct 
conducting operator ηa-hat, (a = 1,p), and wrong conducting case (1-ηa)-hat, (a = 
p+1,m), andξ-hat is a conduction rate under propagating processes.  And all of them 
are quantum operators:  
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Those operators are almost q-numbers in some cases, but sometimes we notice that they 
are c-numbers, or control functions (potentials).   One of the simple examples ofξ
-hat equals to 1 (no consumption on channels), and theη-hat corresponds to Gauss 
function (Gauss slits) or step function.  In Gauss function, the Gauss slit is given by 
the following form,  

)exp(ˆ 2xCa αη −= .    

(231)

The Gauss slit is divided into many cases by both conditions of C and theηa.  Thus, 
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we would like to show all possible cases:  
(1) If 0 < C <1, then we have p number’s correct channels and the (m-p) number’s 

wrong ones. 
(2) All channels are correct, if theηa = 1.   
(3)All channels are wrong, ifηa = 0.  
(4) If C is over 1, whoseηa are composed a lot of four parts, i.e. ηa = 0, 0<ηa <1, ηa 

= 1, andηa > 1, and so we should discuss to divide into four parts. 
   (a) if the part ofηa = 0, then 1-ηa equals to 1, so then all channels are wrong.  
   (b) if theηa is in the range, 0<ηa <1, then Eq.(89) has two channels: The one 

channel corresponds the correct partηa and another is the wrong one, 1-ηa. 
(c) if the part ofηa =1, then the wrong channel 1-ηa = 0, then all channels are 

correct.  
(d) if the part ofηa >1, then the part ofηa >1 is able to amplify an input wave 

function during passing the channel of the slit.  On the other hand, the wrong 
channel , (1-ηa), has negative value, and we notice that a sign of the wave 
function is inversed from positive into negative.  We intend to regard the 
reversing parts as inhibitory potential or inhibitory neurons    

Thus, the above phenomena show that we are able to control the communication 
channels by means of making gate, slit and some functions.   

In next section, the similarity of between the quantum neural network and classical 
one are pointed out, and finally we refer to the method of quantum expectation value, 
whose operation is likely to that of fuzzy probability.  
 
 

15. Application of Quantum Neuron 
 
We would like to show two examples of simple application of the quantum neural 
systems.  One is an example of quantum neural network, which looks like classical 
neural network's model, another is probability of fuzzy set theory called the fuzzy 
probability[34]-[35]. 
 
15.1 Quantum Neural Network 
The classical neural networks are described as famous following relations: if inputs 
signal Xj, (j = 1, N), weighted by WKJ, are added to the K-th neuron, then the changes of 
activity of membrane potential Uk are commonly expressed as 
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A classical output YK is determined by propagator function f(・) and the potential UK.  
Thus the YK becomes output of the classical networks: 
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On the other hand, if we pay attention to a quantum neural network, its networks can 
be written by the same manner to classical network, and then the state |ABK(t)＞ is  
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The weight WKJ and signal Xj correspond to the weight CKj (coefficient) of 
superposition of the quantum state vector |Aj(t) >, and the final state |AK

B(t) > is 
regarded as the classical potential term UK.  The classical output YK is determined by 
propagator function f(・) and potential UK.  By the same reason, the quantum outputs 
are given by the following relation 
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in the projection of the coordinate space.  So, we easily find, the classical output Yk 
can be replaced by the quantum expression ΨK.  Thus, we have an equation of  

)exp(1
1)(

K
KK a

f
Φ−+

=Φ=Ψ . (236)

 Two expressions of output functions are much similar to each other, however, the 
quantum outputs truly contain various quantum effects which are essentially difference 
from the classical networks, because the quantum output functionΨK allows complex 
number’s functions, and it does not means the probability but corresponds to the 
probability amplitude.  The other hand, the parameters of classical networks Yk, UK 
and Xj, are quite real numbers since they dose not have interferences among others..    
 
15.2 Fuzzy Probability and Quantum Neuron 
We would like to refer to an example of a fuzzy probability by taking up a dice.  The A 
is defined as the set of numbers of the dice 
Set X: }6,5,4,3,2,1{=X . (237)

(234) 

(235) 
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We consider a fuzzy event as an elements of set A taking nearly equal to the value 6, 
which means the fuzzy probability PE(≈6).  To calculate the fuzzy probability P(≈6), 
it is necessary to introduce a membership function of the set A.  For example, each 
element of the membership function is given as A(X), (X = 1,6), 

1)6(,9.0)5(,6.0)4(,3.0)3(,1.0)2(,0)1( ====== AAAAAA . (238)

Then we can calculate the fuzzy probability by using probability P(X), since we are 
having the membership function.  Thus, the fuzzy probability PE(≈6) is obtained by 
procedure, 

)6()6()5()5()4()4()3()3()2()2()1()1()6( PAPAPAPAPAPAPE +++++=≈ . (239)

We assume that the dice has an equivalent probability for each value: 
.6/1)6()5()4()3()2()1( ====== PPPPPP  So we have final result 483.0)6( =≈EP .  

According to common probability method, the probability, we can obtain the value 5 or 
6 of the dice, has the same expression, 

1)6(,1)5(,0)4(,0)3(,0)2(,0)1( ====== AAAAAA . (240)

Thus, we have  

.3/16/116/11
)6()6()5()5()4()4()3()3()2()2()1()1()65(

=×+×=
+++++=∨ PAPAPAPAPAPAPE  (241)

Hitherto based on the above discussion, both probabilities, PE(XJ) can be written down 
by using the probability density Pρ(X) and membership function FJ(X) for X=XJ,  

∫=≈
Xall JJE dXXFXPXP )()()( ρ . (242)

In order to expand Eq.(241) by regarding sub index J, we consider a set of membership 
function FJ, and that of probability density Pρ.  We make the inner products of the 
elements: 
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 (243)

So we have an expression of fuzzy probability of two variables, when we regard the 
indexes of Pρ(・) and FJ (・) as function of variable X, y: 

∫=≈ dXyXFyXPyPE ),(),()( ρ . (244)

That is the fuzzy probability when it takes the value to be about y.  Thus, we find that 
those equations from Eq.(242) to Eq.(244) show the fuzzy probability, and we notice 
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that those description of the expectation value have mathematically some similarities 
between fuzzy system and quantum one. According to the quantum mechanics, its 
probability density )( XPE ≈  is defined as |Ψ|2, it is possible to translate the fuzzy 
probability into quantum language.  Then an expectation is be, according to quantum 
mechanics, 

dXXXFXdXXFXPXF JJJJ )()()()()()( * ΨΨ==≈ ∫∫ ρ . (245)

Notice that the fuzzy probability Eq.(242), by the membership function, has 
similarity to the expectation value of quantum mechanics.  Thus, we can estimate the 
various physical quantities and the controls of quantum neural networks, since the fuzzy 
probability is a kind of quantum probability.  The fuzzy probability )( XPE ≈ can 

directly be translated into the expectation value of membership function )(XFJ .  And 

we find the Fuzzy membership function )(XFJ  to correspond to a physical observable, 
which can be translated into the operator of physical quantity )(XFJ -hat.  If the 
polariton, conducting on axon, has an eigen value EJ and eigen functionΨJ belonging to 
Schrödinger equation-(149), then the quantum mechanical expectation of the 
membership function (strictly speaking, that is a membership operator) is given by 

),(),(ˆ,)(),(ˆ)(),(ˆ * ∇−≡=≈ ∫ hQ iXFPXFdXXPXFXPXF JJJJJJJ ψψ . (246)

After all, those equations, from Eq.(242) to Eq.(246), show the similarity of the fuzzy 
probability and the quantum description of the expectation process (Reference to 
Appendix-2. A2-1 & A2-2, we mention relationship between Choquet Integral and 
Quantum mechanical expectation).  
 
 

16. Summary and Conclusion 
 
We would like to show summary, conclusion, new model of quantum neuron and its 
network, and quantum probability. 
 
16.1 Ionic Current and Role of Polariton 
We proposed a hypothesis of polariton for quantum neural conduction’s theory on 
artificial axons[36].  The polariton, which means a quasi particle, is considered to be 
real object, which carries momentum, energy, impulse, charge current, and those various 
quantum interferences. The model of polariton is described as the quantized polarization 
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wave, being generated by an action potential of neural membrane on axons and ionic 
currents.  The polariton flew from neural body to synapse along to the axon.  The 
phenomenon is commonly known to be the neural conduction based on classical 
physiology.  However, we think classical process, (polarization- depolarization 
-repolarization), is can be quantized and described as the rotation of the quantized 
polarization vector.  The classical conduction is translated as propagation of rotational 
quantized vector, whose phenomenon is equivalent to the propagation of polariton.  We 
think, the quantized polarization wave gives rise to phenomena of the 
neuro-interferences, (for examples, ephapse, causalgia, neuralgia), various neural 
activities. The propagation of the quantized vector is described as conduction of 
polariton.  The polariton is an essential carrier of neural information, conduction and 
interference of each neuron.  The polariton is a kind of quasi particle.  The polariton 
has various physical quantities: for examples, mass about 1.3x10-24kg, spin 1, massive 
photon, positive, neutral and negative charge, and so on. 
 Polariton is a kind of the agent of information.  If we can use frequency of thermal 
noise, then the polariton carries amount of information, 9.38 X1012 bits/polariton, at 300 
Kelvin .  And we recognize to be required at least 0.693kBT joules of energy to convey 
one bit of information.   

To resist the thermal fluctuation and noise, each bare polariton need attract about 41 
water molecules, and that phenomenon is known as hydration.  Commonly we are only 
able to measure and to observe the physical characteristics of the hydrated polariton, 
which means quasi polariton.  We think, that quasi mechanism is an important idea that, 
it is said nano machine to attain an excellent efficiency by using same magnitude of 
energy as the thermal noise at room temperature.  When the polariton is in the ground 
state, whose state means the wavelength of polariton lies in almost 1μm, and its range 
of existence is between 0.6μm and 10μm.  The polariton satisfies the quaternary 
Schrödinger equation and complex Klein-Gordon equation.  Strictly speaking, the 
polaritons motion is given in Proca field, with massive vector photon.  Both inflow and 
outflow, which are both sodium ionic current and potassium ionic current through 
neural membrane, cause the neural conduction along to axon.  And the arised 
polarization wave, which travels along to axon, conveys action potential as an 
excitation’s impulse. Polariton is the quantized polarization wave. Generally speaking, 
an inflow of sodium ionic current causes an outflow of potassium ionic current from 
soma.  Then the polariton electrically connects both ionic currents, and those currents 
are sources of polariton.  Polariton is a real particle like as an electron, anion and 
cation, and it is a dressed and medium particle being caused by rotation of polarization’s 
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phase.  The rapid communication of information lies in a quantum tunnel effect, and 
polariton gives rise to the tunnel current in myelin sheath.  Both sodium and potassium 
ionic current are truly sources of the polariton’s generation, and those currents make the 
many polaritons arise on the dielectric phospholipid membrane of neuron.  Those 
polaritons act on Ranvier ring, and they affect on neighbor neurons, whose phenomena 
are defined as quantum neural interference.  This phenomena is called ephapse, which 
is a physiological action based on quantum interference caused by many polaritons. And 
we think, they regularly work as a physiological functional adjustor, and that ephapse 
contributes to maintenance of homeostasis of neural networks and brain. 
Macroscopic phenomena show us that each neuron receives an influence of the fluctuant 
electromagnetic field as shown in magneto-encephalogram. For examples, each neuron 
is subject to electromagnetic phenomena like as an induced electromotive force, leak 
current and so on.  Those holistic electromagnetic effects of brain give rise to the many 
polaritons at the microscopic level.  We believe that those effects modify various 
activities of neural networks like as cooperation, disaffection, divergence, and 
convergence.  Dr. Shams reported in 2000, the sound induced by flash, which was a 
kind of illusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the one short pulse of light was illuminated to our eyes and our ears were 
simultaneously twice stimulated by short duration-sounds for a short intervals, then our 
brains felt that the electric lamp twice put on a light.  Though a visual area is away 
from an auditory area and both areas have anatomically independent routes of neural 
conductions, the stimulations of visual area affected on auditory area.  We think, those 

Myelin sheath Ranvier ring 

FIGURE 26. Na+,K+, ionic currents and roles of polaritons 
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phenomena to be examples of the illusion and of macroscopic neural interference.  In 
the other word, polaritons of visual area affected on the neurons of auditory area and 
polaritons caused both those mistakes and illusions of two neural areas. 
 
16.2 Quantization of Circuits and Expressions 
We showed new basic theory of calculation methods for quantum bifurcation, quantum 
circuits, and neural computation by using path integrals of quantum theory[32],[37].   

At the beginning, we showed that a decision tree can be regarded as a kind of 
Brownian motion (Markov process), and then the motion was governed with Ito 
equation (general stochastic equation).  And according to Nelson’s method (stochastic 
quantization), the Ito equation finally reached Schrödinger equation.  Thus, we knew 
that problems of classical bifurcation were easily led to Schrödinger equation by 
considering Nelson’s stochastic quantization method.  The second example was 
Japanese Amida lottery, which was a kind of classical bifurcation models because of no 
interference between each path of lottery.  However, we introduced a lot of diffraction 
points to Amida lottery, and we showed the calculating method of quantum amplitude 
by path integrals.  That path integral was a quantization method of Amida lottery, 
which contained a lot of diffraction points.  If we regarded classical bifurcation points 
as diffraction points and we summed up the probability amplitudes of all possible paths, 
we could translate the classical bifurcations into quantum interferences and diffraction’s 
problems of networks.   

We discussed the method of quantization of basic circuits as AND, OR and NOT.  
Those classical circuits did not have any quantum effects.   For examples there were 
not quantum effects as the superposition and probability interference in those classical 
circuits.  In order to perform quantization of those circuits, we adopted the path 
integral to above three basic circuits.  We mentioned that we could regard classical 
switches as scattering potentials (switch’s operators).  So, that was quantization 
concepts, and those quantized circuits with switch operators corresponded to q-AND, 
q-NOT, and q-OR circuits.  Moreover, we succeeded to show the calculation’s methods 
of complex quantum circuits and neural networks by path integrals.  The switch of 
each circuit was looked upon as switch’s potential of Hamiltonian.  Thus, Hamiltonian 
operator H could be described as  

 
H = (kinetic energy T) + (potential energy V) + (Switch’s potential F(S1,S2,  SN) ).   

 
The Hamiltonian was connected to quaternary Schrödinger equation since the wave 
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function was related to the motion of polariton as massive photon.  Exactly speaking, 
the motion of polariton should be prescribed by Proca equation of relativistic kinematics.  
However, the Proca equation approached to the quaternary Schrödinger equation when 
the motion of polariton was much slower than light velocity. 

The kernel K(b,a), which was propagator and an expression of the time development 
of system, was related to an eigenfunction of Schrödinger equation.  And we found 
that the q-OR was similar to the first ordered perturbation of two potential scattering 
problems.  The q-AND was shown to have similarity to the second ordered 
perturbation of single particle.  It is important to notice that the wave functionφ(x,t) 
was an expression of a situation of wave in the point x at time t, and its expression was 
static.  The kernel K(B,A), however, truly represented the motion of the particle from 
point (A,tA) to point (B,tB), and so its expression was dynamical.  Finally, we found 
that the neuro-synaptic junctions were regarded as a kind of switch’s potential, whose 
concepts led to quantization of neural networks by using path integrals.   

We think that quantum interference plays an essential role among many neural 
networks in our brain.  The normal neuron actively utilizes various interferences so as 
to adjust each neural function through leak polatirons from neural axons and synaptic 
junctions, 

 
16.3 Concrete Expression of Information Theory 
We, at first, showed the expressions of motion of polaritons based on Proca equation. 
And we can reduce Proca equation into quaternary Schrödinger equation.  We can have  
the only scalar potentialφby ignoring vector potential A of magnetic fields, if 
polariton’s mass is so large and their motions on axons are so slow.  The interferences 
among many neurons can be expressed by description of path integrals instead of wave 
equation, and the method of path integral is closely related to Feynman kernel, whose 
expressions represent an appearance of motion and propagation of polaritons.  We 
attempted to compare classical Bayes’ theorem with quantum Bayes’ form[31].  The 
quantum Bayes’ expression is given as q-number’s operator, though counter observable 
and eigen values are real numbers. On the other hand, the classical Bayes’ form is 
described by c-number and the observable is also real numbers.  An essential 
difference between the quantum expression and the classical one in both Bayes’ forms is 
whether the occurrence probability (amplitude) and the propagating probability 
(propagator) take complex numbers or not.  So, the classic system is related to real 
number, which always directly means the probability.  On the other hand, the quantum 
closely is connected to complex number.  For example, its wave function describes the 
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probability amplitude, which always takes complex number, and so the probability is 
given as absolute values of the probability amplitude.   

Thus, quantum Bayes’ form contains much interference between each quantum states 
vectors.  However, there are not interferences between each of the event based on the 
classical Bayes’ theory.  And, we showed that result of the quantum Bayes’ form is 
equivalent to the classical Bayes’ theorem if it were not for the interferences between 
each quantum state vector, which means that pure states are changed into many mixed 
states by interactions, interferences and potential scatterings.  We calculated values of 
entropy by both types, which were classical system and quantum’s one.  The quantum 
entropy, which compared with classical expression, had some interference terms.  We 
can conclude that generally the entropy of quantum system is greater than that of 
classical system since the other residual terms are additional and non-negative.  Thus, 
the quantum interference between pure states makes out an increase of entropy larger 
than the case of the classical system. 

Those interferences combines many states so as to make up new mixed states as well 
as quantum Bayes’ theory.  And we applied both of Schrödinger equation and path 
integral so as to calculate an output power of each neuron for hierarchic neural networks.  
We showed those networks contained much interference, and we succeeded to obtain 
approximately solutions of an output expression from each neuron, by perturbation 
method and path integral method.  We obtain the possibility of two types of neurons by 
tuning the width of Gauss slit on multi channel quantum networks.  So we find that the 
some type of neuron works as amplifier, and another type is regarded as the inhibitive.  
Moreover, we discuss the similarity of both quantum network and classical one.  The 
essential differences between both systems are whether there are operations as the 
superposition and the interferences or not.  The quantum states are requested the 
superposition of polariton’s wave function (propagators) and we can estimate an 
overlapping coefficient.  On the other hand, a total output power of classical neurons is 
determined by summing up each of an input signal and a weighted factor, however the 
interferences of wave function never exist in classical system. The quantum neurons can 
control their networks as the classical networks do. The only difference of both 
networks is whether there are interferences between each path or not.  There is another 
similarity between in the fuzzy probability (Choquet Integral) and the expectation 
values of quantum theory.  Then, we know, the fuzzy probability is described by inner 
products and summations between ordinary probabilities and corresponding values of 
their membership function.  On the other hand, an expectation of quantum theory was 
commonly calculated by using wave functions and some potential.  We showed that 
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the quantum expectations have the same descriptions with the fuzzy probability, if the 
membership function is regarded as the corresponding potentials of the wave function. 
The differences between those descriptions were pointed that the fuzzy probability 
should be the real number’s probability (probability density), on the contrary the 
quantum description was given by the wave function (probability amplitude), which 
ordinarily took the complex number.  And the common probability density is governed 
by Fokker-Planck equation with the scalar density functionφ.  However, the wave 
function of the polariton should be essentially described by the quaternary Schrödinger 
equation Aμ(φ,A), except the slow change of magnetic field (i.e., vector potential A is 
almost constant).  The polariton obeys ordinary Schrödinger equation of the one 
componentφ, which is scalar potential of electric field. We think that both our quantum 
neural network and polariton’s model contain a common quantum information theory, 
its computation method, and classical neural system. And our quantum descriptions are 
related to various areas, for examples, applications for fuzzy controls, classical neural 
systems, the classical Information theory and so on. 
 
17.4 Further Development 
We would like to refer to development of polariton’s neurons and network.  We 
obtained the quaternary Schrödinger equation for polariton’s characteristics by 
reduction of Proca equation.  The Eq.(27) and Eq.(34) contain both currents Jμ, which 
are Na+ currents and K+ currents.  So, we are going to solve those coupled equations 
when total Jμcurrent is given. We think that it is important to analyze conditions of 
axon’s membranes when both currents generate the polaritons, because of polariton’s 
source.   
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Appendix-1  
Equivalence to Schrödinger Equation 

 
A1-1 From Path Integral to Schrödinger Equation 
According to relations from Eq.(133-1) and Eq.(133-2), a wave function φA[B] is able 
to be expressed by both kernel K(B,A) and an initial φ(A).  We write down those two 
relations.  The rule No. 8 refers to between the propagation and its time-development. 
The Eq.(133-1) means that an initial wave functionφ(A) goes to a final state B,φA.[B].  

)(),(][ AABKdABA φφ ∫ ⋅= .    (133-1)
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We would like to consider its time development of minute time-span, and so, we take A 
= (x+η,t) and B = (x,t+ε).  So, we have   

⋅++++=+ ∫ )(),(),;,(),( ηηφηεεφ xdtxtxtxKtx .    (A1.1) 

Using the following both Eq.(79) and Eq.(84-2),  
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(T: kinetic energy, V: potential energy, S: action, and L: Lagrangian, and Ref. 
Appendix-1, A1-2). We show an introduction to Eq.(79), Eq.(84), Eq.(64) and 
Eq.(65)).From those three equations, we can easily obtain the Feynman kernel’s 
representation, K(x, t+ε; x+ x+η,t) for minute time-spanε: 
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(A1.2) 

(A: normalization constant).  Expandingφwithε,η and substituting Eq.(A1.2) into 
Eq.(A1-1), the Eq.(A1-1) gives an expression, 
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Comparing r.h.s with l.h.s of Eq.(A1.3), we know theφhave to satisfy the following 
relation, 
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We can determine the normalization constant by Gaussian integral, and then is given as 

m
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Moreover, the Eq.(A1.3) teach us the following relation: 

2

2
2

2

2
11

2
exp)(

xA
midxVi

t ∂
∂

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

∂
∂

∫
∞

∞−

φη
ε
ηηεφε

hh
+(integral , odd function of η) 

Performing Gaussian integral, we can finally obtain the final form to be famous for 
Schrödinger equation, since an integral of odd function of η goes to zero.  Through 
the above procedure, we recognize that Feynman path integral is equivalent to 
Schrödinger equation.  Thus, a path integral expression of polariton on network system 
means to be equal to an expression of wave function, and path integral of Feynman 
automatically contains a lot of quantum effects. 
  Secondly, we would like to mention relationship between classical mechanics and 
quantum theory.  First of all, its theory is said to be Ehrenfest’s theorem by which we 
are able to describe the relation between quantum mechanical expectation and 
Newtonian mechanics.  The theorem says the quantum mechanical expectation for 
momentum and position obeys the Newtonian mechanics [38].  Using wave function 
φ, we know that those two equations for momentum’s and position’s expectation, <p> 
and <x>, which are 
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(V(x) = potential so, the < F > corresponds to force term.).  We have already known 
the Feynman path integral to be equivalent to Schrödinger equation.  Moreover, its 
path integral has to satisfy the Ehrenfest’s theorem.    

(A1.6) 
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Secondly, the those equations, from Eq.(64) to Eq.(68), teach us relationship between 
path integral and the action S.  Adopting both the Eq.(67) and the uncertainty principle 
Eq.(6), we are able to appreciate the magnitude or the order of quantum fluctuation 
Eq.(68).  From Eq.(67), the action S[x(t)] is 

].)()()([][)]([ 22∫ +++=
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taCC tctbtadtxStxS δδδδ &&  (67)

The first term of the r.h.s means classical action SC and the second term corresponds the 
action of quantum fluctuation.   The Eq.(6) tells us the uncertainty principle, 
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And so Eq.(A1.8) is applyed to the second term of Eq.(67), then we have 
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Since the a(t) corresponds to a coefficient of kinetic energetic term, so the order of 
function exp(・) of Eq.(68) can estimated at about mass’s order of particle. The result is 
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Thus, the term of exp[i(tb-ta)] shows so much high frequency, since the above 
macroscopic time interval (tb-ta) is much larger than quantum mechanical time interval 
(transitional time or tunnel effect time, et al.  Their time interval is said less than 
10-9s)).  Thus, an integral of the much high oscillational term is nearly equal to zero, 
and thus the Eq.(68) goes to 
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Finally, notice that path integral becomes to common line integral on the classical 
trajectory of particle since exp{i(tb-ta)}→0.  And then the classical action SC[b,a] has 
much important role, and the classical trajectory of particle has generally more weight 
than its quantum fluctuation. 

The classical action is defined as the time integral for Lagrangian: 
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So, we practice variation for Eq.(A1.12), and then we reach an equation of 
Eular-Lagrange of Eq.(A1.12): 
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That equation corresponds to Newtonian equation of motion of analytical mechanics.  
Moreover, Lagrangian decides Hamiltonian according to following procedure. 
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The first quantization means to introduce an operator into classical Hamiltonian, 
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And then we can obtain well-known Schrödinger equation applying wave function.  If 
we would like to adopt the action S (or classical Lagrangian) for its system’s description, 
it is possible to choose path integral form, whose variables are c-number (cf. an operator 
is described by q-number).  Polariton, photon and the other bosons are governed by 
common algebra; however, electron, neutron and proton (fermions) need to be 
expressed by Grassmann algebra.  
  Finally we can assert the sentence: “We can automatically introduce quantum effect 
of polaritons to the network systems, and its expression is much similar to classical 
mechanical Lagrangian.” 
 
A1-2 Way to Feynman Kernel 
We would like simply to show you the way to Feynman kernel from the unitary operator 
of Eq.(133-1) and Eq.(133-2).  The original path integral’s idea, whose staring points 
are based on classical Lagrangian, has been begun by Paul, Dirac [39],[40].  And R. 
Feynman has developed the Dirac’s method, and he wrapped up modern path integral 
formalism [4],[38],[41].  The purpose of an appendix A1-2 is to show the general way 
to Eq.(65) from Eq.(64) and .  From Eq.(133-2), we know the unitary operator. 
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When we divide the macro time interval (tB-tA) into N numbers’ minute spans ε= 
(tB-tA)/N, then we have 
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Substituting Eq.(A1-15) into Eq.(A1.15) is substituted into the kernel of Eq.(133-2), we 
find the propagator 
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Adopting completeness of position’s bra and ket vector, the above kernel is expressed as 
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As well as position’s vector, we use the same completeness for momentum vector, we 
have  
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And when N→∞, the function exp[・] of Eq.(A1.18) goes to  
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The Eq.(A1.19) clearly mentions the path integral to be closely related to Lagrangian 
and Hamiltonian of the classical mechanics.  Performing Gaussian integral for 
momentum pj of Eq.(A1.19), finally the kernel (propagator) of Eq.(A1.18) is given as 
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Then the above function exp(・) is reduced to Lagrangian form: 
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After all, we obtain the path integral form, 

(A1.18) 
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(A1.21) 
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Thus, we recognize that this result, Eq.(A1.22), perfectly coincides with Eq.(65), and 
the classical Lagrangian form leads us to Feynman path integral.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A1.22) 
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Appendix-2 
Choquet Integral and Quantum Mechanical Expectation 

 
A2-1 Fizzy probability and Choquet Integral 
We showed that the fuzzy probability PE(≈6) was obtained by Eq.(239), 
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If we consider an independent variable X to have continuity, then the Eq.(239) is 
described by an integral form, 

∫∑ ⋅≅⋅=≈ dXXAXPXAXPP
XE )()()()()6( . (A2.1)

as we wrote in Eq.(242).  The Choquet Integral of this case, the value A(X) means to 
be Fuzzy measure and the probability P(X) corresponds to its counter grade.  So we 
are able to have an expression for the Choquet Integral (FIGURE A-1), [42],[43]. 
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And we define as P(0) = 0. 
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FIGURE A-1. Choquet Integral of Fuzzy Set Theory 

P(0)=0 
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Simplifying the Eq.(A2.2), we immediately notice that the fuzzy probability PE(≈6) of 
Eq.(239) or Eq.(A2.1) is equal to the results of Eq.(A2.2), which is the definition of 
Choquet Integral in real number’s area.   
 
A2-2 Difference between Fuzzy Integral and Quantum Integral  
Calculating Fuzzy probability (Choquet Integral or Sugano Integral), all functions, A(X), 
P(X) and its variable X are always real numbers.  And we never encounter to complex 
numbers under its calculation process.  However, the quantum mechanical expectation 
is essentially different from those Fuzzy integrals except the similarity of formal style 
(reference to Eq.(242) and Eq.(245) ).  The wave function (probability amplitude)Ψof 
Eq.(245) generally means complex function.  However, its expectation and variable X 
have to take real values, because the expectation should be observable and X is 
coordinate of our space.  In Eq.(245), we assume that the Ψ takes a plane wave 
exp(-ikX), and we adopt its complex conjugate wave function Ψ*= exp{i(k+⊿k)X} 
with slight difference of momentum.  And if Fj(X) (i.e. A(X)) is momentum operator, 
then the quantum mechanical expectation becomes 
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So, where δ(Δk) means Dirac delta function.  TheΔk is nearly to zero, and then 
δ(Δk) becomes a very sharp function, and we perform an integral for Eq.(A2.3) at 
near to zero.  We have the result: 
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It is much important to notice that the result of calculation is not infinite, but it becomes 
a finite value.  In the case of Choquet Integral, we can adoptΨ= cos(kX), andΨ* is 
cos{(k+Δk )X}, and moreover, Fj(X) means momentum operator.  And we obtain the 
calculating result of Eq.(242): 
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The result of Eq.(A.4) takes always zero value because of orthogonality of 
trigonometric function.  If the above Fj(X) takes real number A, its result becomes 
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divergence and infinite, 
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if theΔk is much near to zero.  And if theΔk is not equal to zero, we always obtain 
zero momentum, and those results are not significant.  Thus, if we adopt probability 
amplitude Ψ which is complex number, we should naturally be led to quantum 
mechanical expectation so as to prevent from giving a nonsensical result, instead of 
Choquet Integral or Fuzzy probability.                                           
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