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Abstract:

We proposed the positive hypotheses of neural interferences based on physiological
knowledge of neurons, ephapse and those quantum effects as engineering models. We
thought the neural interferences of axons and synaptic interactions as ephapse are
propagated by polaritons, which were a kind of quasi particles. The polaritons were
essentially massive vector photon with spin 1. The polaritons, whose particles were
relativistic, were strictly governed by Proca equation or quaternary Schrodinger
equation. The polaritons were connecting between two ionic currents on phospholipid
membrane of neuron. That membrane on their axons was propagating their excitations
and action potentials by using polaritons. The Na® currents, into insides of
membranes of axons, cause the K* current’s flow to outside of axons, and a series of
those processes can generate the quantized polarization waves (polaritons). Various
interferences as ephapse, synaptic and the other interactions were intermediated by
polaritons. The polaritons were able to go through myelin sheaths by quantum effect.
The one polariton makes possible to carry amount of information, 9.38X10%
bits/polariton, at 300 Kelvin. And we recognized to be required at least 0.693kgT
joules of energy to convey one bit of information. We thought that those quantum
interferences were utilizing commonly to adjust our neural and brain’s functions.

It is known, as neural networks are fundamentals of brain’s constructions. So, we
proposed path integral method in order to calculate quantum probability amplitude for
various networks, i.e. Amida lottery, electrical circulations and classical neural systems.
Our starting points of new basic theory and calculation methods for quantum
bifurcation, quantum circuits, and neural computer are based on path integrals of
guantum theory. The problems of classical bifurcation were easily led to Schrddinger
equation by considering Nelson’s stochastic quantization method. Japanese Amida
lottery was a kind of classical bifurcation models because of no interference between
each path of lottery. And so we showed how to quantize electric circuits, Amida lottery
and complex neural network by applying the method of path integrals. The bifurcation
points of Amida lottery corresponded to diffraction point of polariton in quantum theory.
Then we constructed the method of quantization of basic circuits as AND, OR and NOT.
Moreover, we assumed that we could regard classical switches as scattering potentials
(switch’s operators). Those were gquantization concepts, and those quantized circuits
with switch operators corresponded to q-AND, g-NOT, and g-OR circuits. The Proca
equation of polariton, which was relativistic field equation, approached to the
quaternary Schrédinger equation when the motion of polariton was much slower than
light velocity. The kernel K(b,a) for an integral, which was propagator and an



expression of the time development system, was related to an eigenfunction of
Schrodinger equation. We found that the neuro-synaptic junctions were regarded as a
kind of switch’s potential, whose concepts led to quantization of neural networks by
using path integrals.

By expanding method of the classical networks to quantum systems with wave
equation and path integrals of polaritons, we could obtain both some tools and
descriptions for quantum calculations of arbitrary neural circuits. The most important
difference between the common (classical) neural network and quantum one are in with
or without of an existence of interferences. The quantum system had essentially many
interference’s relationships in its system, and so its probability was related to the
probability amplitude, wave functions and propagators, which were commonly complex
functions. On the other hand, the classical probability never contained any
interferences since it had in the real number field. And concretely we showed how
those quantum methods, whose system contained much interference, were applied to the
Bayes’ theory, entropy of information theory, and the two-step neural network as a kind
of multi channels. Moreover we succeed to obtain approximately output’s solution of
the quantum network, with mixing many quantum states, and we expressed the feature
of network by means of perturbation and path integral description. And we found that
our quantum neural network and polariton’s model were connected with the common
quantum information theory, classical neural system, and we showed quantum network
was including some aspects of soft science. Concretely we showed that our methods
were closely related to various areas as applications of fuzzy controls, classical neural
systems, the classical Information theory and so on.

Keywords: polariton, quasi particles, polarization vectors, sodium ionic currents,
potassium ionic currents, wave function, axon, neural network, quantum interferences,
ephapse, dielectric materials, Proca equation, quantum circuits, quantum lottery, path
integral, Hamiltonian, quaternary Schrodinger equation, superposition, neural network,
wave function, propagator, Bayes’ theory, entropy, quantum neuron, Schrdédinger

equation.



1. Artificial Neurons and Phenomena of Ephapse

Many excellent experiments for neuro-function and neural conduction have been
performed by usage of micro-needles for neurons, and we have understood notable
phenomena of neuro-physiological functions and their structures. Among all, one of
the most famous researches is performed by Hodgkin & Huxley, who proposed
physiological models based on physical cable theory, ionic currents (Na', K'), local
currents and conductions of action potentials [1]. Their model can be able to explain
many phenomena of neuro-electrical physiology. In pathological area, Arvanitaki
discovered the phenomena of ephapse, which means an existence of interference
between many neural axons. When he stimulated one neuron and made action
potentials (impulses) arise on the stimulated neuron, that impulses affected on another
axon despite of having of no direct connections between two axons. So his discovery
and experiments are thought him to make up an artificial synapse and neurons.

However, the ephapse have been believed not to be in the cases of healthy
neuro-fibers[11]. It is said that ephapse was found in pathological neural axons, i.e.,
for examples, neuralgia, causalgia, and what we call, neuron’s diseases. So, the axon’s
or synaptic interferences have been regarded as an evidence of wrong neurons. We
have had negative images for the ephapse, whose sign are pathological neuron or
symptom of demyelination[26].

We, however, would like to propose a positive hypothesis for ephapse or
interferences of neurons in this paper. So I put on those following presuppositions.

Our healthy brain or normal neurons actively utilize electromagnetic interactions, (for
examples, leakage current, polarization of membrane, noise current, ephapse, and so on),
so as to adjust neuron’s functions between each neuron, and so as to accomplish an
integration of brain’s functions. Note that we do not intend to discuss whether our
neuron’s model is correct or not, from standpoints of biology. We would like to only
discuss from to engineering views and functions.

In the other word, we have an interest in following question: if it were the
interferences between each neuron and the brain utilized those weak electromagnetic
interactions so as to adjust its functions, we would like to show how neuron’s images
does change and what biophysical principle governs our neural networks. Moreover,
we will propose how to get a mathematical expression of our neural networks. We
have been researching for suitable descriptions for those weak electromagnetic nano- or
meso- phenomena.

In following section, we intend to mention basic idea and theoretical requests in order



to introduce both quantum method and concepts of quasi particles polaritons. Then we
show quantum mechanism of neural-conduction based on dielectric of myelin sheath.

We assert in this paper that information for neural interferences as ephapse is
propagated by polaritons, which are a kind of quasi particles, i.e., quantized polarization
waves. We conclude that polaritons mean massive vector particle with spin 1, and
shortly speaking, it is massive photon. Moreover, polaritons are closely related to
many ionic currents (Na', K, CI” current) and those channels, when neurons and axons
propagate action potentials (impulses). Thus, polaritons run on neural membranes
along to axon, and they go easily through myelin sheath by quantum tunnel effects.

We would like to mention the concepts that those quantum interferences are useful to
adjust and to harmonize our neural functions and brain’s situation [2]-[5]. So, One of
our purposes is to study effects of quantum neural-interferences. And our computer
(brain), which is constructed by many quantum neurons, and sometimes make mistakes

and causes false illusions by quantum effect of polaritons.
2. Polariton’s Model of Neural Conduction
Axons of neurons have a series of polarization’s processes: in short, there are the

polarization, depolarization and re-polarization by Na'- and K" -currents penetrating

axon’s membranes.

A If we observe from this direction of
Change of polarization vectors conduction of excitation (action

positive
T potentials), those processes can be

\T\\ negative described as rotating vectors.
1 \Q — A Those phenomena as polarization,
negative * depolarization and re-polarization
positive axon are the quantized rotational vectors,

o o which are quasi particles, what is
polarization  depolarization re-polarization | called, polariton.

If we observe the changes the polarization vectors, we notice approximately to able to
describe the changes of action potentials on axons as the rotating polarization vectors
(FIGURE 1-A-D). The FIGURE 1-A shows the change of polarization vectors, which



mean directions of ionic current and their magnitude. If we observe those polarization

vectors, we know it safety to express classically as rotation of those vectors.

polarization
re-polarization
depolarization polarization '
re-polarization Na pomp

Na  into axon || K outer flow |

View from longitudinal direction

Changes of action potentials of axon

(FIGURE 1.-A,B,C,D) Theory of rotating polarization vectors

We regard neural conductions of action potentials (impulse) as propagation of the
quantized polarizations vectors, which are correspond to the traveling quasi particles,
polariton. Their motions (rotation of vectors and propagating polarization vectors) and
the series of processes (polarization -depolarization-repolarization, etc) are caused by

. . . + + . .
mainly ionic currents (Na -current’ K -current, etc.). Those ionic currents are source

of polaritons.

D

polarization /
——~ depolarization

1 re-polarization .
. b The trace of head of polarization

vectors are described as spiral curves
on the axon. The traveling of the
process,polarization-depolarization-rep
olariztion, makes polarization wave.

axon The quantized polarization waves are

,° quasi particles as called polaritons.




Those currents become sources of polaritons, whose rotating vectors propagate on the
neural membrane, and triggers of those two ionic currents arise the polarization waves,
and the quantized polarization waves correspond to quasi particles, polaritons.

(A)This figure-A shows the feature of “the changes of magnitude of polarization
vectors”. According to the conduction of action potentials along to axons, the
polarization vectors rapidly change their shapes, directions and magnitude (Fig-A).

(B) The process of conductions of action potentials hypothesizes to shown as rotation of
polarization vectors, if we thought the polarization vectors travel along to
longitudinal direction of axons (Fig-B).

(C) This picture shows each phase of action potentials, which are mainly generated by
those currents, sodium ion’s currents, potassium ion’s currents and sodium pomp
(Fig-C). Those currents are origins of polaritons.

(D) The inverted phase of polarization vectors (depolarization phase, center of Fig,1-D)

is pictured, and the polarization vectors are propagating on the membrane of axon.

Those axon’s membranes are constructed by phospholipid bilayer, which has

characteristics of strong dielectric materials. Those dielectric materials can efficiently

conduct the polariztion’s waves, or its quantized quasi-particles, polaritons. After all,
the quantized and rotating polarization vectors run along to longitudinal direction of
axon. The real polaritons are quasi particles covered with a lot of water molecules and
ions, which are made by electro-static interactions between bare polariton and waters’
molecules (FIGURE 3).
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3. Characteristic of Polatriton as Quantum Depolarization Waves

We are able to estimate physical characteristics of quasi polaritons. Considering
saltatory conduction of excitations and of action potentials, we can estimate a rage of
the existence of polaritons to be almost equals to the width of Ranvier ring, whose
length is said to be about 1jam (FIGURE 2).

If polaritons exist in the Ranvier

:S?:]: Ring, it is reasonable to assume

Ranvier ~ polaritons to be confined between
. myelin sheaths.
-~ Mvelin
4 a

, ~ So, we are simply able to apply
4 N box type of potential model for the

! I /l confinement of polaritons. The

continuous line is the ground state
of polaritons, which are bosons,
FIGURE 2. Polariton on Ravier Rlng the dashed line is correspond to

the first excited state.

When the wave length of ground state of wave function is considered to be the width of
Ranvier ring 1|am, the polaritons mass can easily calculate by following relation: the

equation says

If we adopt the conducting velocity of myelinated axon v = 100m/s, then the wave
length of wave function of ground state of polaritons become about equal to the width
of Ranvier ring 1jum. This calculation for polariton’s bare mass results in 6.7X10 kg.
We know, mass of the bare polaritons has at most about ten times as heavy as that of
electron mass. And the kinetic energy of a free bare polariton moving along to an

axon 1s estimated as

1
Ex = E mv’=2.07 X 107 (eV per a polariton). @

That polariton’s kinetic energy is so smaller than any specific energies, i.e., thermal
energy at 300K = 3.0 X10%eV, ATP hydrolysis = 2.0 X10'eV and etc. (Table 1). And
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its energy is indicates 10 times smaller than hydrogen bonds of water molecules, and
that energy is ten times larger than kinetic energy of electron moving at 100m/s speeds.
Polaritons work as intermediates of electromagnetic interaction by propagation of
polarization waves, and so those bare quantized waves (those are quantum particles),
which are massive photons, have an average mass 6.7X10kg with spin 1.

Those massive photons have serious problems. Generally speaking, biological
nanomachines show good efficiency at room temperature, and their input energies
almost equal to thermal fluctuation. According to the above common nano-machine’s
examples, we think that the polariton’s kinetic energy should be nearly equal to thermal
noise energy. If polaritons are always exposed under water rich circumstance, whose
temperature indicates about room temperature T=300K, the energy of thermal noise
reaches the value.

3/2kgT =63 X 1021 7=3.9 X107 eV, 3)

Judging from standpoint both Eq.(2) and Eq.(3), we gauss the bare polariton’s kinetic
energy is almost 10~ times smaller than thermal noise. Those conditions cause serious
problems, because of preventing polaritons from normal neural conductions and from
traveling action potentials. Thus, the polaritons’ kinetic energy is so small that
polartions cannot work efficiently under water rich environmental like as human body,
since polaritons’ motions are interfered with thermal fluctuation and noise. At least,
the polaritons, which are against thermal noise, are needed to become 10° times heavier
than their average mass. Though that mass 6.7X10°%g is bare polariton’s mass, we
are able to estimate the quasi polariton mass (dressed mass), which mean the bare
polariton to be covered with some ions and water molecules. Thus, the bare polariton
is requested to become average 10° times heavier than its bare mass (FIGURE 3).
Then the bare polariton needs to wear the water molecules, and an average quasi
polariton’s mass is guessed as

m; ~ 3'\(/§T =1.3 X 10 (kg). )

And water molecule’s mass is 3.1X10%°kg, and the dressed polariton can sufficiently
resist the thermal noise under room temperature at 300 Kelvin, if each bare polariton
can attract the 41 water molecules at least. Thus, the quasi particle, polariton means

(dressed polariton; quasi polariton) = (bare polariton)+(dressed mass, water molecules).

m; ~6.7X10%kg + 1.3 X 10 (kg). 5)

Note that we can detect that dressed polariton’s mass, which are covered with many

water molecules, however we cannot measure the bare polariton’s mass. The polariton,

12



by the quasi particle’s mechanism, have energy of polariton as strong as that of thermal

noise.

The Fig.3 shows the bare polariton
to attract many water molecules by
the electrostatic forces. And the
bare polariton changes into dressed
particle called quasi polariton. It is
bare polariton difficult to measure the mass of the
bare polariton.

So, commonly we don’t know the
bare mass, but we can only detect

qguasi polariton

the quasi(dressed) polariton’s mass.
The quasi polariton flows along to

O
o0 an axon. And many polaritons are
: O related to various phenomena, i.e.,

ephapse, neural conduction, tunnel
—@7 effect and an interference between
Axon R each neurons.

: : Thus, polaritons mean quantized
polarization waves.

¥
0
ans
---------------

FIGURE 3. Image of quasi particle (Polariton)

According to statistical mechanics, it is said that an order of fluctuation of particles is
almost N°°.  If we assume the length of human’s axon to reach about 1m, and size of
water molecule to be 2.0X 10"°m (2 ) at its length, about 5.0X 10’ water molecules
exist at the length 1 m per an axon at least. In this case, the particles’ average
fluctuation is about N°, i.e., 7.0X 10* numbers’ water molecules. The fluctuation of
7.0X10* numbers’ particles correspond to about 10°m at length, whose value is lager
than the width of Ranvier ring, I Jam. Since the quasi polariton’s size is much smaller
than the width of Ranvier ring and both particles’ fluctuation and the width of Ranvier
ring are less than the value of fluctuation, many of quasi polariotns can occupy their
positions on both Ranvier ring. Moreover, that result gives us a suggestion that wave
functions of polaritons make an invasion to an interior portion of myelin sheath.

Thus, polariton’s momentum fluctuation is given as

(region of Polariton’s existence of ground state) < (length of fluctuation of statistics)

13



Ap = a —1.07% (kg mvs). (6)
AX

That mass fluctuation is 1.0°'kg, whose value is hundredth part of bare polariton’s

mass.

4. Polariton Conveying Information

Generally speaking, the thermal noise is against neural conductions of polariton being
a kind of electrical signals. On the other hand, heat generates some sort of undesirable
electrical signals. J.B. Johnson, who discovered the electrical fluctuations caused by
heat, in terms of a fluctuation voltage produced across a resistor. That fluctuation
voltage (noise voltage) is called thermal noise and a hot resistor is a potential source of

noise power. In this case, the most noise power N is described as

N =k, TW -

where kg is Boltzmann constant, T means temperature of resistor in degree Kelvin, and
W is the band width of noise in cycles per second. Obviously the bandwidth W
depends only on the properties of our measuring device. Notice that the noise power is
given by Eq.(7), where T is temperature of the object. And the thermal noise
constitutes a minimum noise, which we should permit, and additional noise sources
only make the situation of apparatus and measurement worse. The noise determines
the power required to send messages (conduct on axon). And in order to transmit C
bits/s, we must have a signal power P related to noise power N by a relation.
Referencing Eq.(7), we have

@®)
C=W 1og[£j “Wlog P |
N K, TW

The P is a given signal power. If the P/kgTW becomes very small compared with
unity, the Eq.(8) gives the following relations: the Eq.(8) becomes

o 144P o)
koT
or
P =0.693k,TC .

(10)

The Eq.(10) says that, even when we use a very wide band width, we need at least a

power 0.693kgT joule per second to send one bit per second, so that on the average we

14



must use an energy 0.693kgT joule for each bit of information we transmit (C=1). At
300 Kelvin, we obtain the signal power 1.7X107eV (per/s)/(bit/s) from Eq.(10). The
thermal noise of Eq.(3) is larger than the value of 0.693kgT, 1.7X102eV (per/s)/(bit/s),
and so polariton needs have the same level of energy as or larger than thermal noise in
order to convey the neural information according to classical mechanics. However the
polariton is a quantum particle and massive photon with spin 1, we should apply
quantum effects to the Eq.(7). Herry Nyquist proposed to give an expression for
thermal noise applied to all frequencies of light. His expression for thermal noise in a
bandwidth W; was

N, = hoW, . (11)
exp(fiw; [k, T)—1

Quantum effects become important when one polariton energy is comparable to or lager

than kgT. If a polariton energy >> kgT, then most noise power N; is given as

N~ X(1+ x4 3 - YhoW, =| % exp| ~ P2 lTw, x = exp| — 1|,
kT kg T kgT (12)
We take sum for the suffix i and an average of the Eq.(12),
(N) = (EW, )kgT . (13)

Taking the relations Eq.(14), we will obtain the similar expression to classical result

ho, ho,
E)= 'exp(— 'H W,) = const,
(& LBT o ) W "

from the Eq.(13), and if <E;> = 1. then Eq.(13) is

(N)=(E; kg TW = (N) =k TW . (15)

Note that the Eq.(15) means approximately a quantum expression of the most noise
power which is different from the Eq.(7). And the frequency above, being the exact
expression for thermal noise Eq.(11), depart fundamentally from the valid expression at
low frequency Eq.(7). It is said that there are the quantum limitations other than the
imposed thermal noise as Eq.(11) or Eq.(13). It turns out that ideally 0.693kgT joule
per second to send one bit per second is still the limit, and it is impossible to change the
above limiting value. The energy per polariton is h\, and ideally the energy per bit is

0.693kgT. (We showed examples of maicro-scopic energy levels of various particles)

15



TABLE
TABLE.1. Kinetic energy & thermal fluctuation

Energy (eV)
Polariton’s kinetic energy 2.0 X 10-7 eV
Electron’s kinetic energy at 100 m/s | 3.2 X 10-8 eV
Hydrogen bond 1.0 X 10-1 eV
Thermal energy at 300K 3.0X10-2eV
ATP hydrolysis 2.0X 10-1 eV

[Nano-machine shows good efficiency at room temperature, and an input energy almost

equals to thermal fluctuation. |

Thus, ideally polariton can carry information, and we can know the bits per polariton at
300 Kelvin,
ho
0.693k,T

If we can use frequency of thermal noise, then the polariton carries amount of

=2.31x107°v (bits/polariton). (16)

information, 9.38 X10'? bits/polariton, at 300 Kelvin from Eq.(15). And we recognize

to be required at least 0.693kgT joules of energy to convey one bit of information.

5. Description of Polariton

Polaritons, having an electromagnetic interaction, should be massive photon with spinl.
If the polaritons are traveling along to z-axis, those polaritons having right-handed
polarized light are expressed as summation and superposition between state of
x-polarized light and that of y-polarized light. This right-handed polarized photon is

given as
|E(Z,t)> = E &, expi(kz — wt) + Eg,i(kz — ot + 7/2) = E e, expi(kz — ot)
+1Eg, expi(kz —at) = |7rx>expi(kz —ot) + i‘ﬂy>expi(kz — ot) (17)
|7rx>=E0£x, ‘7Z'y>:E08y

with the £; vectors of polarized light We attempt to practice normalization

right-handed polarized light:
1 : :
|E(Z,t)>=3(|7rx>+I‘izy>)exp|(kz—a)t). (18)

We obtain an expression for right-handed polarization state. Using this expression

16



(18), we practice to differentiate with variable z,
0*|E(z,t))
oz’
and then we multiply both sides by —#’ / 2m and add -V E(Z;t) . We notice

following relation:
E =ho=(hk)"/2m+V (20)

= —K2[E(z,1)), (19)

And we multiple the state vector to both side on Eq.(20). Finally, we obtain
Schrédinger equation, which describes motion of three components of polariton, with
time dependent factors as shown in Eq.(21).

L IE@D) {—hz o’

) 1)
o —+V(z,t)}|E(z,t)>.

2m oz’

Performing derivations as well as the previous procedure, we obtain the relativistic

expression of polariton. We use a relation

E’[E(z,)) = m*c*|E(z,t)) + p°c’|E(z,t)) +V|E(z,1)) (22)
~E=ing/ot, p=ino/ez,

which is named Klein-Gordon equation. And its quantum expression is given as
(hw)* =m’c* + c*(hk)* +V. (23)

The Eq.(23) means a relativistic spin 1 (vector) particle moving under potential V.
Note that common Klein-Gordon equation has one component, scalar particle, however,
the Klein-Gordon equation of Eq.(22) possesses three components vectors. An
electromagnetic theory says, in quantum mechanics, that vector potential A and scalar
potential¢pis more essential elements than electric field E and magnetic field B. Thus,
according to Maxwell equations, the electromagnetic fields E & B are related by the
vector and scalar potentials A & ¢p:
B(X,t) = rotA(x,t)
1 0A(X,1)
c ot (24)
A" = (p(X,1), A(X,1))
The Eq.(24) teaches that those vectors and scalar potential (A &) obey the

E(x,t) =—grad¢g —

Klein-Gordon equation, because B & E is satisfied with the Klein-Gordon equation as
shown in Eq.(22). We introduce strength of an electromagnetic field FHY, whose
expression connects quaternary AHwith both electromagnetic fields B & E. The F*V

is defined as

17



0 -E' -E> -E°

E' 0 -B® B 25)
E> B 0 -B

E’ -B> B 0

- B(x,t)=(B',B?,B%), E(xt)=(E'E*E’), A“=(¢A)

F =0"A" — 0" A" =

The polariton of massive photon, quantized particle with spin 1, whose equation of four
components is similar to the Klein-Gordon equation of massless photon. The
polariton’s Lagrangian density is given as
1 uv 1 2 “o_§ AM 26
KZ_ZF Fﬂv+5m AﬂA —JﬂA , ( )
whose expression gives rise to Proca equation (relativistic massive vector’s equation),
when we apply variational principle for Eq.(26). The Proca equation with an interaction

between polariton and current j*
v 2 AV v
o,F"+m A" =] (27)
w0 = (p(x,1),i(x, 1)

is automatically satisfied with Lorentz condition, if that source term j*= 0 or current
conservation law holds correct. (in Eq.(27), we use natural unit system). So under

Lorentz condition, the Eq.(27) becomes simply form:
(0,0" + m*)A” = j". (28)

Comparing Eq.(28) with Eq.(22), we notice the corresponding relation between term of
VE(x,t) and the jHcurrent. If we consider the current j"is generated by major two
ionic currents, sodium current Jy, and potassium current Jg, the total current j* through

axon’s membrane becomes as
(0,0 +m*)A" = i, + k- (29)
And we notice those currents to be a source of generating many polaritons.

To derive non-relativistic polariton’s equation from relativistic equation (29), we

need return from the wave function AMof natural unite to that of MKS unite:
A“(x,t) = " (x,1)- exp(— % mcztj : (30)

Then, we split the time dependent of AHinto two terms, and then the one’s term is
containing the rest polariton's mass, another is common wave term@(X,t). In the

non-relativistic limit, the kinetic energy Ej is so smaller than energy of rest mass that we
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can reduce it to non relativistic form as
E, =E-mc?, E'<<mc’ (D)

And non-relativistic kinetic energy Ex means

‘i 8;” ~ E 0" <<mc’p”. o
Hence we have
aaAtﬂ ~ —i m;l:z " -exp(—%mczt)
g ol
Inserting all above approximations into following relativistic relation:

(34)

p”pﬂAV+m2C2AV — jv/cy

we finally obtain the non-relativistic expression like as Schrodinger equation. That

result is non-relativistic polariton's relationship with quaternary components,

- 8Aﬂ 2 2 1 i

A =(4,A), | R*/(2mc) < VA"

Then Ay is scalar potential¢p, and we remove the rest mass term in the non-relativistic

limit, the final polariton's equations becomes a set of the quaternary Schrodinger

equation:
; 8¢0 _ |
|hW—|:—%v +V ) (36)
a 2
inC? |~y Ly e,
ot 2m

0" (X) = (@ (x,1),0%(x,1)), a=1273.

Notice that that equation describes a motion of non charged polariton. As a charged
polariton is expected to obey to the complex Klein-Gordon equation for electromagnetic
interaction. We multiply Eq.(28) by complex conjugate of A,,, and take the complex
conjugate of Eq.(28) and multiple it by A,,
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8, (AO"A, + A A")=]"A — ] A" (37)

We can define a quaternary current vector J,, using MKS unit system,

. E%(Ajamﬂ LAA"), (38)

and we are able to define the polariron’s charge
ien
=——(A0'A, +A A7), (39)
Q e A0 AT A, )
Where the Q is time component of A,,. And the polariton’s field A, are divided into
real part and imaginary part like as Eq.(40)
A =LA ving)

V2 .

=gl +ips (40)

If the two fields A;"and A,"separately satisfy a Klein-Gordon equation with having the
same rest mass m, then the equations can be replaced by one equation for a complex
field,

2.2
(avav P jA“ - j
h

2.2
(avav Lme JA"* =

hZ

(41)

According to pi-mesons example, should pay attentions for expressions for positive
charge’s polariton, negative charge’s polariton and for neutral particle. And each of

equations has following fields:
1 .
Al =AY =— (A —IA)
A -ia)

42
A= A% = (A iny) “

V2
Aé’ = A¥ = A”*
We adopt the same procedure from Eq.(40) to Eq.(42), finally we will reach
non-relativistic similar form to Eq.(36). We would like to emphasize that the neutral
polariton is characterized by a real eave function, and the charged polaritons have to be
represented by complex wave functions.
If the polariton with electric charge q, interacting with both sodium current Jn, and
potassium current Jg, moves under electromagnetic fields, then a minimal interaction is

written as
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V—)V—EG
c

H - H-qG". (43)
Then the above relation (43) is inserted into vector’s type of Schrodinger equation (35)

or (36). Performing after simple calculations, we finally have the complex equation,

0" 2 (44)

2
in B L VR ¢”+q—hi(G-V+lV-Gj¢)”+ q—2G2+qG° P"
2 2mc

ot 2m mc

The complexity of Eq.(44) comes from possession of polariton’s electric charge and an
electromagnetic interaction, and that equation cannot be reduced to simply form like as
Eq.(36) because of containing self-energy of polariton. The neutral polariton can
convey only both momentum and energy, and do not carry electromagnetic charge,
however, the charged polariton carries its momentum, energy and charged current. We
need address as many body problems or quantum field theory since the charged

polaritons have many interactions among others.

6. Necessity of Fundamental Equation and Concepts of Quantum Circuits

Hitherto, we have been discussing functions of each neuron, for example, polorization,
depolayzation, repolarization and quantization of those processes. At following stage,
we would like to refer to some connected neurons systems, what we call, and neural

networks.

6.1 Overview of Quantum Theory of Neuron

The models of neurons, their networks and those conducting mechanism are not only
important bases of biological brain’s functions, but also they have been producing many
algorithms and their concepts of soft computing as neuro-fuzzy controls, and as
mechanical learning models in many engineering’s and information’s branches
[10]-[13]. However, those models have been based on an independence of each axon
of neuron, and so we named those networks as classical ones. We have been
hypothesized in classical models that there was not an electromagnetic interference
between axons of neurons or synaptic junctions. So, a lot of physiological books say
that, each neuron holds independence of each other, and there are not electromagnetic
interactions between axons and synapses, because the neurons are governed the law of

“all or nothing”, and those electromagnetic effects are much small since neurons are

21



covered with lipid nonconductor’s membranes, myelin sheath. Action potentials
traveling on the axon and the neural processes (polarization, depolarization,
repolarization processes), have been believed not to affect on another axon and an ionic
current for a long while [1],[10],[29]. They say that each neuron is independent and
there is not the interference between each axon of neurons.

According to our hypothesis, however, we have been proposing the other theory and
new engineering models accompanied by quantum effect: Each neuron has a lot of
interferences caused by polarization of the membrane, leak currents, and ionic currents
(Na', K') and so on. Neurons have many ionic channels, their currents, and
polarizations, whose phenomena generate electromagnetic interactions on our brain’s
surfaces and white matter as we are possible to detect its field by SQUID. Thus, we
know that each neuron gives rise to a holistic macro electromagnetic field, and that
electromagnetic field governs the function of each neuron [10].

In many previous sections, we referred to another evidence of neural interference,
ephapse and the artificial neurons. And we mentioned Prof. Arvanitaki discovered the
phenomena of ephapse, which was interference between two neural axons [10]-[13].
When he stimulated one neural axon and generates action potentials, that signal affected
on another neuron, despite of defection of direct connections between two neurons. He
is said to be the first researcher who made up an artificial neuron. His experiments
showed that each neuron had directly neural interferences based on the electromagnetic
interactions. Truly, we know that pathological states correspond to neuralgia and
causalgia. However we positively assumed that our normal brains always actively
utilized those electromagnetic interactions so as to make up our holistic and harmonic
neural system. At next steps, we should obtain the basic equations for those
electromagnetic interactions of between each of neuron.

We mention those possible forms are the quaternary Schrodinger equations or its
relativistic version, what is called, Proca equation. Moreover, an agency for those
electromagnetic interactions is polariton, which is a kind of massive photon. The
polariton is the quantized polarization wave on dielectric (cell membrane), and it has the
spin-value of one (spin 1). From the standpoint of the mesoscopic science, all
electromagnetic interactions should be described as elementary processes based on the
interactions of massless or massive photons (polariton), because macro electromagnetic
phenomena can be reduced to an approximation of quantum electromagnetic dynamics
(Q.E.D.). In some previous sections, we referred to the necessity of polariton, and
showed the quantization's process for macro electromagnetic phenomena of neurons

[10]. The relativistic quantized electromagnetic field of neurons is fundamentally
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governed by the Proca equation. And we show that the Proca equation can be reduced
to the quaternary Schrodinger equation of polariton, since a propagating velocity of the
polariton (quantized polarization waves) on neurons was so much slower than that of

light in vacuum [10].

6.2 Total Picture of Quantum Network Systems

We attempted to give the descriptions for the polariton‘s motions on neural axon by
using both path integrals and the reduced Proca equation, that was quaternary
Schrodinger equation of polariton[10]-[13]. So, we would like to make up the
calculating toolbox for polariton’s motion, and to show applications for Amida lottery,
bifurcations, circuits, scattering problems, and for network systems. In order to
describe the polariton’s theory (quaternary Schrodinger equation), we think the
Feynman’s path integral is suitable for the neural conductions and of neuron’s
interferences. We can automatically introduce quantum effects of polaritons to the
network systems, and its expression is much similar to classical mechanical
Lagrangian,[4],[38] (Reference to Appendix-1, Al-1, Equivalence to Schrodinger
Equation). Moreover, we know that the description of path integral is perfectly
equivalent to that of Schrédinger equation. [2]-[4],[6],[19].

At the beginning of section 7, we mention that a bifurcation’s problems of decision
tree and multi step slit are related to Markov process. So, according to probability’s
theory, those processes can be expressed as the generalized stochastic equation, i.e., it is
Ito equation. Applying Nelson’s method, we can reduce that stochastic equation to
Schrodinger equation of the wave function¢p[14], whose process is called the stochastic
quantization. On the other hand, Proca equation approximately becomes the
quaternary Schrodinger equation of electromagnetic potential (¢p, A) in the case of the
slow polariton’s movement [10],[2]-[3]. The polariton, which is massive photon,
should obey quaternary Schrodinger equation in non-relativistic area. And the
quaternary Schrodinger equations approach to the ordinary Schrédinger equation--- we
pay attention to one component’s equation of electromagnetic potential--- if a change of
the magnetic field is so small (the vector potential A is constant, or 6 A=0)[10],[4],[2].

Thus, the polariton’s motion can approximately expressed by Schrodinger equation of
scalar potential¢p, and that ¢pis related to the bifurcation problems of classical
mechanics, information theory and the stochastic equation[6],[4]. After we explained
the principle of Feynman path integrals in subsection 7.2, and we calculated an action S
for free polariton and for a harmonic oscillator, we apply those path integrals to the

descriptions for the Amida lottery and a slit in section 8. They are examples of
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quantum bifurcation’s problems of polariton.  In section 9, we discuss some quantum
descriptions for simple circuits (for examples, AND-, NOT-, OR-circuit and their
complex ones) and switches by using path integral. Then we know the path integral is
one of the powerful tools so as to describe the quantum networks and circuits [20]-[23].

The section 10 is mentioned to a perturbation method of Schrodinger equation.
Then, we express that our description of neural network based on path integrals
automatically lead to perturbation series. Then we mention that the switches of
network and circuits are regarded as synaptic junctions or scattering potential of
polariton. The section 11 is shared into an explanation of mathematical tools by using
path integral’s descriptions.

Main theme was to give the ways that we can express the quantum networks
containing much interference. Then we described the quantization tools for neural
networks, Amida lottery, quantum circuits and many complex diagrams. In our neural
networks, the polariton conveyed physical information, and polariton was quantizatied
particle of the action potentials (impulses) of neurons [4],[18]. Thus, our description’s
method and its development mean the quantum theory of network, bifurcation and
circuits. For examples, one of great mathematician, R. Penrose said that our brain cell
had many micro-turbines, which worked as conductors causing superposition of wave
functions. He thought that those wave functions made reduction to only one wave
function when we determined something for various problems [24].

We, however, don’t intend to discuss whether his theory is true or not, from
biological standing points. And we would like to only pick up his concepts that our
brain utilizes quantum effect, and that the brain belongs to a kind of quantum circuit.
We have been thinking that quantum interferences were playing important roles for our
thinking processes.

Therefore, we described the idea of a quantum circuit and new theory for quantum
computers of neural computations in following some sections. So we would like to
show those quantization-methods of the bifurcation, Amida lottery and decision trees,
which contained some fundamental ideas for quantum interferences and the reductions

of wave functions.
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7.Uncertainty and Superposition

First we would like to discuss a classical bifurcation that contains fundamental
problems. The bifurcation is related to both probability and stochastic equations, and
its theme leads to Schrdodinger equation through Nelson’s method, (stochastic
quantization) [5],[14].

7.1 Classical bifurcations and Nelson’s Stochastic Method

There is much difference between classical bifurcation and quantum bifurcation. The
farmer is related to classical probability whose value is always the positive and real
number. However, the latter takes complex number, whose function is called
probability amplitude.

And the probability amplitude can be connected with a solution of Schrodinger
equation. The classical probability cannot automatically expressed interference by
superposition principle. However, the probability amplitude essentially contains much
interference between each bifurcated branch. And the interference, which arises from
superposition principle, plays a lot of important role in our quantum neural theory.

In this section, we would like to show that problems of decision tree can be regarded
as a kind of Brownian motion (Markov process), and then we should notice that
Brownian motion is governed with Ito equation (general stochastic equation). And
according to Nelson’s method (stochastic quantization), the Ito equation reaches
automatically Schrodinger equation. Thus, the problems of the decision tree can be
rewritten into Schrédinger equation of complex function y(X,t) by both Fokker-Planck
equation and Chapman equation.

At first, we show that small particles (for example electrons or photons) are flowing on
the branches of bifurcation-diagram (a kind of decision tree) (Fig.4). We assume that
the particles on the diagram diverge for each branch at an equivalent probability, 50%.

Three states are detected as two states.
(classical theory) (quantum theory)

L<i ¢1(X) ________ ¢ = a¢1 + b¢2
c |

Point A

particles

>

Mixed state
$,(X) Less thanAx

Isolated state

¢3 (X) ¢3

FIGURE 4. Multi-step bifurcation’s Problem FIGURE 5. Uncertainty and sensitive limitation
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When we attempt to deform the branch lines of bifurcation diagram FIGURE 4, then the
diagram becomes a following feature: that bifurcation diagram can be represented as the

random walk’s problem.

-1 (7 > | Reverse and extension
>
< ! Then we give the value (-1) to the upper
branch, and lower one is given the value (+1).
+1 -1 +1 So, the way from point B to point C is

expressed as sequence of numbers by using
those values.

(-1,+1,+1,-1,+1,+1) —» (-1, +1,+1,-1,+1,+1,-1,-1,+1 infinite series )

Time ordered series
From B to C >

FIGURE 6. Random walk and bifurcation

If we concretely can show the path (from B to C), we obtain a sequence of numbers: the
sequence is (-1, +1, +1, -1, +1, +1). If we hypothesize that bifurcations of the diagram
make an infinite series, the above finite bifurcation becomes an infinite random walk’s
problem. So we notice that the infinite sequence is much similar to Markov process or
Brownian motion in one dimension. Thus that Brownian motion truly is expressed by
stochastic differential equation [4]-[5].

So, We would like to start from a generalized stochastic equation, what is called, Ito

equation,

dX (t) = b(X(t),t)dt + A(t)dw(t), (45)
then the dw(t) has following characteristics of Brownian motion. (deviation A(t):
diffusion coefficient, and an average b: drift coefficient).

46
(dw)” = (w(t + At) —w(1)) = SAL o
(dw) = (W(t + At) —w(t)) =0. (47)

According to Nelson’s stochastic quantization method with stochastic variable X(t), the
trace of a particle is divided into two parts. The one is an anterior average derivative,

and another is posterior average derivative. Those terms are defined as
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Df =1; fa+ay - () f(s)is fixed for s<t anterior average derivative
i At

(43)
D.f = hm< fFO- -4y f(s)is fixed for s> t>, posterior average derivative
atdo At
(49)
and both average velocities for Brownian motion are calculated as
DX (t) =b(X(1),t), D.X(t)=h.(X(t),1). (50)

An acceleration a(t) of Brownian particle was defined by Nelson method, and the a(t),
a(t)=— (D D+ DD, )X (t), (1)

is obtained by performing above derivative for Eq.(50) . We introduce two new

variables, u and v: those are
1 1
=—(b+h.), u=—=(b-h.). (52)
Lb+b). u=1(-b)

Thus, the acceleration a(t) becomes
ay=-AmE Y L0 ey LNV (53)
20X 2 X ot M X

The symbol M means Brownian particle’s mass (we think polariton’s mass), and the V
is potential energy. The Eq.(53) corresponds to Newtonian equation of motion for
Brownian particle, and it is said to be mechanical condition. Applying the anterior
derivative to Chapman equation, we can define an operator (Arf) of Eq.(55) [14]. The
(P(X,to]Y,t) means probability that the particle which existed in an initial condition (X,

to ) reaches the point Y at time t ) [14]. The operator (Arf) is expressed as

=i . (54)
(A 1)) = lim [dY - (V) n
Then we can obtain another expression of anterior derivative,
§2
£)(X) = Df (X bXt—Az’B | (55)
(A F)(X) (X) =b(X,1) > X
We multiple p(X,,t,| X,t) to Eq.(55), and we practice an integration: we finally have
op o B & 2
—=—-——Ab A (56)
o= Tax OO oy (W),
That is Fokker-Planck equation. For the b+, we have a similar equation:
ogp 0 B 7
—-—=——h. (57)
o= ax O oK Os)
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We add up both equations, Eq.(56) and Eq.(57), whose equations assimilate with one
equation that represents a condition of motion for polariton:
2
u__ P IV 7 (w). (58)
ot 20X° X

To unify both condition of mechanics and that of motion, we would like to introduce a

complex variable, y(X,t)=u+iv. We transfer two variables u,v into a single

variable y,

x= Azﬂﬁixln\y (59-1)
P(X,t) = g(X ,t)exp(— Aiﬂ | n(t)dtj : (59-2)
and the transcription into single equation is achieved as

i%¢(x,t) {— A;ﬂ szz + AZ,IBM V(X)}¢(X,t). (60)

If we take A’B — #/M , we find Eq.(60) to be the common Schrodinger equation.  So,
the probability density©(X,t) is given as

2 61
p(X, ) =] g(X, 1), (61)

by a complex probability amplitudep. If we take t —it, Eq.(61) is reduce to
Feynman-Kac equation. However, there is difference between Schrédinger equation
and Feynman-Kac equation. The Feynman-Kac equation has always real number’s
solution. On the other hand, the Schrédinger equation almost takes complex number’s
solution. Thus, the Feynman-Kac equation can describe only classical bifurcation and
its probability. However, the Schrodinger equation, whose solution is permitted to
have the complex number (probability amplitude), is truly suitable for descriptions of
interferences between each quantum state. We should notice that the complex number
is an essential characteristic for quantum theory, and that the real number is a character
of classical bifurcation problem. And the classical bifurcation’s problem is always
reduced to Weiner process (Brownian motion) and Markov process. So the classical
bifurcation is quantized through the Nelson’s method [14]. Thus, the classical
stochastic problem can be translated into quantum one by introducing the complex
variable and the probability amplitude.

We would like to discuss effects of superposition of the probability amplitude, and we
mention those of the sensitive limitation caused by uncertainties. If all paths of
FIGURE 5 are governed by uncertainty principle, we find the quantum fluctuations and

interferences to exist between each bifurcation’s branches. And the fluctuations of
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positionAAx should satisfy the following relation, which is uncertainty:

AX > 1 /(Ap). @)

So, a path less than the rangeAx , is directly governed by effects of quantum
mechanics.

We can easily explain the difference between quantum bifurcation and classical one.
If particles obey to single-step’s bifurcation, a total state vector is written as the
superposition and linear combination of all base state vectors. Let’s consider two
state’s model, i.e., those quantum states arep; and¢p,. If there are those states within

uncertainty’s range/Ax, then a total state¢p is the summation of the two states:

¢ =ag, +b¢2- (63)
Thus the total probability density of the above state is expressed as
2 2 2
o =[el’[¢ |+l +a*bg*, g, +ab*gp%,. (64

We notice that the first and second terms of Eq.(64) correspond to classical probability
densities. The their and fourth terms, which are expression of quantum effects, mean
quantum interference’s terms. Uncertainty principle tells us that we cannot detect
them as the different two states, if their states do not keep away more than the
fluctuations’ range Ax from each state (FIGURE 5). As uncertainty of momentumA\
p gradually goes to the large value, it is more difficult for us to observe an aspect of
bifurcation of particles. So, it will be more clear the difference of both the classical

probability and the quantum one.

i Strictlv restriction Loosing or free
.
n _
— % o> L <« /K —>
( | o
.
dendrimer monomer bifurcation slit
FIGURE 7. Multi-sten bifurcations & slits FIGURE 8. Various restricted conditions

(Explanation of FIGURE 7)
To fix particles on the nano-scale conductors (wires), an external force or some potential is

impressed on the particles. If it were not for those restricting conditions, many of particles deviate
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from their paths or conductors, and then they behave as free particles. And we can apply an
example of conductors to the model of slits. So we look upon the bifurcation diagrams as

multi-step slits when those restricted conditions are going to weaken.

(Explanation of FIGURE 8)
When the range of uncertainty/Ax is nearly equal to sizes of atoms (), those processes approach to

molecular wires of dendrimer monomers.

7.2 Description of Feynman path integrals

We would like to mention the principle of Feynman path integrals, and intend to apply
its method to the motion of free polariton. Subsequently, we describe the scattering
problem or the diffraction of the polariton, by its integrals in order to obtain
mathematical tools. At the beginning, we consider an action S of particle whose

generalized Lagragian has the following form,

L =a(t)t® + b(t)xx +c(t)x> + d(t)x +e(t)x+ f(t). 65)

An action S of its motion is given by the time’s integral of the Lagrangian between two
fixed points, i.e. starting point a and ending point b. We determine the Feynman’s
kernel K(b,a) that is defined as

K(b,a) = J.:exp[%S}Dx(t), S = j:L(x, x,t)dt, (66)

(a: starting point of path, b: ending point of path), (Reference to Appendix-1, Al-2).
Here if we attempt to define a quantum action S[x(t)] in an interval [a,b], then the
quantum variable x(t) should be divided into two parts. Thus, its variable x(t) is

composed of classical path term x.(t) and quantum fluctuation®(t), and so we have a
relation, X(t) =X.(t)+(t). And the integral (Dx(t) ) should be performed over all

paths in the interval [a,b]. Then the action S[x(t)] becomes
S[Xx(t)]=S[x. (1) + (1)) = jt:)dt[a(t)()'(é +2%.0+07)+---]. (67)

If it were not for all®terms, then Eq.(66) equals to just the classical mechanical action
Sc. Notice that S, contains the only classical variable x.(t). On the other hand, the
quantum action S[x(t)] is composed of two parts. They are the classical action S, and

the second quantum fluctuation’s term in Eq.(68),
SIX()] = Sc[xc 1+ [ di[ad”® +bs +c6”]. (68)

Thus, the kernel K(b,a), which is calculated in [a,b], can be written as
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K(b,a) = jb g(/mselb.a] -exp{% jt ;"[asz +bds + c5z]dt}Dx(t). (69)

We would like to give an explicit S[x(t)] and kernel of free particle. So the classical

action S are described as
) _
L= mX— and Sc.[b,a]= EM (70)
2 2t -t

Thus, the kernel of Eq.(70) of the free particle are given as

K(b.a) = {27zih(:; —ta)] exp{im(xb - xa)z}_

2n(t, -t,) (71)

Finally the existence probability of free polaritons at point b, P(b)dx, is becomes

2
' 72
P(b)dx = 2, ta)dx oc |K(b,a)| . (72)

Moreover, the wave function of Schrédinger equation W(b) is expressed by the kernel

K(b,a), and then we have a simple relation,
w0 =] Kbay@adx, b=(x.t),a=(X,.t,). (73)

The quantum-polarized waves, which are composed of many photons (there are massive
photons), are considered as assembles of harmonic oscillators. The Lagrangian of

harmonic oscillator, which means quantum particles of polariton’s field, is given as

52 2
L= mx _ Mo 2. (74)
2 2
Then the kernel is calculated by the same method as the free particle:
K = F(T)-exp[%sc}, (75)
imw 2 2
=——— (X + X7 )cos@T —2X.X, |, (76)
¢ =g (X ) ]
P (77)
FM)=| o | ™.
2mhsin ol

We give some comments on the calculation of path integral. The all paths (branches)
of particle is divided into N divisions so as to obtain the kernel of the propagating
particle from point a to point b. The kernel means that we find out a particle at an
initial point a, and then it goes to the point a to point x;. Then it goes ahead from x; to
xz. Finally the particle from xy.; arrives at an endpoint b.  So, the final kernel K(a,b)

is given by multi integrals and product of infinitesimal kernels K(i+1,i),1=a, 1,2, ,b.
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K(b,a)=]---Jdx, ---dx,_ K(0,N =1)---K(i +1,i)---K(1,a). (78)

When the particles to go ahead from (x;,t) to (xi1;,t+&) during an infinitesimal time
interval €, an explicit expression of Eq.(78) is

=X X

K(i+1,i) = <+1|>_exp[ (.+1 KX t,+1

2

The second term of kernel K(i+1,1) corresponds to an expression of an inner product

J )} L : Lagrangian. (79)

using Dirac bra vector < i+1| and ket vector |i >. Moreover, notice that the inner

product BJA contains a time development operator, U-hat,

(B|A) = (% [Uts,t)[xa)s Uty ty) =expl-iFi(ty —t,)/ 41} (80)
B= (XB’tB)’ A= (XA7tA)

And the above H-hat is Hamiltonian of Schrédinger equation. The motion of particle

from point a to point b reduces to the Dirac bra & ket vector description,

K (0,8) = [-+-[dx, -y, (b]N = 1)---(i +1[i)---(1[@) = [---[ b ---Ox, L gIXO] (81
= 1imJ-Tax - T i +1]i)

>0

The Eq.(81) mentions to take inter product between the (i+1)-th bra and the (i)-th ket

vectors and we have got to perform integration over all variables x;.

8. Description of Quantum Bifurcation and Diffraction

I would like to discuss a relationship between path integral and bifurcation diagram in
this section. And I apply the path integral to descriptions of polariton’s motion on a
slit and on Amida lottery. The path integral is another expression of quantum
mechanics, and it is perfectly equivalent of Schrodinger equation. According to path
integral, the probability P(a,b) is proportion to the absolute square of kernel K(b,a), i.e.
P(b,a) [K(b,a)]". So, the final amplitude K(b,a) is the sum of contribution of each

pathe[x(1),
Kb.a)=Y . Ixv). (82)
The weight of each path is proportional to an exponential of the action S:
@[ X(t)] = const. x exp(% S[x(t)]j. (83)

At first we consider a bifurcation diagram of a single-step slit (FIGURE.5).
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S[X(®)] = [ Lo, Xt dt = [ (T =V)dt. (84)

]

]

]

i Gc11  Gl12
G2a i Al B1

Gl ! G21 G258
! A2 B2
A® P i A3 /
: \/ 53
B | G31 G32 G633

G2b !

Area A Area B
SlitA SlitB Screen

FIGURE 9. Interference of a single-step slit FIGURE 10. Quantum Amida Lottery Circuit

A particle goes through a hole G1 of slit A, and then it experiences the bifurcation by
slit B.  Finally this particle reaches from the point A to the point B (FIGURE.S). As
shown in Eq.(81), the path is written as
N-1
gIx(®)]=1lim [ [K(+1i). (85)

=0 j=0

I would like to show one example of diffraction in the point x+Cx at time T. When

a free particle goes ahead from the point x to x+X., it is diffracted in the point x+Ot. by

a slit.  After that diffraction, the particle arrives at a point (X,t2) on the screen. The

probability amplitudecp[x(t)] with the diffraction becomes
AX(t)] = fbda<x2,t2|xl Fa T +aT|x.1), (86)

at the point (x+OX., T). Note that the rage of that integral is limited by an interval
[-b,b], which is a size of the hole of slit (not infinite). If we assume a Gaussian slit of
the width 2b whose shape is described by exp[-Cx*/2b], then we can perform integration
of Eq.(86). The result of probability amplitude is given by Eq.(87), since the particle
goes through either hole G2-a or G2-b: that result is shown as

i )2 ) . _ .
¢[x(t)]:1/l_{'rf(l+l+ U ﬂ xeXp{ﬂ(X_J_lj_(!Lh)z,W} ®7)
24n| \T 7 bm 2\ T ) aim/2n)

W = —X/T+X /T
1/7+1/T +(ih/b*m)’

Where W means

=t -T,X=X,-X.
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Finally, the total wave function of FIGURE 9 becomes a summation of both paths, G1
—G2a-B and G1 - G2b- B. If there is not an interaction at point G1 on slit A and a
particle (polariton) freely goes through the slit G1, the particle obeys complete
condition at point G1,

[dxs,|G1)(GI|=1. (88)
of kernel is calculated by Eq.(88). Thus the total result of amplitude is given as

B () = [[ dxs, dxs,., (B|G2a)(G2a|G1)(G1| A) + [[ dxg,dxs., (B|G2b)(G2b|G1)(G1| A).

Then (G|A)=(G, Uty .t Aty)),  Ut—t)) =exp(-iH(t—t,)/h). (89)

Notice that those ket vectors | in Eq.(89) are not a constant vectors, but they contain
the time development factors which are related to Hamiltonian of Schrédinger equation.
If a particle has no interaction with all slits, then Eq.(89) simply reduces to free
particle’s (free polariton) expression from the point A to the B,

B/ . . (90-1)
Pree(Xa.0) = (B[ Aty)) = K(B,A) = [, (i +1]J)

, from point A - to point B.
If a single slit is set in the point ¢ and the particle is diffracted at that point ¢ (A< ¢ <B),
then a trace of particle has following expression:

Bar (Xs.2) = [ (Bc)(c| Aydxe = [ K(B,O)K (c, A, = j]‘[i(j +1] ) T (k +1]K)dx,

An Amida lottery is discussed as an example of complex bifurcations and that lottery
is a kind of multi-slit(FIGURE 10).  So, Japanese Amida lottery is commonly
regarded as one of the examples of classical probability problems. To translate the
classical lottery into quantum one, we apply the path integral for classical Amida lottery
and introduce quantum interferences into classical Amida lottery. So, those processes
are a kind of quantization of Amida lottery. As represented in FIGFURE 10, the
photon is diffracted at those following points, {G11, G12, G21, G22, G23, G24, G25,
G31, G32, G33}. This quantum Amida lottery has a lot of paths so as to go ahead

from area A to area B, because of sum for all possible paths.
#[B1, Al =C,, 0[Bl, Al]+C,,,¢[Bl, A2]+C,, o[BI, A3]. o

An each term of right side of Eq.(91) is given by path integrals. The[Al - B1]is
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#IBL, Al] = [ dxg,,dxs,, (BI|GI12)(G12|GI1)(GI 1| Al)+ [ Xy, dXg ,dXs), (92)

- dXg,,0%q,5(B1|G12)(G12|G24)(G24|G23)(G23|G22)(G22|G11)(G11| Al)

For[B1,A2], we obtain the relation:

$[B1,A2] = j dXg, 0% 5, 0%,50%,,0%,,( B1|G12)(G12|G24)(G24|G23)
(623]G22)(G22|G21)(G21| A2)+ [ dxg,, s, 0%, s, (BI| G12)(G12|G1) ©3)
-(G11/G22)(G22|G21)(G21|A2) + j X5, 0% 540X 530X 3, 0%, X, (B1| G12)
-(G12|G24)(G24|G23)(G23|G32)(G32|G31)(G31|G21)(G21| A2).

And[A3 - B1] becomes an expression:
#[B1, A3] = j A%, 0 540X 530X 3, 0% 5, ( B1| G12)(G12|G24)(G 24 G23) - (94)
(G23|G32)(G32|G31)(G31| A3) +jdxwdxmldxwdeZIde3l<B1|Glz>
-(G12|G11)(G11|G22)(G22|G21)(G21|G31)(G31| A3).

We apply the same method to the other paths and full total path, i.e.,¢p[B2,A] and

[B3,A]. So, their descriptions are described as
#[B2,A]=C,,¢[B2,Al]+C,,,#[B2,A2]+C,,,4[B2, A3].

(95)

#[B3, Al =C, . 4[B3, Al]+C,,,4[B3, A2]+C,,.4[B3, A3]. 6

Finally, the total probability amplitude from area A to area B,(p[B,A], is a summation of

those paths. Its expression,

#[B,A]=C,9[BL A]+C,,4[B2, A]+C,,4[B3, A], ©7)

is given by substituting above equations, Eq.(91), Eq.(95) and Eq.(96) into Eq.(97). To
observe a part of interferences, we calculate a probability density of¢P[A —Bl1] of
Eq.(91).

pIBL Al =|g[BL Al =[C,, ,#[BL ALl +|C,, #[BL A2]] +|C,.,4[BL,A3]
+{Ch Crd[BL Al §[B1, A2]+C}, C ., #[BI, A2] $[BI, A3] ©8)
+C,,,C,.,4[B1, A3] [ B1, Al]} + {counter terms}

Clearly notice that quantum interferences contain those terms {C*,;Ca21¢@[B1,Al] *
@[B1,A2] + }+{counter terms} in Eq.(91) and Eq.(98). In quantum system, we
can find also many interferences in following three terms, |Ca11(P[Al —>B1]|2, |Ca21 P
[A2 = B1])% |Casip[A3 - B1]]>. Because, for examplep[Al — B1], its path is
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composed of the combination of many small paths, as [Al - G11 - G12 - B1] and [Al
-G11-G22-5G23-G24 - G12-Bl1]. The above those many terms, which vanish
in the classical bifurcation problems, represent essential quantum effects and
interferences.

Really the classical probability has only one term, |Cas1¢p[B1,A2]]%, and there is not any
interferences of probability (probability amplitude). So normalization condition in that
Amida lottery is Eq.(99),

j¢*[B,A]-¢[B, Aldx'---dx* =1. (99)
And its transitional amplitude from state¢p[B1,A] to stateqp[B2,A] is defined by

(¢[B2, Al|¢[B1, A]) zj¢*[Bz,A]-¢[Bl, Aldx'---dx* . (100)
in Eq.(100). After all, that above transitional probability density becomes

P([B2, A]|[BL Adx'---dx* =|([B2, Al|p[BL, A]>\2. (101)

We can finally obtain the frameworks of quantum bifurcations and interferences by
path integral. This section is discussed problems of the diffraction and bifurcations of
both the slit and the Amida lottery. We refer to scattering problems of polariton by

various potentials in the following section.

9. Switch Operator and Circuit

This section is referred to switch operator, which corresponds to potential (scattering
potential) of quantum system. And if we assume switches of circuits and networks as
scattering potentials, we can easily express classical circuits (NOT, AND, OR) as
quantum ones by path integral.

The particle as photon or polariton goes ahead to point B from point A. And that
particle is not diffracted at point ¢ but it is scattered by switch (potential) S at point c.
This process is described by the bra and ket expression, and then kernel K(B,A)

becomes
#.[B, Al = K (B, A)=<B|§C|A>=j<B|c>S(c)<c| A) dx, Aﬁ@ ~B. (102)

Notice difference between Eq.(102) and Eq.(90-2). The Eq.(102) includes the
scattering process by switch potential S at point ¢, and on the other hand, Eq.(90-2)

means the diffraction process at point c. Moreover, Eq.(90-1) simply expresses a free
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particle having no diffraction process and no scattering potential.  So, we show
typical three classical circuits which are called as AND-circuit, OR-circuit and
NOT-circuit. (FIGURE.11) -(FIGURE.13).

AND OR S1 | NOT: S1 B @
7 |
— Q4 . ® —/

/ A

A C

S1

FIGURE 11. AND Circuit FIGURE 12. OR Circuit FIGURE 13. NOT Circuit

To obtain quantum description, we apply both rules Eq.(102) and Eq.(90-2) to those
circuits. The AND-circuit can change into quantum one, q-AND, whose schema is
simply drawn: the particle goes ahead from point A to scattering center S;, and then it

goes to point B. And after scattered by potential S,, it arrives at final destination, point

C.
[AH@ LB @ .cl.

So we can obtain following expressions of quantum circuit FIGURE 11:

Brao [B. Al = [ K, (C.)K, (b.a) dx, = [(c]|S,|b)(b]S,[a) dx, (103-1)

K,(€.b) = [{c|B)S, (BYBb)dx, = [K(c. A)S, (BIK(Ba)dx, s fors, (1032

K, (b,2) = [(bla)$, (@)(e[a) dx, = [K(b,@)$, (@)K (ar,@)lx, ;fors; — (103-3)

Above three equations does not correspond to the expressions of classical AND but they
are quantum AND circuit. We would like to label g-AND. The rule of path integral
says that an amplitude of different paths works as the additive, and so we can perform
superposition of each path (linear combination). So, we apply that rule to classical

OR-circuit, which has two parallel switches. So, we can define quantum NOT circuit,

#or [C, Al = (c[S)|a) +(c[S,]a) = [(c|a)S, (@)(x|a)dx, + [ {c| B)S,(B)Bla)dx,. ~ (104)

The OR diagram becomes [A — @ OR @) - C]. The NOT circuit is described
by a following relation,
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fuor [B, Al = (b]1 - §,| ) = [ (b] @)(aa) - (ba)$, (@)a|a)da, (105)

whose diagram is [A@ - C]. If three logical gate are combined with each
other, for examples NOT, AND & OR circuits (FIG.14) , we can make up complex
various quantum circuits and we actually perform to calculate their probability
amplitude. Those switch’s operators are quite different from common classical
switches. Because, the classical switches are always expressed by c-number, but
quantum switches take g-number and a potential operator. Those three circuits belong

to quantum circuits. An example of combined circuits is showed in diagrams of
FIGURE 14.

S4
NOT S1 52 > /
B C D
St S5
FIGURE 14. Complex circuit ( NOT, AND & OR CircuitPnao)

Mathematical representation of above figure is given by using multiple integral:
Do LF, Al = I : -J‘dxﬁdxedxd dx, dx.dx ,dx,dx, [K(f,5)S,(6)K(5,e)K(e,d)

x K(d, 7)S;(0)K(7,c)K(C, £)S(BK(B,D)K(b,a)(1-S,(a)K(a,a)] (106)
+J'-~Idxgdxedxd dx, dx.dx ,dx,dx, [K(f,&)S;(e)K(e,e)K(e,d)K(d,»)S;(y)

xK(7,e)K(c, S, (BHK(B,0)K(b,a)(1-S, (@)K (a,a)].
Here if propagators (kernels) cause diffractions at points B, C, D, E, then we should
perform integration over the slit width. On the other hand, if switch operator S is
regarded as a kind of scattering potential, then the range of integral becomes over an
infinite range. According to quantum mechanics, physical amount should be described
by function of differential operator and time as Hamiltonian: switch operator should be

described as

S, =S,(& pt)=S,(x-inV,1). (107)
We, as you know, can freely make up an arbitrary circuit by combining those three
gates., i.e. those elements are g-AND, q-NOT, and q-OR.

We would like to generalize those quantum gates to m number switch’s functions

Fi(S1,S> Sn), j = 1 to m, whose variables are composed of N number’s switch
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operators. Where Fjmeans the arbitrary operator’s function of N number’s switch.
Notice that each switch S is an operator and so each F; is composed of various switch
operators. The F; means operator’s function. Thus, we can obtain a generalized

description of g-AND switches in this case:
N T L R A B

We can regard that a circuit has N number’s scattering potentials when there are N

F(S-Syfa). (108)

number switches in its circuit. The rule of switch operator’s function F;(S) is easily

generalized as
Fi > [dz {2)F S0 x| = [dr - K, 0F (8,0 Kz, ). (109)
When N number’s switches are connected in parallel, we have a generalized q-OR
dor [B, A= D "(bIF, (S, Sy)la) = D7 dar(b|2)Fy (S, ()~ Sy (1)) ]2) (110)
= > dxK (b, 2)F;(S, (1) Sy (1)K ().
Moreover, we given an expression of a multiple g-NOT,
Bao [C. AL = [y By (€], )b, [F (S, S by )+ (B[ (S, -+ S, fa):

S;=1-S, j=1--m (111)

Thus the logical switch can be represented by using kernels K(B,A), and so we need
perform an integration at each switch points (scattering potential S). And those

procedure and consideration naturally lead us to similarity of perturbation methods.

10. Similarity of Perturbation Method and Scattering Form of Switch Potentials

Exactly speaking the massive photon (polariton) is governed by Proca equation. We
can reduce Proca equation to quaternary Schrodinger equation [36]-[37]. We can
apply quaternary Schrodinger equation to many biological problems since the motion of
polariton on neurons is much slower than the velocity of light. The quaternary

Schrédinger equation have been described as
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ih% = [—ﬁw +VA}¢°

ot 2m
(112)
a 2
nf0 [ g e
ot 2m

gt (X) = (8" (x,1),0%(x,1)), a=1273.
A“(x,t) = ¢* (x,t)-exp(—%mczt) (113)

by using quaternary vector potential, A or ¢p". So, the quaternary potential A"
represents an total electromagnetic field of polariton (massive photon). On the other
hand, the¢p"'means kinetic parts of the total field A", and the exponential function of
Eq.(113) contains longitudinal element of polariton because of having mass term. So
thecp’ is scalar potential, and each ¢p* (a = 1,2,3) is called vector potential of polariton.
The rest mass limits the range of an existence of polariton. Moreover, we can reduce
the quaternary Schrddinger equation to one component (scalar potential ¢p ®)of
Schrodinger equation [33],[36]. If a change of vector potential A is so slow or so
small, the following derivative of vector potential A is nearly equal to zero.

B(X,t) = rotA(x,t) (114)
E(x,t) = —gradA’ _1oAY

c ot

From Eq.(112)-(114), the kinetic part of polariton obeys Schrédinger equation ofcp’.
Then the residual terms become only an electric field as shown in Eq.(115), and
quaternary Schrodinger equation has only one component¢p’ of polariton’s vector
potential.

E(x,t) ~ —grad¢’ (115)

Considering from Eq.(108)-(111), we regard various switch operator’s function as a

kind of potential. So we add up those switch operators to the potential term of

Hamiltonian, and finally we have the following form,

0 2 . A R (116)
iha¢ = —h—V2+V(a,ﬂ-~;t)+F(Sl,-‘-,SN) #°.
ot 2m

Applying the ordinary perturbation method to Eq.(116), the lowest perturbation’s
expression with potential term V is given. Comparing the results of Eq.(102)-(105)
with perturbation method of quantum mechanics, we can find easily that those
expressions of Eq.(102)-(105) are much similar to the first order and the second order

term of perturbation method. Thus, the second lowest amplitude of perturbation is
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described as kernel’s expression. As the q-AND circuit has two switch potential terms
S1(ox) and S2([3), the expression of perturbation is given in Eq.(117) and FIGURE 15.

A B C
—| Slion 2B) | ——»

K(a.or) K(a,B) K(B.c)

FIGURE 15. Perturbation for Second order Expansion and q-AND circuit

6 oulC.B A= | [d4,0,(018)5,(8) ]S (e

(117)

=(— %j [Jax,dx, K(c, B)S, (BIK(B,2)S, (@)K (@, ).

We take same procedure for g-OR and q-NOT circuits in order to make up perturbation
method of propagation for a particle, polariton. According to the diagrams (FIGURE
16 &17), the q-OR circuit corresponds to the first ordered perturbation of two potentials
connected in parallel. The Eq.(102) is similar to the first ordered process of

perturbation. We know that the scattering process at point C is given as

9c[B,A]= K. (B.A) = j K (b,c)S(c)K (c,a)dx, =j<b|c>3(c)<c|a> dxe..

AL @ B (118)

Applying Eq.(118) for both circuits, g-OR and q-NOT, we can easily address the first
order expressions of perturbation.

K(a,a) K(a’b) |
—> I
| K(a,) K(a,b)
| — >
A |
o .
|
- |
K(a,3) K(B.b) !
FIGURE 16. Perturbation of g-OR circuit FIGURE 17. Perturbation g-NOT
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The FIGURE.16 shows perturbation for first order of two parallel potentials, and we
should notice that the point A or B is not diffraction’s center but ports of wave function

or an appearance of propagator. The first order’s perturbation of q-OR becomes

# iA1= = Jels (i) + (el
[ i ' (119)
- (_ %jj dx, K (C,)S, (@)K (a,a) + (— %jj dx,K(C, B)S, (BK(S,3).

And we can know the first ordered amplitude of the switch operator g-NOT,
¢ .[B,A]= (— %)(ckl -S(a))a) = (— %] j dx K (c,a)(1-S(a))K(a,a). (120)

The g-NOT circuit contains only one scattering center, which is a potential (1-S).
So, the g-NOT has the first order perturbation as well as the g-OR circuit. According
to perturbation method, we find that the q-AND is the second ordered switch system
and that both q-NOT and gq-OR mean the first ordered switch system. Iterating those
procedures, we can easily obtain the higher ordered perturbation expansions. That

perturbation series is given as
K;[B,A]= K(B,A)+[_7ijj.da- K(B,)S,(a)K(e, A)+[%j jdad,B- K(B, /)

><Sz(ﬂ)K(,B,a)Sl(a)K(a,A)+---(%) I~--Idad,8~--K(B,L)SL(L)~-~K(a,a)~ o

Thus, the complex form of kernel, which is propagator or Green’s function Kt[B,A],
expresses the higher multiple interactions or multi-scattering processes. We notice
that the perturbation of K1[B,A] becomes an infinite series of set of [K( y+1 ,y)S(y)K(y,
y-1)]. We would like to apply those rules to constructing a neural network system.
The synapses of FIGURE 18 are looked upon as switch’s operators or scattering
potentials. So, we can rewrite FIGURE 15 as shown in FIGURE.18.

The FIGURE.18 shows the similarity of the three models, and we can describe the
propagation of polariton (quantized polarization wave) from one neuron to another
neuron through synaptic junction (synapse). If those above neuron-synapse model
does not have any diffractions of polaritons at any points and synaptic junctions are
expressed as some potentials, the neuron-synapse model enables us to calculate each
propagator and total kernel Ki[D,A], (FUGURE.18). That total propagator of
polariton is directly given by following expressions: Here is a kernel of FIGURE.18.
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FIGURE 18. Similarity of models FIGURE 19. Quantum neural network

T
7

The expression of FIGURE 18 is given as
K:[D,A]= Idﬂdf dBdC K(D,.C)K(C,£)S,(HK(E,mS, (1K (7. B)K(B.A).  (122)

K[b,a]= {M] exp{M} = <b| a> )

m 2n(t, —-t,) (123)

Here, K[b,a] means that a free particle goes to point b from point a. The structure of
both switch operators S1 and S2 is expressed at functions of each coordinate point (X,y).
If we do not have any diffraction's points in both intervals [Am] and [£,D] and the
particles are perfectly propagating freely, then both integral dB and dC become equals
to 1. Thus, we can remove the integrals of dB and dC from Eq.(122). If a neural
network is composed of some neurons as shown in FIGURE.19, then the probability
amplitude can be calculated by above calculation procedure. For example, probability

amplitude of neuron D is given as
@, [D]= IdCdeBdA- K(D,C)S.(C)K(C,H)K(H,B)S;(B)K(B.A)S, (A f(A)  (124)

The function f(A) of Eq.(124) means an arbitrary wave function. And a free particle
has the diffraction at point H and are scattered both points B and C (FIGURE.19). For

neuron G, we obtain the probability amplitude (propagator):
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$A[G] = [ dFAHABAA- K (G, F)S (F)K(F,H)K(H,B)S; (B)K(B.A)S (A f(A)  (125)
+ [dFAEdA-K(G,F)S, (F)K(F,E)S. (E)K(E, A)S,(A) f (A).

So, those two wave function,@A[D] andps[G] show that an initial wave function f(A)
will arrive at two endpoints D and G, after f(A) was divided into two waves at point A.
The f(A) is scattered at many points, A,B,F,E and diffracted at points H,E, by some
potentials.

Japanese Amida lottery, which is bifurcation’s problem, has many diffraction points as
multi-slit. However, Amida lottery does not have any switch’s potentials S. On the
other hand, quantum circuits and neural networks include both switch’s potentials and

diffraction’s points in their systems.

11. Rules of Calculation for Some Paths

We would like to construct mathematical tools for quantized circuits, neural network
and Amida lottery so as to translate classical pictures into quantum ones. Notice that
the kernel K[b,a] and inner-product <B|A> are not ordinary wave functions but they
describe the time development of propagation satisfying Schrodinger equation. They
truly express the propagating motion of a particle from point (A, ta) to point (B,tg).
Thus, an expression of path integral corresponds to dynamics of particle as well as
Newtonian second law of motion. So we would like to summarize important
descriptions of the particle’s propagation (motion of polariton) in order to calculate
probability amplitude for any circuits . If path integral is applied to classical neural
networks, then their networks are directly quantized and come to contain a various
quantum effects in their systems, i.e. for examples tunnel effects, fluctuations and

interferences.

1. free propagation of particle: point A — point B.

: _ -1/2 . _ 2 126
b a

2. dividing into two parts: two paths are A — B and B- C. particle is free

propagation. B: relay point or diffraction point.
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Ks[C,Al=(C|A), = [dB-K(C,B)K(B,A) = [dB(C|B)(B|A). (127)

3. diffraction at point B, slit widthd: A - (B) - C.

K[C,A]=(C|A) = [dB-K(C,B)K(B,A) = de C|B)(B|A). (128)

4. various switch’s potentials, for example, synaptic junction and scattering potentials

for particles, electromagnetic potentials: A ( B) - C.
Kg[C,A]=(C|A), =(C[Sg|A) = [dBK(C,B)S(B)K(B, A) =[ dB- (C[B)S(B)(B|A).
(129)
5. general switch’s potentials : A — - G, =f(Sl(B), S2(B),  , Sn(B)).
Kqs[C,Al=(C|A), =(C|F;|A) =de- K(C,B)F(S,(B),S,(B)---S,(B))K(B,A) (130)
=de-<c|B)F(SI(B),SZ(B)--.sn(B)<B|A>.

6. abbreviation for line and interaction points: A - B - @ - D E, then free
particle at both points B and D.

K [E,Al=(E|A). :<E|§C|A> :IdBdCdD-K(E,D)K(D,C)S(C))K(C,B)K(B,A)
:jdc -K(E,C)S(C)K(C, A) (131)

7. abbreviation for line, interaction and diffraction: A - (B) - @ - DSE, B:slit
or diffraction points. C is scattering point. Notice that we cannot abbreviate dB

integral.
K [E,Al=(E|A). =(E[S.|A) :IdBdCdD-K(E,D)K(D,C)S(C))K(C,B)K(B,A)
:dedc -K(E,C)S(C)K(C,B)K(B,A)

(132)
8. propagation and time-development : initial wave function¢p(A) - final state B,
@a[B]
A[B]=[dA-K(B,A) 4(A). (133-1)
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K[B,Al=(B|A) = (B;ty|Ait,) = (BU(t;,t,)| A)

A —i A 133-2
U(ty.t,) = exp| — H(ty —t,) (135-2)
h

9. relationship between an eigenfunction of Schrodinger equation and its propagator.
K[B,Al= ) v" (Ay"(B)exp[-ia (t; —t,)] (134)

We would like to show an above relationship between the kernel K[B,A] and
eigenfunction of Schrodinger equation. The wave function of Schrodinger equation,
whose solution is AHor¢p¥( or static approximation of polaritoncp®), can be related to
the kernel K[B,A]. The general solution of time dependent quaternary Schrodinger

equation is represented as
$'[X1= Y, Cly (W exp(-ioft). (135)

And the quaternary wave function W,", which is an eigenfunction of stationary state,
satisfies Eq.(112) or Eq.(116). TheW;Hobeys the quaternary Schrodinger equation:
that is

[—ﬁvz +V(a, Bt +F(S,,+, S, )}//j’(x) = Efw i (X) | (126
EY =hwj.
The wave function at point (A, ta) is written as
PIAL]=Y Clyt(Aexp(-ioft) =Y alyl(A) (137)
~.Cy=af exp(i a)j’tA)
On the other hand, we have a similar expression at point (B,tg),

$'[Bity]= Y, Clyl (B)exp(-imfty) = Y, alyl (B)exp(-ioft, +ioft,).  (139)

Where we substituted Eq.(137) into Cgx"of Eq.(138). The Eq.(137) gives us

coefficient ag*":
at = [y (A [AL,JA. (139)

Substituting Eq.(139) into (137) and comparing that result with Eq.(133), we can obtain

an expression of kernel K[B,A].
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#“[Bitg 1= W& (A wi (B)exp[-iof (t, —t)]}g*[At,] (140)

L K[B.AI= Y, w* (A" (B)expl-iaf (t; ~t,)] (141)

The Eq.(141) is shown to be equal to Eq.(136).

12. Polariton’s Equation and Rules of Quantum Neural Conduction

In previous section, we made up useful tools for quantum calculation of various
networks. We mentioned, heretofore, three quantum expressions, which were both

quaternary Schrodinger equation (Proca equation) and Feynman’s path integral method.

12.1 Quaternary Schrédinger Equation and Proca Equation
We showed the equation of polaritons on neural axons, and the polarities are exactly

governed by Proca equation Eq.(142), which was relativistic one.
(6”6”+m2)A“ =J (142)
J'(X) = (p(x,0,i(x,1) = j, + Ik

The symbol m is polariton’s mass, and the J¥means the quaternary vector currents.
According to classical neural theory like as Hodgkin & Huxley model, the polariton
means a quantized polarization wave, which is an impulse from neurons and an action
potential. So, the total current jHis generated by major two ionic currents(sources),
which correspond to the sodium current Jy, and to the potassium current Jx through
neural axon. To derive non-relativistic polariton’s equation from relativistic equation
(142), we need return from the wave function AYof natural unite to that of MKS

unite:
i
A“(x,t) = (p“(x,t)-exp(—gmcztj (143)
Then, we split the time dependent of AHinto two terms, then the one containing the rest

polariton's mass, m. In the non-relativistic limit, the kinetic energy Eyis so small that

we can define it as

Ex =E-mc’, E'<<mc? (144)

non-relativistic kinetic energy Ey means
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(145-1)

. Op*” 2
i ~ E p" <<mc p”
‘ ot kP @
A" i me’ . -ex —lmczt
ot PR (145-2)
o> A~ _2me? dp* . m*ctp” i
~| -1 -1 -exp| ——mc-t |
ot { noa e P (145-3)
Inserting this result into following relativistic relation:
(146)

p/lp#AV +m2C2AV — jv/C.’

We finally obtain the 4-conponent non-relativistic expressions like as Schrdédinger

equation. The result is non-relativistic polariton's relationship,

u 2 n
in A {_vuv}v

ot 2m
A =(4,A), j R*/(2mc) < VA"

(147)

We reach the final polariton's equation with 4-conponents. The motion of polaritons is
described by above 4-conponents’ equations: they are scalar potential Ag = ¢ and
vector potential is A. If the quaternary vector potential of electromagnetic field of
polaritons are having A = constant or A changing much slowly (i.e., stationary magnetic
field), then the Eq.(147) becomes common Schrddinger equation for polariton with only

having the scalar potentialcp,

ot 2m
~ B(x,t) =rot A(x,t) 0, E(x,t)=-grad ¢(x,t).

in 09D _ [_h_w +\/A}¢(x,t) = He(x,1t) (148)

To simply our problem we discuss the near static magnetic field being accompanied
with scalar potential case, whose quaternary solution nearly equals to AH= (¢p, Constant
A).

12.2 Diagrams Expression
We would like to propose how to describe diagrams of relationships between path

integral and networks. Those rules have following expressions.

(1) The solution¢pof Eq.(148) are written down by using kernel K(B,A) ofc¢pfor free
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propagation of polariton (¢p(A) is an initial condition) : A" : quaternary vector potential.

ih%:l—w = g =[K(B,AJAHA = A" =(g(x.t),constant Ac) ~ (149)

cB=(xb), A=(x,.t), e 2°)
The K(B,A) of free polariton is represented as A B
2Aht-t) T [im(x-x,)’ (150)
K(B,A)=| 22— —2" %) - (B|A) .
.. A B
And the position B becomes
X() =%+ (- t,) asy
t—t,

(2) If the kernel K¢(B,A) is divided into two parts by a relay’s point C, then its kernel,

KC(B,A)Et<B|C A>0 =J.K(B,C)K(C,A)dC O | »O (152)
A C B
is given by Feynman path integral.

If the polariton is diffracted by potentials at point D, then we have a similar relation
with using slit width S:

5 O i »O
KC(B,A)Et<B|C A>0 :JO K(B,D)K(D,A)dD. A S p B (153)
The kernel K(B,A) should be governed with Schrédinger equation:
ih%z HK(B,A) (154)

(3)When a state vector [¢p(t) is projected into x-axis of Cartesian coordinate, the

wave function(p(x,t) has an expression,

p(x,t) = (X (1), ~|p0)=U(t1,)4,)) (155)

(4) When we substitute Eq.(155) into Eq.(149), an explicit description of unitary

operator U(t,tp) obeys the same Schrodinger equation. The unitary operator,

U tty) = expl-iH (t—t,)/n) (156)

is finally applied for the kernel K(B,A), so the time-development’s form of kernel

becomes
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K(B, A= (B|A), = (BU(t,t,) A) O— Ulttn —>O (157)

A B
(5)The special case of kernel, T
A A )
Ke(B,A)= (B[ A) = (BULtU (t,0]A) O~ »O (158)
A C B
equals to this delta function at fixed time t, and we have
[K(B,C)K(C,A)dC = [ (B[C), (C|A),dC = (B|A), = 5(x~x,) (159)

= [aX X)X |=1.

(6) If the free polariton is scattered by general potentials V as being observed in atomic
structures or by switch function S of electronic circuit at point C, we have a similar

scattering representation to the diffraction’s Eq.(153) by using Eq.(157):

KC(B,A)Et<B|§C‘A> = [K(B.C)S(C)K(C, A)dC

=j<Bp(t,tC)|c>S(C)<c U (te,t,)| AYdC. A

o {ln
3

(160)

(7) When the scalar potential of polariton is governed by (pof that quaternary
Schrodinger equation-(148), then a time-development state | (t) of the formal
expression for Eq.(149) is
|#(1) =" |$(0))

(161-1)
And completeness of the eigen-state vector |Wi(t) , which is applied for Eq.(159),

leads us to the kernel expression of proper wave functionW;(x,t).
K(B,A) =(B|A)y= 3" v, (xw;(x;)expliE, (t—t,) (1612)
[g0) =), Y | )W (x)| =1 (X[4(1) = $(x.D).

(8) Both Rules of the diffraction at point D and the potential scattering at point C are
described by the form of path integral, and then we have the kernel Kpc(B,A):

Koc (B, A) =, <B|§C‘DA>0 = _[dDdCdEK(B,E)K(EaC)S(C)K(C’D)K(D’A) (162D
o S S :
_LIdCK(B,C)S(C)K(CsA)- O —CH——»0

A D C B

If we use those kernels descriptions, we can transform many classical neural networks
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into quantum neural ones. For example, we would like to obtain a quantum expression

of the network by applying above relations for following classical neural network,

0 OO0~ o OO0 B

== v
0\7 O\VO | (5/)\‘,\ (L~
O—I0— (\9/)—»(10+<11>-

FIGURE 20. Quantum calculation of neural network

We represent diagrams of three paths of FIGURE 20, which are constructed by above
pictures (path 1, path 2 and path 3). Those are following diagrams.

(Diagram of Path 1)

S

| . = | 4 ™
© I T B e L >0
1 o 2 3 B 4 5 F
(Diagram of Path 2)
Pe)
| . .—'—| | e o
© — L L [0
1 a 2 3 B 7 11 G

(Diagram of Path 3)

= [
T T

1
° 4t

10 11 G

FIGURE 21. Diagrams of three paths without current source

According to those diagrams, we can easily obtain expressions of kernel of path
integral.

When an action potential, which is quantized polarization vector (polariton in our
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models), conducts from neuron-1 to neuron-5 (point F) or to neuron-11 (point G), we
are able to calculate the state of wave function at the point F or the point G. In the
other word, an initial wave function W(1) propagates from the point-1 to the point F or
point G, and our methods enable to know the final wave function W(F) or W(G). The
W(F) is given as

w(F)= [KFEDyd,  K(F.D)=K(F.x) (162-2)

from using Eq.(149). And if we can write down the expression of the kernel K(F,1),

the final result of wave function at the point F:
K(F,])= J.dxs - dx,dpdaK (F,5)S(5)K(5,4)S(4HK4, /HK(L,3)SBK(3,2)S2Q)K(2,0)K(a,l).

We apply the same method for the point G, and the wave functionW(G) at point G
becomes the sum of two different paths, whichareboth1 2 3 7 11 G&1 8
9 10 11 G The one path is shown as

KA(G.]) = [ dx,, --dx,dBdaK (G1DSADKALTS(TK(7, AK(BI)SBIK (3,2)S (2K (2, a)K (a])
and another is
Ky(G,) = jdx11 ~dx,daK (G,1DSI DK (11,10)S(10)K (10,9)S(9)K (9,8)S (8)K (8, ) K (ar,1)
So, notice that the final wave functionW(G) is given as the sum of two paths,
KG) =KyGD+Kg(G)  ~p(Gl)=[KGhy () (163)

Then diagram of FIGURE 19 is pictured as shown in FIGURE 22. In this case, (pis a

sources of current or generator of wave function.

- —
® ¢—L] | [0
A B S C D
" S
A B S F G
b S
A E F ©

FIGURE 22. Diagram of paths with current source
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Thus, we can rewrite various classical neural networks into the quantum ones by using
above formulas, and those expressions are not the static expressions of quantum state
but they are dynamic descriptions of the propagations and the time developments of

systems, which correspond to polariton conductions and their motions.

12.3 Relationship between Theory of Quantum Information and Polariton

The following many sections are shared an explanation and practical calculations of
some statistical theory, Bayes’ theory and entropy by using quantum mechanics. By
applying those previous mathematical tools to statistical problems, we could transform
various neural networks and Beyes’ form into quantum styles [23],[27]-[28].

To show the differences between classical information theory and quantum information
theory, we attempt concretely to calculate the classical and quantum Bayes’ theory,
entropy, and outputs of neural networks. And we would like to express those cases by
applying polariton's theory and tools developed in previous sections. The Bayes’
theory is applied for many network theory and control systems. So, many excellent
reports and books are published in the region of Information science [2],[11]. As you
know, Bayes ~ sstatistics, which is often used in an inferential of causality, is said to be
subjective probability when the Bayes’ method is compared with normal probability
theory[26]-[30]. The classical mechanics has essentially an apparent pathway between
causes and effects, and it is deterministic method. However, the causality of quantum
mechanics is essentially probabilistic phenomena since its time development of state is
governed by the complex probability amplitude of Schrodinger equation and Proca
equation[5],[13]. We have already shown, our polariton’s neural theory can be
described by massive relativistic equation - Proca equation, or its reduction style of non-
relativistic quaternary Schrodinger equations. We know that quantum theory has an
interference of phenomena, mixing principle of each pure state, superposition and
tunnel effects. Common Bayes’ theory, we call it classical theory, is not considered
interferences of phenomena between each event. In the other word, all events are
independent of each other (no superposition). We think it interesting to research how
the quantum interference affects on the classical Bayes’ theory, the entropy and
information. So one of the purpose of following some sections are that we show a
concrete expression of quantum Bayes’ form, instead of classical Bayes’ theory, by
using a basic set of orthogonal state vectors for simple model. And we clearly

describe the differences between classical Bayes’ theory and quantum form. In the
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secondary stage, we compared their entropies of both systems. In the two-step’s
neural networks of multiple channels, we could approximately obtain a solution by
means of perturbation method and path integrals.

Finally, we would like to point out similarities of formal descriptions between soft
scientific theories and quantum control systems. The first example referred to
similarity of between neural network control and quantum neuro system, and the second

is refer to similarities of between fuzzy probability and quantum expectation values.

13 Bayes’ Theory and Its Quantum Expression by State Vectors

We would like to mention both the famous classical Bayes’ theory and our style of

quantum Bayes’ form.

13.1 Classical Form and Quantum Form

When we know a final result for an event B, the Bayes’ probability is defined as the
ratio that an event Ay (where k =1 to N) arises. Then we have the common formula of
Bayes’:

P(BJA)-P(A)

PaAdB) =g “PE®=2PEA)PA). e

We are able to regard P(Ax) as a probability of occurrence of event A, and P(B|Ax)
means to be a correspondence probability when initial probability is P(Ak). The
probability P(B|Ak) represents a condition that an event A is propagated to the state B,
when the event Ak took place at an occurrence probability P(Ak). So, the symbol
P(BJAk) is regarded as a kind of classical propagator of probability P(Ax), or
transitional probability. We are commonly regarding Eq.(164) as the theory of
classical Bayes’ theory. And we attempted to expand the propagator’s concepts from
the classical standpoint into the quantum mechanical one. To expand from the above
classical Bayes’ theory to the quantum versions, we need a rule that the classical Bayes’
theory should be reproduced by an expectation value of quantum operator’s equations if
their expectation value are calculated. The expectation value of quantum Maxwell
equations (quantum electrodynamics) has to obey to the rule of the classical Maxwell
equations. Thus, P(Ag) and P(B|Ak) should be regarded as operators of quantum
expression, and those eigen functions of both operators should be regarded as complex

probability amplitudes. Performing to re-interpret classical relation into quantum one,
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we would like to show one of the simplest cases of quantum expressions.
Notice that the simplest quantum form is given as following forms:

. (B|P(B| A)-P(A)| A)
Ac|P(A[B)|B)= =7 —= x :
(Ad ) > "(BIP(B| A)-P(A)| A) (165)

The quantum form is similar to classical Bays’ theory; however, all probabilities’
relations are not c-numbers but g-numbers of operators in quantum Bayes’.

One of initial state vectors is [Ax >, and the final state vector is represented as |[B >.
The Eq.(165) should be more simplified by a relationship between the initial vectors
and the final vector (FIGURE 23). We know, the FIGURE 23 mentions that quantum
neural network FIGURE 23-A is similar to natural neural one, FIGURE 23-B. And
some quantum neural networks are composed of many axons and many synapses, which
cause the quantum interferences. In order to calculate the Eq.(165), we would like to
introduce some rules that define eigen state vectors having the completeness and

orthonormality.

|
| A,
Be |AN) — m —» = AT _O
m?'v A

A) A,

FIGURE 23. Connection type of state vectors and Bayes’ form in quantum system

(propagators and convergence of neural network)

13.2 Explanations of Classical and Quantum Bayes’ Expression without Errors

The FIGURE 23-(A) means that initial state vectors |Ax> converge at the final state
vector [B>, and the each characters [3k is probability amplitude of occurrence of the
corresponding initial state vectors [Ax>. Ther-hat, which is described by P(B|A)-hat,

is a propagating operator meaning a transitional state from A to B. Ther-hat
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determines the propagating conduction’s rate of state vectors. That figure 23-(B)
shows a connectional type of many neurons, which is ordinary called as “convergence
style of connection”. Those two figure are so similar to each other that classical
Bayes’ form can almost translate into the convergence type of connection of quantum
neural networks. For reducing Eq.(165) into simpler expressions, we introduce the
following relation being used in ordinary quantum mechanics: we have completeness

for bra & ket vectors,

n
A NA =1 (166)
Utilizing Eq.(166) and substituting it into Eq.(165), we are able to rewrite the numerator
of Eq.(165), and we obtain

(BIP(BIA)-P(A)A)=D""(BIP(B| A) A )(A [P(A)]A) (167)

We should note that the second term <A;P(A)-hat|/Ax> of the r.h.s. Eq.(167) is the
occurrence amplitude of event Ax at the state vector |Ax>. (*, -hat: operator). The
state P(A)-hat|Ax> transit to any states |A> by the potential operator P(Ak)-hat, and
finally the total occurrence amplitude becomes <A;P(A)-hat|Ax>. The first term
<B|P(B|A)-hat|A;> of Eq.(167) corresponds to the transitional and propagator’s

amplitude. For simplifying those expressions, we set the some rules. The initial

N-numbers’ vectors make a complete and orthogonal set {|Ax>, k = 1,N}.

(A|A) =5 (168)
So an arbitrary vectors [M> can be expanded by those initial vectors.

[M)=3""a|A) (169)

The initial state vectors |A> are in some pure states at start point t = 0, and then we

assume that those vectors are satisfied with eigen equations.
PR A) =B Ay)
‘+ P(A) = P(x,—i% 0/6x). (170)

Even if signals or information are propagating their communication channels and
those processes are free from mistakes, we cannot escape an attenuation, exhaustion,
dissipation at various junctions (neuro-synaptic junction, joining, etc.). So, mixture of

various state occurs at final states |[B>. Then the propagating states are expressed as

PB|A)| A =A(A)| A =n| A)). (171)
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Both Eq.(170) and Eq.(171) tell us that two operators, those P(A)-hat and N (A)-hat are

commutative each other. So we know
[P(A),H(A)]=P7-#P=0. (172)

And we notice that final state vector |B> is not in pure state, but in a mixed state, and
final state is given by superposition of initial pure states [A>.  We give an expansion

of the final state by using superposition of the initial state, |[A>. The mixed state B>,

n
B)=20,CilA). (73)
becomes summing up possible state vectors |Ax> by using Eq.(169).

Applying the Eq.(170)-(171) to Eq.(167), the numerator of Eq.(165) can be expressed

by a simple relation,
(BIP(B| AP(A)|Ac) =D "(BIP(B| A) A ) A [P(A)A) = Co B (174)
and the same procedure are practiced to the denominator of Eq.(165), whose result is
> (BIP(BIAPA A) =31 (BIP(BI A A ) = X CiAm;. (175)
Finally, we obtain quantum Bayes’ from: it is not probability but probability amplitude.

(B[P(BIA)-P(AIA) _ Cyfii
Z?(B\ﬁ(B|A)-f>(A)|Aj> > CiBm,

The above result, Eq.(176) is almost similar to the classical calculation-Eq.(164),

(Ac|P(A|B)|B)=

(176)

however, Eq.(176) has complex coefficient Cx whose complex number causes an
essential difference between the classical Bayes’ theorem and the quantum Bayes’ one
of Eq.(176). So, the classical Bayes’ probability has real numbers, on the other hand
quantum Bayes' form becomes complex numbers. Thus, the quantum Bayes’ form
applied for polaritons on neurons has a lot of interferences among polaritons and neural
networks. The Eq.(176) shows polaritons to possess the phase and complex numbers,
which mean to arise quantum effect interferences and probability amplitude. However,
the classical Bayes' form has real numbers, which directly mean the probability or
probability density, and the real values can not cause the interferences between each
neuron. We would like to develop the calculation of Eq.(176) by using wave function.
The state vector |Ax> obeys Eq.(149),

s .
|ha|AK>:H|AK>. (177)

Projecting to coordinate system, we have Schrodinger equation for the wave function,
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12X, A) = PO A = (%) = (%A (179)

We will reach the simple form of the numerator of Eq.(165) by using Eq.(171),
Eq.(173) and Eq.(178):

(BIP(B| A)-P(A)|A¢) = [(BIP(B| AYP(A)x; )(x;| Ac Jax,

= [(BIP(B| A)|x)(X|P(A)|x; ) (x,)dx;dx = [(BIP(B] A)|x; )8, (x;)dX,

n * * *

= quCQ<Aq ‘Xj>77]5(xq = X)) Bid (X)dx;dx, = jCj P (X (x)dx; (179

- (B|P(BIA)-P(A)A)=CiBm;, (- I¢;(Xj)¢K(Xj)dX =0k)
We can show that the result of state vectors calculation, Eq.(176), perfectly agrees to
Eq.(179) of representation of the wave function. The state vector |Ax> obeying under
Schrédinger equation can be looked upon as an explicit wave function P(xk,tx).

We would like to give the propagators and wave function at point B by using an
initial wave function at point Ag. The function at Ax means the initial polaritoncp
k(xx,tk) =(Axk), whose wave function is produced by the generating operator P(A)-hat
of probability amplitude. And polariton’s function reaches the scattering center at
point A;, and it is scattered here, and then the scattered polaritons travels on axon until a

state [B>. After all the final state of wave functionp(xg, tg) =¢p(B) can be described

as

$(%s.ts) = $(B) = [[K(B, A))P(B|A)K (A AOP(A ) (A )dx dx,

= [[(BIA)PBIAN(A |AP(AOS (A dx; = [Cimy B (A)dx, (130
21, = P(B|A) = (A [PBIAYA), A =(AclP(A)A)

P&Aﬁ P(BIA)
@ I
Ak Ai B
by using Eq.(149), Eq.(161) and Eq.(173).
We can estimate an appearance of the wave propagation ofPx(Ak) at final state |B>

based on Eq.(180). Thex(Ax) changes that initial phase by affection of Cg

containing the mixing state |B>. The normalized inner product of state vectors |B> is

calculated

(B[B)=2;

Then we have the normalized vector |B> to be expressed by superposition of many

Cj‘z —1 (181)
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pure state vectors. That description is
B)= Z\/_eprQ )|A)=3"c|A). (182)

Operating bra vector <x| from the Lh.s., so as to obtain a coordinate expression, the

practical expressions are given as

(xB)= Z ‘ >eXp(it9,-), (183)

( i(ij—Ejtj)J (184)
exp |

-

Note that the Eq.(184) clearly obeys to Schrodinger equation(150) as shown in Eq.(178).
After all, quantum Bayes’ from which is probability amplitude, is not probability, we
have

#(A|B) = (A |P(AB)[B) = ﬂnK’?K'eXP(iHK)

Z,—:BKUK 'GXp(i 0, ) (185)

Thus, probability becomes
|ﬁK|'|77K| ~ |ﬁK|'|77K|
[+2Re)  2ilA[ |-+ Nya+ M)

P.(Ac |B) = |#(A[B)| =

- Re(Z) = Y Rel iy -expi(6, 60} N=-3

j>K

Re(Z)

ﬁjﬂjHﬂKnK |/(zr|]< |ﬂ|<77|< )2

9

n
j=K

M = - (186)
Those results are rewritten by using
(187)
Bl = P(AO. | — P(Ac|B).
Because, both[3andimmean eigen values of operators and so they are a kind of
probability amplitudes. And the quantum Bayes’ probability,
P(BIA)-P(A)
PQ(AK |B)= (188)

{2UP(BIA)-P(A)}-(1+N +M +MN)

is written as similar to classical Bayes’ expression except the term of Re(Z), N and M.
So the additional terms N and M are effects of the quantum interferences. All of pure
states are mixing each other, and the new mixed state |B> is generated at the above

junction of FIGURE 23. If we apply Eq.(188) for quantum neural networks, the mixed
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state |[B> represents the states of an information around neuro-synaptic junctions, or
each of axon’s interferences (or cables of artificial neurons, ephapse).

We would like to obtain the entropy of both occurrence probabilities of the classical
case and quantum one, since entropy is one of the most important elements of
information theory. Both of the classical occurrence probability and the propagating
probability have their values of real numbers P(Ax) and of non-negative ones P(B|Ax).
On the other hand, quantum case does not mean direct probability, but the quantum
form corresponds to eigen values of operator P(Ak)-hat and P(B|Ak)-hat, and their
counter probability amplitudes, [Bx andNMk. The FIGURE 24 shows concepts of the
occurrence probabilities, quantum occurrence operators, and aspects of the propagation
of the probabilities, and its quantum version of network’s path (they are really

communication paths or axons).
A e
When the occurrence probability is P(Ax) at
A, s‘A point Ak, and the information propagates from
Ay to B, the entropy is defined as

P(A) p PORIAY

A1/V

FIGURE 24. Classical propagation

H(B|A() = ~P(AP(B|A)log, P(A)P(B|A)

Thus, total entropy from all of A to B is given as
H(B|A) ==Y a4 log, (@A)
o =P(A), A =P(BA).
If we pay only attention to occurrence probability, its entropy is calculated by the result:

n (190)
H(A) ==Y o log, o

(189)

Notice the O to be the real and positive number.
However, the amplitude of entropy of quantum system O¢(B|Ak), which is not

always real number, is defined as

o, (Bl A)=(B|P(B| A)P(A)-log(P(B | AP(A)|A.)
=->"(BIP(BI AP(B| A)|A,)-(A|log{P(B| AP(A)|A) (191)
= _C;ﬂKnK -log, (Bxnk )
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by using eigen-state vectors, Eq.(170)-(171), and by taking expectation values of
operators. Moreover, the amplitude of entropy for Ak isO4(Ak), which is related to
the state Ag :

4 (A) =—(A [P(A)log, (P(A}| A )8y =—Bx log, B =—Bc[e" (log, || +log, e™)
~ _|,BK |ei7K (10g2|ﬂK | +1.443iy, ) e <Im(B ) <7, arg(Be) =y« (192)

by using eigen-state vectors, Eq.(170)-(171), and its result is the operation of
expectation values. Then the entropy of the occurrence of quantum system, Hy(A) for
Ak, 1s written as
* /2 1/2
Hq(AK) = _[O_Q(AK)O_Q(AK)]I = _|/BK|' {(10g2|ﬂK |)2 + (7 /lnz)z}
1.041y;
~ B [log, || (1+3,) ==(1+ 3,)- P(A)log, P(A) =3, =———1X

(10g2|ﬂK |)2 .

We sum up the entropy of each pure state to obtain the total entropy of probabilities:

(193)

Hio(A) = =3 B Aogal ) + (e /n2)?) = =3 (14 3,)- P(A ) log, P(A) (194)

Comparing the above result of Eq.(194) with the classical result of Eq.(190), we
immediately find the Jx-term to be added to P(Ax)log,P(Ax), whose additional term is
directly generated by a phase of the wave function of the Ay, and the phase affects on
the occurrence probability, and it gives rise to an interference, reflexive interaction and
transitional action.

However, if both operators, P(Ak)-hat and P(B|Ak)-hat, are Hermitian and the
counter states belong to their pure states, then their eigen values become real numbers
since the their phasey/k reduce to zero. Thus, the quantum result of Eq.(194) perfectly
coincides with the classical case of Eq.(190). Using those relations for Eq.(191), the
total entropy amplitude of the final state [B> is given asO1q(B|Ak), which is not pure

state but it is clearly the mixed state superposed by many pure states. theOtq(B|Ak) is

or(BIA) ==Y 0,(BIA) == CyBunty -log,(By). (195)

And according to the method of Eq.(187)-(193), the total entropy is calculated by those
equations, we obtain the final result of the quantum expression corresponding to

classical relation (183):
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Hi(BIA) =3 0 (B] A)or (B A
= _[Zl |CK/8K77K |2{(10g2|ﬁK77K |)2 + (7 log, e)z} + ZZLK ReO/VJ,K )jl

~ =Y [Cul | Barn| - log,| Berny[(1+ D)1+ B+ E)
= —3"P(B| A)P(A)-(log, P(B| A))P(A))-[C,|(1+ D)(1 + B+E)-

(196)

i8¢

" Py :|ﬂK|eiyKn Tk :|77K|e , Tk =7k k),
W, « :ZS¢KC;CJﬁKﬂ;nKnj 'logz(ﬁKﬂK)'Ing(ﬂ:nj)-

ZZ¢K|CJCKﬂJﬂK77J 77K|10g2|ﬂK77K|‘10gz|ﬂJ77J|
(Z: |CJ:BJ773 | ' 10g2|ﬂJ77J |)2
(ZT( 7y log, e)z E = Z:>KRG(\NJ,K)

St Cesen loglBanl)  XnlckBen (og.|Bem]f

Notice that entropy of quantum system has a lot of complex additional terms whose

D=-

effects arise from much interference and a mixture of the pure states. Comparing
Eq.(196) with classical entropy Eq.(190), we find the same expression of term,
P(B|A)P(A)log,P(B|A)P(A) which means classical effect, and the other residual terms
are corresponding to much interference of quantum system. Considering of both
results Eq.(193) and Eq.(196), we can conclude that generally the entropy of quantum
system is greater than that of classical system since the other residual terms are
additional and non-negative. Thus, the quantum interference between pure states

makes out an increase of entropy larger than the case of the classical system.

13.3 Multi Classical and Quantum Channels with Errors

We are discussing quantum channel without noise and its Bayes’ form, and here-from
we would like to study the channels with multi-dimensional channels with errors in this
subsection. Now we have two channels, whose one is classical case and another
means quantum system as shown in FIGURE 24-1 and 4-2. According to explanation
of previous section, the P(A;) and the P(BjA;) correspond to the occurrence of
probability of an event A and the propagating probability from the event A to the final

result B;. Thus, we know the classical channels of Bayes’ form:
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] P(BjIAs) ~~~~~~ b

1An o
FIGURE 24-1. Classical multi channels FIGURE 24-2. Quantum multi channels
P(B;|A)-P(A) (197)

Pa(A[B )= P 2w P(B)) =Y., P(Bj|A) - P(A).

That representation is a Bayes’ probability of multi channels as same as Eq.(164). On
the other hand, quantum case is acquired by practicing to change those probabilities into
the corresponding quantum operators, P(A,)-hat and P(Bj|Ag)-hat. On the other hand,
the classical event Ay is translated into a state vector |[A; . The simplest multi
quantum channels are given as following forms of FIGURE 24-2:
(B, [P(B| A)-P(A)| A)

n 5 5 ’ 198

> (B, [P(BIA)-P(A)|A) (198)

(AP(A|B)|B;)=

We would like to introduce both classical and quantum expressions of error’s
propagating probability, 1-P(B;j|A;) and 1- P(Bj|As)-hat, into our Eq.(197) or Eq.(198).
Thus, we define the similar rules to simplify quantum calculations and observations as

previous subsection.

1. Base set: the state vectors |As , (s = 1to n) make a complete set, and they are in pure
state. States vectors |B; , (s = 1to q) are in not pure states but they belong to the mixed
states of all pure |As

2. Orthonormality of base set: the pure state vectors hold on orthonormality.

(A(t)] Acto)) = 8 a(t 1), (199)

3.An eigen function and eigen state, and propagating operators. The probability of

occurrence of state A becomes as

FA’(A)‘ A,->=ﬂ,—‘Aj>. (200)

63



4. Propagating operators with errors and correct propagation in quantum channels: If the
correct probability P(B;|A)-hat is in state [A; , then the error probability’s operator is
expressed as 1-P(Bj|As)-hat. We have the p-numbers correct channels, and so the rests

(n-p) numbers are in wrong. Then the correct and wrong propagating case are

Correct case: |5(B|A)‘ Aj>zﬁ(A)‘ Aj> :(fj?]j‘ Aj>, 1<j<p, (201-1)

wrong case: {1—P(B|A)}|A)=7"(A)| A)) =& 1-n))| A)). (201-2)

The propagating operatorin-hat commonly conveys probability amplitude of a correct
information and & means a conduction’s rate of propagating processes, however
sometimes we fails to transmit the correct information from [A; to |B; . We
assume that the p numbers channels are in correct states and the other (n-p) numbers
channels propagate the signals to be wrong. Our propagating operator of neuron’s
model is to have four effects, which mainly contain neural conductions, ephapse among
axons, thermal noise, and interferences nearby synaptic junction. And errors are
induced by various interference and noise. The correct propagating operatorsr(A)-hat

is composed of those factors:
N(A) = (neural conduction)+(ephapse)+ (noise & attenuation)+(synaptic interferences).

5. The each final state [B; , (j =1~ q) is written down as summing up pure initial
states. Thus, the |B; , (j =1~ q), is mixed and superposed by a lot of pure states
|As . So, final mixed states enable to be expanded by n-numbers bases of orthonormal

pure states.

So we have some final states written down as
A final state of B: ‘Bj>=ZSC;|AS> 1<j<q (202)

As we assume that the p channels are in correct and the others (n-p) are in wrong

conditions, the numerator of Eq.(198) becomes by applying Eq.(199)-(201),
(B;|P(BIA)-P(AIA) =(B|P(B| A)- B|A) = B.(B;|P(B| AA)=CIBEM,. (203)

The other the denominator’s Eq.(179) is given by same way as Eq.(180), except an
existence of both channels being correct and wrong. We can decide the expression of

denominator,
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Y(BIPEBIAPMAIA)=YI(BPBIA|A)L =Y, ClALI-n)
+ Z::l CS*jﬂSésns = Z Jﬂ g s + Zn pCpisﬂerséers(l - 77p+s)' (204)

and final quantum Bayes  form for state [B;  becomes

5 C.'Bémn
A|P(A|B)|B,)= Picil, _
< | > Zs 1 Sjﬂgns +Z pCpisﬁp+s§p+s(l_np+s) (205)

The denominator of Eq.(205) is similar to that of Eq.(176) except to the second error’s
term. So, the first term represents the correct propagating amplitude, the second term
is the case of the wrong (an error) propagation or communication. According to
previous subsection 13-2, we easily notice that the result has complex interferences
between correct channels (i.e. axons of neurons) and wrong ones, because of taking
absolute value of Eq.(205). They are two types of interferences: one type belongs to
each of correct channel, and another is in wrong channels. Moreover, we find that a
new interference Z,, by using Eq.(186), appears in the probability of quantum Bayes' Pq
as shown in Eq.(205):

C*—jlﬁsé:sns
n-— 2
(‘Zsl = lﬁé:ns ‘Z pCpisﬂerséms(l_anrs)

z,=(5" cipen (X0 C B, 0= 1,)

That Z, says an existence of interferences in between correct channels and wrong

PQ(As|Bj) - 1/2
+Z j
q (206)

channels. Next we calculate both an amplitude of entropy for all pathsa4(B;/A), from
A (s = 1,n) to B;, and finally we obtain the total amplitude of entropy for the mixed
state for all B, (j = 1,q). That is described by the symbola(BJ|A). We know the result
O (Bj|A) by Eq.(176):

oa(B;|A) =Y "o(B;| A) =(B;|P(B| AYP(A) - log(P(B| AP(A)|A)
=2 ClBEM 108, (Ba1) = D Col Byl idTys 1085 (By.iTTy.s)s (207)

VMg =1
And theno(B|A) is expressed as

o(BA) =Y (B M) =337 ClIB.Em, -log.(Bin.)
- ZC: (Z: p+sﬂp+s§p+s77p+s logz(ﬂp+snp+s)) (208)

(&means a conduction’s rate of propagating processes). The total entropy H(B|A)

from state A to state B is calculated as
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H(B|A) =—|o"(B|A)- o (B|A)] 2
S B o, (Bin) )+ S €Ly T 02 By )|

From Eq.(209), we find not only interferences of correct channels and that of wrong

(209)

ones, but also a lot of interferences between correct and wrong channels, which is truly
quantum effects without being in classical systems. In following section, we would
like to discuss an approximate solution’s method, being generally called perturbation

theory.

14. Perturbation Method for Multi Quantum Channels

In previous sections, I proposed various concepts, i.e. quantum bifurcations, quantum
Amida lots, and quantum, quantum circuits, quasi-particle-polaritons, and quantum
neural conductions (hypothesis of polaritons)[1]-[5],[9],[17]. Though we adopt
mathematical expressions for model of polaritons, we would like to emphasize that
quantum interferences play an important roles in our information system in order to
adjust and to maintain homeostatic states of neural networks and brains [6]-[8]. Some
important examples of polaritons are neural conductions and the coupling relationship
between ionic currents (Nat+, K+, CI) and quasi particles (polaritons). Polaritons
connect between many ionic currents of neural activities by many quantum
interferences. For examples, they are polarization waves, the carried charges, their
momentum and energies. And we showed polaritons, being massive photons, are
governed by Proca equation, whose form is reduced into quaternary Schrodinger
equation [17]. As far as magnetic field changes so slowly, its vector potential A takes
nearly equal to constant value. Then the polariotns can be regarded as their motions
(neural conduction: maximum velocity 100m/s) being much low velocity, comparing
with light velocity. Under those conditions, we simply have only to consider motions
of the scalar component of the polaritons. Finally, instead of both Proca equation and
the quaternary Schrédinger equations, we have only to consider the common scalar
Schrédinger equation, which has the only scalar potential¢pof polaritons as Eq.(147).
The time development of a final state [B; , with the scalar potential¢pand constant

vector potential A, can be described as

" aB;v) _

ot

oy '
[_%V +V}\Bj(t)>=H\Bj(t)>, (210)
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We know various patterns of connections of neural networks, i.e. convergence as shown
in FIGURE 25, divergence, recurrent and so on. So we discuss the time development

of the final state |B; by applying perturbation method for Eq.(210).

14.1 Perturbation of Time Dependent for Final Sate B;
We would like to show an approximate method of FIGURE 25, and discuss physical
descriptions from the middle layer to the output’s ones. The FIGURE 25 contains a
convergence’s type of neural network when we pay attention to one neuron [B; . And
the neurons of the first layers are connected with those of the second layers. Each
neuron of first layer’s, |As; , (s = 1,m), has N-number’s pure states, and each neuron of
second layer’s, |B; , (j = 1,q) is in a mixed state. Polaritons are approximately
governed by Schrdédinger equation Eq.(210), and the final mixed state |B; , with an
initial sate at time t;, have the following expression
q 211
<X‘Bj(t)>=exp(—i%)(x‘Bj(tl»E(XM(t)‘Bj(t1)>, 11)

Generally we hypothesize that its non-perturbation part can be exactly solved, when we
use a complete base set of N-number’s pure state vectors. So we have following
relationship,

ih§|As(t)>= HJA®), s=12--N (212)

and |A (1) =|A)t).

As a base set of pure state vectors is assumed to have the solutions of the non
perterbation, then each state vector |As(t)  is regarded as an exact solution of Eq.(212).

Each pure state’s expression is written down as

(213)

A1) = exp(_ Ihgst j| A)= (_ IhH ot J| A). (t=Lm) ;|As  spatial component
The Eq.(212) directly gives us one of final state vectors |B;  belonging to the second
layer. The general solution of Eq.(199) is given by expanding and superposing of
Eq.(213), we have

B,()=2_"C/HA®) = C! <t>exp(‘ i,_fst jl A) @14)
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|A|(tn)> We consider all combinations between
first layers’ state vectors and second
layers’ ones as you know in branch of
information theory. One different point
is to quantum interference with each
vector.  And note that you find out

network system to contain both types,

i.e., convergence and divergence. It is

convergence type if you pay attention to
only second layer’s state vectors, |B;(t)>,
i.e,. connection of bold real lines. If
you regard those state vectors as
classical neuron array, you find a
familiar neural network system. The
motion of polaritons are described by
Hamiltonian, which are separated into
two parts. One is the part which we
can solve exactly, and another part

contains a complex interactions, and we

cannot be easily solved. If we take

Middle perturbation  method, = Hamiltonian

separated into both parts: we can get an

FIGURE 25. Quantum neural network and its Interactions €xact solution of term Hy, and another is
difficult to solve the Schrodinger
equation for part Hj.

Then making an orthonormalization for basic vectors done, we have
(A A =0 (215)

The full Hamiltonian H-hat is divided into two parts, and the one is a non-perturbation

term Hy, another has a perturbation effect H:
H =K, + 4, @16)

Substituting Eq.(214) into (210) and, we take an inner product for them by A, (p =

1,m): each coefficient is given as
i 1 m i - it
Cli= Ezzs CIO(A,[H, (DA exp{—%(gs - gp)} (217)

Hitherto we do not introduce any approximating methods, and now we are going to



practice to perturbation series. That expansion of coefficients ij(t) is represents as

Cly=ClOt)+27C)V )+ A9CIP (t) + -+ + - AVC]™ (1) (218)
We take the ordered (m+1)-th term into consideration, and gather the first ordered
terms:

ClO(t)= j DO (A H, () As>exp— g, —¢,) dt,

ClO) = c;<°>(0) = a)” = const. (219)

So, the second ordered perturbation term is described as

C;‘(z)(t) ( jZWJ‘{J‘ m 1(0)

xexpT(gw g,) dt,. (220)

>exp—(8 —&,) dt (A [H, (1) A)

Those results are substituted into Eq.(214), and finally we reach the approximate

solution of polariton’s with perturbation expansion for state |Bj

‘Bj(t)> _ Z:‘Csj(t)exp( I&‘tj|A ([al(o) +{|hJ‘ Z J(O)< ‘H (t, )|K
P%‘“H%} Sl e A A A

x eXpwdtlJ x(AJH, ®)|A, >eXP#_8p)dt2H‘ A Jexp™ ;pt J

The r.h.s of Eq.(221) means the zero-th ordered, the first ordered and second ordered

(221)

perturbation term for an exact Hamiltonian H-hat. If we pay attention to the processes
of neural conduction with having an interacting Hamiltonian Hj-hat (i.e. the processes
of polarization, depolarization, and Na pomp, phenomena of the ephapse, etc.), and if
the Hy -hat means free polariton’s motion, we can obtain an approximating solutions
based on perturbation method Eq.(221). As the final state |B;  consists of many pure
states |A, , the rate b(t) of probability amplitude for [A,  is defined as

b)(t) = <As |Bj > = b/ exp(— i %St} <A5 | A¢ > =0y . from Eq.(124). (222-1)
So, total amplitude of rate R! becomes summing up all numbers' of possible states,
R =30t =3(A[B;)=>"h, eXp( ht ) (222-2)

If the probability amplitude of an occurrence for an event B is in proportion to the
above total amplitude R’, whose probability is expressed by [R)|. Then the variation of
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energies caused by perturbation H-hat, from state A, to B!, is calculated by the relation,

which is called as transition amplitude between those states:

e, _gp)] (223)

6E?s=<Bj(t1)‘|:|||Ag(to)>=ZTbsj<Bi‘H'|As>exp( i

Then it is important to notice, the above expression is much similar to the second term
of Eq.(185) if we regard the interaction operator Hj-hat as the propagating operator
P(B' |As)-hat.  So that reason enable to translate the relationship of Eq.(223) into an
energy propagating expression of the probability amplitude when we translate the

P(B' |As)-hat into the Hj-hat. When an initial state |A; , which is in pure state As, we
assume that the amplitude of the occurrence obeys to Eq.(199). So, we would like to
discuss the propagation and relations between an initial phase, [A;  and a middle

phase as shown in FIGURE 25, in next subsection.

14.2 Propagation from initial phase to middle phase
Practically to calculate the propagation amplitude from state A, to B;, we should adopt
path integral formula and the propagation of plane wave(ps(x). That eigen function is
Ps(x):
1

¢, (X) = f
Then we can have a result of kernel for free propagation with applying Eq.(234) to
Eq.(161), (162) and Eq.(149). The Kernel K(B;/Ajy), Bj(x1, t1) and Ay(Xo,to), 1s given as

exp(ik,X). free plane wave for state vector, |As (224)

K(Bj|p§):lz eXp{iks(Xl—Xo)—igs(tl—to)/h}, O »O (225)
L= A B
h’k?
£ =" s, the symbol m means quasi polariton's mass (dressed polariton). ~ (226)
m
Changing sum of ks into an integral, the final result,
m v im(x, —Xx,)’
K B-, =l e _ 1~ %0 = (B. .
(5;-A) {27zih(t1 —to)} Xp[ 2t -t,) } J{BilA), (227)

are corresponding to the Eq.(150). And after (t;-ty), the wave function, with taking an

initial condition of source for |Ay(xo,t)) =Ws(xo,t), is described as
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im(x, —
2h(t, —t o)

B m " im(x, —x,)* | (1 :
-] {Mh(tl —to)} P { 2(t, —t,) } [JE exp('ksx‘))jdX“

1 —ink:(t, -t,) .
= \/Eexp( 2ml 0 ]-exp(lksxl).

w(B;) = IK(BJaAs)W(As)dAs I[m} exp|: j|(As) A

(228)

That result says the propagation to change the phase of wave function when the plane
wave arrives at the point B;, though its momentum is conserved at same wave number k.
After all, the time development |B; , by using path integral, is written at arbitrary time
by unitary operator U-hat of Eq.(211):

. Hit —ink2(t -t,) .
xB (O —exp[—l } x| B;(t,) z— (—I—J-exp(#+lksxl}
2w (B))=(XB®), t=t-t,.

Above expression of  x|Bj(t)  is truly the result of an output phase of FIGURE 25.
So, summing up all initial conditions, we obtain a total probability amplitude of
transition states from |[A; ,(s=1,m)to [B; . We would like to introduce the correct
conducting operator IN,-hat, (a = 1,p), and wrong conducting case (1-1N,)-hat, (a =
pt1,m), and& -hat is a conduction rate under propagating processes. And all of them

are quantum operators:

.2 —ink2(t, — .
‘P(Bj)z%exp{ WJ {Za 1na§aexp[%lto)+lkaxlj
+ Z::_IP (1 - ﬁa)é;a LW + ika Xl]}

Those operators are almost g-numbers in some cases, but sometimes we notice that they

(230)

are c-numbers, or control functions (potentials).  One of the simple examples of&,
-hat equals to 1 (no consumption on channels), and the-hat corresponds to Gauss
function (Gauss slits) or step function. In Gauss function, the Gauss slit is given by
the following form,

A, =Cexp(-ax’).
231)

The Gauss slit is divided into many cases by both conditions of C and ther),. Thus,
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we would like to show all possible cases:
(1) If 0 < C <1, then we have p number’s correct channels and the (m-p) number’s
wrong ones.
(2) All channels are correct, if thery, = 1.
(3)All channels are wrong, ifn, = 0.
(4) If C is over 1, whosen, are composed a lot of four parts, i.e. N, =0, 0<N. <1, N,
=1, andN, > 1, and so we should discuss to divide into four parts.
(a) if the part ofiN, = 0, then 1-N, equals to 1, so then all channels are wrong.
(b) if the, is in the range, 0<N, <1, then Eq.(89) has two channels: The one
channel corresponds the correct parti, and another is the wrong one, 1-N,.

(c) if the part ofiN, =1, then the wrong channel 1-n, = 0, then all channels are
correct.

(d) if the part ofi,>1, then the part ofi,>1 is able to amplify an input wave
function during passing the channel of the slit. On the other hand, the wrong
channel , (1-,), has negative value, and we notice that a sign of the wave
function is inversed from positive into negative. We intend to regard the
reversing parts as inhibitory potential or inhibitory neurons

Thus, the above phenomena show that we are able to control the communication
channels by means of making gate, slit and some functions.

In next section, the similarity of between the quantum neural network and classical
one are pointed out, and finally we refer to the method of quantum expectation value,

whose operation is likely to that of fuzzy probability.

15. Application of Quantum Neuron

We would like to show two examples of simple application of the quantum neural
systems. One is an example of quantum neural network, which looks like classical
neural network's model, another is probability of fuzzy set theory called the fuzzy
probability[34]-[35].

15.1 Quantum Neural Network
The classical neural networks are described as famous following relations: if inputs
signal X; (j = 1, N), weighted by Wyj, are added to the K-th neuron, then the changes of

activity of membrane potential Uy are commonly expressed as
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N
U =2 WX, =h;. (232)

A classical output Yk is determined by propagator function f( ) and the potential Uk.

Thus the Yk becomes output of the classical networks:

1
Y, =fU = . 233
=T 1+exp(-aU, ) 239

On the other hand, if we pay attention to a quantum neural network, its networks can
be written by the same manner to classical network, and then the state |[Agg(t) is

—igjt

[AR®) =D C (D] A (1) = X 1Cy (t)exp( j A)=h|A O, |A©0)=const. (234)

The weight Wy and signal X correspond to the weight Cg; (coefficient) of
superposition of the quantum state vector |Aj(t) >, and the final state IAP(t) > is
regarded as the classical potential term Ugx. The classical output Yk is determined by
propagator function f( ) and potential Ux. By the same reason, the quantum outputs

are given by the following relation

—igjt

]<X\Aj>_hjcjo,

(235)

O, = (X A2D) =" C (XA D) ~h,Cj =D " Cy (t)exp(
N —i t
-y {cKj(t)exp(wj—hjcjo, +Cyy = (XA O).

in the projection of the coordinate space. So, we easily find, the classical output Yy

can be replaced by the quantum expression Wx. Thus, we have an equation of

1
Y, =f(Dy)= . 236
<= 1@ 1+exp(-ad,) (250

Two expressions of output functions are much similar to each other, however, the
quantum outputs truly contain various quantum effects which are essentially difference
from the classical networks, because the quantum output functionWyg allows complex
number’s functions, and it does not means the probability but corresponds to the
probability amplitude. The other hand, the parameters of classical networks Yy, Uk

and Xj, are quite real numbers since they dose not have interferences among others..

15.2 Fuzzy Probability and Quantum Neuron
We would like to refer to an example of a fuzzy probability by taking up a dice. The A

is defined as the set of numbers of the dice

SetX: X ={1,2,3,4,5,6}. (237)
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We consider a fuzzy event as an elements of set A taking nearly equal to the value 6,
which means the fuzzy probability Pg(~6). To calculate the fuzzy probability P(=6),
it is necessary to introduce a membership function of the set A. For example, each

element of the membership function is given as A(X), (X = 1,6),

A1) =0, A(2)=0.1, A3) = 0.3, A(4) = 0.6, A(5) = 0.9, A(6) =1. 23%)

Then we can calculate the fuzzy probability by using probability P(X), since we are
having the membership function. Thus, the fuzzy probability Pg(=6) is obtained by
procedure,

P.(=6) = ADP1)+A2)P(2)+ AB3)P(3)+ A[4)P(4) + A(S)P(5) + A(6)P(6). (239)

We assume that the dice has an equivalent probability for each value:
P(1)=P(2)=P3)=P4)=P(5)=P(6)=1/6. So we have final result P. (= 6) = 0.483.
According to common probability method, the probability, we can obtain the value 5 or

6 of the dice, has the same expression,

A(1)=0,A(2)=0,A3)=0,A4)=0,A5) =1, A6)=1. (240)

Thus, we have
P-(5v6)=ADP1)+AR2)P(2)+ AB)P3)+ A4)P(4) + AS)P(5) + A(6)P(6)
=1x1/6+1x1/6=1/3.

Hitherto based on the above discussion, both probabilities, Pg(X;) can be written down

(241)

by using the probability density P,(X) and membership function Fy(X) for X=X,
P(= X)) =] P,OOF,(X)dX . (242)

In order to expand Eq.(241) by regarding sub index J, we consider a set of membership
function Fj, and that of probability density P,. We make the inner products of the

elements:

F={ROOR)Fy OOk P, = P (X), Py (X) Py (X}

product

all X all X

Iz{ P, (X)F (X)dX, j P, (X)F,(X)dX,:-- JPpM(X)FM(X)dX}. (243)
all X

So we have an expression of fuzzy probability of two variables, when we regard the

indexes of P,( ) and Fy () as function of variable X, y:
P-(= y) = [P(X,y)F(X,y) dX . (244)

That is the fuzzy probability when it takes the value to be about y. Thus, we find that
those equations from Eq.(242) to Eq.(244) show the fuzzy probability, and we notice
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that those description of the expectation value have mathematically some similarities
between fuzzy system and quantum one. According to the quantum mechanics, its
probability density P.(= X) is defined as |WJ%, it is possible to translate the fuzzy
probability into quantum language. Then an expectation is be, according to quantum

mechanics,
(Fy(= X,)) = [P,OOF; (X) dX = [ ¥ (X)F, (X)¥(X) dX . (245)

Notice that the fuzzy probability Eq.(242), by the membership function, has
similarity to the expectation value of quantum mechanics. Thus, we can estimate the
various physical quantities and the controls of quantum neural networks, since the fuzzy

probability is a kind of quantum probability. The fuzzy probability P (= X) can
directly be translated into the expectation value of membership function< F, (X )> . And

we find the Fuzzy membership function F;(X) to correspond to a physical observable,
which can be translated into the operator of physical quantity F;(X)-hat. If the
polariton, conducting on axon, has an eigen value E; and eigen functionV; belonging to
Schrédinger equation-(149), then the quantum mechanical expectation of the

membership function (strictly speaking, that is a membership operator) is given by
(Fi= X3, P)) = [ OOR OGP, 00X, Fy (X PY = Fy(X—ifv). (246)

After all, those equations, from Eq.(242) to Eq.(246), show the similarity of the fuzzy
probability and the quantum description of the expectation process (Reference to
Appendix-2. A2-1 & A2-2, we mention relationship between Choquet Integral and

Quantum mechanical expectation).

16. Summary and Conclusion

We would like to show summary, conclusion, new model of quantum neuron and its

network, and quantum probability.

16.1 Ionic Current and Role of Polariton

We proposed a hypothesis of polariton for quantum neural conduction’s theory on
artificial axons[36]. The polariton, which means a quasi particle, is considered to be
real object, which carries momentum, energy, impulse, charge current, and those various

quantum interferences. The model of polariton is described as the quantized polarization
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wave, being generated by an action potential of neural membrane on axons and ionic
currents. The polariton flew from neural body to synapse along to the axon. The
phenomenon is commonly known to be the neural conduction based on classical
physiology. However, we think classical process, (polarization- depolarization
-repolarization), is can be quantized and described as the rotation of the quantized
polarization vector. The classical conduction is translated as propagation of rotational
quantized vector, whose phenomenon is equivalent to the propagation of polariton. We
think, the quantized polarization wave gives rise to phenomena of the
neuro-interferences, (for examples, ephapse, causalgia, neuralgia), various neural
activities. The propagation of the quantized vector is described as conduction of
polariton. The polariton is an essential carrier of neural information, conduction and
interference of each neuron. The polariton is a kind of quasi particle. The polariton
has various physical quantities: for examples, mass about 1.3x10%*kg, spin 1, massive
photon, positive, neutral and negative charge, and so on.

Polariton is a kind of the agent of information. If we can use frequency of thermal
noise, then the polariton carries amount of information, 9.38 X10" bits/polariton, at 300
Kelvin. And we recognize to be required at least 0.693kgT joules of energy to convey
one bit of information.

To resist the thermal fluctuation and noise, each bare polariton need attract about 41
water molecules, and that phenomenon is known as hydration. Commonly we are only
able to measure and to observe the physical characteristics of the hydrated polariton,
which means quasi polariton. We think, that quasi mechanism is an important idea that,
it is said nano machine to attain an excellent efficiency by using same magnitude of
energy as the thermal noise at room temperature. When the polariton is in the ground
state, whose state means the wavelength of polariton lies in almost 1jm, and its range
of existence is between 0.6jJam and 10jam. The polariton satisfies the quaternary
Schrédinger equation and complex Klein-Gordon equation. Strictly speaking, the
polaritons motion is given in Proca field, with massive vector photon. Both inflow and
outflow, which are both sodium ionic current and potassium ionic current through
neural membrane, cause the neural conduction along to axon. And the arised
polarization wave, which travels along to axon, conveys action potential as an
excitation’s impulse. Polariton is the quantized polarization wave. Generally speaking,
an inflow of sodium ionic current causes an outflow of potassium ionic current from
soma. Then the polariton electrically connects both ionic currents, and those currents
are sources of polariton. Polariton is a real particle like as an electron, anion and

cation, and it is a dressed and medium particle being caused by rotation of polarization’s
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phase. The rapid communication of information lies in a quantum tunnel effect, and
polariton gives rise to the tunnel current in myelin sheath. Both sodium and potassium
ionic current are truly sources of the polariton’s generation, and those currents make the
many polaritons arise on the dielectric phospholipid membrane of neuron. Those
polaritons act on Ranvier ring, and they affect on neighbor neurons, whose phenomena
are defined as quantum neural interference. This phenomena is called ephapse, which
is a physiological action based on quantum interference caused by many polaritons. And
we think, they regularly work as a physiological functional adjustor, and that ephapse
contributes to maintenance of homeostasis of neural networks and brain.

Macroscopic phenomena show us that each neuron receives an influence of the fluctuant
electromagnetic field as shown in magneto-encephalogram. For examples, each neuron
is subject to electromagnetic phenomena like as an induced electromotive force, leak
current and so on.  Those holistic electromagnetic effects of brain give rise to the many
polaritons at the microscopic level. We believe that those effects modify various
activities of neural networks like as cooperation, disaffection, divergence, and
convergence. Dr. Shams reported in 2000, the sound induced by flash, which was a

kind of illusions.

Quantized polarization wave

polaritons
Na+
e ———
Ranvier % Mvelin sheath \
AN
: Y e
Quantum interference I
polariton

J

FIGURE 26. Na'",K", ionic currents and roles of polaritons

When the one short pulse of light was illuminated to our eyes and our ears were
simultaneously twice stimulated by short duration-sounds for a short intervals, then our
brains felt that the electric lamp twice put on a light. Though a visual area is away
from an auditory area and both areas have anatomically independent routes of neural

conductions, the stimulations of visual area affected on auditory area. We think, those
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phenomena to be examples of the illusion and of macroscopic neural interference. In
the other word, polaritons of visual area affected on the neurons of auditory area and

polaritons caused both those mistakes and illusions of two neural areas.

16.2 Quantization of Circuits and Expressions
We showed new basic theory of calculation methods for quantum bifurcation, quantum
circuits, and neural computation by using path integrals of quantum theory[32],[37].

At the beginning, we showed that a decision tree can be regarded as a kind of
Brownian motion (Markov process), and then the motion was governed with Ito
equation (general stochastic equation). And according to Nelson’s method (stochastic
quantization), the Ito equation finally reached Schrdodinger equation. Thus, we knew
that problems of classical bifurcation were easily led to Schrédinger equation by
considering Nelson’s stochastic quantization method. The second example was
Japanese Amida lottery, which was a kind of classical bifurcation models because of no
interference between each path of lottery. However, we introduced a lot of diffraction
points to Amida lottery, and we showed the calculating method of quantum amplitude
by path integrals. That path integral was a quantization method of Amida lottery,
which contained a lot of diffraction points. If we regarded classical bifurcation points
as diffraction points and we summed up the probability amplitudes of all possible paths,
we could translate the classical bifurcations into quantum interferences and diffraction’s
problems of networks.

We discussed the method of quantization of basic circuits as AND, OR and NOT.
Those classical circuits did not have any quantum effects. ~ For examples there were
not quantum effects as the superposition and probability interference in those classical
circuits. In order to perform quantization of those circuits, we adopted the path
integral to above three basic circuits. We mentioned that we could regard classical
switches as scattering potentials (switch’s operators). So, that was quantization
concepts, and those quantized circuits with switch operators corresponded to q-AND,
g-NOT, and g-OR circuits. Moreover, we succeeded to show the calculation’s methods
of complex quantum circuits and neural networks by path integrals. The switch of
each circuit was looked upon as switch’s potential of Hamiltonian. Thus, Hamiltonian

operator H could be described as

H = (kinetic energy T) + (potential energy V) + (Switch’s potential F(S;,S,, Sx) ).

The Hamiltonian was connected to quaternary Schrodinger equation since the wave
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function was related to the motion of polariton as massive photon. Exactly speaking,
the motion of polariton should be prescribed by Proca equation of relativistic kinematics.
However, the Proca equation approached to the quaternary Schrddinger equation when
the motion of polariton was much slower than light velocity.

The kernel K(b,a), which was propagator and an expression of the time development
of system, was related to an eigenfunction of Schrodinger equation. And we found
that the q-OR was similar to the first ordered perturbation of two potential scattering
problems. The q-AND was shown to have similarity to the second ordered
perturbation of single particle. It is important to notice that the wave functionp(x,t)
was an expression of a situation of wave in the point x at time t, and its expression was
static. The kernel K(B,A), however, truly represented the motion of the particle from
point (A,ts) to point (B,tg), and so its expression was dynamical. Finally, we found
that the neuro-synaptic junctions were regarded as a kind of switch’s potential, whose
concepts led to quantization of neural networks by using path integrals.

We think that quantum interference plays an essential role among many neural
networks in our brain. The normal neuron actively utilizes various interferences so as
to adjust each neural function through leak polatirons from neural axons and synaptic

junctions,

16.3 Concrete Expression of Information Theory

We, at first, showed the expressions of motion of polaritons based on Proca equation.
And we can reduce Proca equation into quaternary Schrodinger equation. We can have
the only scalar potential @by ignoring vector potential A of magnetic fields, if
polariton’s mass is so large and their motions on axons are so slow. The interferences
among many neurons can be expressed by description of path integrals instead of wave
equation, and the method of path integral is closely related to Feynman kernel, whose
expressions represent an appearance of motion and propagation of polaritons. We
attempted to compare classical Bayes’ theorem with quantum Bayes’ form[31]. The
quantum Bayes’ expression is given as g-number’s operator, though counter observable
and eigen values are real numbers. On the other hand, the classical Bayes’ form is
described by c-number and the observable is also real numbers. An essential
difference between the quantum expression and the classical one in both Bayes’ forms is
whether the occurrence probability (amplitude) and the propagating probability
(propagator) take complex numbers or not. So, the classic system is related to real
number, which always directly means the probability. On the other hand, the quantum

closely is connected to complex number. For example, its wave function describes the
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probability amplitude, which always takes complex number, and so the probability is
given as absolute values of the probability amplitude.

Thus, quantum Bayes’ form contains much interference between each quantum states
vectors. However, there are not interferences between each of the event based on the
classical Bayes’ theory. And, we showed that result of the quantum Bayes’ form is
equivalent to the classical Bayes’ theorem if it were not for the interferences between
each quantum state vector, which means that pure states are changed into many mixed
states by interactions, interferences and potential scatterings. We calculated values of
entropy by both types, which were classical system and quantum’s one. The quantum
entropy, which compared with classical expression, had some interference terms. We
can conclude that generally the entropy of quantum system is greater than that of
classical system since the other residual terms are additional and non-negative. Thus,
the quantum interference between pure states makes out an increase of entropy larger
than the case of the classical system.

Those interferences combines many states so as to make up new mixed states as well
as quantum Bayes’ theory. And we applied both of Schrodinger equation and path
integral so as to calculate an output power of each neuron for hierarchic neural networks.
We showed those networks contained much interference, and we succeeded to obtain
approximately solutions of an output expression from each neuron, by perturbation
method and path integral method. We obtain the possibility of two types of neurons by
tuning the width of Gauss slit on multi channel quantum networks. So we find that the
some type of neuron works as amplifier, and another type is regarded as the inhibitive.
Moreover, we discuss the similarity of both quantum network and classical one. The
essential differences between both systems are whether there are operations as the
superposition and the interferences or not. The quantum states are requested the
superposition of polariton’s wave function (propagators) and we can estimate an
overlapping coefficient. On the other hand, a total output power of classical neurons is
determined by summing up each of an input signal and a weighted factor, however the
interferences of wave function never exist in classical system. The quantum neurons can
control their networks as the classical networks do. The only difference of both
networks is whether there are interferences between each path or not. There is another
similarity between in the fuzzy probability (Choquet Integral) and the expectation
values of quantum theory. Then, we know, the fuzzy probability is described by inner
products and summations between ordinary probabilities and corresponding values of
their membership function. On the other hand, an expectation of quantum theory was

commonly calculated by using wave functions and some potential. We showed that

80



the quantum expectations have the same descriptions with the fuzzy probability, if the
membership function is regarded as the corresponding potentials of the wave function.
The differences between those descriptions were pointed that the fuzzy probability
should be the real number’s probability (probability density), on the contrary the
quantum description was given by the wave function (probability amplitude), which
ordinarily took the complex number. And the common probability density is governed
by Fokker-Planck equation with the scalar density function¢p. However, the wave
function of the polariton should be essentially described by the quaternary Schrodinger
equation AM(¢p,A), except the slow change of magnetic field (i.e., vector potential A is
almost constant). The polariton obeys ordinary Schrddinger equation of the one
component(p, which is scalar potential of electric field. We think that both our quantum
neural network and polariton’s model contain a common quantum information theory,
its computation method, and classical neural system. And our quantum descriptions are
related to various areas, for examples, applications for fuzzy controls, classical neural

systems, the classical Information theory and so on.

17.4 Further Development

We would like to refer to development of polariton’s neurons and network. We
obtained the quaternary Schrddinger equation for polariton’s characteristics by
reduction of Proca equation. The Eq.(27) and Eq.(34) contain both currents J*, which
are Na' currents and K currents. So, we are going to solve those coupled equations
when total JHcurrent is given. We think that it is important to analyze conditions of
axon’s membranes when both currents generate the polaritons, because of polariton’s

source.
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Appendix-1

Equivalence to Schrodinger Equation

Al-1 From Path Integral to Schrédinger Equation

According to relations from Eq.(133-1) and Eq.(133-2), a wave function ¢pa[B] is able
to be expressed by both kernel K(B,A) and an initial ¢@(A). We write down those two
relations. The rule No. 8 refers to between the propagation and its time-development.
The Eq.(133-1) means that an initial wave function¢p(A) goes to a final state B,¢p [B].

A[B]=[dA-K(B,A) 4(A). (133-1)

K[B, A]=(B|A)=(B;t,

A> = <B|Lj (tB7tA)| A>

A -1 133-2
U(ts,ty) = eXp(# H(t; - tA)j' ( )

We would like to consider its time development of minute time-span, and so, we take A
= (xtN,t) and B = (x,t+&). So, we have

pOt+8) = [KOGt+ax+77,1) g+, d(X+77) - (AL1)
Using the following both Eq.(79) and Eq.(84-2),

K(i+1,i)=(i+1]i >—exp[ L =% ,X'“;X ,t'“;ti )}, L:Lagrangian. (79
S[x(t)] = IL(X x,t) dt = j(r —V)dt = j(—x - (84-2)

(T: kinetic energy, V: potential energy, S: action, and L: Lagrangian, and Ref.
Appendix-1, Al-2). We show an introduction to Eq.(79), Eq.(84), Eq.(64) and
Eq.(65)).From those three equations, we can easily obtain the Feynman kernel’s
representation, K(x, t+&; x+ x+1,t) for minute time-span&:

K(x,t+g;x+q,t):lA { L(2X+’7' ’7—2“5)}

:lexp M
A ho| 28’

¢ 2 (A1.2)
(A: normalization constant). Expanding¢pwith&€,n and substituting Eq.(A1.2) into

R L

Eq.(A1-1), the Eq.(A1-1) gives an expression,
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i mp®

exp| ———
P [ (h 2¢ j[ _le } o¢ 77_ *p (AL3)
X t) + & - _jdn n 1 hV(x) #(X, t)+776x vk

Comparing r.h.s with Lh.s of Eq.(A1.3), we know thephave to satisfy the following

relation,
X,t) i mnp’ (Al.4)
(Xt dn ¢(
st = | p[ _— j
We can determine the normalization constant by Gaussian integral, and then is given as
m

Moreover, the Eq.(A1.3) teach us the following relation:

2

: 2
8%¢——|—8V(X)+D dn exp(;i mz77 lenz}%Z_X? +(integral , odd function of 1N)

(AL.6)

Performing Gaussian integral, we can finally obtain the final form to be famous for
Schrodinger equation, since an integral of odd function of | goes to zero. Through
the above procedure, we recognize that Feynman path integral is equivalent to
Schrodinger equation.  Thus, a path integral expression of polariton on network system
means to be equal to an expression of wave function, and path integral of Feynman
automatically contains a lot of quantum effects.

Secondly, we would like to mention relationship between classical mechanics and
quantum theory. First of all, its theory is said to be Ehrenfest’s theorem by which we
are able to describe the relation between quantum mechanical expectation and
Newtonian mechanics. The theorem says the quantum mechanical expectation for
momentum and position obeys the Newtonian mechanics [38]. Using wave function
P, we know that those two equations for momentum’s and position’s expectation, <p>

and <x>, which are

d d 1 « ., O 1
_ _8V(X) e _8V(X) _ .
>—J¢( T ]¢ dx < — > (F). (A1.7-2)

(V(x) = potential so, the < F > corresponds to force term.). We have already known
the Feynman path integral to be equivalent to Schrodinger equation. Moreover, its

path integral has to satisfy the Ehrenfest’s theorem.

86



Secondly, the those equations, from Eq.(64) to Eq.(68), teach us relationship between
path integral and the action S. Adopting both the Eq.(67) and the uncertainty principle
Eq.(6), we are able to appreciate the magnitude or the order of quantum fluctuation
Eq.(68). From Eq.(67), the action S[x(t)] is

SIX(] = Solxc]+ [ dt[at)d® +b()ds + c(H)6?]. (67)

The first term of the r.h.s means classical action S¢ and the second term corresponds the

action of quantum fluctuation. ~ The Eq.(6) tells us the uncertainty principle,
Ap = m5;%—>1.0‘29 (kg mis). (A1.8)
And so Eq.(A1.8) is applyed to the second term of Eq.(67), then we have
th "y . "y th h : h )
j dt[at)s? +b(t)ds + c(t)5>] = j dtfat) — | +b(t)s] — |+ c(t)s?]
ta ta mo mo

> j:dt -a®)b(t)c(t % = OVdE{I:dt ' a(t)%} - Order[SQ]

Since the a(t) corresponds to a coefficient of kinetic energetic term, so the order of

(A1.9)

function exp( ) of Eq.(68) can estimated at about mass’s order of particle. The result is

order{eXPB I:[ag'z +bds + c52]dt} ~ Orde{exp{% J' a(t)dtH

~ order[exp(i.[:ab dtﬂ = order|expi(t, —t, )]

Thus, the term of exp[i(ty,-ta)] shows so much high frequency, since the above

(A1.10)

macroscopic time interval (t,-t;) is much larger than quantum mechanical time interval
(transitional time or tunnel effect time, et al. Their time interval is said less than
10”s)). Thus, an integral of the much high oscillational term is nearly equal to zero,
and thus the Eq.(68) goes to

K(b,a) ~ j:e“/”)sqb’a] Dx(t)-order[expli(t, —t,)}] > j:e“/h)“[b’a] Dx(t)

N J‘be(i/h)Sc[b,a]dX(t)' (AL.11)
a

Finally, notice that path integral becomes to common line integral on the classical
trajectory of particle since exp{i(tp-ta)} - 0. And then the classical action Sc[b,a] has
much important role, and the classical trajectory of particle has generally more weight
than its quantum fluctuation.

The classical action is defined as the time integral for Lagrangian:
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S.[b,a] Ef’ L(%,xt)dt, (A1.12-1)

So, we practice variation for Eq.(A1.12), and then we reach an equation of
Eular-Lagrange of Eq.(A1.12):
b
&Selbal= [ [ o oot = [ - L L N -0, (AL12:2)
a\ OX OX a\ox dtox
That equation corresponds to Newtonian equation of motion of analytical mechanics.

Moreover, Lagrangian decides Hamiltonian according to following procedure.

L(X,X,t) =T =V = px—H(p,Xx). (A1.13)

The first quantization means to introduce an operator into classical Hamiltonian,

H(p,x) - H(—ihi,xj. (A1.14)
dx

And then we can obtain well-known Schrédinger equation applying wave function. If
we would like to adopt the action S (or classical Lagrangian) for its system’s description,
it is possible to choose path integral form, whose variables are c-number (cf. an operator
is described by g-number). Polariton, photon and the other bosons are governed by
common algebra; however, electron, neutron and proton (fermions) need to be
expressed by Grassmann algebra.

Finally we can assert the sentence: “We can automatically introduce quantum effect
of polaritons to the network systems, and its expression is much similar to classical

mechanical Lagrangian.”

A1-2 Way to Feynman Kernel

We would like simply to show you the way to Feynman kernel from the unitary operator
of Eq.(133-1) and Eq.(133-2). The original path integral’s idea, whose staring points
are based on classical Lagrangian, has been begun by Paul, Dirac [39],[40]. And R.
Feynman has developed the Dirac’s method, and he wrapped up modern path integral
formalism [4],[38],[41]. The purpose of an appendix A1-2 is to show the general way
to Eq.(65) from Eq.(64) and . From Eq.(133-2), we know the unitary operator.

K[B,A]l=(B|A)=(B;t,

U (tg,ty) = eXp(%i H (tg - tA))'

U (tg, ta)|A)

At,)=(B

(133-2)

When we divide the macro time interval (tg-t4) into N numbers’ minute spans £=
(tz-ta)/N, then we have
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Lj(tB’tA) = exp(% l—’i (tB _tA)j — (e—i(f+\i)£/h )N ~ (e—ifs/he—i\is/h)N ) (AllS)

Substituting Eq.(A1-15) into Eq.(A1.15) is substituted into the kernel of Eq.(133-2), we
find the propagator

e . N
K(B,A)= ,},iirolo<XB’tB |(e—|Tg/he—|v.s/h) |XA=tA>‘ (A1.16)
Adopting completeness of position’s bra and ket vector, the above kernel is expressed as

N-1
K(B,A) = @;jclxldx2 ey [ T(x] €
j=0

—i'fs/he—i\is/h

xj>, (A1.17)

As well as position’s vector, we use the same completeness for momentum vector, we

have

N-1
K(B,A) = ,}‘i_l;l’oloj.dxl ---de%J‘de~--de711_[<xj+l
=0

exp{—iep?/zmh}‘ pj>

x<pj‘exp{—ie\/-/h/2mh}‘x<> (A1.18)
—’!‘11)1310 dx, ---dx,, 1J.dpo -dp, IHeXp[ (i/7) {(pj/zm +V(X) ]<xJ+1 p ‘x >
= *l&(ﬁ}jdx e OXy 1Idpo -dpy exp[(l/h)gzj -0 ( Xjn = ) ‘9_(p?/2m)_v(xj)]]

And when N - oo, the function exp[ ] of Eq.(A1.18) goes to

‘92 { ij) 2|O_J_v(x )} J‘;bdt.[pX—H]ES(XB,tB;xA,tA)
(A1.19)

L %01 :%xz _V(x) = px—=H(p,X)

The Eq.(A1.19) clearly mentions the path integral to be closely related to Lagrangian
and Hamiltonian of the classical mechanics. Performing Gaussian integral for

momentum p; of Eq.(A1.19), finally the kernel (propagator) of Eq.(A1.18) is given as

e N | m( Xy — X, ’
K(B, A)_hm(mm‘wj Idx Xy lexp{;zjo{g( i - Jj V(xJ)H . (A1.20)

N—o0

Then the above function exp( ) is reduced to Lagrangian form:

ZJ_“‘J[%[XH_XJJ ~V (X )} j[ X(t)> —V(x(t))}dt J'BLdt:S. (A1.21)
B &

After all, we obtain the path integral form,
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K (B, A) = j DX(t) exp[% j:L(x, x,t)dt} = j DX(t) expB s}
_ (A1.22)
= [ Dx)Dp(t) exp[% [ px—H(p, x)dt}

Thus, we recognize that this result, Eq.(A1.22), perfectly coincides with Eq.(65), and

the classical Lagrangian form leads us to Feynman path integral.
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Appendix-2

Choquet Integral and Quantum Mechanical Expectation

A2-1 Fizzy probability and Choquet Integral
We showed that the fuzzy probability Pg(~ 6) was obtained by Eq.(239),
P.(= 6) = AD)P(D) + ARQ)P(2) + AB)P(3) + A(4)P(4) + A(S)P(5) + A(6)P(6) . (239)

If we consider an independent variable X to have continuity, then the Eq.(239) is
described by an integral form,

Pe(x6)= > P(X)- AX) =[ P(X)- AXX)dX . (A2.1)

as we wrote in Eq.(242). The Choquet Integral of this case, the value A(X) means to
be Fuzzy measure and the probability P(X) corresponds to its counter grade. So we
are able to have an expression for the Choquet Integral (FIGURE A-1), [42],[43].

Pt (2 6) = (©)], T dar=(P()=P(0))- 3% AX) +(P(2) - P(1)-
STOAX)+(PR) - P2)- Tt AX) + (P -PR)- S AKX A
+(P(5)=P#)- Y. TAX)+(P(6)-P(5)- > A(X)

And we define as P(0) = 0.

P(6)
P(5)
P(4)

P(3)

P(2)

P(1)

P(0)=0 >
A1) AR AR AMX ABG) A(®6)

FIGURE A-1. Choquet Integral of Fuzzy Set Theory
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Simplifying the Eq.(A2.2), we immediately notice that the fuzzy probability Pr(=6) of
Eq.(239) or Eq.(A2.1) is equal to the results of Eq.(A2.2), which is the definition of

Choquet Integral in real number’s area.

A2-2 Difference between Fuzzy Integral and Quantum Integral

Calculating Fuzzy probability (Choquet Integral or Sugano Integral), all functions, A(X),
P(X) and its variable X are always real numbers. And we never encounter to complex
numbers under its calculation process. However, the quantum mechanical expectation
is essentially different from those Fuzzy integrals except the similarity of formal style
(reference to Eq.(242) and Eq.(245) ). The wave function (probability amplitude)W of
Eq.(245) generally means complex function. However, its expectation and variable X
have to take real values, because the expectation should be observable and X is
coordinate of our space. In Eq.(245), we assume that the W takes a plane wave
exp(-ikX), and we adopt its complex conjugate wave function W= exp{i(k+ k)X}
with slight difference of momentum. And if F;(X) (i.e. A(X)) is momentum operator,

then the quantum mechanical expectation becomes

(Fy(= X)) = [P,OOF, (X) dX = [¥*(X)F, (X)¥(X) dX

= je“‘x (— in &je“k*“)x dX = —r’ e "X ack + Ak)dX = —276(AK) - Ai(k + AK) (A2.3)

So, where &(Ak) means Dirac delta function. TheAKk is nearly to zero, and then
O(AKk) becomes a very sharp function, and we perform an integral for Eq.(A2.3) at

near to zero. We have the result:
[{Fi(= X)d(ak) = -] 2728(Ak) - (K + Ak) - d (Ak) = 27k . (A2.4)

It is much important to notice that the result of calculation is not infinite, but it becomes
a finite value. In the case of Choquet Integral, we can adoptW= cos(kX), andW¥" is
cos{(k+Ak )X}, and moreover, Fj(X) means momentum operator. And we obtain the

calculating result of Eq.(242):

P.( X,)= L” POOF, (X)dX = J:cos(kX) : [— ih&jcos(k + Ak)XdX
. (A2.5)
= in LQ cos(kX) - (k + Ak )sin{(k + Ak)X }dX = 0.

The result of Eq.(A.4) takes always zero value because of orthogonality of

trigonometric function. If the above F;(X) takes real number A, its result becomes
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divergence and infinite,

P.( X,)= j” PLOOF; (X)dX = r’ cos(kX) -(A)ycos{(k + Ak)X }dX =0,  (A2:6)
if the Ak is much near to zero. And if theAk is not equal to zero, we always obtain
zero momentum, and those results are not significant. Thus, if we adopt probability
amplitude W which is complex number, we should naturally be led to quantum

mechanical expectation so as to prevent from giving a nonsensical result, instead of

Choquet Integral or Fuzzy probability.

[END ALL]
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