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F O R E W O R D

Power system operation is a complex constrained task. It has to
be performed fast and reliably. Evolutionary algorithms (EAs)
are expert in solving very complex problems. However, they are
slow if they are not well-designed for a specific problem.

Performance of EAs is significantly affected by modeling of
the problem and employed operators. This work proposes an ef-
ficient modeling of the power distribution network, new sets of
operators, and an integrated framework for EAs in order to make
them fast and more effective for solving distribution networks’
operational problems.
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A B S T R A C T

Power distribution network operation is a complex constrained
optimization problem. A high quality of continuous service to
the customers should be guaranteed while satisfying operational
and structural constraints. Introduction of evolutionary algorit-
hms (EAs) to the power distribution network operation has op-
ened many new opportunities. However, many applications of
these methods suffer from high computational burden. Perform-
ance of EAs is significantly affected by modeling of the problem
and employed operators.

Among the distribution network’s operational problems, net-
work reconfiguration and service restoration are studied in this
work. A branch-based object-oriented modeling is employed in
order to represent the network which offers a natural represen-
tation of the network and allows for the use of graph concepts
for modifying its configuration. Based on this modeling, an inte-
grated EA framework is proposed employing three sets of oper-
ators which:

i) reconfigure the network,

ii) minimize amount of the loads that are excluded from re-
covery,

iii) optimize settings of the network’s existing compensators in
order to support the restoration process.

In addition, three techniques are proposed in order to intro-
duce more intelligence to the operators and guide the search to
more productive areas of the search space by using more informa-
tion about status of the network. Furthermore, a new technique
is proposed for liming the search space without losing the global
search capability of EAs. Simulations show efficiency of the pro-
posed methods in terms of speed and the quality of results.
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Part I

G E N E R A L W O R D S



1
I N T R O D U C T I O N

Electrical distribution networks are always subject to continu-
ous extension due to the development of society. This has led
to complex spider-net urban distribution networks. Distribution
network operation is a complex constrained optimization prob-
lem. A high quality of continuous service to the customers should
be guaranteed while satisfying many constraints. Some of them
include:

1. Structural constraints: distribution network configuration
has to be maintained radial for ease of protection and fault
location. In addition, electrical service has to be provided
to as many customers as possible.

2. Operational constraints: loading of the lines and transform-
ers have to lie below the permissible ranges in order to
avoid irreversible effect on the network equipment. In ad-
dition, for maintaining an acceptable quality of service to
the customers, nodal voltage amplitudes have to be in pre-
defined margins.

Among the network operational problems, network reconfig-
uration and service restoration of compensated distribution net-
works are studied in this work. Introduction of evolutionary alg-
orithms (EAs) to the distribution network operation has opened
many new opportunities for solving these complex problems.
However, many applications of these methods suffer from high
computational burden. Performance of EAs is significantly af-
fected by modeling of the problem and employed operators.

EA’s conventional binary representation and crossover/muta-
tion operators can contribute to solve the problem. However, they
have generally an average convergence response, since they are
defined for a general application. In order to have an efficient EA
for solving the power distribution networks’ operational prob-
lems, it has to be problem specific in terms of the problem rep-
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1.1 network reconfiguration 3

resentation and operators. Therefore, it should fulfill special re-
quirements such as:

i) maintain the search in the space of radial configurations,

ii) serve all loads (for the network reconfiguration problem)
or as much loads as possible (for the service restoration
problem),

iii) be flexible for considering distribution network’s more equip-
ment such as compensators in the optimization,

iv) have a global search capability,

v) have a fast and reliable response.

1.1 network reconfiguration

Network reconfiguration means to alter the status of open and
closed switches of the network. Switches could be located inside
a feeder or between two different feeders. Inside-feeder recon-
figuration is mainly performed in order to reduce loss and/or
to balance loading inside the feeders. On the other hand, inter-
feeder load transfer is commonly utilized in order to restore
service in contingencies following a fault and/or to balance lo-
ading amongst different feeders. Consequently, solving distri-
bution network’s operational problems such as loss reduction,
load balancing, and service restoration is highly influenced by
performance of the reconfiguration optimization plans.

Network reconfiguration involves incorporation of many can-
didate switching combinations. Meanwhile, Structural and Oper-
ational constraints have to be fulfilled. Therefore, it is a compli-
cated combinatorial multi-constrained optimization problem.

1.1.1 Literature review

Merlin et al. [7] propose the first approach to the distribution
network reconfiguration problem. They employ branch-exchange
method that alters the topological structure of the network by
successively altering the status of normally open and normally
closed switches in the neighborhood. However, their method is
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capable of finding only local optima and the final solution heav-
ily depends on the initial configuration [8].

Murai et al. [9] propose an advanced branch-exchange method
that closes N switches and thus creates N intermediate loops in
each iteration, where N is not necessarily equal to the total num-
ber of loops. Then, the loops are opened by opening N switches
while performing a local search for finding the proper switches
to open in each iteration. Although this method improved the tra-
ditional one, it still inherits the branch-exchange method’s local
search problem.

Other approaches such as heuristic algorithms [10]-[14] and
expert systems [15]-[18] are suggested for the network reconfigu-
ration problem. However, they sometimes produce poor subopti-
mal solutions [19]. Some researchers employ methods based on
mathematical programming [20]-[23]. They formulate the recon-
figuration problem using one of the standard techniques, such as
linear programming. The main disadvantage of these methods is
their high computational burden [24].

Several evolutionary algorithms (EAs) are developed in order
to address this problem with encouraging results [8], [24]-[35].
However, the majority of them still demand high running time
which is essentially affected by modeling of the problem and
employed operators. Besides, EA’s conventional crossover/muta-
tion operators cannot guarantee producing only radial configu-
rations [36], [37] which imposes extra computational burden for
checking the radiality and possible repairs. In addition, evalua-
tion of the individuals who contain loops commonly takes more
time.

In order to improve the performance of EAs in the reconfigura-
tion problem, Delbem et al. [38] propose a tree encoding based on
graph chains, called Graph Chain Representation (GCR), and its
corresponding genetic operators that exclusively produce radial
configurations. However, their method suffers from high burden
of numerical modeling and relevant orderings (called properly
grouping) as well as the processing required for implementation
of the reconfiguration.

Santos et al. [24] employ the concept of node-depth encoding
and similar operators called Preserve Ancestor Operator (PAO)
and Change Ancestor Operator (CAO), and tackled the high com-
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putation burden problem of the numerical modeling in [38]. How-
ever, their method still demands extra analysis such as process-
ing intermediate representations due to the employed numerical
node-based modeling. In addition, PAO/CAO operators’ appli-
cation is basically limited to inter-feeder load transfer [39].

1.1.2 Motivation

In order to provide an integrated solution to the network recon-
figuration problem, an approach is required that can address
both inside-feeder reconfiguration and inter-feeder load transfer,
simultaneously. In addition, it has to maintain the search in the
space of radial configurations and mitigate the high computa-
tional burden, which is a discouraging feature for the application
of EAs to this problem, providing a solution in reasonable time.

1.2 service restoration

Service quality improvement of electric power delivery is one
of the permanent tasks of modern distribution companies. The
ever-increasing demand of electric power has led to larger and
more complex power distribution networks, which in turn, has
increased the likelihood of occurrence of faults and size of the af-
fected area. Therefore, an effective post-fault supply restoration
strategy plays a key role in improving service reliability and en-
hancing customers’ satisfaction.

The main objective of a service restoration (SR) plan is to pro-
vide a base level of service to maximum number of customers
during emergencies. SR is mainly performed using network re-
configuration. The number of switching operations should be
minimized due to its required time and sequence [40] in addi-
tion to operation and maintenance costs. Meanwhile, Structrual
and Operational constraints have to be fulfilled.

Sometimes it is not possible to restore the whole out-of-service
area since it cannot be served without violating the operational
constraints. Consequently, some loads should be excluded from
recovery in a process called load shedding.
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Furthermore, if the network’s existing compensators are op-
timally operated (Volt/Var control), they could effectively con-
tribute in the SR plan and help to minimize the amount of load
shedding [40]-[43]. Therefore, SR of a compensated distribution
network is a complex multi-constraint combinatorial optimiza-
tion problem.

1.2.1 Literature review

Several EAs have been developed in order to deal with the SR
problem [41]-[51]. They provide better results than mathematical
programming and traditional artificial intelligence approaches [44].

However, EA’s conventional crossover-mutation operators can-
not guarantee producing only radial configurations [36]. In ad-
dition, improper modeling of the problem could lead to a high
computational burden of the EA [36], [45], [46].

Mansour et al. [44] employ node-depth encoding and two oper-
ators in order to address these problems. However, their method
still demands extra numerical analysis such as processing inter-
mediate representations. Moreover, the operators are limited to
inter-feeder load transfer [39].

Luan et al. [47] employ an integer representation, improve the
conventional EA operators using graph analysis techniques, and
try to produce only radial configurations. However, their method
requires checking radiality of each newly created individual that
imposes an extra computational burden.

Methods in [44]-[51] do not include network compensators in
the SR plan. Their inclusion for optimization makes the EA’s
problems even worse by extending the search space. There are
not many papers reported in the literature that consider compen-
sation in the SR simultaneously with reconfiguration and load
shedding. This might be due to complexity of the problem and
large size of the search space.

Some papers try to limit the search space by considering only
feeder capacitors with only on/off status [40]-[43] or considering
the capacitors only in the out-of-service area when the reconfig-
uration fails to restore the whole loads [40].

Augugliaro et al. [41] perform the reconfiguration and Volt/-
Var control iteratively which has been time consuming [42]. They
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extend their work to include simultaneously optimization of the
network configuration and Volt/Var control in normal operating
conditions [52]. However, their method limits the search space by
confining the transformers’ tap changes to a maximum of ±1 step
around analytically calculated preset values. They admit that this
assumption might produce different results for the same loading
conditions. Besides, their method still does not include voltage
regulators (VRs).

Actually, using such simplifying assumptions could lead to fo-
cusing on a partial part of the problem or converting the opti-
mization to a local search.

1.2.2 Motivation

An integrated framework for solving the SR problem using EA
is required in order to simultaneously optimize the network con-
figuration, amount of load shedding and settings of the compen-
sators. In addition, if it is enabled to limit the search space with-
out sacrificing the quality of results, it can have a global search
capability while accelerating the final response.

1.3 dissertation structure

This work is organized as follows:

part i is dedicated to the general words including an introduc-
tion to Evolutionary Algorithms (EAs) in Chapter 2 and
methods of network modeling and evaluation in Chapter 3.

part ii is on the contribution of this work for solving the dis-
tribution network reconfiguration problem. The proposed
method is explained in details in Chapter 4, and test results
and discussions are presented in Chapter 5.

part iii is about the second contribution of this work for solv-
ing the service restoration problem in compensated distri-
bution networks. The proposed method and test results &
discussions are presented in Chapter 6 and 7, respectively.

appendix a presents detailed data regarding three test cases.
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appendix b provides an example of the input data file and its
detailed description.



2
E V O L U T I O N A RY A L G O R I T H M S

Evolution by natural selection is one of the most compelling
themes of modern science and it has revolutionized the way we
think about biological systems [1]. The Darwinian theory of evo-
lution depicts biological systems as the product of the ongoing
process of natural selection. Evolutionary algorithms (EAs) em-
ploy similar concepts and allow engineers to evolve solutions
in a computer program. Although the computational setting is
highly simplified compared to the natural world, EAs are capa-
ble of evolving surprisingly complex and interesting structures.

A variety of EAs have been proposed which differ based on
the way they represent the problem, operators they use in order
to make variations in the population, their selection method, and
so on [2]. However, all of them share the following general and
basic properties:

i) Evolutionary algorithms utilize the collective learning pro-
cess of a population of individuals. Each individual repre-
sents and encodes a search point in the space of potential
solutions to a given problem,

ii) By means of evaluating individuals in their environment, a
measure of quality or fitness can be assigned to the individ-
uals. According to the quality measure, a selection process
favors fitter individuals to reproduce more often than those
that are relatively less qualified,

iii) Descendants of individuals are generated by randomized
process intended to model mutation and recombination. Mu-
tation corresponds to an erroneous self-replication of in-
dividuals and recombination interchanges information be-
tween two or more individuals.

Genetic algorithms (GAs) are specific types of EAs which are
commonly implemented in a binary representation and employ
the conventional crossover / mutation operators in order to evolve

9
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a population of solutions. In this chapter, GAs are used in order
to introduce the main concepts and associated terminology of
the evolution based methods [3]-[5]. In the contribution of this
work a tree representation is employed and new operators are
proposed in order to manipulate this representation, thus it is
called in a general term as an EA and will be explained with
details in Chapter 4 and 6.

2.1 fundamental concepts

GAs are search methods based on principles of natural selection
and genetics. GAs encode the decision variables of a search prob-
lem into finite-length strings of alphabets of certain cardinality.
The strings which are candidate solutions to the search problem
are referred to as chromosomes, the alphabets are referred to as
genes and the values of genes are called alleles. For example, in a
problem such as the traveling salesman problem, a chromosome
represents a route, and a gene may represent a city. In contrast
to traditional optimization techniques, GAs work with coding of
parameters, rather than the parameters themselves.

To evolve good solutions and to implement natural selection,
we need a measure for distinguishing good solutions from bad
solutions. The measure could be an objective function that is a
mathematical model or a computer simulation, or it can be a sub-
jective function where humans choose better solutions over worse
ones. In essence, the fitness measure must determine a candidate
solution’s relative fitness, which will subsequently be used by the
GA to guide the evolution of good solutions.

Another important concept of GAs is the notion of population.
Unlike traditional search methods, genetic algorithms rely on a
population of candidate solutions. The population size, which is
usually a user-specified parameter, is one of the important fac-
tors affecting the scalability and performance of genetic algorit-
hms. For example, small population sizes might lead to prema-
ture convergence and yield substandard solutions. On the other
hand, large population sizes lead to unnecessary expenditure of
valuable computational time.

Once the problem is encoded in a chromosomal manner and a
fitness measure for discriminating good solutions from bad ones
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has been chosen, GA can start to evolve solutions to the search
problem using the following steps:

1. Initialization: The initial population of candidate solutions is
usually generated randomly across the search space. How-
ever, domain-specific knowledge or other information can
be easily incorporated.

2. Evaluation: Once the population is initialized or an offspring
population is created, the fitness values of the candidate
solutions are evaluated.

3. Selection: Selection allocates more copies of those solutions
with higher fitness values and thus imposes the survival-of-
the-fittest mechanism on the candidate solutions.

The main idea of selection is to prefer better solutions to
worse ones, and many selection procedures have been pro-
posed to accomplish this idea, including roulette-wheel se-
lection, stochastic universal selection, ranking selection and
tournament selection, some of which are described in the
next section.

4. Recombination: Recombination combines parts of two or more
parental solutions to create new, possibly better solutions
(i.e. offspring). There are many ways of accomplishing this
(some of which are discussed in the next section), and com-
petent performance depends on a properly designed recom-
bination mechanism.

The offspring under recombination will not be identical to
any particular parent and will instead combine parental
traits in a novel manner.

5. Mutation: While recombination operates on two or more
parental chromosomes, mutation locally but randomly mod-
ifies a solution. Again, there are many variations of mu-
tation, but it usually involves one or more changes being
made to an individual’s trait or traits. In other words, muta-
tion performs a random walk in the vicinity of a candidate
solution.

6. Replacement: The offspring population created by selection,
recombination, and mutation replaces the original parental
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population. Many replacement techniques such as elitist re-
placement, generation-wise replacement and steady-state
replacement methods are used in GAs.

Steps 2–6 are repeated until a terminating condition is satisfied.

2.2 main components

In this section, some of the selection methods, recombination and
mutation operators, and convergence criteria commonly used in
GAs are described.

2.2.1 Selection

Selection procedures can be broadly classified into two classes as
follows.

fitness proportionate selection This includes methods
such as roulette wheel selection and stochastic universal se-
lection. In roulette wheel selection, each individual in the
population is assigned a roulette wheel slot sized in pro-
portion to its fitness. That is, in the biased roulette wheel,
good solutions have a larger slot size than the less fit solu-
tions. The roulette wheel is spun to obtain a reproduction
candidate.

The roulette wheel selection scheme can be implemented as
follows:

1. Evaluate the fitness, fi, of each individual in the popu-
lation,

2. Compute the probability, pi, of selecting each member
of the population: pi = fi/

∑n
j=1 fj, where n is the pop-

ulation size,

3. Calculate the cumulative probability, qi, for each indi-
vidual: qi =

∑j=1
i pj,

4. Generate a uniform random number, r ∈ (0, 1],

5. If r < q1, then select the first chromosome x1, else se-
lect the individual xi such that qi−1 < r � qi.
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Steps 4–5 are repeated n times to create n candidates in the
mating pool.

To illustrate, consider a population with five individuals
(n = 5), with the fitness values as shown in the table below.
The total fitness

∑n
j=1 fj = 28+ 18+ 14+ 9+ 26 = 95. The

probability of selecting an individual and the correspond-
ing cumulative probabilities are also shown in Table 2.1.

Table 2.1: Probability of selecting an individual and corresponding cu-
mulative probabilities

Chromosome # 1 2 3 4 5

Fitness, f 28 18 14 9 26

Probability, pi 28/95 = 0.295 0.189 0.147 0.095 0.274

Cumulative probability, qi 0.295 0.484 0.631 0.726 1.000

Now if a random number r = 0.585 is generated, then the
third chromosome is selected as q2 = 0.484 < 0.585 � q3 =

0.631.

ordinal selection This includes methods such as tournam-
ent selection, and truncation selection. In tournament se-
lection, s chromosomes are chosen at random (either with
or without replacement) and entered into a tournament
against each other. The fittest individual in the group of
k chromosomes wins the tournament and is selected as the
parent. The most widely used value of s is 2.

Using this selection scheme, n tournaments are required
to choose n individuals. In truncation selection, the top
(1/s)th of the individuals get s copies each in the mating
pool.

2.2.2 Operators

Two types of operators are commonly applied in order to make
variations in the individuals of the population (parents) and cre-
ate a new generation of individuals (offspring). These operators
are briefly introduced here.
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2.2.2.1 Recombination (crossover) operators

After selection, individuals from the mating pool are recombined
(or crossed over) to create new, hopefully better, offspring. In the
GA literature, many crossover methods have been designed and
some of them are described in this section.

In most recombination operators, two individuals are randomly
selected and are recombined with a probability pc, called the
crossover probability. That is, a uniform random number, r, is
generated and if r � pc, the two randomly selected individ-
uals undergo recombination. Otherwise, that is, if r > pc, the
two offspring are simply copies of their parents. The value of pc
can either be set experimentally, or can be set based on schema-
theorem principles.

k-point crossover One-point, and two-point crossovers are
the simplest and most widely applied crossover methods.
In one-point crossover, illustrated in Figure 2.1a, a crossover
site is selected at random over the string length, and the
alleles on one side of the site are exchanged between the
individuals.

In two-point crossover, two crossover sites are randomly
selected. The alleles between the two sites are exchanged
between the two randomly paired individuals. Two-point
crossover is also illustrated in Figure 2.1b. The concept of
one-point crossover can be extended to k-point crossover,
where k crossover points are used, rather than just one or
two.

uniform crossover Another common recombination opera-
tor is uniform crossover. In uniform crossover, illustrated
in Figure 2.2, every allele is exchanged between the a pair
of randomly selected chromosomes with a certain proba-
bility, pe, known as the swapping probability. Usually the
swapping probability value is taken to be 0.5.

2.2.2.2 Mutation operators

If we use a crossover operator, such as one-point crossover, we
may get better and better chromosomes but the problem is, if the
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(a) One point crossover

(b) Two point crossover

Figure 2.1: k-point crossover

Figure 2.2: Uniform crossover

two parents (or worse, the entire population) has the same allele
at a given gene then one-point crossover will not change that. In
other words, that gene will have the same allele forever. Mutation
is designed to overcome this problem in order to add diversity to
the population and ensure that it is possible to explore the entire
search space.

In evolutionary strategies, mutation is the primary variation/
search operator. Unlike evolutionary strategies, mutation is often
the secondary operator in GAs, performed with a low probability.
One of the most common mutations is the bit-flip mutation. In
bitwise mutation, each bit in a binary string is changed (a 0 is
converted to 1, and vice versa) with a certain probability, pm,
known as the mutation probability.

Mutation performs a random walk in the vicinity of the indi-
vidual. Other mutation operators, such as problem-specific ones,
can also be developed and are often used in the literature.

2.2.3 Replacement

Once the new offspring solutions are created using crossover and
mutation, we need to introduce them into the parental popula-
tion. There are many ways we can approach this. Bear in mind
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that the parent chromosomes have already been selected accord-
ing to their fitness, so we are hoping that the children (which
includes parents which did not undergo crossover) are among
the fittest in the population and so we would hope that the pop-
ulation will gradually, on average, increase its fitness.

Some of the most common replacement techniques are out-
lined below.

delete-all This technique deletes all the members of the cur-
rent population and replaces them with the same number
of chromosomes that have just been created. Canonical GA
uses this type of replacement.

This is probably the most common technique and will be
the technique of choice for most people due to its relative
ease of implementation. It is also parameter-free, which is
not the case for some other methods.

steady-state This technique deletes n old members and re-
places them with n new members. The number to delete
and replace, n, at any one time is a parameter to this dele-
tion technique. Another consideration for this technique is
deciding which members to delete from the current popu-
lation.

Do you delete the worst individuals, pick them at random
or delete the chromosomes that you used as parents? Again,
this is a parameter to this technique.

steady-state-no-duplicates This is the same as the steady-
state technique but the algorithm checks that no duplicate
chromosomes are added to the population. This adds to
the computational overhead but can mean that more of the
search space is explored.

2.2.4 Convergence

Generally, there are two methods for evaluating the convergence
of GA [6]. Either one of these methods or their combination could
be used to stop the evolution process. They include:
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passive condition This is defined as stopping the evolution
after passing a pre-defined maximum number of evalua-
tions,

active condition If changes of the average fitness of the in-
dividuals in the population becomes less than a pre-defined
precision value, the process is considered to be converged
and stops.

Commonly, Active condition is more reliable than Passive con-
dition. However, obtaining a minimal distance to the global op-
timum is not guaranteed. Furthermore, if the precision value is
not properly tuned, GA might go to a premature convergence.
Another solution is using a combination of Active and Passive
conditions. It means that Active condition could be checked un-
til n evaluations. If it is fulfilled, GA stops. Otherwise, GA will
continue until the pre-defined maximum number of evaluations
is reached (Passive condition).

2.3 number of iterations vs number of evaluations

In order to avoid ambiguity, the difference between the number
of iterations and the number of evaluations in GA is clarified. In
a general genetic algorithm with population size n, the number
of evaluations is equal to the number of iterations times the pop-
ulation size. This is because in each iteration, n individuals are
created and need to be evaluated.

The computational burden of GA is proportional to the num-
ber of required evaluations, especially when evaluating the objec-
tive function is time-consuming.



3
N E T W O R K M O D E L I N G A N D E VA L U AT I O N

The method used for modeling and evaluation of the network is
presented in this chapter. Graph Theory with some adaptations
to the electricity network concepts has been employed for the
modeling of distribution network.

3.1 graph modeling concepts

A graph G is a pair (N(G),E(G)), where N(G) is a finite set of
elements called vertices and E(G) is a finite set of elements called
edges. A graph without loops is a tree. One of the tree vertices is
usually named the root that is the vertex where the tree initiates.
Main chain of an edge is the set of edges that connect the edge
to the source on a unique path in the tree. More details on the
fundamentals of the Graph Theory are available in [38].

Some adaptations of the graph concepts to the electricity net-
work terms are:

i) using term node instead of vertex,

ii) using term branch instead of edge,

iii) using term source instead of root, and

iv) feeder concept that is a set formed by a branch directly con-
nected to a source and all of its downstream branches.

3.2 network modeling

Distribution network is modeled like a tree using the Graph mod-
eling concepts. Consequently, a radial distribution network will
resemble an inverted tree whose root is located in the top part
and serves as the source of electrical energy. A general repre-
sentation of a radial MV distribution network is illustrated in
Figure 3.1.

18
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Figure 3.1: A general representation of MV distribution network

The main focus of this work is on MV (Medium-Voltage) dis-
tribution networks with voltage levels 12.66kV, 11kV, and 11.4kV.
MV distribution networks commonly have the following attributes:

a) are commonly operated under radial configuration for ease
of protection and fault location,

b) have almost balanced loads.

Single line diagram has been used in order to model the net-
work which has an acceptable accuracy in balanced loading con-
ditions. Nonetheless, the proposed method can be easily extended
to a 3Φ unbalanced network model.

3.2.1 Branches

In the model, branches are models of the lines of the network.
They connect two nodes called sending and receiving nodes. This
naming is due to the direction of energy flow in the branch from
the sending toward the receiving node.

3.2.2 Switches

Two types of switches have been considered on branches:

i) sectionalizing switch that is a normally closed switch, and

ii) tie switch that is a normally open switch with both end-
nodes as energized.

Normally open switches with one or two de-energized end-
nodes isolate a part of the network or are located in isolated parts,
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respectively, and are out of the scope of the proposed method.
Sectionalizing and tie switches are shown by bold and dashed
lines in Figure 3.1, respectively.

Vicinity set defined for each sectionalizing switch is the set of
tie switches that are directly connected to the receiving node of
the sectionalizing switch.

3.2.3 Loops

Two types of loops are considered in this work:

i) simple loop that is formed by branches of a single tree,

ii) extended loop that is formed by branches of two different
trees assuming the sources to be connected to infinite bus.

A fundamental loop, that can be a simple or an extended loop, is
assigned to each tie switch. It is defined as the set of sectionaliz-
ing switches that connect both ends of the tie switch together or
to the source(s). Therefore, each tie switch opens a fundamental
loop. The number of fundamental loops is calculated using the
following equation:

Nfl = Nbr −Nno +Nsrc (3.1)

where, Nfl,Nbr,Nno, and Nsrc are the number of fundamental
loops, branches, nodes, and sources, respectively.

3.2.4 Loads

Loads are connected to the receiving nodes of the branches. In
MV distribution networks, they are mainly related to the MV-
LV distribution substations or large industrial customers. An ad-
vanced modeling of the loads has been employed [53]. It consid-
ers each load as a composition of three contributions: a) constant
power, b) constant current, and c) constant impedance, using the
following formulation:

P = P0 ∗ (a0 + a1V + a2V
2)

Q = Q0 ∗ (b0 + b1V + b2V
2)

(3.2)
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and

a0 + a1 + a2 = 1

b0 + b1 + b2 = 1

where,
P and Q are active and reactive power consumptions of the load
in the actual voltage, respectively,
P0 and Q0 are active and reactive power consumptions of the
load in the nominal voltage (V0), respectively,
(a0,b0), (a1,b1), and (a2,b2) are the coefficients related to con-
stant power, constant current, and constant impedance contribu-
tions of each load, respectively. Note that these coefficients are
typically set to (1, 1), (0, 0), and (0, 0), respectively, for all loads
in this work modeling them as constant power.

In this modeling of the loads, two types of data are required
for completely identifying each load:

1. P0 and Q0 measured at the node location in the nominal
voltage that are noted as network loading data in app. Ta-
ble A.4-A.6,

2. load’s composition.

The first part is obtained using network loading data recorders.
For the second part, a test has to be performed on the load by
small variations of the voltage in the substation in the permissible
range, then recording the changes of the P and Q consumptions,
and finally interpolation of the results.

3.3 network evaluation

Each candidate configuration has to be evaluated using a power
flow analysis. An efficient power flow method called sweep me-
thod has been employed [55] that is a fast and reliable branch-
based method capable of compensation for loops and PV nodes.

3.3.1 Sweep method

This method is implemented in two sweeps:



3.3 network evaluation 22

i) backward sweep: to sum up the loads’ currents from the
last to the first layer1,

ii) forward sweep: to update the nodal voltages from the first
to the last layer.

It starts with a flat assumption for nodal voltages (in each
feeder, equal to their source voltage) and calculates current injec-
tion in each node at the beginning and after each nodal voltage
update. When the difference between the injected apparent pow-
ers in two successive iterations becomes less than a predefined
precision value for all nodes (1e-15 pu), the method is consid-
ered as converged.

Based on the experiments, the sweep method converges very
fast, commonly in less than 3 iterations when no loops and PV
nodes are involved. Santos el al. [24] claim that for the EA ap-
plications, merely a single iteration of the sweep method is ad-
equate that makes this power flow method even faster. In this
work, it runs until convergence.

In addition, this method has potential of parallel processing
such as calculation of nodal current injections for all nodes or
performing the sweeps for branches of the same layer, in paral-
lel [55]. Furthermore, it is stable and reliable for power flow anal-
ysis of ill-conditioned (high R/X ratio) distribution networks.

On the other hand, sweep method needs to inverse a n ∗ n
matrix when analyzing a configuration with n loops. Although
the inversion is performed just once at the beginning, it could
be time-consuming when the network is heavily looped. Fortu-
nately, this is not troublesome for the proposed method, since it
exclusively produces radial configurations.

1 Layer index of a branch is equal to the number of transitions required to
traverse from the branch (including the branch) to the source through a unique
path in the tree.
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T H E P R O P O S E D M E T H O D

The main contribution of this work for the network reconfigu-
ration problem is to propose an extension and redefinition of
PAO/CAO operators. The extension enables them to address
the inside-feeder reconfiguration of densely tied urban distribu-
tion networks in addition to the inter-feeder load transfer, while
retaining their merit on exclusively producing radial configura-
tions. The new set of operators is called PG (Pruning-Grafting)
operators and includes Extended-PAO (EPAO) and Extended-
CAO (ECAO).

In addition, representation of the network has been upgraded
from a numerical node-based modeling [24] to an object-oriented
branch-based modeling. This representation can be used as it is
for more complicated network operation applications, such as
service restoration. This allows solving several problems associ-
ated to distribution networks, simultaneously and with the same
framework. Moreover, the new modeling is compatible with the
employed branch-based power flow method.

4.1 representation

A modeling that mainly stores data in branches of the network,
called branch-based modeling, is employed in order to represent
the network. In this modeling, a network is represented as a set of
one or more trees. Each tree is composed of the feeders sharing a
same source. Impedances, connection data of branches, and links
to the sending and receiving nodes are stored as attributes of the
branches in the tree.

There is a switch associated to each branch. Status of the switch
is also stored as Enable attribute in the corresponding branch. In
addition, information about transformers, loads, generators, and
compensators are stored and linked to the sending and receiving
nodes of the branches.

24
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The employed branch-based tree modeling offers a natural rep-
resentation of the actual power network and allows for the use
of graph concepts in the optimization of its configuration. Some
additional benefits of this modeling are:

• An easy access through each branch to the main chain and
all of its downstream branches. This facilitates application
of the same network modeling to more sophisticated anal-
yses necessary for other optimization tasks related to the
operation of a network, such as service restoration;

• Providing a compatible model with the adopted branch-
based power flow method that is the evaluation core of the
proposed method, introduced in section 3.3;

The evolutionary algorithm evolves population(s) of individ-
uals. In this work, an individual is a network, which phenotype
representation is given by the branch-based modeling described
above. The genotype representation of the individual, that is the
representation that the proposed operators manipulate to create
new individuals, is a pair of lists of switches that are candidates
for pruning and grafting named p candidates and g candidates.

These lists are constructed dynamically from status of the sw-
itches after parsing the branch-based representation of the net-
work. In the following, a set of two operators is described which
manipulate the genotype representation and create new individ-
uals in the evolution process. Each operator implements a differ-
ent definition of p and g candidates. Details of how these lists are
created are as follows.

4.2 operators

The proposed set of operators called Pruning-Grafting (PG) oper-
ators includes Extended-PAO (EPAO) and Extended-CAO (ECAO).
These operators are an extension and redefinition of the node-
based PAO/CAO operators introduced by Santos et al. [24] that
have been only applicable to inter-feeder load transfer.

The extension is performed by adopting the concept of funda-
mental loops and enables the operators to perform inside-feeder
reconfiguration as well as inter-feeder load transfer, offering a
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wider application in the network operation. Therefore, the opti-
mization process can find an integrated solution to the network
reconfiguration problem in a single run.

In the same time, PG operators maintain the merit of PAO/-
CAO operators on exclusively producing radial configurations.
PG operators guarantee this by selecting both closing/opening
switches from a same fundamental loop. Therefore, a single loop
is created and opened in each application. On the other hand,
PAO/CAO operators perform this by selecting their candidates
from different feeders [24], which has limited their application to
merely inter-feeder load transfer.

By maintaining the radial configuration of the individuals, che-
cking the radiality of each newly created individual and possible
correctional actions are not necessary anymore, resulting in the
acceleration of the whole process. Details on the implementation
of PG operators are presented here.

Figure 4.1 illustrates a graphical representation of pruning-
grafting operations on a natural tree.

Figure 4.1: A graphical representation of pruning-grafting operations

4.2.1 EPAO operator

This operator prunes a part of a feeder (thus creates a sub-feeder)
and grafts it to a feeder. The pruned node remains the root of the
sub-feeder. In addition, the destination feeder can be the same
as the source feeder, which is a new feature compared to PAO
operator.

EPAO requires two switches for implementation:

1. a pruning switch (p) to be opened,

2. a grafting switch (g) to be closed.
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By new definition, a p candidate is a sectionalizing switch
which has at least one vicinity in the same fundamental loop.
For each p, g candidates are its vicinities that are in the same
fundamental loops with p. Application of EPAO results in a mi-
nor change in the network’s configuration, since:

i) by definition, p and g candidates are directly connected to
each other, thus the sub-feeder is moved to a nearby loca-
tion,

ii) since the root of the sub-feeder does not change, direction
of energy does not alter in any branch.

(a) A general representation of the network

(b) For EPAO

(c) For ECAO

Figure 4.2: Selection of p and g candidates

4.2.2 ECAO operator

This operator prunes a part of a feeder (thus creates a sub-feeder)
and grafts it to a feeder, similar to the previous operator. How-
ever for ECAO, the root of the sub-feeder changes before being
grafted. To imagine, it is similar to spinning the sub-feeder be-
fore grafting. Again, the destination feeder can be the same as
the source feeder, which is a new feature compared to CAO op-
erator.
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ECAO requires a p switch and a g switch for implementa-
tion, too. However this time, a p candidate is a sectionalizing
switch which has another sectionalizing switch x in its down-
stream with at least one vicinity in the same fundamental loop
with p. For each p, g candidates are those vicinities of x that are
in the same fundamental loops with p. Application of ECAO re-
sults in a more substantial change in the network’s configuration,
since:

i) by definition, p and g candidates are located far from each
other, thus the sub-feeder is moved to a distant location,

ii) since the root of the sub-feeder changes, direction of energy
alters in some branches that follows new requirements for
the network operation such as re-setting the directional pro-
tection relays.

4.2.3 Selecting p and g candidates

In order to create lists of p and g candidates for EPAO and ECAO,
a set of True / False questions are asked from the branches. In
other words, a set of filters are created which first, detect section-
alizing and tie switches (bold and dashed lines in Figure 4.2a,
respectively) by checking their Enable attributes.

Then, a subset of sectionalizing switches is selected as p candi-
dates and subsets of tie switches are selected as g candidates for
each p candidate using the criteria discussed in the previous two
subsections and illustrated in Figure 4.2b and 4.2c for EPAO and
ECAO, respectively. In these figures, T represents a True and F

represents a False response of the branches.
A subroutine in the network setup function creates the lists of

network’s p and g candidates when the individual is being cre-
ated. This is simply performed due to the easy and broad access
to downstream of all branches, as an advantage of the employed
object-oriented branch-based modeling. This knowledge cannot
be easily obtained by the numerical node-based representation
in [24].

In order to run an EPAO or ECAO operation, a p is selected
randomly among the network’s p candidates and one of its g can-
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didates is selected, randomly. Then, p is opened and g is closed,
as illustrated in Figure 4.3.

(a) Using EPAO

(b) Using ECAO

Figure 4.3: Steps of network reconfiguration using EPAO and ECAO
operators

4.3 feasibility

Feasibility concept in the network reconfiguration problem is de-
fined as follows. A feasible configuration has to fulfill two sets of
constraints, simultaneously:

1. Structural constraints: includes maintaining the radial struc-
ture of the network and serving all nodes. For this set, Lavo-
rato et al. [54] prove that two conditions have to be fulfilled:

i) the number of open switches has to be equal to the
number of fundamental loops in Eq. 3.1,

ii) all nodes have to be served.

According to [54], fulfillment of the first condition is neces-
sary but not sufficient for this constraint and both should
hold, simultaneously.

2. Operational constraints: includes transformer and branch lo-
ading constraints and nodal voltage margins.

Individuals who violate one or more constraints are unfeasible
and those who do not violate any constraint are feasible.
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For EAs using Conventional, Enhanced Conventional, and Inte-
ger operators, the unfeasible individuals who violate Structural
constraints are discarded. This is performed in order to avoid
running the power flow method for these individuals since if
they have loops, this could be sometimes very time-consuming,
as discussed in section 3.3. PG and PAO/CAO operators never
produce individuals who violate Structural constraints.

4.4 population

EAs using PG, PAO/CAO, Conventional, and Enhanced Conven-
tional operators have two subpopulations (SPs): feasible SP and
unfeasible SP. Unfeasible individuals who violate Operational
constraints try to enter the unfeasible SP. A SP of these individ-
uals is maintained in order to diminish the possibility of being
trapped in local optima. On the other hand, each individual in
the feasible SP is a potential solution to the reconfiguration prob-
lem and the final solution is the best individual in this SP at the
last evaluation.

According to [37], in EA using Integer operators, unfeasible
individuals who violate Operational constraints and feasible in-
dividuals evolve in a single population.

4.5 objective function

In the network reconfiguration problem, active power loss of the
network is considered as the objective function which has to be
minimized through evolution of the network configuration.

After running the power flow method as discussed in section 3.3,
parameters of the network including currents of all branches and
voltages of all nodes are identified. These data are used to com-
pute the sending and receiving active powers of each branch. The
difference between these two powers is the active power loss in
the branch. The total active power loss of the network is the sum-
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mation of the active power losses in all branches, as calculated
using the following equation:

Ptotal =

nb∑

i=1

(PS
i − PR

i ) (4.1)

where PS
i and PR

i are the sending and the receiving active powers
in branch i, and nb is the total number of branches.

This formula assumes a lumped load modeling in which loads
are compact energy sinks at nodes. This modeling inflates the
calculated power loss compared to a distributed load model [56].
However, due to the focus of this work on MV distribution net-
works that commonly have lumped loads, this modeling still re-
mains accurate.

For the unfeasible individuals, the objective function in Equa-
tion 4.1 is multiplied by a penalty term in order to favor those
who less violate Operational constraints:

Penalty = 10+w1 ∗ TOL+w2 ∗BOL+w3 ∗ VV (4.2)

where:
TOL: transformer overloading index that is the summation of
overload apparent power |SOL| in all overloaded transformers;
BOL: branch overloading index that is the summation of over-
load current modulus |IOL| in all overloaded branches;
VV : nodal voltage violation index that is the summation of abso-
lute differences of modulus of the nodal voltages |Vn| and high
(|Vmax| = 1.1pu) or low (|Vmin| = 0.9pu) margins in over-voltage
and under-voltage nodes, respectively;

Note, TOL, BOL, and VV are normalized respect to their max-
imum values in order to have equal contributions in the penal-
ization. The maximum values are updated in each evaluation. In
addition, using the weights wi = 0.33, i = 1, 2, 3, the maximum
value of their summation is bounded to 1.

The constant number is added to the Penalty term in order to
penalize unfeasible individuals at least 10 times, even when they
violate Operational constraints very lightly. This is vital for EA
using Integer operators in order to differentiate between feasible
and unfeasible individuals in a single population.
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Since the individuals who violate Structural constraints are dis-
carded in EAs using Conventional, Enhanced Conventional, and
Integer operators and they are never produced in EAs using PG
and PAO/CAO operators, no term is considered in Penalty re-
garding Structural constraints.

4.6 ea implementations

In order to evaluate performance of the proposed method, five
EAs have been implemented using:

i) PG operators,

ii) the original PAO/CAO operators,

iii) Conventional operators,

iv) Enhanced Conventional operators, and

v) Integer operators [37].

Details on the implementation of five EAs are as follows.

4.6.1 EA using PG operators

This EA performs a single evaluation per iteration. It means that
a parent is selected, one of the PG operators is randomly selected
and applied to the parent, and an offspring is created in each
iteration. Main steps of the EA are presented here.

step 1 : initialization The initial configuration is added to
the proper SP as the first individual.

step 2 : parent selection In each iteration, a SP is selected
randomly and one of its individuals is selected as parent
using tournament selection method, where two randomly
selected individuals compete and the winner (the individ-
ual with less objective value) becomes the parent.

Obviously, when a SP is empty, the other is selected deter-
ministically, and when a selected SP has only one individ-
ual, it will be the parent.



4.6 ea implementations 33

step 3 : variation One of the PG operators is selected ran-
domly and applied to the parent in order to create an off-
spring. In order to determine the probability of selecting
one of the PG operators, a fixed or adaptive probability ad-
justment strategies can be used.

In the fixed strategy, the probability is tuned and remains
constant during the evaluations. In the adaptive strategy,
evolution process starts with an equal probability (of 50%)
for both operators. Then, if one of them creates an offspring
that survives, its probability increases and other’s decreases
by a step (for example 1%) [24]. Both strategies have been
examined and one is selected in a tuning process of the
parameters.

step 4 : survival selection The created offspring is evalu-
ated using the method discussed in section 3.3. Then, it
tries to enter the proper SP. If the SP is not full, it enters
without any comparison. However when the SP is full, if
the new individual is better than the worst individual of
the SP, it replaces the worst. Otherwise, the new individual
is discarded.

Steps 2 to 4 are repeated until a predefined number of eval-
uations are performed. Then, the best individual in the feasi-
ble SP at the last evaluation is introduced as the final solution.
Flowchart of the EA using PG operators is presented in Fig-
ure 4.4.

4.6.2 EA using PAO/CAO operators

In order to evaluate the benefits of the extension applied to the
original PAO/CAO operators, they are also implemented and
applied to the same problem with the same objective function,
steps, and the number of evaluations as the previous EA.

4.6.3 EA using Conventional operators

In this EA, a binary representation is used in order to encode the
status of switches in which, each 1 represents a closed and each
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Figure 4.4: Flowchart of the EA using PG operators

0 represents an open switch. The resulting chromosome has the
length n, equal to the total number of switches. The conventional
EA operators including single-point crossover and bit-flipping
mutation are used for this implementation. Main steps of the EA
are as follows.

step 1 : initialization This EA needs two initial individuals.
The current configuration is used as the first individual.
Then, the mutation operator is applied to this individual
in order to create a second individual. These individuals
enter the proper SPs.

step 2 : parent selection For selecting each of two required
parents, a SP is selected randomly and one of its individuals
is selected by the tournament method.

step 3 : variation Single-point crossover operator is applied
to the parents with a probability Pc. It selects an equal point
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in the range of 2 to n − 1 for both parent chromosomes.
Then, the bits of parents are exchanged from the selected
point to the end of chromosomes in order to create two
offspring.

Finally, bit-flipping mutation operator is applied with a
probability Pm to every bit of each offspring in order to
toggle their values.

step 4 : survival selection One of the offspring is selected
randomly and passes the same process as Step 4 of the EAs
using PG and PAO/CAO operators.

The evaluation of both offspring is avoided in order to main-
tain an equal number of evaluations compared to the pre-
vious implementations (single evaluation per iteration) and
to have a fair comparison.

Steps 2 to 4 are repeated until a predefined number of evalua-
tions are performed. Then, the best individual in the feasible SP
at the last evaluation is introduced as the final solution.

4.6.4 EA using Enhanced Conventional operators

In this EA, the conventional crossover/mutation operators are
enhanced in order to adapt the requirements of the network re-
configuration problem. The enhancement aims to maintain a con-
stant number of open switches (zeros) in the created offspring
that has to be equal to the number of fundamental loops in Equa-
tion 3.1.

This technique tries to keep the search close to the feasible
space, since the new individuals will have at least one feature
in common with the feasible ones: the number of open switches.
However, it cannot guarantee the fulfillment of Structural constr-
aints, based on the discussions of section 3.2, since the second
condition (serving all nodes) is not considered yet. Nonetheless,
the size of the search space is significantly reduced from 2n to
(
n
m

)
= n!

m!(n−m)! where n is the total number of switches and m is
the number of open switches.

The conventional single-point crossover is enhanced to a point-
to-point crossover that receives the offspring’s each bit from one
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of the parents, randomly. In addition, a masking technique is
applied to the crossover operator. This is because if all bits of
both offspring are initially set to 1, and zeros randomly come
from two parents until the required number of zeros is fulfilled,
the resulting individuals might have bits that do not exist in any
of the parents. This is a crossover that sometimes could have a
sort of mutation inside called a more explorative crossover, as
illustrated in Figure 4.5. In order to have a pure and controllable
crossover, it is masked before start.

Figure 4.5: A more explorative crossover

For this, first, all bits of both offspring are initially set to 1,
equal bits of two parents are copied directly to both offspring,
and a mask is closed at these locations, as shown in Figure 4.6.
Then, for each offspring, the first parent is used in order to fill
the open-mask locations with a permutation and a predefined
probability Pfp−c.

Figure 4.6: Masking technique

Finally, if the number of zeros in the offspring is not still en-
ough, the second parent is used to fill the open-mask non-zero
locations with a permutation but without considering any prob-
ability this time.
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For enhancing the mutation operator, after each bit change, a
random different bit is toggled. For instance, when a 0 is changed
to 1 randomly, a random different 1 is selected and is changed to
0 in order to keep a constant number of zeros.

The same steps as the implementation of Conventional opera-
tors are used for this EA.

4.6.5 EA using Integer operators

The method in [37] employs an integer representation in order to
encode the network using only its open switches. This helps to
reduce length of the chromosomes in EA. For the EA operators, a
single-point crossover and a directed mutation is utilized (Integer
operators).

For the crossover operator, a single equal point is selected in
both parent chromosomes with a probability (Pc) and open sw-
itches in two chromosomes are exchanged after this point in or-
der to create two offspring. The crossover operator does not nec-
essarily produce individuals who fulfill Structural constraints.

The mutation operator changes one or more open switches
in the chromosome of each offspring with a probability (Pm).
Each selected open switch for mutation is exchanged with a
closed switch in the same fundamental loop. If the number of
changes in each chromosome is more than one, fulfillment of
Structural constraints for the resulting individual is not guaran-
teed again [37].



5
T E S T R E S U LT S

The proposed method has been implemented using Visual C++
programming language on an Intel Pentium IV 3.4GHz desktop
PC.

5.1 test cases

Tests have been performed on the following MV distribution net-
works:

case i A network of PG&E company [57] with 70 nodes, 74
branches composed of a single feeder, operated in 12.66kV.
It has 5 inside-feeder and no inter-feeder tie lines;

case ii A hypothetic network [58] with 70 nodes, 76 branches
composed of 4 feeders, operated in 11kV. It has 3 inside-
feeder and 5 inter-feeder tie lines;

case iii A variation of a Taiwan Power Company’s network [59]
with 94 nodes, 103 branches, operated in 11.4kV.

By the variation, seven new tie lines are added in order
to model a densely tied urban distribution network. These
new lines are located between nodes 4-9, 19-23, 65-70, 87-
92, 19-26, 55-59, and 75-80 called branches number 97 to
103, respectively. Consequently, it has 8 inside-feeder and
12 inter-feeder tie lines;

All cases have automatic switches on all branches. Base power
has been 5MVA. Detailed data regarding the test cases are pre-
sented in Appendix A. The proposed method’s performance has
been compared to the original PAO/CAO, Conventional, Enhan-
ced Conventional, and Integer operators.

38
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5.2 parameter tuning

Before commencing the experiments, settings of the EAs in five
implementations are tuned and the settings used for generating
the results are presented in Table 5.1.

For tuning the population sizes in EAs using PG, PAO/CAO,
Conventional, and Enhanced Conventional operators, 28 experi-
ments with sizes {1, 2, ..., 10, 15, 20, ..., 100} have been performed
using 20000 evaluations and 30 trials for different seeds of the
random number generator. For EA using Integer operators, only
even population sizes are acceptable [37]. Thus, 23 experiments
with sizes {2, 4, 6, 8, 10, 14, 20, 24, ..., 100} are performed.

For tuning the probability of selecting EPAO or ECAO opera-
tors, 12 experiments are performed using the settings {0, 10, 20,
..., 100} in addition to checking the adaptive probability, as in-
troduced in subsection 4.6.1, where the fixed probabilities with
different values had the best performance in terms of speed and
quality of results in all test cases. The same procedure is applied
to tuning the probability of selecting PAO or CAO operators.

Note that EA using PG operators has less tunable parameters
compared to EAs using Conventional, Enhanced Conventional,
and Integer operators, which shows the lower tuning require-
ment of the proposed method. In addition, based on the exper-
iments, PG operators are robust to a wide range of parameter
settings. For instance, when the population size setting varies in
Case III, all simulations converge to a single solution and only the
convergence speed is different. Furthermore, if a minor compro-
mise is accepted, adaptive EPAO or ECAO selection probability
can be considered for all test cases which in turn reduces one
tunable parameter of the proposed method.

For tuning the mutation rates, 11 experiments are performed
around 1/N by ±25% changes with the steps of 5%, where N is
equal to:

i) total number of switches for EAs using Conventional and
Enhanced Conventional operators,

ii) number of open switches in the initial configuration for EA
using Integer operators.
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Crossover probabilities for EAs using Conventional, Enhanced
Conventional, and Integer operators as well as the first parent
Crossover probability for EA using Enhanced Conventional op-
erators are tuned by 11 experiments using settings {0, 10, 20, ...,
100}.

Table 5.1: Tuned settings of EA implementations

Method Case
Settings

Probability Pop.

Title Value Size

PG (proposed)

Case I EPAO (fixed) 40% 85
ECAO (fixed) 60%

Case II EPAO (fixed) 30% 75
ECAO (fixed) 70%

Case III EPAO (fixed) 100% 5
ECAO (fixed) 0%

PAO/CAO

Case I PAO (fixed) 50% 5
CAO (fixed) 50%

Case II PAO (fixed) 80% 5
CAO (fixed) 20%

Case III PAO (fixed) 100% 85
CAO (fixed) 0%

Conventional

Case I Crossover (Pc) 40% 40
Mutation (Pm) 1.49%

Case II Crossover (Pc) 70% 80
Mutation (Pm) 1.58%

Case III Crossover (Pc) 50% 20
Mutation (Pm) 1.21%

Enhanced Conventional

Case I
Crossover (Pc) 40%

65First parent crossover (Pfp−c) 70%

Mutation (Pm) 1.69%

Case II
Crossover (Pc) 90%

50First parent crossover (Pfp−c) 50%

Mutation (Pm) 1.39%

Case III
Crossover (Pc) 50%

50First parent crossover (Pfp−c) 50%

Mutation (Pm) 1.12%

Integer

Case I Crossover (Pc) 50% 50
Mutation (Pm) 17%

Case II Crossover (Pc) 40% 50
Mutation (Pm) 13.75%

Case III Crossover (Pc) 50% 14
Mutation (Pm) 3.75%

5.3 experiments

Tests have been performed for 50000 evaluations and 30 trials.
The average active power losses of the best individuals in each
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evaluation are presented in Figure 5.1, using logarithmic x-axis.
A numerical summary of the final results in 30 trials and their
production frequency are presented in Table 5.2.

In addition, a statistical report regarding the average number
of evaluations required for convergence of five methods in 30
trials as well as their average response time (the average number
of evaluations for convergence multiplied by the average time
per evaluation) in three test cases are presented in Table 5.3.

5.3.1 Convergence speed and computational time

For all cases in Figure 5.1, Conventional operators present a poor
convergence response. They require more than 10000 evaluations
to converge, becoming worse when complexity and size of the
network increases. In Case II and III, the large diversity among
the final results produced by EA using these operators even after
50000 evaluations shows their convergence difficulty, as reported
in Table 5.2.

Enhanced Conventional operators try to mitigate the conver-
gence problem of Conventional operators. However, they still
converge slowly, especially in the largest test case (Case III) and
they are much too slower than PG operators in all test cases (see
Figure 5.1 and Table 5.3).

Integer operators have a better convergence behavior than Con-
ventional and Enhanced Conventional operators. However, the
average number of required evaluations for their convergence is
more than PG operators in all cases (see Table 5.3).

PAO/CAO operators are incapable of reconfiguring the net-
work in Case I, as shown in Figure 5.1a, since they are limited
to inter-feeder load transfer and this case has a single feeder. In
Case II, PAO/CAO operators exhibit a better convergence speed
than PG operators owing to their limitation that results in less
switching options.

PG operators extend the application of PAO/CAO operators to
inside-feeder reconfiguration as well as inter-feeder load transfer
and by an excellent behavior, fast and successfully converge in
all cases.

A reason for slow convergence rate of Conventional and Enhan-
ced Conventional operators is the larger percentage of unfeasible
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Figure 5.1: Performance of EAs using different operators
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Table 5.2: Statistical results at final evaluation in 30 trials

Case
Method

PG PAO/CAO Conv. Enh. Conv. Integer

Result Fr. Result Fr. Result Fr. Result Fr. Result Fr.

Case I
20.54 27 20.85 30 20.54 3 20.54 12 20.54 30

20.58 3 - - 20.58 23 20.58 18 - -

- - - - 20.59 4 - - - -

Case II

298.88 30 299.06 30 298.88 5 298.88 23 298.88 25

- - - - 298.95 2 301.71 7 301.71 5

- - - - 299.06 3 - - - -

- - - - 299.33 1 - - - -

- - - - 299.54 1 - - - -

- - - - 301.04 2 - - - -

- - - - 301.2 1 - - - -

- - - - 301.71 7 - - - -

- - - - 301.89 1 - - - -

- - - - 302.36 1 - - - -

- - - - 302.37 1 - - - -

- - - - 303.87 2 - - - -

- - - - 304.46 2 - - - -

- - - - 305.28 1 - - - -

Case III

384.44 30 430.77 2 384.44 1 384.44 29 384.44 30

- - 430.82 5 384.51 1 384.51 1 - -

- - 431.07 2 385.33 1 - - - -

- - 431.24 2 386.14 1 - - - -

- - 431.29 12 387.41 2 - - - -

- - 432.3 2 388.11 1 - - - -

- - 432.77 1 388.67 1 - - - -

- - 445.14 3 388.95 1 - - - -

- - 482.64 1 389.02 1 - - - -

- - - - 390.41 1 - - - -

- - - - 391.81 1 - - - -

- - - - 393.13 1 - - - -

- - - - 393.63 1 - - - -

- - - - 396.55 1 - - - -

- - - - 402.43 1 - - - -

- - - - 403.53 1 - - - -

- - - - 406.9 1 - - - -

- - - - 412.92 1 - - - -

- - - - 416.35 1 - - - -

- - - - 418.4 1 - - - -

- - - - 421.51 2 - - - -

- - - - 423.93 1 - - - -

- - - - 430.74 1 - - - -

- - - - 430.93 1 - - - -

- - - - 430.99 1 - - - -

- - - - 432.52 1 - - - -

- - - - 436.25 1 - - - -

- - - - 454.4 1 - - - -

individuals that are created by these operators compared to the
other operators, especially in Case III as the largest network, as
reported in Table 5.4. In this table, for each set of operators, three
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Table 5.3: The average convergence and response time

Case Method

PG PAO/CAO Conv. Enh. Conv. Integer

Case I Required evaluations 1062 - 11117 6114 4643

Response time [Sec] 1.13 - 5.70 3.98 4.25

Case II Required evaluations 2428 166 35089 7965 4591

Response time [Sec] 2.63 0.17 17.45 5.09 4.32

Case III Required evaluations 548 4747 41803 23232 3180

Response time [Sec] 0.68 5.85 27.80 17.06 3.37

Table 5.4: Produced unfeasible individuals in 50000 evaluations

Method
Case

Case I Case II Case III

Absolute Relative Absolute Relative Absolute Relative

PG
Str. 0 0% 0 0% 0 0%

Op. 38521 77.0% 41237 82.5% 34182 68.4%

Unfeas. 38521 77.0% 41237 82.5% 34182 68.4%

PAO/CAO
Str. - - 0 0% 0 0%

Op. - - 35153 70.3% 36448 72.9%

Unfeas. - - 35153 70.3% 36448 72.9%

Conv.
Str. 36066 72.1% 36050 72.1% 38674 77.3%

Op. 7059 14.1% 7620 15.2% 5776 11.6%

Unfeas. 43124 86.2% 43669 87.3% 44449 88.9%

Enh. Conv.
Str. 28863 57.7% 27832 55.7% 34867 69.7%

Op. 14210 28.4% 13279 26.6% 8513 17.0%

Unfeas. 43072 86.1% 41110 82.2% 43379 86.8%

Integer
Str. 5443 10.9% 4756 9.5% 6523 13.0%

Op. 20014 40.0% 27214 54.4% 13726 27.5%

Unfeas. 25457 50.9% 31970 63.9% 20241 40.5%

rows appear regarding the individuals who violate Structural
constraints, Operational constraints, and the total unfeasible in-
dividuals, respectively.

Note that for EAs using Conventional, Enhanced Conventional,
and Integer operators, individuals who violate Structural constr-
aints are discarded before running the power flow method. Con-
sequently, fulfillment of Operational constraints is not examined
for these individuals and thus, not reported in Table 5.4. There-
fore, in the “Op” rows for these operators, only number and per-
centage of the individuals who fulfill Structural constraints and
violate Operational constraints are reported.

Producing the individuals who violate Structural constraints
has postponed the convergence and the final response of EAs
using Conventional, Enhanced Conventional, and Integer opera-
tors. This is because some moves in the search space are wasted
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for exploring the areas that will not directly produce a solution
to the problem. In other words, creating and then discarding the
individuals who violate Structural constraints in some moves de-
celerates the convergence of these methods, as reported in Ta-
ble 5.3.

On the other hand, PG operators exclusively produce individ-
uals who fulfill Structural constraints, as discussed in section 4.2
and could be observed in Table 5.4. This leads to the better con-
vergence speed and response time of PG operators compared to
Conventional, Enhanced Conventional, and Integer operators.

Low time requirement of PG operators especially in the largest
test case (Case III) and their almost flat time response for all
cases in Table 5.3 suggests that they will scale up better on more
complex and larger urban distribution networks.

5.3.2 Quality of results

In Case I, PG and Integer operators produce very close aver-
age results (see Figure 5.1a). Although Integer operators produce
slightly better average results in this case, the difference in terms
of kilowatts is insignificant. Besides, they require about 4 times
more number of evaluations to converge compared to PG opera-
tors.

Conventional and Enhanced Conventional operators produce
average results that are slightly worse than PG and Integer oper-
ators in Case I. This shows that when the network under study
is not large and complex, Conventional and Enhanced Conven-
tional operators could produce acceptable results, although they
require many evaluations. PAO/CAO operators are totally in-
capable of contributing in the optimization in this case, as dis-
cussed before.

Case II has an initial configuration that violates Operational
constraints by under-voltages in six nodes (#62∼#67). An exam-
ple of such cases is when the network reconfiguration is used
to restore the healthy out-of-service loads after isolation of the
fault(s). The proposed method is under extension by the authors
in order to be applied to the service restoration of compensated
distribution networks [60]. Note here that for the illustration pur-
pose in Figure 5.1b, the objective values in the evaluations before
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producing the first feasible individual are filled with the maxi-
mum objective value of the feasible individuals obtained by five
methods in Case II.

In this case, five EAs have to start from the unfeasible search
space, enter the feasible search space (produce the first feasible in-
dividual), and find optimum solutions there. Actually, the meth-
ods need different number of evaluations in order to enter the
feasible search space, as reported in Table 5.5. This number is
quite large in the worst trial for Conventional, Enhanced Con-
ventional, and Integer operators compared to PG operators, as
could be seen in this table.

Table 5.5: The evaluation numbers of entering the feasible search space
in Case II

Method Iteration number
Best trial Worst trial

PG 4 369

PAO/CAO 6 72

Conventional 86 15268

Enhanced Conventional 8 2099

Integer 2 1151

In Case II, PAO/CAO operators exhibit a good optimization
behavior by having all trials converged to a single value (see Ta-
ble 5.2) and finding the first feasible individual in 72 evaluations
for the worst trial (see Table 5.5). Although the best result pro-
duced by these operators is worse than the other methods, the
average value is competitive. The outstanding behavior of PAO/-
CAO operators in this case comes from two possible reasons:

1. These operators are limited to inter-feeder load transfer and
thus, search in a smaller space compared to PG operators,
which increases the possibility of obtaining better local op-
tima;

2. While Case II has inside-feeder tie lines that are out of the
scope of PAO/CAO operators, some of them could be ac-
cessed after some steps of the network reconfiguration due
to the short length of the feeders;

Therefore, when the limited search space of PAO/CAO opera-
tors contains good local optima, they could efficiently find them.
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However, they are not applicable when this space is empty, such
as Case I, since they do not have access to a part of the search
space related to the inside-feeder reconfiguration.

PG operators have eliminated this limitation and produce en-
couraging results for all cases while maintaining PAO/CAO op-
erators’ benefit in exclusively producing radial configurations.

In Case II, Enhanced Conventional and Integer operators pro-
duce good average and absolute results, while PG operators are
about twice faster in terms of total response time, as could be ob-
served in Table 5.3. In this case, although Conventional operators
could find the best result produced by PG operators in 5 trials,
they are substantially slower.

Case III is the largest network with a feasible initial configura-
tion. In this case, all trials of PG and Integer operators converge
to a single solution that is better than the best result found by
PAO/CAO operators. Conventional operators can find this result
in only one trial. Enhanced Conventional operators produce ac-
ceptable average and absolute final results in this case. However,
compared to PG operators, Integer operators are slower and Con-
ventional and Enhanced Conventional operators are substantially
slower (see Table 5.3).

A summary of the best results produced by the proposed me-
thod as well as the percentage reduction in the active power loss
is presented in Table 5.6.

Table 5.6: The best results produced by the proposed method

Test case Active power loss Percentage reduction
Initial Final

Case I 20.85 20.54 1.49%

Case II 374.82 298.88 20.26%

Case III 528.87 384.44 27.31%

5.3.3 Reliability

The original PAO/CAO operators are incapable of reconfiguring
the network when it has a single feeder (such as Case I). Con-
ventional, Enhanced Conventional, and Integer operators require
many more evaluations than PG operators for finding the first
feasible individual in the worst trial when the network is heavily
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loaded and the initial configuration violates Operational constr-
aints (such as Case II). In addition, they are considerably slower
than PG operators for producing the final results in all test cases.

Therefore, the proposed method is the most reliable method
across the various test cases used in this study. It is capable of
producing fast and high quality solutions for various networks
with different complexity and initial loading conditions, which
cannot be done by the other methods.

5.3.4 Voltage profile

The voltage profiles before and after the optimization are exam-
ined, noticing that they have been maintained or improved in
all cases. The minimum voltages have stayed unchanged or im-
proved from initial 0.973, 0.885, and 0.929 pu to 0.973, 0.916, and
0.959 pu for Case I, II, and III, respectively.
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Figure 5.2: Nodal voltage profiles before and after the reconfiguration
of Case II using the proposed method

Figure 5.2 shows the nodal voltage amplitudes for Case II be-
fore and after the reconfiguration using the proposed method,
where red lines show the high and low margins. As it could be
observed, a smoother profile of the nodal voltages is obtained us-
ing the network reconfiguration. In addition, the under-margin
voltages are pulled up and thus the low voltage problem of this
case is resolved.
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5.3.5 Load profile variation

In this step of research, loads are assumed to be constant over
24 hours. They could indeed vary from daytime to nighttime. In
the networks that are a composition of industrial, commercial
and residential customers, this could lead to a variation in the
balance of the network loading. The variation comes from the
life pattern of people in the area who go to work in day and
return back to home at night.

Here, a brief study on Case III is presented in order to illustrate
the effect of variation in the balance of the network loading from
one profile in day to another profile at night. Assume that data
provided for Case III in Table A.6 are related to daytime.

At night, loads in feeders B and C decrease by 30% and loads
in feeders D and E increase by 20%. This models a transition
from day to night profiles which follows the reduced energy con-
sumption of the industrial area and move of the workers to the
residential area. Table 5.7 lists the open switches in the optimal
daytime and nighttime configurations.

Table 5.7: List of open switches in the optimal daytime and nighttime
configurations

Time Open switches
Day 7, 8, 19, 23, 39, 52, 61, 63, 69, 80, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95

Night 7, 8, 14, 19, 23, 39, 52, 61, 63, 69, 72, 80, 84, 86, 88, 90, 91, 92, 94, 95

As it is marked using the red colored (and underlined) num-
bers in Table 5.7, in order to have the optimal configuration in
terms of active power loss in daytime and nighttime, two sets of
switches should change their status, including (14-89) and (72-
87).

5.4 conclusion

The proposed method for the network reconfiguration problem
employed a branch-based modeling scheme in order to represent
the network. Based on this representation, two extended opera-
tors called PG operators were proposed that manipulate lists of
candidate switches for pruning and grafting, dynamically con-
structed from the status of the switches in the network, to pro-
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vide an efficient approach to the network reconfiguration prob-
lem.

In order to evaluate efficiency of the proposed method, five
EAs using PG operators, the original PAO/CAO operators, two
sets of operators in a binary representation (conventional cross-
over and mutation and an enhanced version of them), and a set
of operators in an integer representation (conventional crossover
and directed mutation operators) [37] were implemented.

Experimental results in three test cases with different complex-
ity and initial loading conditions showed that PG operators over-
all outperform the original PAO/CAO operators in the quality
of results. This is because they have broader access to the net-
work’s reconfiguration possibilities namely, inside-feeder recon-
figuration as well as inter-feeder load transfer, while PAO/CAO
operators are limited to inter-feeder load transfer. This is a key
feature when reconfiguring the more densely tied urban distri-
bution networks with many inside-feeder as well as inter-feeder
tie lines.

In addition, PG operators had a significantly better perform-
ance than Conventional and Enhanced Conventional operators
considering the quality of final results and the total response
time. Integer operators could produce good final results in all
cases. However, they were slower than PG operators in terms of
the convergence speed and the total response time. Conventional,
Enhanced Conventional, and Integer operators waste some moves
in the search space by producing and then discarding individu-
als who violate Structural constraints, while PG operators never
produce such individuals.

Performance achievement of the proposed method and its scal-
ability is very promising since it facilitates the application of EAs
to the reconfiguration of larger and more densely tied urban dis-
tribution networks, where the computational burden of the EAs
used to be a discouraging feature. Furthermore, it is reliable for
reconfiguration of the networks with different size, complexity,
and initial loading conditions.
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6
T H E P R O P O S E D M E T H O D

The main contribution of this work for the service restoration
problem of compensated distribution networks is to employ an
efficient modeling of distribution network and propose an inte-
grated framework for the EA in order to solve the SR problem
with the global search capability which applies:

1. Reconfiguration using PG operators,

2. Optimal load shedding in the out-of-service area by two
new operators,

3. Compensation using two new operators in order to opti-
mally control the compensators for an effective contribution
in the SR process.

All of these functions are applied simultaneously in a single
run of the optimization program. In addition, an intelligence is
applied to the operators using more information about status of
the network.

6.1 representation

The same object-oriented branch-based representation of the net-
work used for the network reconfiguration problem discussed in
section 4.1 is employed in this problem.

6.2 search space limiting technique

Feeder-set (FS) is introduced as a set of feeders which are di-
rect or indirect neighbors. Two feeders are direct neighbors when
there is at least one tie switch between them, and indirect neigh-
bors when they are neighbors through one or more medium feed-
ers. It is assumed that substations are fed through an infinite bus.

Consequently, changing the settings of compensators or recon-
figuring the network inside a FS will not influence others. A FS is

52
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called faulty when there is at least one fault on one of its feeders.
The proposed method for liming the search space employs this
concept and is called FS technique.

It confines the space of optimal reconfiguration and compen-
sator setting search to only the faulty FSs and aims to increase the
convergence speed and provide better local optima by searching
in a smaller space.

6.3 basic operators

Three sets of operators are used for reconfiguration, load shed-
ding, and compensation which create new individuals in the EA.
Details of these operators are as follows.

6.3.1 Reconfiguration

PG operators introduced in section 4.2 are employed in order to
reconfigure the network. PG operators are fast, always maintain
the search in the space of radial configurations, and integrate
both inside-feeder reconfiguration and inter-feeder load trans-
fer compared to the operators of [24] which are limited to inter-
feeder load transfer. In addition, they inherently entail the multi-
tier (system-wide) switching capability of the method in [40] us-
ing a different approach.

6.3.2 Shedding-Recovery

These operators try to find a minimum set of loads to be excluded
from recovery. They are defined as:

• Shedding operator: randomly selects and opens a switch
in the initially out-of-service area which has been already
energized,

• Recovery operator: neutralizes the shedding operator by se-
lecting and closing one of the switches opened by that op-
erator.
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6.3.2.1 Compensation

These operators optimize the settings of compensators in order
to support the SR in minimizing the amount of load shedding.
They include:

• Volt operator: for changing the tap settings of transformers
and VRs,

• Var operator: for changing the steps of substation and feeder
capacitors.

Once one of these operators is selected, it randomly picks a
proper compensator in a faulty FS and randomly increases or de-
creases its tap or step by 1 unit, each time.

For each individual, the application probabilities of the opera-
tors have to be determined. For this, first, applicable operators to
the selected FS in that individual are identified and receive initial
equal probabilities while inapplicable ones receive zero. This is
based on a fundamental rule in the EAs: “each operator applica-
tion has to make a move in the search space.”

Then, if both EPAO and ECAO operators are applicable, their
probabilities are adjusted so that 80% of the accumulated initially
assigned probability to both is given to EPAO and 20% to ECAO.
It is verified that this fixed ratio for PG operators works best for
the network under study [39].

As an example, when a FS has no shed load, recovery oper-
ator should not be selected. Thus, the probability for each of
other five operators is initially set to 20%. Then, it is adjusted
to 32% for EPAO and 8% for ECAO. Note that Reconfiguration
and Compensation operators are applied to only faulty FSs and
Shedding-Recovery operators work on the out-of-service area.

6.4 smart operators

In this section, more intelligence is introduced to the operators in
order to guide the search to more productive areas of the search
space by directing the moves based on feasibility status and volt-
age profile of the network. In addition, an early start pattern for
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some operators is shown to be effective for enhancing the EA.
The new set of operators is called Smart operators.

Three techniques are proposed in order to introduce more intel-
ligence to the EA operators. Detailed explanations of these tech-
niques are presented here.

6.4.1 Smart Shedding-Recovery

The fundamental concept used for extension of Shedding-Recovery
operators comes from a judgment based on feasibility status of
the parent.

For Shedding operator, when the parent is feasible, it is more
likely to be able to accept more loads (less load shedding). On
the other hand, when the parent is unfeasible, it is more likely to
require cutting more loads (more load shedding). Thus, based on
the feasible/unfeasible status of the parent, Shedding operator is
pushed toward less/more load shedding, respectively.

The same logic is applied to Recovery operator. It means that
based on the feasible/unfeasible status of the parent, Recovery
operator is pushed toward more/less load recovery, respectively.

In order to implement this logic, for instance in the case of
Shedding operator, instead of a single random shedding candi-
date, a set of shedding candidates is randomly selected and the
amount of total apparent power of loads |SL| that each one cuts
is calculated.

Then, a probability is assigned to each candidate proportional/
counter-proportional to the amount of the load that each one cuts
in order to favor more/less load shedding, respectively. Finally,
one of the candidates is randomly selected based on the assigned
probabilities. An analogous method is applied to Recovery oper-
ator.

6.4.2 Smart Compensation

The main objectives of the extension applied to Compensation
operators are to:

i) avoid wasting the moves on irrelevant compensators,
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ii) avoid the moves that are likely to create or deteriorate the
violation of operational constraints, and

iii) encourage more compensation.

In order to achieve these objectives, two methods are proposed
that are explained here in details.

6.4.2.1 Locking method

When some compensators are located in upstream of the fault(s)
and there is no tie line connected to this path, they cannot con-
tribute in restoring the out-of-service loads. Thus, they are totally
locked and excluded from the optimization.

In addition, the nodal voltage profile is examined in order to
determine whether step-up and step-down operations of each
compensator are permitted or not. If one of these operations of
a compensator is locked, only the other operation is permitted,
deterministically. If both operations are locked, the compensator
is totally locked.

Substation transformers and VRs only directly influence the
voltage levels of their downstream nodes. Therefore, when there
is at least one node in downstream of each one whose voltage
amplitude is less than minimum permitted value or its difference
to the minimum value is less than tap size of the transformer or
VR, its step-down operation is locked.

On the other hand, when there is at least one node in the down-
stream whose voltage amplitude is more than the maximum per-
mitted value or its difference to the maximum value is less than
tap size of the transformer or VR, its step-up operation is locked.

Substation and feeder capacitors influence the voltage profile
of the whole feeder. Therefore, all nodes of the feeder related
to each capacitor are examined. When there is at least one node
whose voltage amplitude is equal or less than the minimum per-
mitted value, the capacitor’s step-down operation is locked.

Besides, when there is at least one node whose voltage ampli-
tude is equal or more than the maximum permitted value, the
capacitor’s step-up operation is locked.
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6.4.2.2 Push-up method

Regarding the nature of the SR problem, it is more likely that
under-voltage rather than over-voltage problem appears. There-
fore, encouraging the step-up operation of the compensators aim-
ing to increase the voltage levels would possibly improve the fi-
nal results.

This is implemented by assigning more probability to step-
up compared to step-down operation. Besides, the over-voltage
problem also might occur due to the over-compensation. Thus,
the chance of step-down for the compensators is not totally re-
moved, but weakened.

6.4.3 Early Shedding-Recovery

When the size of out-of-service area is large or the pre-fault net-
work is heavily loaded, the SR’s solution could entail load shed-
ding. In Early Shedding-Recovery technique, the EA starts by
the application of only Shedding-Recovery operators for specific
evaluations and then, the other operators are activated too. The
pioneer initial individuals offering various load shedding options
are expected to improve the EA’s performance.

On the other hand, when the size of out-of-service area is small
or the pre-fault network is lightly loaded, all loads could prob-
ably be restored using only reconfiguration and compensation.
Thus, Early Shedding-Recovery technique might lead to a local
convergence before activation of the other operators. However,
when the number of evaluations used for the activation is small
and the program is fast enough, this technique only will slightly
delay the final response.

6.5 feasibility

Feasibility concept in the service restoration problem is defined
in a slightly different way than section 4.3. Here, a feasible con-
figuration has to fulfill three sets of constraints, simultaneously:

1. Operational constraints: includes transformer and branch lo-
ading constraints and nodal voltage margins.
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2. Shedding constraint: shedding only the loads of already en-
ergized out-of-service area.

Individuals who violate one or more constraints are unfeasible
and those who do not violate any constraint are feasible.

Shedding constraint is considered since in the absence of pri-
ority customers, shedding has to be limited to the out-of-service
area. Although Shedding operator always selects its candidates
from switches of this area, it might lead to cutting some loads of
healthy area due to the effect of reconfiguration operators which
could cause feeding healthy loads through already energized out-
of-service area.

Therefore, in order to avoid cutting healthy loads to restore
out-of-service ones, this constraint has to be fulfilled. Note that
checking the radiality of individuals is unnecessary which accel-
erates the EA. This owes to the benefit of PG operators in exclu-
sively producing radial configurations [39].

Note, when a fault occurs, the program goes to the emergency
state. It means that loading limits and voltage margins are re-
laxed by +10% and ±5%, respectively. This is because in contin-
gencies, network equipment are permitted to operate in emer-
gency loading conditions and wider voltage margins are justifi-
able, both for limited periods of time.

6.6 population

The EA is implemented using two subpopulations (SPs): feasible
SP and unfeasible SP.

Individuals who violate one or more constraints are unfeasible
and those who do not violate any constraint are feasible. Each
newly created individual tries to enter the proper SP. Unfeasible
individuals aid to diminish the possibility of an immature con-
vergence.

Besides, each individual in the feasible SP is a potential solu-
tion to the SR problem and the final solution is the best indi-
vidual of this SP in the last evaluation. SPs are bounded to a
maximum size.
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6.7 objectives

Two objectives are considered: primary and secondary. Priority is
given to the primary objective. Only when two individuals have
the same primary objective values, their secondary objectives are
compared.

6.7.1 Primary objective

The primary objective function (F1) is composed of five terms
aggregated using equal weights wi, i = 1, 2, ..., 5 all set to 0.2. It
is expressed using the following formula:

F1 = w1 ∗ TOL+w2 ∗BOL+w3 ∗VV +w4 ∗E+w5 ∗DE (6.1)

where:
TOL: transformer overloading index which is the summation of
overload apparent power |SOL| for all overloaded transformers
and VRs;
BOL: branch overloading index which is the summation of over-
load current modulus |IOL| for all overloaded branches;
VV : nodal voltage violation index which is the summation of
absolute differences of the nodal voltage modulus |VN| and high
(Vmax = 1.05pu) or low (Vmin = 0.95pu) margins for over-voltage
and under-voltage nodes, respectively;
E: energized shed which is the summation of apparent power of
shed loads in the healthy area |SShed,E|;
DE: de-energized shed which is the summation of apparent po-
wer of shed loads in the out-of-service area |SShed,DE|;

For individuals of the unfeasible SP, all terms could have non-
zero values, while for those in the feasible SP, only DE could
be non-zero. All of the above terms are normalized respect to
their maximum values. For TOL, BOL, and VV , the maximum
values are updated in each evaluation. While for E and DE, the
maximum values are constant and equal to the sum of apparent
power of all loads in the healthy |SE|, and the out-of-service |SDE|

areas, respectively.
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6.7.2 Secondary objective

The secondary objective (F2) is the number of required switch-
ing operations. For each individual, it is equal to the number
of switch status alterations between the initial healthy condition
and that individual. Changes in the status of switches that isolate
the faults are not counted.

6.8 ea steps

It is assumed that all faults are already located and isolated. Be-
fore commencing the evolution process, faulty FSs are identified
and initially restored. Initial service restoration (ISR) means that
a tie switch with an energized end node (tie line) in downstream
of each fault is randomly selected and closed. Therefore, an initial
configuration is obtained which feeds all out-of-service loads.

This individual is likely to violate some operational constr-
aints. Random selection of the tie switches for ISR is adequate
in that PG operators have access to change these selections to
other possible choices. Faults with no chance of ISR (no tie line
in downstream) are left unrestored and reported. ISR is capable
of initially restoring single, multiple, and cascaded faults.

A graphical representation of the ISR process for initially restor-
ing single fault, double faults1, and cascaded faults are presented
in Figure 6.1 to 6.3.

Figure 6.1: Initial service restoration for a single fault

EA performs a single evaluation per iteration. It means that a
parent is selected, an operator is applied and an offspring is cre-
ated in each iteration. After ISR, EA continues with the following
steps:

1 Two faults occurring at the same time
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Figure 6.2: Initial service restoration for double faults

Figure 6.3: Initial service restoration for cascaded faults

step 1 : initial population creation Output of ISR desc-
ribed above is added to the proper SP. In addition, for try-
ing to produce at least one feasible individual, the network
configuration before ISR (100% shedding) is used and en-
ters the proper SP.

If the network has been operating normally before occur-
rence of the fault(s) and it does not experience over-voltage
due to the effect of compensators (over-compensation) af-
ter removal of some loads by isolation of the fault(s), this
individual would be feasible.

step 2 : parent selection An individual in one of the SPs
should be selected in this step. A SP is randomly selected
and one of its individuals is selected using tournament se-
lection method. It means that two individuals in that SP
are selected randomly and compete considering their pri-
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mary (and probably secondary) objective values. The win-
ner becomes the parent.

Note, when a SP is empty, the other is selected determinis-
tically. In addition, when there is only one individual in the
selected SP, there is no need to the tournament selection.

step 3 : variation Applies one of the operators to the parent
in order to create an offspring. For selecting the operator,
one of the faulty FSs of the parent is selected, randomly.
Then, one of the operators is randomly selected and applied
based on the probability determination method described
in section 6.3.

step 4 : survival selection The created offspring is evalu-
ated. If it is better than the worst individual of the related
SP, it replaces the worst. Otherwise, the offspring is dis-
carded.

Steps 2 to 4 above are repeated until a predefined number of
evaluations are performed. Then, the best individual of the fea-
sible SP is introduced as the final solution. Flowchart of the EA
steps is presented in Figure 6.4.
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Figure 6.4: Flowchart of the EA steps for service restoration



7
T E S T R E S U LT S

In this chapter, the test results in the service restoration using
the basic service restoration operators and Smart operators are
presented and discussed.

7.1 testing the basic operators

The proposed method is implemented using Visual C++ pro-
gramming language on a Pentium IV 3.4GHz desktop PC. All
simulations are performed using 20000 evaluations and 30 trials
for different seeds of random number generator.

7.1.1 Test case

A 94-bus network of Taiwan Power Company [59] has been used
for testing the method. It has 96 branches with automatic sw-
itches on all branches operated at 11.4kV. Base power is 5MVA.

The following conventional compensators are considered in
the SR plan:

1. substation transformer tap changers on all substation trans-
formers,

2. feeder VRs at the middle of all feeders,

3. substation capacitors on all substations feeding 50% of Q
requirement of the substation, and

4. feeder capacitors at 2
3 length of all feeders, feeding all Q re-

quirements of its node and downstream.

Items i and ii implement the volt compensation and items iii
and iv the var compensation. Tap changing units in transformers
and VRs have 17 taps (±8 in addition to neutral) for changing the
voltage in the range of ±10% and capacitor banks have 5 steps of
0, 25%, ...,100% of the reactive power (Q) generation.

64
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Locations and attributes of the compensators have been con-
sidered as typical. Sizing and siting of compensators for optimal
volt/var control of distribution networks are out of the scope of
this work.

The proposed method’s performance is evaluated in the fol-
lowing conditions:

i) including and not including the compensators,

ii) including and not including the FS technique.

This results in four sets of simulations. Single and multiple
faults in different locations have been tested. Three cases are pre-
sented and discussed here, including:

i) single fault on branch #18 (Case I),

ii) double faults on branches #16, #32 (Case II),

iii) triple faults1 on branches #12, #18, #34 (Case III).

These cases are tested for (a) normal (50%), and (b) heavy (75%)
loading conditions.

Note, the maximum size of each SP is set to 100 individu-
als. This selection was made by testing the method for sizes
in the range of 5 to 1000 individuals where 100 had the best
performance considering the quality of results and the conver-
gence speed.

7.1.2 Experiments

Averages of the best results of each evaluation for 30 trials and
20000 evaluations are presented in Figure 7.1 to 7.3. In addition,
a numerical statistics of the tests including the final results for 30
trials and frequency of their production is presented in Table 7.1.

First, the effect of optimizing the compensators’ settings simul-
taneously with reconfiguration and load shedding in the SR is
discussed. Considering the data provided in Table 7.1, the best re-
sult found by the application of compensators is mostly equal or
better than the condition of without compensation. For instance

1 Three fault occurring at the same time
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Figure 7.1: Effect of contribution of compensators and FS technique in
Case I
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Table 7.1: Statistical results at final evaluation for 30 trials

Case
No Comp. No Comp. With Comp. With Comp.

/ No FS / With FS / No FS / With FS

Result Fr. Result Fr. Result Fr. Result Fr.

Case I 76.9% 28 76.9% 30 44.9% 30 44.9% 30

a (50%) 100% 2 - - - - - -

Case I 100% 30 100% 30 100% 30 100% 30
b (75%)

40.9% 11 40.9% 23 23.9% 16 23.9% 23

53.3% 1 53.3% 3 24.4% 3 24.4% 2

Case II 67.7% 3 66.7% 2 29.4% 1 32.3% 4

a (50%) 73.2% 4 67.7% 1 31.3% 1 36.2% 1

94.9% 1 100% 1 32.3% 5 - -

100% 10 - - 36.2% 4 - -

85.5% 10 81.7% 1 73.2% 1 73.2% 2

92.8% 2 85.5% 12 85.5% 9 85.5% 10

94.9% 3 91.4% 1 94.9% 3 92.8% 2

Case II 100% 15 92.8% 1 100% 17 94.9% 2

b (75%) - - 94.9% 3 - - 96.2% 2

- - 96.2% 2 - - 99.3% 4

- - 99.3% 1 - - 100% 8

- - 100% 9 - - - -

95.0% 1 95.0% 1 100% 30 86.8% 3
Case III
a
(50%)

99.5% 1 99.5% 1 - - 95.0% 1

100% 28 100% 28 - - 100% 26

100% 30 98.9% 2 95.0% 4 94.4% 1

Case III - - 99.5% 3 100% 26 95.0 3

b (75%) - - 100% 25 - - 99.2% 1

- - - - - - 100% 25

Table 7.2: Optimal settings of compensators for Case I(a)
Compensators Settings

Transformers’ taps 0, 2, -1, 1, 1, 1, 0, 0, 2, 3, 2

VRs’ taps 0, 2, 4, 1, 0, 2, 0, 0, 2, 1, 0

Substation capacitors’ steps 0, 2, 0, 0, 1, 3, 0, 0, 2, 1, 1

Feeder capacitors’ steps 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 1

in Case I(a), the best result obtained without compensation is
76.9% shedding, regardless of including the FS technique. How-
ever, this improves to 44.9% by effective operation of the compen-
sators. For this case, optimal settings of the compensators as an
output of the optimization program are presented in Table 7.2.

Then, the effect of FS technique for liming the search space in
the SR is considered. If Figure 7.1 to 7.3 are observed, except for
Case I(b) which has no option for recovery, including FS tech-
nique has improved or accelerated the results of the SR. This was
expected since the FS technique limits search to only the faulty
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Figure 7.2: Effect of contribution of compensators and FS technique in
Case II

FSs. This technique helps to avoid wasting the moves in regions
of the search space which are not correlated to the fault(s) and
thus, explores better only the regions which could contain solu-
tions to the SR problem.

Note that FS technique does not include simplifying assump-
tions such as the methods in [40]-[43], [52] and hence, keeps the
global search capability of the optimization program.

As it could be observed in Figure 7.1c, the number of switching
operations is not always decreasing in that it is the secondary
and low importance objective. Actually, only when the primary
objective (load shedding) is stabilized, the secondary objective
has chance to be minimized.
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Figure 7.3: Effect of contribution of compensators and FS technique in
Case III

In addition, reducing the amount of shedding happens by the
cost of more number of switching operations. This could always
be justified when all switches are automatic. Because, restoring
service to more customers is more important than switches’ oper-
ation and maintenance costs. However, when some switches are
manual with significant switching time, there should be a com-
promise between time and the amount of load recovery. In this
case, distance to the switch(es) location from the nearest manned
substation and the driving traffic pattern of the road at the fault
time also become important [40].

An extension of the proposed method could consider the above
terms in the optimization process under a new objective called
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switching cost including the switching time as well as the oper-
ation and maintenance costs and perform a multi-objective opti-
mization.

Computation time related to the evolution process has been
2.72 milliseconds per evaluation which is promising and makes
the application of the proposed method suitable for online oper-
ation of distribution networks.

Note a variance among the results in 30 trials as shown in “Fr.”
columns of Table 7.1, especially for Case II. This happens regard-
less of including the FS technique and thus, should be related to
the behavior of operators.

For instance, shedding operator could cut a big portion of the
already energized out-of-service area. If the parent is replaced,
the produced individual has to wait for recovery operator in or-
der to regain the removed portion. If this individual could sur-
vive after recovery, it needs to wait for a softer shedding in order
to have less shed loads.

An advanced analysis of the operators should increase granu-
larity of the search which would probably lead to smaller vari-
ance of the results in different trials.

In Case II(b), not including the compensators has produced
good average results. Although including the compensators still
provides better quality for the best results as shown in Table 7.1,
averages are very close. This comes from two possible reasons:

a) the diversity among the results discussed above,

b) the need for coordination of shedding and compensation
operators.

Shedding operator could remove some compensators when it
cuts a portion of already energized out-of-service area which neu-
tralizes the effect of these compensators. Thus, upgrading the
shedding operator to give more priority to keeping the compen-
sators in operation, or assigning more probability to the appli-
cation of compensation compared to shedding operator might
remedy this phenomenon.
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7.2 testing smart operators

For testing Smart operators, simulations are performed using
50000 evaluations and 30 trials for different seeds of random
number generator.

7.2.1 Test case

The variation of Taiwan Power Company’s network (used in test-
ing the network reconfiguration approach in section 5.1) is em-
ployed in this test. In addition, the same compensators intro-
duced in section 7.1.1 are added to the network.

The proposed method’s performance is evaluated using vari-
ous single, double, and triple faults. Three sample cases are dis-
cussed here, including:

1. single fault on branch #18 in normal loading (Case I),

2. double faults on branches #5, #61 in heavy loading (30%
increase of the |S| of all loads) (Case II),

3. triple faults on branches #12, #18, #34 in heavy loading
(Case III).

Before commencing the experiments, a tuning process of the
EA parameters is performed. The tuned settings used for pro-
ducing the final results are presented in Table 7.3.

Table 7.3: Tuned settings of the EA parameters
Subject Setting Value

Reconfiguration EPAO (fixed) 80%

ECAO (fixed) 20%

Smart Shedding-Recovery Max/Min candidate probability 5

Number of candidates 10

Smart Compensation Step-up/Step-down probability 3

Early Shedding-Recovery Reconfig. & Comp. activation iter. 100

Population Max SP size 1250

7.2.2 Experiments

Averages of the best results in each evaluation for 30 trials and
50000 evaluations for EAs using the original and Smart operators
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are presented in Figure 7.4 using logarithmic x-axis. In addition,
numerical statistics of tests including the final results for 30 trials
and frequency of their production are presented in Table 7.4.

Table 7.4: Statistical results at final evaluation for 30 trials

Case Original operators Smart operators

Final result Freq. Final result Freq.

Case I 0 30 0 30

Case II 37.6% 27 37.6% 30

67.9% 3 - -

Case III

67.7% 2 67.2% 1

68.2% 9 67.7% 5

86.0% 1 68.2% 22

86.8% 2 86.8% 2

98.8% 1 - -

98.9% 1 - -

99.5% 6 - -

100% 8 - -

For all cases in Figure 7.4, Smart operators have been able to
improve the convergence behavior of the EA. For instance in
Case I, the EA using Smart operators requires less than 2000
evaluations to converge while it is about 5000 evaluations for
the original operators (see Figure 7.4a).

It is interesting to note that in this case, due to the applica-
tion of Early Shedding-Recovery technique, the method locally
converges before the evaluation number 100 and waits until the
other operators start to work. Then, the obtained results improve
again, significantly. Early Shedding-Recovery technique will be
discussed more, later in this section. Note that when the number
of faults increases, EA requires more evaluations to converge due
to the increased number of combinations for the load shedding
and recovery.

Considering the quality of results, Smart operators produce
equal or better average results for all cases in Fig 7.4. In addition,
absolute values of the final results produced by Smart operators
are equal or better than the original operators in all cases (see
Table 7.4). For instance, in Case III the best and the worst results
produced in different trials as well as the diversity among the
final results in 30 trials are improved.

Based on the performed experiments, separate application of
each technique slightly improves the performance of the method
in many cases and produces competitive results in few ones.



7.2 testing smart operators 73

 0

 20

 40

 60

 80

 100

 120

 1  10  100  1000  10000

P
er

ce
nt

ag
e 

lo
ad

 s
he

dd
in

g

Number of evaluations

Original operators
Smart operators

(a) Case I

 20

 40

 60

 80

 100

 120

 1  10  100  1000  10000

P
er

ce
nt

ag
e 

lo
ad

 s
he

dd
in

g

Number of evaluations

Original operators
Smart operators

(b) Case II

 60

 70

 80

 90

 100

 110

 120

 1  10  100  1000  10000

P
er

ce
nt

ag
e 

lo
ad

 s
he

dd
in

g

Number of evaluations

Original operators
Smart operators

(c) Case III

Figure 7.4: Obtained results by EAs using the original and Smart oper-
ators
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However, when all techniques are applied simultaneously, the
improvement is significant for all experiments.

Note that Case I does not require load shedding in the final so-
lution while Case II and III require it. As examples of the effect
of solely Early Shedding-Recovery technique with various acti-
vation evaluations of other operators, Case I and III are selected
and presented in Figure 7.5.

In Case I, Early Shedding-Recovery technique provides a faster
declining pattern before the activation point for all settings. How-
ever, the EA locally converges before these points. Then, Recon-
figuration and Smart Compensation operators contribute in the
optimization and lead to a fast response (see Figure 7.5a).

Considering the selected activation evaluation (that is 100) and
the low computational requirement of the method (1.79 mSec per
evaluation in an average of 50000 evaluations), the total delay is
negligible. However, in this case the faster convergence of Smart
operators is not obtained by only using Early Shedding-Recovery
technique.

In Case III, for all activation points in Figure 7.5b, Early Shedding-
Recovery technique significantly improves the quality of final re-
sults. Although 500 has the best performance in this case, 100
is selected considering all experiments as well as the incurred
delays.

Referring again to Table 7.4, application of Smart operators has
improved the variance among the final results in 30 trials, but still
requires more work. Some possible reasons for this phenomenon
are:

i) behavior of Shedding-Recovery operators which alter the
amount of load shedding sometimes with large steps,

ii) leaving some areas of the search space undiscovered for
some random number generation patterns,

iii) nature of EAs that are prone to be trapped in local optima,
and

iv) combinatorial SR problem that leads the search to various
difficult-to-return paths producing different local optima.
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Figure 7.5: The effect of Early Shedding-Recovery technique

7.3 conclusion and future work

An integrated EA framework for optimal service restoration of
compensated distribution networks was proposed. It considered
an effective modeling of distribution network and optimally oper-
ated the compensators simultaneously with reconfiguration and
load shedding in the SR plan. Three techniques were proposed in
order to introduce more intelligence to the operators and guide
the search to more productive areas of the search space.

In addition, the search space was limited using the FS tech-
nique while keeping the global search capability of the method.
Effective operation of the compensators improved the quality of
results. Furthermore, application of the FS technique provided
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faster and better results by searching in a smaller space. Low
computational burden of the method encourages its application
to the online operation of distribution networks.

As a future work, efforts will be performed on more effectively
exploring the search space regardless of the random path by im-
proving the granularity of the search and coordination of com-
pensation and shedding operators aiming to reduce the variance
among the results. In addition, switching cost could be incorpo-
rated in the method in order to perform a multiobjective opti-
mization. The proposed methods would be tested on larger net-
works with more FSs which could provide more evidence on the
benefits of the FS technique.

Finally, the proposed methods will be applied to more extent
optimization requirements of the distribution network operation
in order to integrate various aspects for a smarter control of the
power system into a single framework.



Part IV

A P P E N D I C E S



A
A P P E N D I X : T E S T C A S E S

Data regarding the test cases are presented here. Note that trans-
formers’ tap data in app. Table A.1-A.3 are not used in this step
of research and they are presented for the future reference.

Furthermore, P0 and Q0 data in app. Table A.4-A.6 are related
to the loads connected to the receiving nodes of branches.

Table A.1: Transformer data for Case I

Node R X Step Positive Negative Current Capacity
[Ω] [Ω] Size Steps Steps Step [kVA]

1 0 0 0.0125 8 8 0 2895.320

Table A.2: Transformer data for Case II

Node R X Step Positive Negative Current Capacity
[Ω] [Ω] Size Steps Steps Step [kVA]

1 0 0 0.0125 8 8 0 3478.061
70 0 0 0.0125 8 8 0 4751.290

Table A.3: Transformer data for Case III

Node R X Step Positive Negative Current Capacity
[Ω] [Ω] Size Steps Steps Step [kVA]

1 0 0 0.0125 8 8 0 8808.735
12 0 0 0.0125 8 8 0 6748.404
17 0 0 0.0125 8 8 0 9036.647
28 0 0 0.0125 8 8 0 5605.508
34 0 0 0.0125 8 8 0 9268.720
48 0 0 0.0125 8 8 0 2710.632
53 0 0 0.0125 8 8 0 6675.688
63 0 0 0.0125 8 8 0 3692.703
73 0 0 0.0125 8 8 0 7001.413
82 0 0 0.0125 8 8 0 3820.933
87 0 0 0.0125 8 8 0 9202.142

78
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Figure A.1: Schematic of Case I

Figure A.2: Schematic of Case II

Figure A.3: Schematic of Case III
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Table A.4: Branch, node, load, and ampacity data for Case I

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

1 1 2 0.0005 0.0012 0.00 0.00 132.0
2 2 3 0.0005 0.0012 0.00 0.00 132.0
3 3 4 0.0000 0.0000 0.00 0.00 128.7
4 4 5 0.0015 0.0036 0.00 0.00 123.2
5 5 6 0.0251 0.0294 0.00 0.00 98.8
6 6 7 0.3660 0.1864 0.88 0.72 98.8
7 7 8 0.3811 0.1941 13.46 9.98 98.6
8 8 9 0.0922 0.0470 24.89 17.81 97.1
9 9 10 0.0493 0.0251 10.00 7.21 92.7
10 10 11 0.8190 0.2707 9.33 6.67 28.2
11 11 12 0.1872 0.0619 48.50 34.61 27.1
12 12 13 0.7114 0.2351 48.50 34.61 20.3
13 13 14 1.0300 0.3400 2.71 1.82 12.7
14 14 15 1.0440 0.3450 2.71 1.82 12.4
15 15 16 1.0580 0.3496 0.00 0.00 12.1
16 16 17 0.1966 0.0650 15.18 10.20 12.1
17 17 18 0.3744 0.1238 16.50 11.78 10.4
18 18 19 0.0047 0.0016 16.50 11.78 8.5
19 19 20 0.3276 0.1083 0.00 0.00 6.7
20 20 21 0.2106 0.0696 0.32 0.21 6.7
21 21 22 0.3416 0.1129 37.98 27.10 6.6
22 22 23 0.0140 0.0046 1.76 1.18 2.3
23 23 24 0.1591 0.0526 0.00 0.00 2.1
24 24 25 0.3463 0.1145 9.39 6.67 2.1
25 25 26 0.7488 0.2475 0.00 0.00 1.1
26 26 27 0.3089 0.1021 4.67 3.33 1.1
27 27 28 0.1732 0.0572 4.67 3.33 0.5
28 3 29 0.0044 0.0108 8.67 6.19 3.4
29 29 30 0.0640 0.1565 8.67 6.19 2.4
30 30 31 0.3978 0.1315 0.00 0.00 1.4
31 31 32 0.0702 0.0232 0.00 0.00 1.4
32 32 33 0.3510 0.1160 0.00 0.00 1.4
33 33 34 0.8390 0.2816 4.58 3.26 1.4
34 34 35 1.7080 0.5646 6.50 4.55 0.9
35 35 36 1.4740 0.4873 1.92 1.29 0.2
36 4 60 0.0044 0.0108 8.67 6.19 5.5
37 60 61 0.0640 0.1565 8.67 6.19 4.5
38 61 62 0.1053 0.1230 0.00 0.00 3.6
39 62 63 0.0304 0.0355 8.00 5.71 3.6
40 63 64 0.0018 0.0021 8.00 5.71 2.7
41 64 65 0.7283 0.8509 0.39 0.33 1.9
42 65 66 0.3100 0.3623 0.00 0.00 1.9
43 66 67 0.0410 0.0478 2.00 1.43 1.9
44 67 68 0.0092 0.0116 0.00 0.00 1.7
45 68 69 0.1089 0.1373 3.08 8.79 1.7
46 69 70 0.0009 0.0012 3.08 8.79 0.8
47 5 37 0.0034 0.0084 0.00 0.00 24.9
48 37 38 0.0851 0.2083 26.35 18.80 24.9

Continued on the next page . . .
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Table A.4 – Continue

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

49 38 39 0.2898 0.7091 28.23 91.49 22.0
50 39 40 0.0822 0.2011 128.23 91.49 14.4
51 9 41 0.0928 0.0473 13.51 9.44 1.7
52 41 42 0.3319 0.1114 1.20 0.89 0.1
53 10 43 0.1740 0.0886 1.45 1.16 63.3
54 43 44 0.2030 0.1034 8.79 6.32 63.2
55 44 45 0.2842 0.1447 8.00 5.71 62.2
56 45 46 0.2813 0.1433 0.00 0.00 61.3
57 46 47 1.5900 0.5337 0.00 0.00 61.3
58 47 48 0.7837 0.2630 0.00 0.00 61.3
59 48 49 0.3042 0.1006 0.67 24.03 61.3
60 49 50 0.3861 0.1172 0.00 0.00 59.9
61 50 51 0.5075 0.2585 414.67 295.91 59.9
62 51 52 0.0974 0.0496 10.67 7.61 12.2
63 52 53 0.1450 0.0738 0.00 0.00 11.0
64 53 54 0.7105 0.3619 75.67 53.87 11.0
65 54 55 1.0410 0.5302 19.67 13.91 2.3
66 12 56 0.2012 0.0611 6.00 4.28 1.4
67 56 57 0.0047 0.0014 6.00 4.28 0.7
68 13 58 0.7394 0.2444 9.33 6.66 2.1
69 58 59 0.0047 0.0016 9.33 6.66 1.1
70 12 67 0.5000 0.5000 - - 128.7
71 14 22 0.5000 0.5000 - - 12.7
72 16 70 1.0000 1.0000 - - 128.7
73 40 49 2.0000 2.0000 - - 123.2
74 28 55 1.0000 1.0000 - - 92.7



appendix : test cases 82

Table A.5: Branch, node, load, and ampacity data for Case II

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

1 1 2 1.097 1.074 120.0 108.0 324
2 2 3 1.463 1.432 72.0 48.0 324
3 3 4 0.731 0.716 180.0 156.0 324
4 4 5 0.366 0.358 90.0 60.0 324
5 5 6 1.828 1.790 21.6 13.0 324
6 6 7 1.097 1.074 21.6 17.0 324
7 7 8 0.731 0.716 15.6 12.0 324
8 8 9 0.731 0.716 19.0 13.0 324
9 4 10 1.080 0.734 24.0 12.0 250

10 10 11 1.620 1.101 19.2 11.0 250
11 11 12 1.080 0.734 60.0 48.0 250
12 12 13 1.350 0.917 126.0 108.0 250
13 13 14 0.810 0.550 30.0 18.0 250
14 14 15 1.944 1.321 48.0 30.0 250
15 7 68 1.080 0.734 120.0 72.0 250
16 68 69 1.620 1.101 48.0 36.0 250
17 1 16 1.097 1.074 72.0 36.0 324
18 16 17 0.366 0.358 48.0 30.0 324
19 17 18 1.463 1.432 18.0 11.0 324
20 18 19 0.914 0.895 15.6 8.4 324
21 19 20 0.804 0.787 36.0 24.0 324
22 20 21 1.133 1.110 108.0 60.0 324
23 21 22 0.475 0.465 60.0 36.0 324
24 17 23 2.214 1.505 72.0 48.0 250
25 23 24 1.620 1.110 120.0 96.0 250
26 24 25 1.080 0.734 96.0 78.0 250
27 25 26 0.540 0.367 120.0 72.0 250
28 26 27 0.540 0.367 120.0 66.0 250
29 27 28 1.080 0.734 144.0 84.0 250
30 28 29 1.080 0.734 126.0 84.0 250
31 70 30 0.366 0.358 96.0 60.0 324
32 30 31 0.731 0.716 72.0 48.0 324
33 31 32 0.731 0.716 15.6 9.6 324
34 32 33 0.804 0.787 19.2 11.8 324
35 33 34 1.170 1.145 60.0 36.0 324
36 34 35 0.768 0.752 48.0 33.6 324
37 35 36 0.731 0.716 72.0 48.0 324
38 36 37 1.097 1.074 48.0 36.0 324
39 37 38 1.463 1.432 36.0 30.0 324
40 32 39 1.080 0.734 180.0 120.0 250
41 39 40 0.540 0.367 72.0 42.0 250
42 40 41 1.080 0.734 144.0 84.0 250
43 41 42 1.836 1.248 108.0 72.0 250
44 42 43 1.296 0.881 21.6 12.0 250
45 40 44 1.188 0.807 19.2 12.0 250
46 44 45 0.540 0.367 120.0 60.0 250
47 42 46 1.080 0.734 72.0 48.0 250
48 35 47 0.540 0.367 108.0 84.0 250

Continued on the next page . . .
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Table A.5 – Continue

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

49 47 48 1.080 0.734 122.4 79.2 250
50 48 49 1.080 0.734 120.0 84.0 250
51 49 50 1.080 0.734 168.0 108.0 250
52 70 51 0.366 0.358 72.0 48.0 324
53 51 52 1.463 1.432 24.0 13.2 324
54 52 53 1.463 1.432 48.0 36.0 324
55 53 54 0.914 0.895 43.2 28.8 324
56 54 55 1.097 1.074 36.0 24.0 324
57 55 56 1.097 1.074 51.6 36.0 324
58 52 57 0.270 0.183 96.0 60.0 250
59 57 58 0.270 0.183 288.0 144.0 250
60 58 59 0.810 0.550 150.0 132.0 250
61 59 60 1.296 0.881 30.0 12.0 250
62 55 61 1.188 0.807 12.0 6.0 250
63 61 62 1.188 0.807 180.0 156.0 250
64 62 63 0.810 0.550 60.0 36.0 250
65 63 64 1.620 1.101 36.0 24.0 250
66 62 65 1.080 0.734 156.0 144.0 250
67 65 66 0.540 0.367 180.0 156.0 250
68 66 67 1.080 0.734 30.0 18.0 250
69 22 67 0.381 0.245 - - 281
70 67 15 0.454 0.363 - - 281
71 21 27 0.254 0.203 - - 281
72 9 50 0.681 0.545 - - 281
73 29 64 0.681 0.545 - - 281
74 45 60 0.254 0.203 - - 281
75 43 38 0.254 0.203 - - 281
76 9 15 0.454 0.363 - - 281
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Table A.6: Branch, node, load, and ampacity data for Case III

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

1 1 2 0.1944 0.6624 0 0 446
2 2 3 0.2096 0.4304 100 50 446
3 3 4 0.2358 0.4842 300 200 435
4 4 5 0.0917 0.1883 350 250 396
5 5 6 0.2096 0.4304 220 100 351
6 6 7 0.0393 0.0807 1100 800 325
7 7 8 0.0405 0.1380 400 320 178
8 8 9 0.1048 0.2152 300 200 39
9 8 10 0.2358 0.4842 300 230 41
10 8 11 0.1048 0.2152 300 260 43
11 12 13 0.0786 0.1614 0 0 342
12 13 14 0.3406 0.6944 1200 800 342
13 14 15 0.0262 0.0538 800 600 104
14 14 16 0.0786 0.1614 700 500 89
15 17 18 0.1134 0.3864 0 0 458
16 18 19 0.0524 0.1076 300 150 458
17 19 20 0.0524 0.1076 500 350 424
18 20 21 0.1572 0.3228 700 400 361
19 21 22 0.0393 0.0807 1200 1000 278
20 22 23 0.1703 0.3497 300 300 115
21 23 24 0.2358 0.4842 400 350 71
22 24 25 0.1572 0.3228 50 20 6
23 24 26 0.1965 0.4035 50 20 11
24 26 27 0.1310 0.2690 50 10 5
25 28 29 0.0567 0.1932 50 30 284
26 29 30 0.1048 0.2152 100 60 278
27 30 31 0.2489 0.5111 100 70 266
28 31 32 0.0486 0.1656 1800 1300 254
29 32 33 0.1310 0.2690 200 120 24
30 34 35 0.1965 0.3960 0 0 469
31 35 36 0.1310 0.2690 1800 1600 469
32 36 37 0.1310 0.2690 200 150 220
33 37 38 0.0262 0.0538 200 100 194
34 38 39 0.1703 0.3497 800 600 171
35 39 40 0.0524 0.1076 100 60 67
36 40 41 0.4978 1.0222 100 60 55
37 41 42 0.0393 0.0807 20 10 42
38 42 43 0.0393 0.0807 20 10 40
39 43 44 0.0786 0.1614 20 10 5
40 44 45 0.2096 0.4304 20 10 2
41 43 46 0.1965 0.4035 200 160 33
42 46 47 0.2096 0.4304 50 30 6
43 48 49 0.0486 0.1656 0 0 137
44 49 50 0.0393 0.0807 30 20 137
45 50 51 0.1310 0.2690 800 700 134
46 51 52 0.2358 0.4842 200 150 25
47 53 54 0.2430 0.8280 0 0 338
48 54 55 0.0655 0.1345 0 0 338

Continued on the next page . . .
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Table A.6 – Continue

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

49 55 56 0.0655 0.1345 0 0 338
50 56 57 0.0393 0.0807 200 160 338
51 57 58 0.0786 0.1614 800 600 312
52 58 59 0.0393 0.0807 500 300 208
53 59 60 0.0786 0.1614 500 350 147
54 60 61 0.0524 0.1076 500 300 83
55 61 62 0.1310 0.2690 200 80 23
56 63 64 0.2268 0.7728 0 0 187
57 64 65 0.5371 1.1029 30 20 187
58 65 66 0.0524 0.1076 600 420 183
59 66 67 0.0405 0.1380 0 0 107
60 67 68 0.0393 0.0807 20 10 107
61 68 69 0.0262 0.0538 20 10 105
62 69 70 0.1048 0.2152 200 130 103
63 70 71 0.2358 0.4842 300 240 78
64 71 72 0.0243 0.0828 300 200 38
65 73 74 0.0486 0.1656 0 0 355
66 74 75 0.1703 0.3497 50 30 355
67 75 76 0.1215 0.4140 0 0 349
68 76 77 0.2187 0.7452 400 360 349
69 77 78 0.0486 0.1656 0 0 292
70 78 79 0.0729 0.2484 0 0 292
71 79 80 0.0567 0.1932 2000 1500 292
72 80 81 0.0262 0.0528 200 150 27
73 82 83 0.3240 1.1040 0 0 194
74 83 84 0.0324 0.1104 0 0 194
75 84 85 0.0567 0.1932 1200 950 194
76 85 86 0.0486 0.1656 300 180 36
77 87 88 0.2511 0.8556 0 0 466
78 88 89 0.1296 0.4416 400 360 466
79 89 90 0.0486 0.1656 2000 1300 410
80 90 91 0.1310 0.2640 200 140 159
81 91 92 0.1310 0.2640 500 360 133
82 92 93 0.0917 0.1883 100 30 67
83 93 94 0.3144 0.6456 400 360 57
84 6 62 0.1310 0.2690 - - 446
85 8 68 0.1310 0.2690 - - 446
86 13 49 0.1310 0.2690 - - 342
87 14 81 0.3406 0.6994 - - 355
88 15 86 0.4585 0.9415 - - 342
89 16 21 0.5371 1.0824 - - 458
90 19 30 0.0917 0.1883 - - 458
91 23 94 0.0786 0.1614 - - 466
92 32 37 0.0524 0.1076 - - 469
93 33 44 0.0786 0.1614 - - 469
94 39 52 0.0262 0.0538 - - 469
95 45 47 0.1965 0.4035 - - 469
96 60 72 0.0393 0.0807 - - 338
97 4 9 0.1356 0.3126 - - 446

Continued on the next page . . .
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Table A.6 – Continue

Br
Sd Rc R X P0 Q0 Ampacity
Nd Nd [Ω] [Ω] [kW] [kVar] [A]

98 19 23 0.1356 0.3126 - - 458
99 65 70 0.1356 0.3126 - - 187

100 87 92 0.1356 0.3126 - - 466
101 19 26 0.1356 0.3126 - - 458
102 55 59 0.1356 0.3126 - - 338
103 75 80 0.1356 0.3126 - - 355



B
A P P E N D I X : I N P U T D ATA F I L E

Network data are loaded into the program using a .txt input file.
Input data file for a sample 12-node distribution network is pre-
sented in Figure B.1.

Figure B.1: Input data file for a sample 12-node distribution network

Details regarding contents of the input file are as follows:

i) base apparent power:
– line 1: Sbase [VA]

ii) voltage levels:
– line 1: no. of voltage levels

– line 2: V1 [V], V2 [V], ...

87
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iii) branch, node, and connection data:
– line 1: no. of branches, no. of nodes

– line 2: branch index, sending-node index, receiving-

node index, R [Ω], X [Ω], ampacity [A]

– line 3: ...

iv) transformer and voltage regulator (VR) data:
– line 1: no. of transformers and VRs

– line 2: node index, R [Ω], X [Ω], tap size [pu], no.

of positive taps, no. of negative taps, current tap,

primary voltage level index, secondary voltage level

index, capacity [VA], adjust (0: lock, 1: adjust)

– line 3: ...

v) load data:
– line 1: no. of loads

– line 2: node index, P [W], Q [Var], a0(b0), a1(b1),

a2(b2), priority (0: no, 1: yes)

– line 3: ...

vi) generator data:
– line 1: no. of generators

– line 2: node index, operation mode (0: PQ mode, 1: PV

mode), P [W], Q [Var] if operation mode is PQ or Vset

[V] if operation mode is PV

– line 3: ...

vii) capacitor data:
– line 1: no. of capacitors

– line 2: node index, Q [Var], no. of non-zero steps,

current step, adjust (0: lock, 1: adjust)

– line 3: ...

viii) switch data:
– line 1: no. of switches

– line 2: status (0: open, 1: closed), branch index,

permanently open (0: no, 1: yes)

– line 3: ...

ix) fault data:
– line 1: no. of faults
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– line 2: faulty branch index

– line 3: ...
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