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Abstract 

 In this work, we use a theorem checking system called Mizar to formalize token 

boundedness property of a subclass of Petri nets. The rigorous Mizar formalization and 

mechanical theorem verification presented in this work uncovers a common example of how 

information omitted from natural language descriptions of mathematical concepts and proof can 

lead to areas of ambiguity.  

 Both natural language and formal language descriptions of hardware and software 

systems and their properties are widely used in the area of computer science. Petri nets are often 

used to mathematically model and examine concurrent behaviors of hardware and software 

systems. However, when definitions and proofs of Petri net properties are expressed in natural 

language, details (trivial proof) that appear obvious for expert mathematicians or are repeated 

often are sometimes omitted from these descriptions, leaving the reader to fill in the gaps in 

order to understand. This kind of problem can occur because definitions in natural language are 

not always precise. Some missing information can cause errors or ambiguity in interpretation 

when developers try to apply these concepts to tools for system modeling and analysis. Such 

errors may have catastrophic consequence in terms of money and time. In general an earlier an 

error is detected, the cheaper it is to fix, which eventually produces reliable hardware and 

software systems with high quality.   

 In this work, the Mizar system is used for the formal verification of token boundedness 

property of a subclass of Petri nets called decision free Petri nets (available in the literature [1]), 

which has the characteristics that every place in the net has exactly one input transition and one 

output transition, and mechanically verify that this formalization is semantically and logically 

correct. The Mizar language descriptions are more complete because every statement in this 

language must be fully justified with no jumps in the chain of logic. Using a number of basic 

Petri nets constructs already verified by the Mizar system and accepted to its repository of 

mathematical information, we built an extension for the decision free Petri nets and proved the 

token boundedness property of their circuits. While formalizing, we found clear examples of how 

gaps available in natural language descriptions of mathematical concepts and proofs in literature 

can lead to areas of ambiguity and highlight the value of using mechanical systems proof 

checking mechanisms to formalize such notions and archive all details of the corrected materials 
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in the open digital library of Mizar for reuse. This type of archiving of mechanically verified 

Petri net knowledge can serve as a reliable source for system modeling tool developers who rely 

on a common and clear understanding of the concept definitions and proofs, and also for the 

beginner reader. 

  The motivation of this research is to demonstrate the power of formalization techniques 

and its application to the formal verification of theorems concerning mathematically rich Petri 

net models with high reliability. In the future, the formal proofs of decision free Petri nets in the 

database of the theorem checking system can be used to analyze the liveness and safeness 

properties in directed circuits. 
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Chapter 1                              INTRODUCTION 

 This chapter provides an introduction to the research work presented in this dissertation. 

It describes the research background and explains the purpose of the research work. In addition, 

it also provides an objective of this work. Finally, it introduces the structure of the dissertation. 

 

1.1 Background 

 The work presented in this dissertation is the confluence of formal verification, where 

computer verifies the correctness of the formalized mathematics completed by humans. With the 

inevitable increase in the complexity of computer hardware and software systems, the likelihood 

of the level of subtle errors is high. Such errors may have a disastrous event in terms of time and 

cost [2]. If an error is detected earlier in system development phase, it would be easier and 

cheaper to fix. The error during the system design can be the result of several reasons, maybe 

because of omitted information or any ambiguity from given requirements. The requirements in 

software development process can be mathematical formulas, definitions, and theorems, which 

mostly found in some textbooks and literatures written in natural language. In the system 

development area there is a growing demand for methodologies that can fix errors and increase 

the confidence in correct system design [3]. Such methodologies will result in improved quality 

of hardware and software systems. The formal verification approach is useful to detect and help 

the developers to correct errors during the hardware and software development process [3]. The 

traditional engineering approach to the construction of complex systems is to build models first, 

which can be studied and modified until the confidence is obtained in their correctness [4]. 

Formal verification advocated a similar approach to the construction of computing systems. The 

background information on the formal verification method and its different approaches, 

including theorem checking system is presented in Appendix A.  

 

1.2 Purpose of the Research Work 

        Over the years, both natural language and formal language descriptions of Petri nets and 

their properties are widely used in the area of system development [5]. Petri nets are often used 

to mathematically model and examine concurrent and synchronous behaviors of hardware and 

software systems [6]. However, when concepts of Petri nets structures and properties are 
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expressed in natural language, some trivial proofs that appear obvious for expert mathematicians 

are sometimes purposely or accidentally omitted from these descriptions. This missing 

information can cause errors or ambiguity in interpretation when developers try to apply these 

concepts to proof assistant tool for system modeling and analysis. This kind of problem can 

occur because definitions written in natural language are not always accurate. This can be a 

source of much frustration for a beginner reader. The reader has to fill in the gaps of omitted 

facts and trivial proofs in natural language description in order to understand the exact meaning 

of concepts. Formal language descriptions on the other hand, are more complete because every 

statement must be fully justified. 

 In this work, we used a theorem checking system called Mizar to write mathematical 

definitions and formalize token boundedness property of decision free Petri nets, where Mizar 

verifier checks its logical correctness [1], [7]. Using a number of basic Petri net constructs 

already verified by the Mizar system and accepted to its digital library, we extended the available 

knowledge of Petri nets in library by building the formalization of decision free Petri net 

structure. Then we successfully proved the token boundedness property in circuits of decision 

free Petri net for both transition and transition sequence firing [8], [9]. Boundedness is always 

necessary to be able to keep the Petri net model of a manufacturing system bounded; for example, 

an unbounded model may cause buffer overflow [10]. The rigorous Mizar formalization and 

mechanical theorem verification presented in this work reveals a common example of how 

information omitted from natural language descriptions of mathematical concepts and proofs can 

lead to areas of ambiguity and highlight the value of using mechanical proof checking approach 

to formalize such notions and archive all details of the corrected materials for reuse.  

 

1.3 Gaps in Natural Language Definitions and Theorems 

 In system development area, an unambiguous mathematical definition is necessary so that 

we know the exact meaning of what the definition is talking about. Unfortunately, for many of 

the concepts or expressions in natural language, the definition is rather difficult to understand, so 

often, beginners use an intuitive feeling for the meaning of an expression. This intuitive feeling, 

while necessary, sometimes is not accurate and sufficient. This means, we need to overcome 

with the problem and master the formal statement of definitions and their meaning. For example, 

if one reads expression like p1t1p2t2... pk, at first glance, one might, not sure whether the 
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subscripts in the expression are either the position in the sequence or are part of the element 

labels.        

 Theorems are usually the important result which shows how to make concepts/definitions 

solve problems or give major insight into the working of the system design. Theorems use 

definitions which must have been given precise, means if definitions is not correct, theorem 

won't satisfy. So the considerable amount of care must be taken in the statement of the 

definitions and theorems in making it possible to formalize and prove the theorem completely 

and correctly [11]. Moreover, for the theorem to be correct, the conclusion should cover all the 

cases, not just simple or convenient case. Unfortunately, some proof in most literature considers 

only the most convenient and simple case [1]. For example, if we consider an excerpt of token 

boundedness proof from literature that "tokens in the circuit can only be produced or consumed 

by transitions in the circuit, i.e., when a transition consumes a token, it produces back into the 

circuit, therefore the number of tokens in a circuit remains the same after any firing sequence". 

While formalizing, we found that this proof does not hold for all cases, i.e., the exact meaning of 

this proof is only sufficient for the cases when the circuit does not contain repeated elements. In 

other word, readers after reading such proof and trying to satisfy the proof in a circuit with 

repeated elements, one might find that the number of tokens in the circuit before and after firing 

some transitions are not same. The brief description of this gap with diagrams is given in Chapter 

2.  

 

1.4 Objectives of the present study 

        The impetus for the present research came from a growing need for reliable hardware and 

software systems [3]. Complexity in the hardware and software systems increases the level of 

errors. For many years, researchers have been using formal verification methods to generate a 

reliable software and hardware systems. The advantage of using this method is to find system 

defects as early as possible and eventually cutting the efforts and budgets needed for redesigning 

any systems [2]. System failure not only results significant time and budget loss, but can also be 

life hazardous. The recent example of budget loss is the presence of Knight Capital's computer 

bugs in an automated trading program cost its proprietor 440 million dollars in 30 minutes which 

took place on August 2012 [12]. The reason of most system failures is because of a lack of guard 

against unexpected inputs and sometimes also because of mismatch between model specification 
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and actual software, which could have been prevented by a lot of attention to strict coding as 

well as thorough reviews which can be partly done by computer and partly by human. To this 

point, Mizar is a tool where Mizar language is used for writing code by humans and its verifier 

with the aid of computer verifies the logical correctness of the written code. 

        Up to now, some foundation of the basic Petri nets structure is formalized and stored in the 

Mizar mathematical library (MML) [8], [9], [13], [14]. However, there is a need to analyze and 

store more and more knowledge of the Petri nets structural and behavioral properties to construct 

and analyze even more complex Petri net model. Consequently, I turned my attention to 

mechanically build a structure of a subclass of Petri nets on top of the foundation of the Petri nets 

basic structure present in the Mizar library. After building a subclass of Petri net (decision free 

Petri net), one of its behavioral properties called token boundedness property is chosen and 

formalized in Mizar to check if the proof given in the literature is enough and safe to interpret in 

any modeling tool. As mentioned above, the present information in literature to prove the 

property was not enough and thus we had to add several definitions, lemmas, and theorems, 

which was not even talked or considered in the literature.   

 The major objective of the present study is to use the power of formalization techniques 

to clarify and strengthen the concepts of the mathematically rich modeling language of Petri nets 

by: 

 -- constructing the rigorous and complete descriptions of definitions and proofs using a   

                mathematical language which will not allow for the exclusion of any cases that can  

                cause ambiguity or error in interpretation, and 

 -- contributing the constructed mathematical knowledge, which has a computer guarantee   

                of logical correctness to an open digital library, where users can easily access to  

                retrieve the required information for the verification of the new complex mathematical  

                proof. 

 

 This type of archiving of mechanically verified Petri nets knowledge can serve as a 

reliable source for system modeling tool developers who rely on a common and clear 

understanding of the concept definitions and proofs, and also for the beginner readers who are 

seeking to get a deeper understanding of mathematics. 
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1.5 Dissertation Outline 

 In Chapter 2, we discuss the outline of the present research, where we show how omitted 

information in natural language descriptions can create gaps in the reasoning and why certain 

analytical properties of Petri nets are actually true.  

  In Chapter 3, we describe the formalization of decision free Petri nets and its token 

boundedness property, where we show which omitted cases and definitions were needed to solve 

the considered property in the Mizar system.  

 Chapter 4 provides the conclusion and future work of the study presented in this 

dissertation.  

 Appendix A contains the background information on the formal verification method and 

its different approaches.   

 Appendix B contains the background information on the Petri nets concepts which was 

used in this work for the formal verification of Petri nets behavioral properties by using 

mechanical approach.  

 Appendix C contains the Mizar background and some symbols and notations of Mizar 

that are used during the formalization of this work.  

 Appendix D contains the abstract of the list of definitions and theorems that was required 

to prove token boundedness property.  
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Chapter 2                              OUTLINE OF RESEARCH 

 This chapter presents an outline of the research work, where we used a theorem checking 

system to formalize a token boundedness property in a circuit of decision free Petri net structure. 

Early on, we found that natural language descriptions of mathematical concepts can have 

ambiguous descriptions that can be interpreted in different ways by different readers. Also, 

proofs are sometimes incomplete.  

 In this study, we found cases of both as we tried to build the formal descriptions of 

concepts related to token boundedness property of decision free Petri net. The background 

information on the basic concepts of Petri nets written in natural language description is 

presented in Appendix B. When we discuss about mathematical definitions and theorems, first 

we will consider definitions because they form the foundation for any part of mathematics and 

are essential for understanding and proving theorems. 

 

2.1 Gaps in Natural Language Definitions 

 A definition in mathematics should be a precise statement delineating and naming a 

concept by relating it to previously defined concepts. When we discuss the boundedness property 

of decision free Petri nets, two substructures: directed paths and directed circuits become 

necessary and in this work, this was the first example of how omitted facts in natural language 

definitions can cause ambiguity in interpreting the exact meaning of mathematical objects [1]. 

According to the Petri nets directed path definition, a finite alternating sequence of places and 

transitions, for example, p1t1p2t2... pk, is a directed path if and only if transition ti is both an 

output transition of place pi and an input transition of place pi+1 for 1≤ i ≤ K-1. Similarly, by Petri 

net directed circuit definition, a finite alternating sequence of places and transitions, like 

p1t1p2t2...pk, is directed circuit if and only if the sequence is directed path, where first and the last 

element of the sequence are equal [1], [15]. 

        If one follows both definitions of directed path and directed circuit, one might not be clear 

whether the subscripts in the labels of the sequence elements (e.g., "1" in p1) represent the 

positions in the sequence or the subscripts are part of element labels (e.g., a place element called 

"p1"). The clear meaning about this confusion on numbering should have discussed in the 

literature before presenting the definition of directed path and directed circuit. 
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2.2 Gaps Revealed in Natural Language Proofs of Theorems 

        Theorems and its proofs when written in natural language description usually admit some 

ambiguity.  Formal proofs, written in formal language must be unambiguous, complete, and must 

demonstrate that the proof of the theorems is true in all cases, without a single exception. When 

we interpret the theorem of  token boundedness property of decision free Petri nets in Mizar, we 

found that the given proof of this property in literature is not true for all cases, which was 

required to fix before proving this particular theorem.   

  

a). Proof of Token Boundedness Property taken from literature [1]:  

 The available proof of the token boundedness property in literature is completed in about 

less than 3 lines with a Fig. 2.1, as shown below [1]. 

 

"theorem: For a decision free Petri net, the number of tokens in a circuit remains the same after 

any firing sequence.        

Proof:   Tokens in the circuit can only be produced or consumed by transitions in the circuit. 

When a transition consumes a token, it produces one back into the circuit; therefore, the number 

of tokens in a circuit remains the same after any firing sequence "   

 

 

 

 

 

 

                    Figure 2.1. Decision free Petri net with circuit 

 

b). Translation of above proof written in natural language to formal language  

        Suppose if a programmer 'A' considers proof of this property as it is from literature to 

interpret it in some tool, proof might work for kind of circuit as shown above in Fig 2.1. But 

p4 p1 t4 

t1 t3 

p3 

t2 

p2 
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accidentally or purposely, this programmer didn't check the written proof for the circuit shown in 

Fig. 2.2, and thus Programmer 'A' might not get any error.    

       Again, if the same proof from literature is used by the programmer 'B' to interpret it in any 

theorem checker, this programmer found that the token boundedness property is true for a circuit 

like Fig 2.1. But there is a problem with the case of circuit like Fig. 2.2, where the alternating 

sequence of places and transitions, say p1, t1, p2, t2, p3, t3, p1, t1, p4, t4, p5, t2, p3, t3, p1 forms 

a circuit. With circuit like Fig 2.2, containing repeated elements, a simple check will show that 

they do not preserve the number of tokens after firing some transitions. As an example, the initial 

marking M0 of Fig 2.2 nets are (1, 0, 0, 0, 0). Then after firing enabled transition t1, the new 

marking M1 in Fig. 2.2 is (0, 1, 0, 1, 0). The transition firable and firing rule of the Petri net 

model is discussed in Appendix B. It can be clearly seen that the summation of total number of 

tokens in circuit before and after firing the transition t1 are not same. Hence the token 

boundedness property in a circuit that has a duplicate element is not as straightforward as 

suggested by natural language descriptions of the property in the literature [1]. If the 

formalization of the token boundedness property was continued without this realization, the work 

proof of the theorem could not be completed. This is because, in natural language proof, 

sometimes only the most convenient cases are addressed. But in the theorem prover, all cases 

must be explicitly proven before it is accepted as true by the verifier of the proof checker. 

   

                  
 

Figure 2.2.  Circuit contains repeated elements. 

 

 The above explanation concludes that all the cases should have explicitly written in the 
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literature, so that the programmer could understand clearly before interpreting the exact meaning 

of theorems and its proof into any tool. But in this case, we could not find such definitions 

stating that this boundedness property will not hold for the circuit that has repeated elements in 

literature. In order to fix the errors or in order to consider all the cases to prove this particular 

property correctly and completely, we had to create a definition sating that the circuits must not 

contain repeated elements except first and last elements. Such circuit, in general, is called an 

elementary circuit. 

        Since formal proof checks every possible case, another major error during the reasoning 

process was in the case of transition firing outside the circuit (for example, in this case firing of 

transition t5 in Fig. 2.3). The question arises that what happens when transitions not present in 

the circuit would fire. Whether it affects the number of tokens in the circuit or not. Logically, it 

does not change the circuits token number in this subclass of Petri net, but formal proof wants 

this fact to be verified before verifying the token boundedness theorem.   

 

 

 

 

 

 

Figure 2.3. Firing of transition outside the circuit 

  

        There were several other trivial facts that we had to define thoroughly and prove one by one 

in the Mizar tool to verify that the token boundedness proof is syntactically and logically correct 

in all cases [16], [17]. This verification took a couple of thousand lines to prove the boundedness 

property in a circuit of decision free Petri net, which in literature is just given in even less than 3-

line. Finally, by using all these definitions, and several accompanying lemmas and propositions, 

we proved token boundedness property for both firing a single transition and firing a transition 

sequence.   

p4 p1 t4 

t1 t3 

p3 

t2 

p2 

t5 

p5 
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2.3 Mizar 

 Mizar is an advanced project of the Mizar society led by Andrzej Trybulec that 

formalizes mathematics with a computer-aided proving technique [7], [18]. The Mizar project 

describes mathematical proofs in the Mizar language, which is created to formally describe 

mathematics. It has been a popular and efficient tool because of its powerful ability to formalize 

and analyze a model description and proposition computation. In this paper, we used the 

Mizar proof checking system because it is the most mathematically-oriented one, adopting 

a grammar resembling common mathematical language, a declarative style, and being based on 

first-order predicate logic. The background information on the Mizar System, its standard logical 

connectives and quantifiers are presented in Appendix C.  
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Chapter 3      Formalization of Decision Free Petri Net and the Boundedness Theorem 

 As discussed in the first two chapters that the core aim of this dissertation is to 

demonstrate a practical and effective approach for analyzing the token boundedness behavioral 

property of decision free Petri nets by using the Mizar system. Here we tried to keep the 

derivation of definitions and theorems of Petri nets as close to the textbook as much as possible. 

Definitions and theorems related to decision free Petri net and its considered property are 

formalized and divided into six subsections whose abstract form is presented in Appendix D and 

the complete proof of all these definitions and theorems is available online [17].  

 

3.1 Token Boundedness Theorem 

 The theorem of the token boundedness property described in natural language in 

literature is as follows, "for a decision free Petri net, the number of tokens in a circuit remains 

the same after any transition firing sequence" [1]. The natural language proof of this theorem is 

presented in Chapter 2. In order to prove the token boundedness theorem for transition firing 

sequence, first we need to prove the token boundedness property for firing single transition, 

which is used as one of the references to prove the property for firing transition sequence. 

Different people can have different ideas for how to translate the same theorem and its proof. 

Our way to describe the boundedness theorem after firing one transition in the Mizar language is 

described as follows: 

 

theorem  :: Boundedness theorem for single transition 

for Dftn being Decision_free_PT, 

dct being Circuit_of_places_and_trans of Dftn, 

M0 being marking of Dftn, t being Element of the carrier' of Dftn 

holds num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t, M0)) 

 

 The term "Decision_free_PT" in the above theorem stands for decision free Petri net 

structure whose Mizar definition is described as, 

 

definition :: Decision free Petri net 
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  let IT be Petri_net;  

  attr IT is decision_free_like means 

  for s being place of IT holds ((ex t being transition of IT st [t, s] is Element of the   

  T-S_Arcs of IT) & (for t1, t2 being transition of IT st [t1, s] is Element of the T-S_Arcs   

  of IT & [t2, s] is Element of the T-S_Arcs of IT holds t1 = t2))  & ((ex t being transition   

  of IT st [s, t] is Element of the S-T_Arcs of IT) & (for t1, t2 being transition of IT st [s,  

  t1] is Element of the S-T_Arcs of IT & [s, t2] is Element of the S-T_Arcs of IT holds t1  

  = t2));  

end; 

      

 The above attribute called "decision_free_like" describes that the basic structure of Petri 

net is decision free if, for all element s  place (the set of all places of Petri net), ∃t1,t2  

transition (the set of all transitions of Petri net) such that the arc [t1, s]  T-S_Arcs  is the only 

input arc to s (i.e., for all t1, t2  transition (the set of all transitions of Petri net) such that [t1, s] 

 T-S_Arcs and [t2,s]  T-S_Arcs implies t1 = t2) and the arc [s, t2]  S-T_Arcs is the only 

output arc of s (i.e., for all t1,t2  transition (the set of all transitions of Petri net) such that [s, t1] 

 S-T_Arcs and [s, t2]  S-T_Arcs implies t1 = t2). In short, each place in the net has exactly 

one input transition and one output transition. The term place, transition, S-T_Arcs, T-S_Arcs is 

borrowed from Mizar Library, whose description is presented in the section 4.1 of Appendix C.  

 Also num_marks in the above boundedness theorem is a function of places P and 

marking M that adds up the generated natural marking of the places in net, whose Mizar code is 

shown below. 

 

definition  :: summation of generated natural marking 

  let N be PT_net_Str; 

  let P be finite Subset of the carrier of N; 

  let M0 be marking of N; 

  func num_marks (P, M0) -> Element of NAT equals 

  Sum (the Enumeration of M0, P); 

end; 

 



15 

 Here " the Enumeration of M0, P " is used to construct a finite sequence of the selected 

values of natural marking of the places in Petri nets, which in Mizar is described as, 

 

definition 

  let X be set; 

  let Y be non empty set; 

  let P be finite Subset of X; 

  let M0 be Function of X,Y; 

  mode Enumeration of M0, P -> FinSequence of Y means 

  len it = len (the Enumeration of P) & 

  for i st i in dom it holds 

  it.i = M0.((the Enumeration of P).i) if P is non empty 

  otherwise it = <*>Y;  

  ... 

end; 

 

 Here we used arbitrary X and Y instead of the carrier of Petri net and NAT, because this 

definition is useful not only in our work, but also can be useful another time in another formal 

verification work after it is stored in the Mizar library. With the carrier of Petri net and NAT, we 

would have restricted to only Petri net type and NAT. The notation Enumeration in the above 

definition means one-to-one finite sequence, no duplicates, and all elements of P is taken. Once 

we have a finite sequence of selected values of M0, we just apply functor "Sum" to this 

Enumeration to get the desired summation (num_marks) value. If P is empty, then the Sum is 

Zero from the definition of Sum. Here we added assumption that P must be finite, otherwise we 

can't construct the desired finite sequence. 

   

Similarly places_of dct in boundedness theorem yields finite subset of the places in P, which in 

Mizar is defined as, 

 

definition  

  let PTN be Petri_net; 
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  let dct be Finsequence of places_and_transition_of PTN; 

  func places_of dct -> finite Subset of the carrier of PTN equals 

  {p where p is place of PTN : p in rng dct} 

...end;   

 

 The Mizar code of the directed path and directed circuit is described below. In order to 

formalize directed circuit concepts, first we need to deduce directed path concepts. 

 

definition :: directed path 

  let PTN be Petri_net; 

  let IT be FinSequence of places_and_trans_of PTN; 

  attr IT is directed_path_like means 

  len IT >= 3  & len IT mod 2 = 1 & 

  (for i being Nat st i mod 2 = 1 & i + 1 < len IT holds 

  [IT.i, IT.(i+1)] in (the S-T_Arcs of PTN) &  

  [IT.(i+1), IT.(i+2)] in (the T-S_Arcs of PTN)) 

  & IT.len IT in (the carrier of PTN);   

end; 

 

 The concept of a directed path is defined in Mizar as an attribute called 

"directed_path_like". For a finite sequence of places and transitions of a given Petri net, it is 

directed_path_like if there are at least three elements and the total number of elements in the 

sequence is odd. Also, the elements of the sequence will be ordered in such a way that every odd-

numbered element (except for the last element) and the even-numbered element following it 

form a valid S-T_arc in the net, as shown in Fig. 3.1. Similarly, every even-numbered element 

and the odd-numbered element following it form a valid T-S_arc in the net, as shown in Fig. 3.2. 

Finally, the last element in the finite sequence of nodes (places and transitions) is a place element.  
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Figure 3.1. Valid S-T_Arcs in Sequence. 

 

 

 

 

 

 

 

 

Figure 3.2. Valid T-S_Arcs in Sequence. 

 

 

definition :: directed circuit 

  let PTN be Petri_net; 

  attr PTN is With_directed_circuit means 

  ex fs being FinSequence of places_and_trans_of PTN st  

  fs is directed_path_like &  

  fs is circular &  

  fs is almost-one-to-one; 

end; 

 

 The term "Circuit_of_places_and_trans of Dftn" from the above token boundedness 

theorem represents that the directed circuit is a directed path and also circular and almost-one-to-

one finite sequence of places and transitions of decision free Petri net. The definition of 

"circular" attribute is borrowed from article FINSEQ_6 in MML [19], whose definition states 

1 2 3 4 k 
i = Nat 

       valid S-T_arc   valid S-T_arc 

2 
k 

i = Nat  
valid T-S_arc 

valid T-S_arc 

1 2 3 4 5 
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that the first and the last element of the sequence is same (similar to the definition of a directed 

circuit of this work). Again, the definition of "almost-one-to-one" attribute is also reused from 

article JORDAN23 stored in MML [20], whose definition states that the sequence does not 

contain duplicate elements between the first and last elements. 

 

3.2 Proof of the above token boundedness theorem  

 In natural language proofs, sometimes only the most convenient cases are addressed [1] 

as discussed in Chapter 2. But in Mizar, all possible cases must be explicitly proven before 

proving the particular theorem. In this case also when proving this theorem in Mizar, we realize 

that the available proof of this theorem in the book is only valid for the case of a circuit that has 

no repeated elements. So, it was necessary to prove the theorem for all cases by our own 

knowledge and experience. In the proof of the above theorem, we first checked for whether a 

circuit is empty or not, then we divided the cases of whether transition t ∈ T is firable at marking 

M0 or not, then whether transition t  T is in the circuit or not. If transition t is in the circuit, 

then whether the length of the circuit is either equal to 3 or greater than 3. In all of the cases, we 

had to prove that the total number of marks in the places of the circuit is the same before and 

after the transition t firing operation. The basic outline of our proof strategy of this theorem is 

given in Fig. 3.3.  

 

        ... 

           if circuit is non empty 

            ...{... 

Case 1       t is firable at M0 

                  { 

Case 1.1       t in circuit 

                      {...  

Case 1.1.1      circuit length = 3 

                         {... 

                          num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t, M0))  

                          } 
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Case 1.1.2      circuit length > 3 

                          {... 

                          num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t,M0)) 

                          } 

                      }        

Case 1.2       not t in circuit 

                     {... 

                        num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t, M0))  

                     }   

                  }         

Case 2         not t is firable at M0 

                     {... 

                       num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t, M0))  

                          }        

                      ...} 

   

 

Figure 3.3. Outline of proof strategy. 

  

 This shows that if individual cases are omitted, the conclusion of the theorem can be false. 

The case in theorem is important because it makes the complicated proof easy and readable. This 

proof preserves the number of tokens in places of the circuit after firing a transition t. In order to 

prove this considered theorem, we need 15 theorems which is directly or indirectly connected to 

this theorem to be proved before proving a boundedness theorem, also 14 definitions and 1 

lemma were necessary [54]. Lemmas are technical results used in the proofs of theorems. Often 

it is found that the same trick is used several times in one proof or in the proof of several 

theorems. When this happens the trick is isolated in a lemma so that its proof will not have to be 

repeated every time it is used. This often makes the proofs of theorems shorter and expressive. 

The description of each case with a diagram is shown below.  

 

Case  1.1.1 len dct = 3 
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 First of all, let us consider the case that the circuit is not empty, transition t is firable, 

transition t is in circuit, and the length of the circuit is equal to three. 

 

 

 

 

 

                     

 

Figure 3.4. Directed circuit with length equal to 3 

 

 Here a place labeled by p is the only input place for transition t and the same place is also 

the only output place of transition t. Thus, according to transition enable and firing rule (refer 

Appendix B), this t is enabled and after firing t, token count does not change and thus preserves 

the number of token in a circuit of decision free Petri net structure.  

 

Case 1.1.2 len dct > 3  

 Now, let us consider the case of non empty circuit where transition t is firable and 

available in circuit, and also the directed circuit length is greater than three. In Fig. 3.5, the finite 

alternating sequence of places and transition forms circuit, where p1 = pn. 

 

 

 

 

 

 

Figure 3.5. Directed circuit with length is greater than 3 

 

In order to understand clearly, the element of Fig 3.5 in text can be written as  

let dct = p1, t1, p2, ..., q, t, r, ..., pn .       where q, r are places, t is transition. 

t

p

p1 t1 p2 t pn r q 
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Then in the Mizar article of this work, it has been proved that for every place s, if s is a place in 

dct and s is not equal to q then 

1.  not s in *'{t}                               (This means any place s is not the input place for t) 

Similarly, we proved the fact that for every place s, if s is a place in dct and s is not equal to r 

then,  

2. not s in {t}*'                                (This means any place s is not the output place of t) 

We also proved the facts that  

3. not q in {t}*'                               (This means q is not the output place of t) 

4. not r in *'{t}                                (This means r is not the input place for t) 

 

Thus we have facts that place q is the only input place for t and another place r is the only output 

place of t and denoted by: 

5. q in *'{t} and r in {t}*'  ..................................................................................eq.1 

 

Now, let us consider the variables mM0, mFM0, and p1, which store the following elements: 

mM0 - marking of places in dct before firing t 

mFM0 - marking of places in dct after firing t 

pl - sequence of places of dct,                                                                                                                                     

                                                                                                                                          

The order of places in pl can be different from the order of places in dct, so after finding the 

exact location of place q (denoted by nq) and r (denoted by nr) in the enumeration of p1, we 

considered two subcases: 

 

1.1.2.1 nq  >  nr , and  

1.1.2.2 nr  >  nq (analogue of 1.1. 2.1) 

 

First, let us consider case 1.1.2.1, where the exact location of q in p1 is greater than the exact 

location of r in p1, 

For example, let say we have 

 the Enumeration of places of dct = <* p1, p2,...,r, q, ..., pn*>  

Then the marking of places in above sequence is written as  
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the Enumeration of M0, places_of dct = <* M(p1), M(p2), ..., M(r), M(q), ..., M(pn)*>  

 

 Then in order to preserve the number of tokens in a circuit, our Mizar code for this case is 

written in such a way that the above marking sequence will  be divided into the way as shown in 

Fig 3.6 and 3.7.  The Fig 3.6, first restricts the marking sequence to the first (nq - 1) elements. 

 

 

M(p1), M(p2), ..., M(r), ......, M(q), ..., M(pn) 

 

 

 

 

 

 

Figure 3.6.  Restricting the marking sequence to (nq-1) elements  

 

 Then again the resulted marking sequence after restriction, i.e, the sequence of marking 

before place q, which is (nq - 1) in above Fig 3.6 is again divided into (nr - 1) marking sequence 

as shown in Fig 3.7.   

 

M(p1), M(p2), ..., M(r),  ..........., M(q), ..., M(pn) 

   

 

 

 

 

 

 

 

 

Figure 3.7.  Restricting the resulting marking sequence (nq-1)  to (nr - 1) elements  
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 The Mizar code of the above process shown in Fig 3.6 and 3.7 is written in Fig 3.8. The 

total number of tokens in places of a circuit when nq > nr is calculated by following Mizar 

logical statements, 

 

  ... 

       num_marks ((places_of dct), M0)  

       = (((Sum (( the Enumeration of M0, places_of dct | (nq - 1)) | (nr - 1)))    

    +       (Sum <* (( the Enumeration of M0, places_of dct | (nq -1)) . nr)*>)) 

    +     (Sum (( the Enumeration of M0, places_of dct | (nq - 1))  /^  nr))) 

    +     (Sum <*( the Enumeration of M0, places_of dct /. nq)*>)) 

    +     (Sum ( the Enumeration of M0, places_of dct /^ nq)) 

          ...   

           (((Sum (( the Enumeration of M0, places_of dct | (nq - 1)) | (nr - 1)))    

    +        (( the Enumeration of M0, places_of dct | (nq -1)) . nr) + 1 

    +     (Sum (( the Enumeration of M0, places_of dct | (nq - 1))  /^  nr))) 

    +        ( the Enumeration of M0, places_of dct . nq) - 1 

    +     (Sum ( the Enumeration of M0, places_of dct /^ nq)) 

          ... 

       = ((((Sum (( the Enumeration of Firing (t, M0), places_of dct | (nq - 1)) | (nr -' 1)))  

    +         (Sum <*(( the Enumeration of Firing (t, M0), places_of dct | (nq - 1)) . nr)*>))  

    +          (Sum (( theEnumeration of Firing (t, M0), places_of dct | (nq - 1)) /^  nr))) 

    +        (Sum <*( the Enumeration of Firing (t, M0), places_of dct /. nq)*>))  

    +         (Sum ( the Enumeration of Firing (t, M0),places_of dct /^ nq))  

          ...  

     = num_marks ((places_of dct),( Firing (t, M0)))  

      ...     

 

            Figure 3.8.  Mizar code for preserving the number of tokens when nq > nr 

 

 Here " the Enumeration of M0, places_of dct | (nq - 1)) | (nr - 1)" from Fig. 3.8 (Line 2) 

first restricts the marking sequence to the first (nq - 1) elements as shown in Fig. 3.6, and after 
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that it restricts the resulting sequence to the first (nr - 1) elements as shown in Fig. 3.7.  " ((the 

Enumeration of M0, places_of dct | (nq -1)) . nr) " from Fig 3.8 (Line 3) gives the exact marking 

of place r (i.e, M(r)) from the resulting sequence (nq - 1). Similarly "((the Enumeration of M0, 

places_of dct | (nq - 1))  /^  nr)" expression from Fig. 3.8 (Line 4) divides the rest of marking 

sequence between M(r) and M(q). Again "( the Enumeration of M0, places_of dct /. nq)" 

expression from Fig 3.8 (Line 5) gives the exact marking of place q (i.e, M(q)). Then the 

expression "(the Enumeration of M0, places_of dct /^ nq)" from Fig 3.8 (Line 6) gives the rest of 

marking sequence after the nq-th element as shown in Fig 3.6 and 3.7. After dividing the 

marking, since according to eq.1 place q is the only input place for transition t and place r is the 

only output place of transition t. So, according to transition firable and firing rule, marking from 

place q will lose 1 token (i.e., M(q) - 1) and 1 token will be added to the only output place r (i.e., 

M(r) + 1), and all other marking sequences will be same as shown in Fig 3.6. Then, after 

summing all resulted new marking sequences, the total number of marking will again be same 

before and after firing the transition t.  

 

Similarly, the whole process will be opposite in the case nr > nq, which also preserves the 

number of token before and after firing transition t. The detail Mizar code of this case is 

available online [17].  

 

Case 1.2 transition t not in circuit. 

  

 
 
 
 
 
 
 
 
 
 
                                                 
                                        Figure 3.9: Any transition outside of Circuit  
 

p1 t1 

t2 p2 

t

p

T-S_arc S-T_arc 
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 The transition t, which is not in the circuit will not affect the number of tokens in the 

circuit. The reason is because every place in the decision free Petri nets, there is exactly one 

incoming and one outgoing arc. Since every place in the circuit is connected with the transition 

of the same circuit. Thus, any transition t which is available outside the circuit means there is no 

any arc connection between any place inside the circuit and this transition t. And the relation of 

outside transition t with any outside place p forms, either S-T_Arcs or T-S_Arcs as shown in 

above Fig. 3.9. 

 

Case 2. t is not firable  

 According to transition firing rule, if input place of any transition t does not hold any 

token means t is not firable. If t is not firable means there is no any token movement in the net. 

 

 

 

 

 

 

 

 

                  Figure 3.10. Transition t is not firable 

 

Until now the above boundedness theorem and its proof of different cases is for firing single 

transition t. Finally, by using all of these definitions and several accompanying lemmas and 

propositions, we successfully proved token boundedness property for firing transition sequence 

by using induction statement. The Mizar code of the token boundedness property for transition 

sequence is given below. 

 

theorem  

for Dftn being Decision_free_PT, dct being Circuit_of_places_and_trans of Dftn, M0 being 

marking of Dftn, Q being FinSequence of the carrier' of Dftn holds num_marks (places_of dct, 

M0) = num_marks (places_of dct, Firing(Q, M0));  

t

p
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Chapter 4                                Conclusion and Future Work 

 When definitions and theorems of mathematical knowledge are described in natural 

language, some important details are sometimes omitted from the descriptions leaving the reader 

to fill the gaps in order to understand. Moreover, it happens that the construct of a theorem proof 

in the modeling or analysis tool sometimes is not true for all possible cases because of ambiguity 

or the missed information.  

 In this dissertation, we used a mechanical proof checking system called Mizar, where 

Mizar language is used for writing mathematical definitions and theorems of a subclass of Petri 

net and Mizar verifier checked the logical correctness of a system. Here, by using some basic 

information related to Petri net available in Mizar library, we built the structure of a subclass of 

Petri net called decision free Petri net with the aim to prove the token boundedness property in a 

circuit of this structure for both firing transition and transition sequence. While in the process of 

formalizing, we found that there is some omitted case and information in the proof of natural 

language, which eventually was causing errors several times. In order to fix errors, we had to 

define and prove the missed facts in our Mizar work before proving the token boundedness 

property, because the theorem checking system does not allow incomplete proofs to pass.  

 Formal verification of mathematical concept is important for modeling and analysis of 

hardware and software systems and also for building a reliable repository of mathematical 

information that can be used as a foundation for developing more complex system theories. The 

advantage of system property analysis in a mechanical way is that each step in a formal language 

is explicitly given and justified, and hence it has a computer guarantee of logical correctness. 

Logical correctness plays a vital role in the system development process. Errors traced late in the 

development of computer hardware and software systems are not acceptable any more for both 

industries and designers because of high capital investment.  

 

Future Work   

 In future, the definitions and theorems of decision free Petri net stored in the database of 

the theorem checking system can be used to analyze the liveness and safeness properties in 

directed circuits. Liveness property has a fact, that the directed circuits should cover all 

transitions, and the initial marking M0 assigns at least one token on each directed circuit. 
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Whereas,  decision free Petri net is safe if and only if it is a live Petri net, the directed circuits 

cover every place, and also the initial marking M0 assigns exactly one token on each directed 

circuit.   
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Appendix A                          Formal Methods and its Approaches  

 In this section, we briefly introduce formal methods (FMs), its purpose, and its different 

approaches. It then familiarizes the reader with the tools and techniques used for formalization of 

mathematical knowledge and verifying its correctness. It then describes some of the theorem 

provers tools with its advantages and disadvantages.  

 

1. Introduction 

 Mathematical language is a mixture of words and symbols that mathematicians use to 

write mathematical formula in textbooks mostly in natural language which can be implemented 

on the computer under the strict guidance of formal semantics. Over the past three to four 

decades, there have been a noticeable achievement in the area of theorem proof checking 

systems for reasoning mathematical definitions and theorem statements in tools. Formal proof 

systems have been well studied in industrial and academic fields to formalize standard or 

classical mathematical concepts. Because of its powerful and well organized implementations of 

logic, formal proofs are becoming more popular and relevant to many different fields that 

depends on mathematical reasoning techniques. No doubt, there is a visible difference between 

formal proof text and natural language texts. We can often see that the steps in the natural 

language description have a gap, which is definitely needed to be filled in order to be clearly 

understood for readers of all areas. This is because an expert in mathematics usually avoids 

writing such trivial facts that is obvious and repeated. They find it distracting and boring to give 

some small obvious details in each and every step. Whereas the reader of another area, not expert 

in mathematics, find it more sophisticated and complex since they believe that the correctness of 

mathematical texts should depend on the every statement stated before.  

 

2. Motivation 

 We all know that there is a considerable amount of mathematical knowledge stored either 

in many different textbooks or in the brain of mathematicians. We always have difficulty to find 

all related mathematical knowledge and its reference in one place. One needs to follow different 

reference website or textbooks to understand sophisticated mathematical formula. This is the 

reason that we need an active system where we formalize theorems and definitions of well 
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formed algorithms and then all the information can be stored in one folder as an open digital 

library which can be referred by all users. The same information in the library can be browsed 

and searched by the user who wants to refer and extend the available knowledge to analyze their 

own interested model. Storing this knowledge in the right form of computers, the mathematics 

should be more readily available to be used either by programmers or by computer applications 

which is required as a pre definition or pre theorems for the justification of steps. The important 

advantage of creating the library is that all the information stored there has a computer guarantee 

of logical correctness of statements.  

 

 Before embarking on the detailed description of FMs, let us be familiar with the 

taxonomy (types and approaches) of it that can be used for modeling and checking the system as 

given in Figure 4.1.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 4.1. Formal method and its approaches 
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3. What is FMs? 

 FMs in system development engineering are a mathematical and logical based techniques 

which can be used for the specification, verification, and implementation of a complex hardware 

and software program [21], [22]. In the specification phase, designer rigorously defines a system 

using a modeling language. The process of formal specification is similar to the process of 

converting a word problem into an algebraic notation. Formal verification is a process where 

designers are heavily emphasized on analysis or proving the correctness of a property of systems 

on the specified model. Whereas implementation is a method of converting the specification into 

code. When models become more sophisticated and where safety is an important issue, the 

formal methods for system development assures another level of insurance. The proofs by this 

method can be performed automatically using automated or interactive (proof assistant) theorem 

provers (TPs) by different available tools. The reason for studying formal methods is the 

expectation to create reliable and robust hardware and software programs.  

 

4. Why FMs? 

 For many years, researchers have been using FMs to generate a better software and 

hardware process and increase its quality. The advantage of this method includes finding system 

defects earlier, checking of structural and behavioral properties of systems, and decreasing the 

redesign work. This method can also help the researchers to avoid or reduce the ambiguity which 

is an intrinsic phenomenon of natural language, FMs is even more important in the fields of 

system where the failure of software cause loss of life and cost. One example of life loss among 

several is, the crash of Air France flight 447 in 2009, killed 228 people, was partly due to 

discrepancies in the indicated airspeed readings [23]. Similarly, another example of budget loss 

among several is, the presence of bugs in an automatic trading program cost its proprietor 440 

million dollars in 30 minutes when it was deployed on August 1st 2012 [24]. The causes of these 

failures is because of a lack of guards against unexpected inputs and mismatch between 

specification and actual software, which could have been prevented by strict coding as well as 

thorough reviews by computer system. 

 The reason of formal method raised two fundamental questions. First one states that: Are 

we building the right model? In order to answer this question, the model needs to be validated 

[25]. The second question states that: Are we building the system right? The answer of this 
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question needs model verification. In other words, validation is concerned with checking that the 

system meets the customer’s necessity, while verification is involved with whether the system is 

well-designed, and so on. Verification process helps designers to determine whether the software 

system is of high quality and bug free which is mainly required for building a complex system.  

 

         
 

Figure 4.2. Verification and validation (Source: [46]) 

  

5. Formal verification 

 Formal verification is defined as an approach to create a mathematical model of a system 

using a formal language to specify desired properties of the systems in a concise and 

unambiguous way, and using a method of proving and verify that the specified properties are 

satisfied by the model. When the method of proof is carried out substantially by machine, the 

method is called automatic verification. In this thesis, the emphasis is done on the formal 

verification, and more specifically, on the formalization of mathematical definitions and 

theorems and proving its logical correctness. Formal verification of hardware systems has been 

common by using model checkers and TPs [27], [28]. Verifying the correctness of a hardware 

and software program requires formalization of a functional property to be verified using a 

suitable logical formula such as higher order logic, first order logic or temporal logic [29].  
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6. Model checking and Theorem Proving System 

 

6.1. Model Checking 

 Model checking is an approach where a finite model of a system is built and checked 

against a set of desired properties. In another word, model checking is a technique where the 

specification is expressed as a finite state model [30]. Here the system is modeled as a set of 

states together with a set of transitions between states that describe how the system moves from 

one state to another in response to internal or external stimuli. In model checking approach, a 

system  problem or the desired properties involve the construction of abstract model in the form 

of either temporal logic [31] or on finite state automation [32], as shown in Figure 4.3. Here an 

exhaustive search of the state space is performed in order to check that the system is a model of 

its specification (or to check weather model satisfies its specifications).  

 

 

 

 

 

 

 

                                                  Figure 4.3: Model Checking Techniques 

 

 The advantage of the state based exploration technique is that once the correct design of 

the system and the required properties is built, the verification process is typically fast and fully 

automatic. The other advantage is that if the design or event of the property does not hold true in 

some states, the verification process generates a counterexample file with important debugging 

information. This approach is more limited in scope than the other automated formal techniques 

(example, deductive methods, like TPs), but is intuitive, fast, and fully automated, and thus is 

popular in many industrial areas. The specification of the system is very similar to programming, 

so it does not require much additional expertise from the user. The example of model 

specification and model checking tools include standard specification language such as LOTOS 

or SDL (supports CCS and CSP process) [33], CADP (specified in the ISO language LOTOS) 

Model Checking 

Temporal Logic Automata Theory 
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[33], [34], and there are many more to list. There are Communication Sequential Processes (CSP) 

as a model of massage passing parallel computation. The ISO standard LOTOS abbreviated for 

Language of Temporal Ordering Specification is a process algebra used to describe CSP and 

synchronizing by rendezvous on gates. LOTOS was developed as a language by adding abstract 

data type to CSP. It seems to be suitable for the connection of multiple arithmetic elements 

which perform the concurrent operation and the description of their behaviors. 

 Knowing the fact that this model depends on the search of the state space of the system, 

unfortunately this may increase with the size and complexity of system description, commonly 

known as the state space explosion problem. This is because of the exponential relation of the 

number of states in the model to the number of components, that results system states. This 

restricts the scope of model checking techniques for sophisticated systems. 

 

6.2. Theorem Proving 

 Theorem proving is an approach where a system is modeled as a mathematical definition 

in some formal mathematical mechanical rules and logic. The desired properties of a system are 

then derived as a theorem, that needs to be proved, using the formalized definitions and lemmas. 

Here every line of the proof is explicitly justified, and hence is fully completed and readable. 

Theorem proving tools, mainly depend on higher order logic, first order logic, set theory, 

constructive logic, etc. It has two approaches, that is, automated theorem provers and interactive 

theorem provers. Before giving the detailed definition of its two different approaches, let us 

know about what is a proof and why is needed. 

 

a) Proofs. 

 Webster's dictionary describes that "the proof is a process of establishing the validity of a 

statement, especially by derivation from other statements in accordance with principle of 

reasoning". A mathematical proof reduces to a series of very small and simple steps and all these 

steps can be justified. These steps are so small and obvious that no mathematicians want to write 

this in their textbooks, but it generally holds the position that mathematical proof that we find in 

books can have some incomplete details. It sometimes happens that a mathematical theorem 

from literature turns out to be false. In such case their formalized proofs and theorems cannot be 

verified, and also takes extremely longer duration to be verified. This is the reason that 
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mathematicians also agree on the validity of the basic proof steps. This achievement encourages 

researchers to use mechanical proof formal verification approach. 

   

6.2.1. Automated theorem provers (ATPs) 

 This is a subsection of theorem provers. Automated theorem provers (ATPs) are 

programs that are built for automatically finding proofs of formulas or theorems, rather than 

checking the proofs formalized by humans. One can also define this approach as a system 

consisting of a set of well chosen decision procedures or rules that allow formulas of a specific 

restricted format to be proven automatically. One of the main drawbacks of this system is that 

the generated proof is large enough even for a simple system. Another disadvantage of ATPs is 

its inherent low/limited expressiveness of their input language.  

 

6.2.2. Interactive Theorem Provers (ITPs) 

 In this subsection, we describe computer programs that have somewhat different nature 

than the formal mathematical systems described in the previous subsections of automated 

theorem proving systems. Interactive theorem provers (ITPs), also known as proof assistant tools, 

are programs that help us to define the mathematical definitions, theorems, and do logical step by 

step reasoning by hand on the computer. The main aim of this approach is to do proofs. This 

approach is used mainly by researchers or specialists who formalize mathematical definitions in 

it and prove theorems. Proof assistants differ from automated theorem proving systems in that 

proof assistants help developers to develop human readable proofs that have computer guarantee 

of logical correctness. Since these proofs are mechanically checked by both human and computer, 

they do not share the controversial implications of computer aided proofs by exhaustion.   

 

6.2.3. Declarative and Procedural input Language 

 The input language of the proof assistants can be a declarative or procedural style. The 

structure of a declarative proof style is more natural, i.e. it has a closer structure to the language 

used to prove mathematical formulas in textbook mathematics. Declarative style proof is more 

readable than procedural style proof because declarative proof consists a list of steps, where each 

step in the chain of logical statement is fully justified from the previously justified statements in 

the proper order.  
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 On the other hand, in the procedural system, the user issues commands that transform so- 

called proof state until it reaches a state where the proof is finished. In this process, the user 

mostly exhibits the transitions of this system rather than the intermediate states that it goes 

through.  

 As discussed above that the declarative style is more readable because the script 

explicitly contains the successive proof states, also more accessible because it relies on a few 

basic operations, easier to understand because this language is quite close to the natural 

mathematical language style, and much maintainable because modifications affect the behavior 

of the script only locally. Whereas proofs in procedural system is less readable for the human 

user because proofs are scripts of commands. In this thesis deductive proof assistant approach is 

chosen for formalizing the case study.  

 

6.2.4. Some Available Proof Assistants  

The three main classes of proof assistants are:  

a) That based on Church’s higher order logic. Example of proof assistants falls into this category 

are: HOL, Isabelle/HOL, ProofPower, and maybe also systems like PVS, 

b) That based on Martin-Lof’s type theory. Some example of this proof assistants are Coq, 

NuPRL, Agda, Epigram. 

c) and that based on set theory. The proof assistants belongs to this category are: Mizar, 

Metamath, Isabelle/ZF.  

 Below is the brief description of some among several available and active proof assistants 

tools used for formal verification: 

 

A). HOL  

 HOL is an interactive theorem prover for checking the correctness of mathematical 

proofs of systems program, developed by Mike Gordon in 1980s [35]. This system is based on 

higher order logic: a programming circumstances in which mathematical theorems can be proved. 

Here the formalization process is no longer completely manual, but supported by a computer 

system. HOL Light is a latest version of the HOL theorem prover. This is famous for Kepler's 

conjecture proof [36]. HOL Light is coded in CAML Light with the ability that it can run well 

even on small machines, e.g. PCs and Macintoshes with only a limited megabyte of RAM. This 
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system is widely used for proving the correctness of mathematical model. The system is adapted 

to the expertise and needs of computer scientists, and does not have intention to resemble the 

reasoning and language of formal mathematics closely. 

 

B). ISABELLE 

 Isabelle is also an interactive proof assistant tool, developed by Larry Paulson, Tobias 

Nipkow and Makarius Wenzel as a successor of HOL, based on LCF style which is written in 

standard ML. This system is also developed and used for checking the correctness of 

mathematical proofs of systems. The important difference between HOL and ISABELLE is that 

the latter one did not hardwire the mathematical foundations into the system, but keeps it as a 

parameter of the system, whereas the HOL implementation is on top of the Isabelle, called 

Isabelle/HOL. One more difference between HOL and Isabelle is that Isabelle has a readable 

proof language inspired by the Mizar language called Isar.  

 

C). MIZAR 

 Mizar is a system initiated by Andrzej Trybulec in 1973 [37] at the university of 

Bialystok. The case study of this work presented in this dissertation is totally based on this 

system. The detail description of the Mizar system and its input language is discussed in the 

Appendix C.  
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Appendix B      Petri Nets 

 Here, after describing the motivation of formal verification of Discrete Event Dynamic 

Systems, some preliminary notations and symbols of the basic Petri nets will be introduced. 

After that a subclass of Petri nets, i.e., decision free Petri net will be discussed. This chapter also 

gives some description of its substructure called directed path and directed circuit.  

 

1. Motivation 

 Because of the high demand for increased productivity, flexibility, and competitiveness, 

the world of modern society has created a high performance discrete event dynamic systems 

(DEDS's). Concurrency and synchronization are important and well studied behaviors in DEDS's. 

These systems are often complex and larger in scale, and thus highly capital invested systems. A 

lot of work goes into modeling, analyzing, and verifying the structure and behavior of these 

systems. Logical correctness plays a vital role in the design and operation of such high 

performance DEDS's [2].  

 

2. Petri Nets (PTNs) 

        PTNs are widely accepted and useful mathematical models for designing and analyzing a 

DEDS [1], [15]. Because of the concurrent and synchronization properties of Petri nets and their 

visually graphical notation, they hold the popularity for modeling DEDS's. The Petri net system 

may be computer hardware and software or a combination of both. Originally, PTNs were 

created by Carl A. Petri in 1962 for the study of communication with automata [38]. Further, 

several extensions of it and the restrictions on it has been studied for concurrency, 

synchronization, etc. [15]. Because of Petri nets graphical and mathematical representation 

nature, it has been popular and successful in the area of computer hardware and software system 

development.  

        The graphical representation of PTNs is easy to understand by readers, on the other hand, 

the ambiguous textual representation or mathematical notation of PTNs is difficult to understand. 

But as the complexity of the graphical representation increases and suffered by state space 

explosion problem, one has to move for formal analysis to check the correctness and reliability 

of the system. A mathematical Petri net model is described by a set of linear algebraic equations. 
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The formal analysis of Petri nets makes it possible to describe a strong statement of the 

properties of the process being modeled. This in turn prevents the existence of ambiguity, 

uncertainties. Among several behavioral properties of Petri net, token boundedness property is 

one of the well studied property of the system. The formal analysis of a model is especially 

required in the area of critical systems where safety is one of their primary requirements [39], 

[40]. In the area of manufacturing systems, PTNs have been used to model and analyze and to 

represent a simple production line with buffers which can be used for the study of boundedness 

and liveness property, performance evaluation for throughput, delays, capacity, etc [41].   

 

3. Basic Concepts of Petri Nets 

3.1  Formal notation of Petri Nets 

 This section provides the preliminary notations and symbols to be used in this work for 

those readers who are not familiar with PTNs. A place-transition net (PT-net) is a directed graph 

consisting of two sorts of nodes called places and transitions, such that no arcs connect two 

nodes of the same type. Graphically, a place is denoted by a circle, a transition by a box, and an 

arc by a directed line as shown in Fig. 6.1.  

 

                              

 

 

                                         

  

     

 

Figure 6.1. Petri net structure. 

 

 A Petri net is usually used to represent a discrete event system, where the places denote 

conditions, the transitions denote events and the arcs between places and transitions denote the 

relationship between conditions and events. Mathematical definitions of the basic structure of 

PTNs and its elements are: 

 

p1 

t1 
p2 t2 

p3 t3 

p4 



39 

Definition 1. The basic structure of a PT-net is described by a 3-tuple N = 〈 P, T, F 〉,                          
                                         where,  P is a set of places,  

                                                     T is a set of transitions, and  

                                                     F ⊆ (P × T) ∪ (T × P) is a flow relation from places to 

transitions and vice versa.  

 

3.2. Pre-set and Post-set in Petri net 

 The set of places and the set of transitions in Petri net structure are disjoint, denoted by (P 

∩ T = Ø), means that there are no any common elements. Pre-set and post-set is the condition 

that is required during system model. The set of all input places of any transitions, denoted by •t 

symbol, is called the pre-set of transition and the set of all output places from any transition t is 

called post-set of transition t and denoted by t• symbol. Again, the set of all input transitions is 

called pre-set of any places and denoted by •p, similarly the set of all output transitions from any 

places is called post-set for any places and denoted by p•. Mathematically, it can be represented 

as: 

 

Definition 2. A Petri net N  is a structure, where its preset and post set element is denoted by, 

   N = 〈 P, T, F 〉 be a PT-net. 

  ∀x ∈ (P ∪ T), 

             • x = { y | (y, x) ∈ F},  is called the pre-set of x, and 

             x •  = { y | (x, y) ∈ F } is called the post-set of x.  

 

For clarity in presentation, the pre-set and post-set of a set of places or transitions, X = { x1, 

x2, ..., xn } ⊆ (P ∪ T), can be written as • X and X •  respectively, where • X = • x1 ∪ • x2 ∪ ... ∪ • xn 

and X •  = x1
•  ∪ x2

•  ∪ ... ∪ xn
•. 

 

4. Dynamic Model of System 

        The description until now is a static structure of a Petri net. When the Petri net model 

changes, its state from one state to another, we called it exhibits the dynamic behavior of the 

system. In practice this is achieved through the use of marking. Marking of a Petri net means 

assigning tokens to the places on the net. A Petri net is a PT-net where tokens are assigned to its 
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places by a token distribution process called initial marking of PTNs. Mathematically, it can be 

represented as,  

 

Definition 3. For a PT-net N = 〈 P, T, F 〉, a marking is a function M: P → {0, 1, 2, ...}, where 

M(p) is the natural number of tokens in p ∈ P. (N, M0) represents a PT-net N with an initial 

marking M0. 

M can also be viewed as a vector given by Mk = {M1, M2,....Mi,...,Mn}, where the i th entry of M 

is Mi, which is the marking of the place pi. 

 

Example                              

 

 

                                     

                                                   Figure 6.2. Tokens distribution in places 

 

Places of Fig. 6.2,     P = {p1, p2, p3, p4} 

The initial marking at different places of the net is represented by 

M:P(p) : {1, 1, 2, 0} 

 

4.1. Transition enabled condition 

 Semantically, a marking represents the dynamic state of a Petri net. The initial marking 

specifically represents the initial state of a Petri net. State change in the Petri net model depends 

on the number of marking associated with each place and by the firing rules of transition. A 

transition t is said to be enabled if and only if all of its input places contains at least as many 

tokens in it as the weight of the input arc. Mathematically, an enabled transition is represented by, 

 

Definition 4. For a PT-net (N, M0), a transition t is said to be enabled at a marking M0 if and 

only if ∀ p ∈ • t : M0(p) ≥ W(p,t),  

p1 

 p2 

p3 

t1 

p4 
1 

1 

2 

1 
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where, W represents the weight of an arc from places to transitions. Transition t1 of the above 

Petri net diagram in Fig 6.2 is enabled because every input places of t1 contains the equal 

number of tokens as the arc weight to the transition. 

  

4.2. Transition Firing Rule  

        An enabled transition has a potential to fire. Firing enabled transition removes tokens from 

the set of its input places and adds tokens to the set of its output places, which as a result gives a 

new marking from M(p) to M′(p). The dynamic behavior of the system is shown by the change in 

marking. Since the enabled transition can only fire, the number of tokens at any places is always 

non-negative. Generally, the number of tokens in net after firing might not be same as the 

number of tokens before transition firing. Firing of transitions can only take place as long as 

there is enabled transition in the net and if there is no enabled transition the execution stops. 

More than one transitions in a net can be enabled at a single time, but only one among them can 

fire. Also firing one transition may disable another transition which was firable before.  

 

Example: The changes of marking in places after firing transition t1 is shown below, 

 

                     

                             1                                                

                                         

 

 

 

                      

              p1                                                             

                   

             p2             

             p3 

 

                                  (a)                                                                             (b) 

    

Figure 6.3. Before and after firing Transition t1 

 

Mathematically, it can be defined as: 

Definition 5. For a PT-net (N, M0), firing a transition 't' changes a marking M0 to new marking 

M'. i.e., ∀ p ∈ P :  

 

p1 t1 

p4 

 p2 

p3 

1

2

1

2 

1

2 

1 

1 t1 

p4 
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                                           M0 (p) - W (p,t),  if p ∈ • t  & not p ∈ t •, 

            M'(p) =                   M0 (p) + W(p,t),  if p ∈ t •  & not p ∈ • t,  

                                           M0 (p),          otherwise. 

 

Notice that a place in • t ∩ t • is marked whenever t is enabled, but does not change its token 

count by firing of t.  

 

4.3. Transition Sequence 

 In order to find out whether the modeled system can verify the certain behavioral 

properties, it is necessary to find such a sequence of transitions firing, which would transform a 

marking M0 to Mn, where Mn represents the specific state, and the sequence of firing represents 

the required functional behavior. A marking M1 is said to be immediately reachable from M0 if 

firing an enabled transition in M0 results in M1.   

 

Definition 6. For a PT-net (N, M0), firing of a sequence of transitions σ = 〈 t1, t2, t3, ..., tn 〉 
transforms an initial marking M0 to Mn as shown below in Fig. 6.4. 

 

 

 

Initial marking M0:                                       M0      M1     M2      ...   Mn-1              

     

Sequence of transitions σ :                              t1,       t2,      t3,         ...     tn 

                      

New produced marking after firing:             M1     M2      M3       ...    Mn 

  

Figure 6.4. Firing of sequence of transitions 

 

 Here, firing of the first element of σ, i.e., t1, at initial marking M0 produces a new 

marking M1. Then, firing the second element of σ using M1 will produce a new marking M2 and 

so on until the firing of the last element of σ is done using Mn-1 to produce Mn which is the 

result of firing σ on Petri net starting from M0.  
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5. Representational Power in Petri Nets 

        This section describes some basic situations that can be required during modeling of a real 

Petri net model. Below are the Petri net structures that are used for representing characteristics of 

DEDS activities. 

 

5.1. Sequential Execution 

        Sequential execution imposes the precedence constraint among the transitions in net.  In the 

Fig 6.5, transition t2 can fire only after the transition t1 fires.  

 

  

 

 

 

                                                   

Figure 6.5. Sequential 

 

5.2. Synchronization 

 Sometimes some parts of the system are waiting for resources to arrive. Once the 

resources are in input places the activities synchronizes all the resources as shown in Figure 6.6. 

Here t1 is enabled only if both p1 and p2 receives a resource, that is token. 

 

 

  

              

 

    

 

                                     

Figure 6.6. Synchronization 
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5.3 Concurrency  

 Concurrency is an important approach while building a complex system. Transitions t1 

and t2 are concurrent in Figure 6.7. A transition is said to be concurrent if and only if there is a 

presence of fork style transition structure in the net which after firing produces a token in two or 

more output places in the net. 

 

 

                                                  

                                                       Figure 6.7. Concurrency 

 

 5.4. Merging: When parts from different branches arrive for processing at the same machine 

results merging. This diagram shows the merging situation. 

 

 

  

                     

                                                       Figure 6.8. Merging 

 

6. Substructures of Petri Nets 

 Because the behavioral properties of a system depend on its initial state and the 

t1 

p2 

t2 

p3 

t3 
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p2 

   t1 
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subsequent resulting states, Petri net models often become unmanageable even for a modest 

complex system and thus analyzing boundedness properties in such types of systems can become 

a daunting task. Hence it may be helpful if one can identify some substructures in the entire large 

Petri net and then it would be comparatively simple to model and analyze those substructures. 

Directed paths (DPs) and directed circuits (DCs) are two among several substructures of Petri 

nets used for these purposes. A directed path (DP) in a Petri net is defined as a finite alternating 

sequence of places and transitions present in the net. Similarly a finite sequence of places and 

transitions in the net is defined as a directed circuit only if the sequence is a directed path and the 

first and last elements of the sequence are same. The mathematical definitions of DPs and DCs in 

a net are given as: 

 

Definition 7: For a PT-net (N, M0), a sequence of places and transitions, p1t1p2t2...pk, is a 

directed path if and only if transition ti is both an output transition of place pi and an input 

transition of place pi+1 for 1≤ i ≤ K-1. Pictorially, it can be represented as, 

 

 

            

    

 

Figure 6.9. A directed path in a Petri Net. 

 

Definition 8: In a Petri net, a sequence of places and transitions, p1t1p2t2...pk , is a directed circuit 

if the sequence p1t1p2t2...pk is a directed path and p1 is equal to pk.  

 

           

 

 

 

Figure 6.10. A directed circuit in a Petri Net. 

 

 

p1 t1 p2 t2 pk 

p1 t1 p2 t2 pk 
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7. Subclasses of Petri nets  

 There are a number of interesting subclasses of Petri nets. These subclasses play an 

important role in the development of certain application of Petri nets [44], [45]. Proving the 

boundedness property in the whole Petri net model is, in general, exponential-time, because of its 

complexity [41]. However, specific subclasses of nets like decision free Petri net and state 

machines restrict the net structure in such a way that certain properties can be proved using 

efficient algorithms [1], [42]. Boundedness properties are always necessary to be able to keep the 

Petri net model of the manufacturing system bounded, which is often needed for a well designed 

system because in the absence of this property, goods could accumulate without limit, which is 

often a design error [10]. 

 

7.1.  Decision Free Petri nets (DFPNs) 

      DFPNs (also referred as marked graphs or event graphs) is the structure used in this 

dissertation to verify the token boundedness property using the Mizar proof checker. DFPNs are 

one among several subclasses of Petri nets that can model decision-free concurrent systems [1]. 

A Petri net is said to be a DFPNs if and only if for each place 'p' in the net, there is exactly one 

input and exactly one output transition with unique weight [1]. A transition may have multiple 

input places and output places. In this sense, decision free Petri net allows concurrent and 

synchronization structure. A DFPNs allows no conflict. A graphical representation of a decision 

free net is shown in Fig. 6.11.  

 

 

 

 

 

 

   

 

 

Figure 6.11. A decision free Petri net. 
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Mathematically, this net can be defined as, 

 

Definition 9. PT-net N = (P, T, F) is defined as a decision free Petri net if and only if ∀ p ∈ P:  

|•p| = |p•| = 1, where, •p ∈ P represents the set of input transition t ∈ T to p, and p• ∈ P represents 

the set of output transition t ∈ T of p. Here 1 represents that each place in decision free net, there 

is only one input transition and only one output transition.  

 

8. Properties of Petri Net 

 The mathematical model of Petri net possesses a number of properties. Among several 

Petri net properties, token boundedness property is one. 

 

8.1. Token boundedness. It is defined as the preservation of the number of tokens in the places 

of the circuit of the net. The theorem with its proof and figure from literature is shown below. 

 

Theorem: For a decision-free Petri Net, the number of tokens in a circuit remains the same after 

any firing sequence. 

Proof: Tokens in the circuit can only be produced or consumed by transitions in the circuit. 

When a transition consumes a token, it produces one back into the circuit; therefore, the number 

of tokens in a circuit remains the same after any firing sequence. 

 

 

 

 

 

 

 

 

 

 

 

             Figure 6.12. A circuit contains four transitions and four places 
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Appendix C                                     MIZAR System and its Language  

 This appendix section contains background information on Mizar. It will also discuss 

about some Petri net knowledge that is already formalized in Mizar and available in its digital 

library. 

 

1. Introduction 

 Mizar is one developed by Andrzej Trybulec since 1973 at the university of Bialystok in 

Poland [42]. The Mizar system consists of the Mizar language for writing mathematical 

definitions of formulas in a declarative style being close to the ordinary/informal mathematical 

texts and a proof checker software program to check files written in the Mizar language for 

logical correctness. Mizar project has been enough advanced because it has the world's largest 

repository of digital library of verified mathematical knowledge called the Mizar Mathematical 

Library, MML. This Mizar digital library contains material from various mathematical areas 

based on a single system of axioms. This system is based on Tarski-Grothendieck set theory with 

classical logic [43]. 

  

2. Formula and Skeleton of Proofs in Mizar 

 Mizar is essentially based on first order predicate logic, so the mathematical statements in 

Mizar are composed of predicate formulas combined with classical logic connectives and 

quantifiers. First-order predicate logic allows quantifiers to range over objects (terms), but not 

properties, relations, or functions applied to those objects. On the other hand, some theorem 

provers based on second-order predicate logic allows quantifiers to range over predicates and 

functions as well. The disadvantage of second-order predicate logic is that, there is no complete 

deduction system, also here reasoning is more difficult than in first-order predicate logic, because 

second-order predicate logic needs ingenious reference rules and heuristics. Inconsistency can 

arise in a higher-order system if semantics are not clearly defined. Where as in deduction style  

first-order predicate logic is well organized and easy to understand because it is very close to 

textual mathematical language that is used for describing mathematical definitions and proofs in 

literatures. The table below shows the Mizar representation of standard logical connectives and 

quantifiers: 



49 

                          ¬ α                              not α 

                          α ∧ β                             α  & β 

                          α  ∨ β                            α or β 

                          α →β                         α implies β 

                          α ↔β                          α iff β                              ∃xα                          ex x st α                              ∀xα                         for x holds α                              ∀x:αβ                         for x st α holdsβ 

 

                              Table 1 Standard logical connectives and quantifiers 

  

3. Demonstration of very simple Mizar code  

 This section shows how Mizar formalizes mathematical formula. Let us consider we have 

formula like, " X ⊆ Y & Y ⊆ Z ⇒ X ⊆ Z ", which will be written in Mizar as 

 

                     X c= Y & Y c= Z implies X c= Z; 

 

 Proving this formula in Mizar system is categorized into two blocks: environmental 

declaration block started by "environ" keyword which consists some directives (like vocabularies, 

notations, constructors, requirements, schemes, definitions, theorems, etc.)  composed of a list of 

articles whose job is to unfold notations, definitions, and theorems to the present writing article 

and the next block is a text declaration block started with "begin" keyword. Everything that we 

need for our recent article like predefined symbol, symbol format, definitions, and theorems as 

named above, we need to add an appropriate article reference (already deposited in the MML) to 

each and every section of directives. The text block contains definitions and formula that a user 

wanted to prove.  
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environ 

 
 vocabularies TARSKI; 
 notations TARSKI; 
 constructors TARSKI; 
definitions TARSKI; 
 theorems TARSKI; 
 
begin 
 
reserve x, X, Y, Z for set; 
 
theorem  
X c= Y & Y c= Z implies X c= Z 
proof 
  assume that 
  A1: X c= Y and 
  A2: Y c= Z; 
  let x be element; 
  assume x in X; 
  then x in Y by A1, TARSKI: def 3; 
  hence thesis by A2, TARSKI: def 3; 
end; 
 

 

Figure 7.1. Sample of Mizar code 

  

 Here symbol c=  stands for a Subset. The label A1 and A2 of local statement in a proof 

block is required to justify another statement written down. TARSKI: def 3 is identifier of 

definition by which one can justify a proof step. "let x be element" statement means x is an 

arbitrary object. Similarly, another popular conventional set symbol like ∩, ∪, ⊆, ∈, etc in Mizar 

is denoted by /\, \/, c=, in, etc.  

 

4.  Mizar Article Related to Petri net in Mizar Library  

 Several studies related to the formalization of the concept of Petri nets (like the basic 

structure of Petri nets [8], Processes in Petri nets [13], Some Elementary Notions of the Theory 

of Petri Nets [10], Boolean marking of Petri nets [14]) are formalized in Mizar system and are 

stored in the library. By using some basic Petri net knowledge from article PETRI [8], and 

needs to import formalized 
MMLs articles definitions and 
theorems.  

formula needs to be proved.  

needed for importing symbol.  

needed for unfolding symbol 
definition.

needed to import properties 
information from the constructors  
type: predicate, functors, modes, 
attributes. 

 
proof and end 
block.

defining variables and its type. 
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NET_1 [10], we built the structure of decision free Petri net and proved the token boundedness 

property in a circuit of the net.  

 

Some formalized knowledge related to Petri nets concepts that we retrieved from the Mizar 

library in our work is described below, 

 

A. Mizar definition of basic Petri net structure  

 The formalized Mizar description of the PT-net structure discussed in Definition 1 of 

Section 3.1 (Appendix B) is stored in the Mizar library in [8] as, 

 

definition                               

  struct (2-sorted) PT_net_Str (# carrier, carrier' -> set, 

        S-T_Arcs -> Relation of the carrier, the carrier', 

        T-S_Arcs -> Relation of the carrier', the carrier #); 

end; 

 

 Here, the Petri net structure named "PT_net_Str" consists of four selectors: the carrier, 

the carrier', the S-T_Arcs and the T-S_Arcs, where "carrier" represents the set of places, "carrier' 

" represents the set of transitions, "S-T_Arcs" represents the arc relations from places to 

transitions, "T-S_Arcs" represents the arc relations from transitions to places. 

 

B. Carrier and carrier' of Petri net structure are disjoint 

 Another knowledge that we retrieved from NET_1 article is that elements in carrier and 

carrier' are disjoint, which is defined and stored in the Mizar library as:  

 

definition 

  let N be PT_net_Str; 

  attr N is Petri means 

    the carrier of N misses the carrier' of N; 

end; 
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5. Mizar notations of mathematical symbols 

 The table below contains some Mizar notations of mathematical symbols that are used 

while reasoning of our work. 

 

 

f /^ n  sequence f with the first n elements removed 

<=  less than or equal to      ≤ 

>=  greater than or equal to     ≥ 

=  equality       = 

< >  inequality       ≠ 

f.x  the value of function f when evaluated at argument x f(x) 

{ }  empty set       null or Ø 

in  a member of        ∈ 

p1 ^ p2  concatenation of sequences p1 and p2   p1 ^ p2  

p | n  sequence p restricted to the first n elements 

<*1,2*>  sequence made of elements 1 and 2     

dom P  domain of relation P      DP 

rng P  range of relation P      YP 

len p  length of the finite sequence p    |p| 

[:A, B:] Cartesian product of sets      A x B 

[a, b]  Kuratowski ordered pair     (a, b) 

A \ / B   set theoretical union       A ⋃ B  

A / \ B  set theoretical intersection     A ∩ B  

A c= B  A is a subset of set B          A ⊆ B 

 

Table 2. Mizar notations of mathematical symbols 
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Appendix D                        Definitions and theorems of this work without proofs  

 This section contains all definitions, theorems, lemmas, etc required to prove the token 

boundedness property in a circuit of decision free Petri net. All these definitions, theorems, 

lemmas are available here without proofs.  

 

begin :: Preliminaries 

 

reserve N for PT_net_Str, PTN for Petri_net, i for Nat; 

 

theorem Th10:  

  for x,y be Element of NAT, f be FinSequence st 

  f/^1 is one-to-one & 1 < x & x <= len f & 1 < y  & y <= len f & f.x = f.y 

  holds x = y; 

 

theorem Lm1: 

  for D be non empty set, f be non empty FinSequence of D 

  st f is circular holds f.1 = f.len f; 

 

registration 

  let D be non empty set; 

  let a,b be Element of D; 

  cluster <*a,b,a*> -> circular for FinSequence of D; 

  coherence; 

end 

 

theorem Th13: 

  for a,b be set st a <> b holds <*a,b,a*> is almost-one-to-one; 

 

definition 

  let X be set; 
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  let Y be non empty set; 

  let P be finite Subset of X; 

  let M0 be Function of X,Y; 

  mode Enumeration of M0, P -> FinSequence of Y means 

  :Def12: 

  len it = len (the Enumeration of P) & 

  for i st i in dom it holds 

  it.i = M0.((the Enumeration of P).i) if P is non empty 

  otherwise it = <*>Y;  

end; 

 

definition 

  func PetriNet -> Petri_net equals 

  PT_net_Str(# {0},{1},[#] ({0},{1}),[#] ({1},{0}) #); 

  coherence;  

end; 

 

definition 

  let N; 

  func places_and_trans_of N -> set equals 

  ((the carrier of N) \/ (the carrier' of N)); 

  correctness; 

end; 

 

registration 

  let PTN; 

  cluster places_and_trans_of PTN -> non empty;  

  coherence; 

end; 

 

reserve fs for FinSequence of places_and_trans_of PTN; 
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definition 

  let PTN,fs; 

  func places_of fs -> finite Subset of the carrier of PTN equals 

  {p where p is place of PTN : p in rng fs };  

  coherence; 

end; 

 

definition 

  let PTN,fs; 

  func transitions_of fs -> finite Subset of the carrier' of PTN equals 

  {t where t is transition of PTN: t in rng fs}; 

  coherence; 

end; 

 

begin :: The number of tokens in a circuit 

 

::Relation Between P and NAT::: 

definition 

  let N; 

  func nat_marks_of N -> FUNCTION_DOMAIN of the carrier of N, NAT 

  equals Funcs(the carrier of N, NAT); 

  correctness; 

end; 

 

definition 

  let N; 

  mode marking of N is Element of nat_marks_of N; 

end; 

 

:: Generation of nat marking and summation of that 
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definition 

  let N; 

  let P be finite Subset of the carrier of N; 

  let M0 be marking of N;  

  func num_marks(P, M0) -> Element of NAT equals 

  Sum (the Enumeration of M0,P); 

  coherence; 

end; 

 

begin 

:: Decision-Free Petri Net Concept and Properties of Circuits in Petri Nets 

 

definition 

  let IT be Petri_net;  

  attr IT is decision_free_like means 

  :Def1: 

  for s being place of IT holds 

  ((ex t being transition of IT st [t, s] 

  is Element of the T-S_Arcs of IT) & 

  (for t1, t2 being transition of IT 

  st [t1, s] is Element of the T-S_Arcs of IT & 

  [t2, s] is Element of the T-S_Arcs of 

  IT holds t1 = t2))  &  

  ((ex t being transition of IT st 

  [s, t] is Element of the S-T_Arcs of IT) & 

  (for t1, t2 being transition of IT 

  st [s, t1] is Element of the S-T_Arcs of IT & 

  [s, t2] is Element of the S-T_Arcs of 

  IT holds t1 = t2)); 

end; 

:: directed_path_like Attribute for 
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:: FinSequence of places_and_trans_of Petri_net 

 

definition 

  let PTN; 

  let IT be FinSequence of places_and_trans_of PTN; 

  attr IT is directed_path_like means 

  :Def5: 

  len IT >= 3  & len IT mod 2 = 1 & 

  (for i st i mod 2 = 1 & i + 1 < len IT holds 

  [IT.i, IT.(i+1)] in (the S-T_Arcs of PTN) &  

  [IT.(i+1),IT.(i+2)] in (the T-S_Arcs of PTN)) 

  & IT.len IT in (the carrier of PTN);   

end; 

 

theorem Th12: 

  for fs be FinSequence of places_and_trans_of PetriNet st fs = <*0,1,0*> 

  holds fs is directed_path_like; 

 

registration 

  let PTN; 

  cluster directed_path_like -> non empty 

  for FinSequence of places_and_trans_of PTN; 

  coherence; 

end; 

 

:: With_directed_path Mode for place\transition Nets 

definition 

  let IT be Petri_net; 

  attr IT is With_directed_path means 

:Def9: 

 ex fs being FinSequence of places_and_trans_of IT st fs is directed_path_like; 
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end; 

 

:: directed_circuit_like Attribute for FinSequence of 

::  places_and_trans_of PetriNet 

 

definition 

  let PTN; 

  attr PTN is With_directed_circuit means 

  :Def7: 

  ex fs st fs is directed_path_like & fs is circular & fs is almost-one-to-one; 

end; 

 

registration 

  cluster PetriNet -> decision_free_like With_directed_circuit Petri; 

  coherence; 

end; 

 

registration 

  cluster With_directed_circuit Petri decision_free_like for Petri_net; 

  existence 

  proof 

    take PetriNet; 

    thus thesis; 

  end; 

end; 

 

registration 

  cluster With_directed_circuit -> With_directed_path for Petri_net; 

  coherence; 

end; 

registration 
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  cluster With_directed_path for Petri_net; 

  existence 

  proof 

    take PetriNet; 

    thus thesis; 

  end;  

end; 

 

reserve Dftn for With_directed_path Petri_net; 

 

registration 

  let Dftn; 

  cluster directed_path_like for FinSequence of places_and_trans_of Dftn; 

  existence; 

end; 

 

reserve dct for directed_path_like FinSequence of places_and_trans_of Dftn; 

 

theorem Thd: 

  [dct.1, dct.2] in the S-T_Arcs of Dftn; 

 

theorem The: 

  [dct.(len dct -1), dct.(len dct)] in the T-S_Arcs of Dftn; 

 

reserve Dftn for With_directed_path Petri Petri_net, 

  dct for directed_path_like FinSequence of places_and_trans_of Dftn; 

 

theorem Thc: 

  dct.i in places_of dct & i in dom dct implies i mod 2 = 1; 

 

theorem Thcc: 
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  dct.i in transitions_of dct & i in dom dct implies i mod 2 = 0; 

 

theorem Thf: 

  dct.i in transitions_of dct & i in dom dct implies 

  [dct.(i-1),dct.i] in the S-T_Arcs of Dftn 

  & [dct.i,dct.(i+1)] in the T-S_Arcs of Dftn; 

 

theorem Thg: 

  dct.i in places_of dct & 1 < i & i < len dct implies 

  [dct.(i-2),dct.(i-1)] in the S-T_Arcs of Dftn 

  & [dct.(i-1),dct.i] in the T-S_Arcs of Dftn 

  & [dct.i,dct.(i+1)] in the S-T_Arcs of Dftn 

  & [dct.(i+1),dct.(i+2)] in the T-S_Arcs of Dftn & 3 <= i; 

 

begin :: Firable and Firing Conditions for Transitions with natural marking 

 

reserve M0 for marking of PTN, 

       t for transition of PTN, 

       Q,Q1 for FinSequence of the carrier' of PTN; 

 

definition 

  let PTN,M0,t; 

  pred t is_firable_at M0 means 

  for m being Nat holds m in M0.:*'{t} implies m > 0 ; 

end; 

 

notation 

  let PTN,M0,t; 

  antonym t is_not_firable_at M0 for t is_firable_at M0; 

end; 

definition 
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  let PTN,M0,t; 

  func Firing(t, M0) -> marking of PTN means 

  :Def11: 

  for s being place of PTN holds  

  (s in *'{t} & not s in {t}*' implies it.s = M0.s -1)  & 

  (s in {t}*' & not s in *'{t} implies it.s = M0.s + 1) & 

  ((s in *'{t} & s in {t}*') or (not s in *'{t} & not s in  {t}*') 

  implies it.s = M0.s) if t is_firable_at M0 

  otherwise it = M0; 

end; 

 

definition 

  let PTN,M0,Q; 

  pred Q is_firable_at M0 means 

  Q = {} or 

  ex M being FinSequence of nat_marks_of PTN st len Q = len M & 

  Q/.1 is_firable_at M0 & M/.1 = Firing(Q/.1 , M0) & 

  for i st i < len Q & i > 0 holds 

  Q/.(i+1) is_firable_at M/.i & M/.(i+1) = Firing(Q/.(i+1), M/.i); 

end; 

 

notation 

  let PTN,M0,Q; 

  antonym Q is_not_firable_at M0 for Q is_firable_at M0; 

end; 

 

definition 

  let PTN,M0,Q; 

  func Firing(Q, M0) -> marking of PTN means 

  :Defb: 

  it = M0 if Q = {} 
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  otherwise 

  ex M being FinSequence of nat_marks_of PTN st len Q = len M & it = M/.len M 

  & M/.1 = Firing(Q/.1, M0) 

  & for i st i < len Q & i > 0 holds M/.(i+1) = Firing(Q/.(i+1),M/.i); 

end; 

 

theorem  

  Firing(t, M0) = Firing(<*t*>, M0); 

 

theorem  

  t is_firable_at M0 iff <*t*> is_firable_at M0; 

 

theorem  

  Firing(Q^Q1, M0) = Firing(Q1, Firing(Q,M0)); 

 

theorem 

  Q^Q1 is_firable_at M0 

  implies Q1 is_firable_at Firing(Q, M0) & Q is_firable_at M0; 

 

begin 

:: The theorem stating that the number of tokens in a circuit 

:: remains the same after any firing sequence 

 

theorem Thb: 

  for Dftn being With_directed_path Petri decision_free_like Petri_net, 

  dct being directed_path_like FinSequence of places_and_trans_of Dftn, 

  t being transition of Dftn st dct is circular 

  & ex p1 being place of Dftn st p1 in places_of dct & 

  ([p1, t] in the S-T_Arcs of Dftn or [t, p1] in the T-S_Arcs of Dftn) 

  holds t in transitions_of dct; 
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definition 

  mode Decision_free_PT is 

  With_directed_circuit Petri decision_free_like Petri_net; 

  correctness; 

end; 

 

registration 

  let Dftn be With_directed_circuit Petri_net; 

  cluster directed_path_like circular almost-one-to-one 

  for FinSequence of places_and_trans_of Dftn; 

  existence; 

end; 

 

definition 

  let Dftn be With_directed_circuit Petri_net; 

  mode Circuit_of_places_and_trans of Dftn is 

  directed_path_like circular almost-one-to-one 

  FinSequence of places_and_trans_of Dftn; 

  correctness; 

end; 

 

theorem Th7:                                                  

  for Dftn being Decision_free_PT, 

  dct being Circuit_of_places_and_trans of Dftn, 

  M0 being marking of Dftn, t being transition of Dftn 

  holds num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(t, M0)); 

 

theorem                                                  

  for Dftn being Decision_free_PT, 

  dct being Circuit_of_places_and_trans of Dftn, 

  M0 being marking of Dftn, Q being FinSequence of the carrier' of Dftn holds 
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  num_marks(places_of dct, M0) = num_marks(places_of dct, Firing(Q, M0)); 
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