Doctoral Dissertation
(Shinshu University)

Differentially Encoded LDPC Coded Systems with
Iterative Multiple-Symbol Differential Detection

March 2013

Yang Yu



SHINSHU UNIVERSITY
Nagano, Japan

Differentially Encoded LDPC Coded

Systems with Iterative Multiple-Symbol
Differential Detection

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Engineering

by

Yang Yu

March 2013

Copyright © Yang Yu, 2013



Dedicated to my parents and wife

i



TABLE OF CONTENTS

1 Infroduction. . ... . . . . . . .. e e 1
1.1 Back Ground and Motivation . ... ... ... .. .. .. ... ..., . 1
1.2 ThesisQutline. . . . . ... ... ... .. .. ..., e 2

2 Low-Density Parity-Check Codes . . .. ... ... ... ... ..... 4
2.1 Representations of LDPC Codes . . . . . . . ... ... .. ... ..... 4
2.2 Regular and Irregular LDPC Codes . . . . . . ... ... ... ... ... 5
2.3 Encoding of LDPC Codes . . . . . . . . . . .. 6

2.3.1 Construction of Sparse Parity-Check Matrix . . . ... ... ... 6
2.3.2 Encoding Based on Gauss-Jordan Elimination . . .. ... .. .. 7
2.3.3 Encoding Based on Approximate Lower Triangular Matrix . . .. 7
2.4 Decodingof LDPC Codes . . . . ... ... .. . ... ... ... 9

3 Multiple-Symbol Differential Detection . . . . . .. ... ... ..... 1L
3.1 System Model . . . . . . .. e 11
3.2 Decision Metric of Multiple-Symbol Differential Detection. . . . . . . .. 13

3.2.1 MSDD of MPSK over AWGN Channels . . . . ... ........ 14
3.2.2 MSDD of MPSK over Rayleigh Fading Channels . . . . . ... .. 15
3.3 Complexity of Multiple-Symbol Differential Detection . . . . .. .. . .. 15

4 Tterative Multiple-Symbol Differential Detection for Differentially En-

coded LDPC Coded Systems . . . ... .. .. . . ... 17
41 System Model . . . . .. 17
4.2 Metric Derivation for MSDD SISOD . . . . .. . ... ... ... ... 19
4.3 Extrinsic Information Transfer (EXIT) Chart Analysis of the System . . 20
4.4 Simulation Results and Analysis . . . . . . ... .. . oL L. 25
4.5 LDPC Codes Optimization for DE-LDPC Coded Systems with Iterative

MSDD . . e e e e 28
4.5.1 Trregular LDPC Codes and Its EXIT Chart . .. ... ... ... 29
4.5.2 Design and Optimization of Irregular LDPC Codes Based on EX-

IT Charts . . .« o v v e e s e e e e s e e e e e e 31
4.5.3 Evaluation of the Design Examples . . .. . ... ... ... ... 35

iii



5 Improved Soft-Output M-Algorithm for Differentially Encoded LDPC
Coded Systems with Iterative Multiple-Symbol Differential Detection 39

51 Related Works. . . . . . . . . 39
5.2 Complexity of MSDD SISOD . . . . . ... ... ... ... ... ..., 40
53 SOMA for MSDD SISOD . . . . . . ... . 41
§5.3.1 M-Algorithm for MSDD . . . . ... .. ... ... . ....... 41
5.3.2 M-Algorithm for the MSDD SISOD . . . . .. ... ... .. ... 42
5.3.3 Proposed ISOMA for the MSDD SISOD . . . ... ... ..... 43
5.3.4 Scaling Factor for the ISOMA. . . . .. .. .. ... ... ..... 45
5.4 Simulation Results and Analysis . . . . ... ... ... ... ....... 45
5.4.1 BER Performance. . .. ... .. .. .. .. .. ... . ... ... 45
5.4.2 Decoding Complexity . . . . . .. .. .. .. ... . .. ... 47
5.4.3 Performance of ISOMA with Scaling Factor . . ... ... .. .. 51

6 Adaptive Iterative Decoding of Finite-Length Differentially Encoded
LDPC Coded Systems with Tterative Multiple-Symbol Differential De-

tection . . . . . L e e e e 54
6.1 Related Works. . . . . . . . . 54
6.2 EXIT Band Chart Analysis of the Finite-Length DE-LDPC Coded Sys-

tems with Iterative MSDD . . . . . . . . ... 55
6.3 AIDA . e 59
6.3.1 Motivation of ATIDA . . ., . ... . L 59
6.3.2 Principleof AIDA . . . . . . . . 60
6.3.3 Existing SCs for the Considered Systems . . . ... ... ... .. 61
6.3.4 Proposed SC . . . . . . e 63
6.4 Simulation Results and Analysis . . . . . . .. .. ... .. ... .. ... 66
6.4.1 Selection of the DMI Criterion Thresholds . . . . ... ... ... 66
6.4.2 Performance of AIDA with the DMI Criterion . . ... ... ... 67
6.4.3 Performance of AIDA with Different SCs . . . . . .. .. ... .. 69

7 Conclusions and Future Work . . . ... ... ... .. ... ... ... . 73
7.1 Conclusions . . . . . . . e e 73
7.2 Future Work . . . . . . . . .. T4

References . . . . . . . . . o e 76

A Abbreviations and ACronyms . . . . . . . .o o e e e 80

iv



B Notations



3.3

4.1
4.2
4.3

4.6
4.7
4.8
4.9

4.10
4,11

4.13

L1sT OF FIGURES

Matrix representation of the (10, 8, 6) LDPC code. . . . ... ... ...
Tanner graph of the (10, 3,6) LDPCcode. . . . . . .. .. ... .. ...

Approximate lower triangular matrix. . . . . . . .. ... L0

System model of MPSK systems with MSDD. . .. ... ... ... ...

Partitioning of the received signals into groups (observation windows) for

Tree diagram for MSDD searching the maximum likelihood sequence
(MPSK). . . . o e

Systemmodel. . . . . .. ... e
EXIT chart of MSDD SISOD with different OWS over AWGN channels.

EXIT chart of the MSDD SISOD with different OWS over Rayleigh fad-
ingchannels. . . . . . . . L

EXIT chart of the LDPC decoder with different number of iterations. . .

EXIT chart of the systems under consideration with different OWS; rate-
1/2 (3, 6) LDPC code with length 100800 over Rayleigh fading channels
with BPSK; inner iteration number of LDPC decoder is 10. . . . . . . . .

Effect of observation interval size on BER performance. . . . .. .. ...
Effect of iteration number of LDPC decoder on BER, performance. .
Effect of iteration number of iterative decoding on BER. performance. . .

BER performance comparison of proposed system over slow and fast
fading channels. . . . . . . . ... .. L L o

Block Diagram of the receiver of the systems under consideration. . . . .

EXIT charts of the systems under consideration with OWS L = 4 and
rate-1/2 (3, 6) regular LDPC codes over AWGN channels with BPSK.

EXIT charts of the systems under consideration with OWS L = 4 and

optimized irregular LDPC codes of [22] over AWGN channels with BPSK.

EXIT chart of the systems under consideration with OWS L = 6 and

optimized LDPC codes for L = 6 with length 100800 over AWGN channels.

4.14 EXIT chart of the systems under consideration with OWS L = 10 and

4.15

optimized LDPC codes for L = 10 with length 100800 over AWGN chan-
NEIS. « v e e e e e e e e e e e e e e e e e

EXIT chart of the systems under consideration with OWS L = 6 and

optimized LDPC codes for L = 6 with length 100800 over AWGN channels.

vi

28
29

30

33

33

34



4.16

4.17

4.18

4.19

5.4

5.5

5.6

5.7

5.8

5.9

6.1

6.3

EXIT chart of the systems under consideration with OWS L = 10 and
optimized LDPC codes for L == 10 with length 100800 over AWGN chan-
nelS. . . e e e e

BER performance comparison of the systems under consideration with
non-optimized LDPC codes and optimized LDPC codes for OWS L = 6.

BER performance comparison of the systems under consideration with
non-optimized LDPC codes and optimized LDPC codes for OWS L = 10.

BER. performance of the systems under consideration with optimized
LDPC codes for L = 6 using different OWS. . . ... .. ... ... ...

BER performance of the systems under consideration with optimized
LDPC codes for L = 6 with length 1008 over Rayleigh fading channels.

Tree diagram of MSDD for M ;PSK with M-algorithm . . ... ... ..
Percentage of bits with uncertain LLRs . . . . . .. . ... ... ... ..

Performance comparison between the MAP algorithm and ISOMA used
in MSDD SISOD for a DE-LDPC coded system with BPSK. . . . . ...

Performance comparison between the MAP algorithm and ISOMA used
in MSDD SISOD for a DE-LDPC coded system with QPSK and SPSK. .

Performance comparison between the ISOMA. and I'TS-MA used in MS-
DD SISOD for a DE-LDPC coded system with BPSK and L= 10.. . . .

Performance comparison between the ISOMA and SOMA used in MSDD
SISOD for a DE-LDPC coded system with BPSK and L=10. . ... ..

Performance comparison between the ISOMA with the best evaluated
SF and the standard ISOMA. . . . . . . ... . ... ... . ... . ...

Performance comparison between the ISOMA with the best evaluated
SF and the standard ISOMA for LDPPC codes with length 10080.

Impact of the value of SF on the performance of the ISOMA with the SF.

EXIT band charts of the considered systems for MSDD SISOD with L =
4 and rate-1/2 (3, 6) regular LDPC codes with different code lengths over
AWGN channels with BPSK at SNR = 3.5dB; inner iteration number of
the LDPC decoder is 10; repeated 10000 frames. . . . . . . . . .. .. ..

Typical simulated snapshot iterative decoding trajectories of the consid-
ered systems for MSDD SISOD with L = 4 and rate-1/2 (3, 6) regular
LDPC codes with length 1008 over AWGN channels with BPSK at SNR,
= 3.8dB; inner iteration number of the LDPC decoder is 10. . . . . . . .
Average EXIT curves of the considered systems for MSDD SISOD with
different L; rate-1/2 (3, 6) regular LDPC codes with length 1008 over
AWGN channels with BPSK at SNR = 3.5dB; inner iteration number of
the LDPC decoder is 10; averaged over 10000 frames. . . . .. ... ...

vii

58

59



6.6

6.8

6.9

6.10

6.11

Structure of AIDA, where IN is the acronym of iteration number. . .. . 60

Average evaluations of the decision metrics of the existing SCs variation
with SNR and outer iteration number; rate-1/2 (3, 6) regular LDPC
codes with length 1008 over AWGN channels with BPSK; OWS of MS-
DD SISOD corresponding to the outer iteration number from 1 to 6 is
[2,4,6,8,8,8]; inner iteration number of the LDPC decoder is 10; averaged
over 10000 frames. . . . . . . ... 62

Averaged simulated iterative decoding trajectories of the considered sys-
tems evaluated by different approaches; MSDD SISOD with L = 4 and
rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN chan-
nels with BPSK at differentt SNRs; inner iteration number of the LDPC
decoder is 10; averaged over 10000 frames. . . . . . . ... .. ... ... 64

Performance of AIDA using the DMI criterion variation with the value of
threshold Th; Thy = 0.0 and Thyr = 1.0; rate-1/2 (3, 6) regular LDPC
codes with length 1008 over AWGN channels with BPSK. (a) Average
number of outer iterations. (b) BER performance. . . . . ... ... ... 67

Performance of the considered DE-LDPC coded systems with and with-
out AIDA; rate-1/2 (3, 6) regular LDPC codes with length 1008 over
AWGN channels with BPSK. (a) Average number of outer iterations.
(b) BER performance. . . . .. ... .. ... ... 63

Computational complexity of the iterative decoding of each frame of the
considered DE-LDPC coded systems with and without AIDA; rate-1/2
(3, 6) regular LDPC codes with length 1008 over AWGN channels with
BPSK. (a) AMN. (b) AAN. . . . . ..o 69

Percentage of successful decodings of the considered DE-LDPC coded
systems with L < 8 when AIDA is used; stopping criterion is not used,
iterative decoding is stopped by LDPC decoder; OWS of MSDD SISOD
corresponding to the outer iteration number from 1 to 6 is [2,4,6,8,3,8];
rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN chan-
nels with BPSK; count over 10% frames. . . . . . . .. ... ... ... .. 70
Performance of AIDA with different SCs for the considered DE-LDPC
coded systems with rate-1/2 (3, 6) regular LDPC codes with length 1008
over AWGN channels with BPSK. (a) Average number of outer iterations.
(b) BER performance. . . ... ... ... ... .. 71

Performance of the considered DE-LDPC coded systems with and with-
out AIDA for rate-3/4 (3, 12) regular LDPC codes with length 1008 over
AWGN channels with BPSK. (a) Average number of outer iterations. (b)
BER performance. . . . . . . v v v i it e e e e e e e e e e e 72

viii



6.13 Performance of the considered DE-LDPC coded systems with and with-
out AIDA for rate-1/2 (3, 6) regular LDPC codes with length 1008 over
non-frequency selective Rayleigh fading channels with normalized maxi-
mum Doppler frequency fpT, = 0.01 and BPSK. (a) Average number of
outer iterations. (b) BER performance. . . . . . .. .. ... 72

ix



4.1
4.2
4.3

5.3

5.4

5.5

LisT orF TABLES

Degree distribution of irregular LDPC codes [22] . . . . . . .. .. .. .. 30
Degree distribution of optimized LDPC codes for L=6 and 10. . . . . . 32
Comparison of decoding thresholds of the systems under consideration
with different LDPC codes over AWGN channels. . . ... ...... .. 36
Number of search paths of MSDD for 16PSK . . . . . ... .. .. .... 41
Computational complexity for one outer iteration of the MSDD SISOD
with the MAP algorithm and ISOMA (BPSK} . . . ... ... ... ... 50
Computational complexity for one outer iteration of the MSDD SISOD
with the ISOMA, SOMA and ITS-MA (BPSK, M =16) ......... 50
Average number of outer iterations for the MSDD SISOD with the MAP,
ISOMA, SOMA and ITS-MA (BPSK, M =16):nl,, ... ... ..... 51
Average number of inner iterations for the LDPC decoder for the MSDD

SISOD with the MAP, ISOMA, SOMA and ITS-MA (BPSK, M = 16):



ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude and appreciation to my advisor Prof.
Shiro Handa for his active guidance and support throughout my stay at Shinshu Uni-
versity.

I would also like to thank Dr. Fumihito Sasamori and Dr. Osamu Takyu for their
support and helpful advice.

I am grateful to Mr. Kimiaki Takizawa for his assistance.

I am grateful to all the current and former lab-mates in Handa-Sasamori-Takyu
laboratory for their friendly and generous help.

Finally, I would like to thank my parents, wife, sister and friends. Without their
support and love I would have not been the person I am, and the completion of this
thesis would not be possible.



ABSTRACT

Low-Density Parity-Check (LDPC) codes have attracted significant attention since they
have several advantages compared to other error correcting codes (ECCs), such as simple
structure, low decoding complexity and outstanding performance. Many reports have
confirmed the amazing performance of LDPC codes with coherent detection. However,
since the performance of coherent detection relies on accurate phase tracking and reliable
estimation of channel state information (CSI), coherent detection becomes expensive
or infeasible in some cases. In this case, differential detection, which circumvents the
need for phase tracking and channel estimation, is an attractive scheme. In addition, to
compensate the performance loss caused by differential detection, multiple-symbol dif-
ferential detection (MSDD) has been proposed and proven to be an effective approach.
On the other hand, wireless communication systems with ECCs can achieve a perfor-
mance close to the channel capacity with accepted decoding complexity by employing
the coded modulation scheme and the iterative decoding technique.

Against this background, in this thesis, we focus on improving the performance of
LDPC coded systems without using synchronization information and CSI. We propose
an iterative MSDD scheme for differentially encoded LDPC (DE-LDPC) coded sys-
tems, and study in detail how to optimize the system performance and how to reduce
the decoding complexity of the system. The main contributions of this paper are the
following four aspects:

1) We propose an iterative MSDD scheme for DE-LDPC coded systems and analyze
the characteristics and performance of the studied systems. In the studied systems,
the outer iterative decoding is performed between the MSDD soft-input soft-output
demodulator (SISOD) and the LDPC decoder. The transfer characteristics of the MS-
DD SISOD and the LDPC decoder are analyzed by the extrinsic information transfer
(EXIT) chart. It is shown that the performance can be improved by increasing the
observation window size (OWS) of the MSDD SISOD and the number of outer itera-
tions. Whereas, the performance gain cannot be achieved by iterative decoding when
the inner decoder employs the conventional differential detection. The bit error rate
(BER) performance of the systems under consideration is evaluated in slow and fast
Rayleigh fading channels, respectively. It is shown that the analysis results obtained
from the EXIT charts are supported by the computer simulation results.

2) In order to improve the performance of the studied systems with large OWS,
the irregular LDPC codes are optimized for the MSDD SISOD with different OWS.
We optimize irregular LDPC codes by using the EXIT chart to optimize the degree
distributions of them. The simulation results demonstrate that the performance of the
DE-LDPC coded systems with a large OWS can be significantly improved by using the
optimized irregular LDPC codes. Moreover, when the optimized irregular LDPC codes
with very long length, the performance of the systems under consideration can close to
the capacity of the noncoherent AWGN channel.



3) To solve the problem of high complexity of the MSDD SISOD, which becomes
prohibitively high as the OWS and the order of the modulation become large, we propose
an improved soft-output M algorithm (ISOMA) by combining the features of the existing
SOMA approaches. The proposed ISOMA can guarantee that the LLR of each coded
bit can be computed with high reliability by using only small number of search paths.
By computer simulations, it is shown that the computational complexity of the MSDD
SISOD as well as the iterative decoding complexity of DE-LDPC coded systems with
iterative MSDD can be significantly reduced by the proposed ISOMA. Compared with
the existing SOMA approaches, the proposed ISOMA has better performance in terms
of the BER. performance and the ability of reducing the decoding complexity of DE-
LDPC systems with iterative MSDD.

4} In order to further reduce the iterative decoding complexity and delay of the sys-
tems under consideration with finite-length LDPC codes, an adaptive iterative decoding
approach (AIDA) which can adaptively adjust the OWS of the MSDD SISOD and the
outer iteration number of the iterative decoder is proposed. In AIDA, the OWS and the
outer iteration number are adaptively adjusted by using a SC to judge whether the iter-
ative decoding converges or not. To circumvent the disadvantages of the existing SCs,
a new SC, which we call DMI criterion, is proposed for tracking the convergence status
of the iterative decoding by tracking the difference of the output mutual information of
the LDPC decoder between two consecutive outer iterations of the considered systems.
Simulation results show that AIDA with the proposed DMI criterion can significantly
reduce the iterative decoding complexity and delay of the considered systems at all
SNRs. Moreover, compared with the existing SCs, it is demonstrated that the DMI
criterion is more effective for the considered systems in terms of reducing the average
number of outer iterations, performance loss and robustness.

xiii



CHAPTER 1

Introduction

1.1 Back Ground and Motivation

Multipath fading characteristics of wireless channels are the important factor affecting
the data transmission rate and quality of wireless communication systems. Especially in
the case of users moving at high speed, the fast fading of wireless channels will seriously
affect the performance of wireless communication systems. In the future, the wireless
systems will require high speed and high quality data transmission even in fast fading
channels. In order to meet this requirement, powerful error correcting codes (ECCs)
need to be applied in wireless communication systems.

Low-density parity-check (LDPC) codes are a class of capacity-approaching linear
block codes [1]-[4]. LDPC codes have several advantages compared to other channel
coding codes. First, LDPC codes can achieve very good performance in data transmis-
sion with low decoding complexity. Second, the error performance of LDPC codes does
not always exhibit an error floor. Furthermore, LDPC codes are more flexible in their
construction in terms of the code rate and other parameters. Due to the advantages of
LDPC codes, they have been adopted in current and next generation wireless standard-
s, such as worldwide interoperability for microwave access (WiMAX), wireless fidelity
(WiFi), second generation satellites for digital video broadcasting (DVB-32), and also
as a potential candidate for fourth-generation (4G) mobile wireless systems.

It should be noted that the amazing performance of LDPC codes confirmed by
most of the reports in the literature is achieved by coherent detection. However, since
the performance of coherent detection relies on accurate phase tracking and reliable
estimation of channel state information (CSI), coherent detection becomes expensive or
infeasible in some cases, such as rapid relative motion between transmitter and receiver
or phase noise in local oscillators. Therefore, differentially encoded LDPC (DE-LDPC)
coded systems with differential detection, which circumvent the need for phase tracking
and channel estimation, have attracted a lot of attention [5]-[9].

It is well known that conventional differential detection has considerably worse per-
formance than coherent detection. Multiple-symbol differential detection (MSDD) [10]-
[11] has been proven to be an effective approach to compensate for this performance
loss. By extending the length of observation window size to more than two symbol-
s, MSDD makes a joint decision on those several symbols simultaneously rather than
symboel-by-symbol detection as in conventional differential detection. Moreover, in con-
tinuous fading channels, MSDD considering fading autocorrelations can enhance the
system performance possible. Up to now, MSDD for different communication systems



have been widely studied [12]-[18]. However, the high complexity of MSDD limits its
application in practical systems.

On the other hand, wireless communication systems with ECCs need to employ the
coded modulation scheme and the iterative decoding technique, in order to achieve a
performance close to the channel capacity. That is, at the transmitter, ECCs and mod-
ulation schemes should be designed together for optimizing the system performance. On
the other hand, at the receiver, the inner decoder and the outer decoder are soft-input
soft-output (SISO) decoders. Moreover, the iterative decoding is performed between
the two decoders to make the system performance close to the channel capacity with
accepted decoding complexity.

On the basis of the above, in this thesis, the application of the iterative MSDD
for DE-LDPC coded systems is considered. In the systems under consideration, the
demodulator with MSDD is viewed as an inner decoder, and the iterative decoding is
performed at the receiver. The objective of this thesis mainly includes three aspects:

(1) confirm the effectiveness of the iterative MSDD scheme for DE-LDPC coded
systems, and analyze the impact of the parameters of iterative MSDD and LDPC codes
on the system performance;

(2) optimize the parameters of the system to improve the system performance;

(3) develop the complexity reduction algorithms for iterative MSDD to greatly re-
duce the iterative decoding complexity and delay of the studied system.

1.2  Thesis Outline

The remainder of this thesis is organized as follows.

e In Chapters 2 and 3, the basics for the study of LDPC codes and MSDD are
presented, respectively.

¢ In Chapter 4, the system model DE-LDPC coded systems with iterative MSDD
is first illustrated. Then, the performance of the MSDD soft-input soft-output
demodulator (SISOD) and the LDPC decoder is analyzed by the extrinsic infor-
mation transfer (EXIT) chart. The effectiveness of the iterative MSDD scheme is
then evaluated using computer simulations. Moreover, the importance of design-
ing the irregular LDPCs for the MSDD SISOD with different observation window
size (OWS) is discussed and confirmed.

o In Chapter 5, to solve the problem of high complexity of the MSDD SISOD, we
propose an improved soft-output M algorithm (ISOMA) by combining the features
of the existing SOMA approaches. The complexity of the MSDD SISOD is first
discussed. Then, the idea and the principle of ISOMA are described. Finally,
the effectiveness and advantages of ISOMA are confirmed and analyzed using
computer simulations.

o



e In Chapter 6, an adaptive iterative decoding approach (AIDA) is proposed to
further reduce the iterative decoding complexity and delay for finite-length DE-
LDPC coded systems with iterative MSDD. The characteristics of the systems
under consideration with finite-length LDPC codes are first analyzed by EXIT
band chart. Then, the motivation and idea of the proposed AIDA are described.
And then, a new stopping criterion (SC) called differential mutual information
(DMI) criterion, which can track the convergence status of the iterative decoding,
is proposed. Finally, the performance of AIDA using the DMI criterion for the
systems under consideration is evaluated. Moreover, the performance comparison
of the proposed DMI criterion and the existing SCs for AIDA is also presented.

o Finally, this thesis is concluded in Chapter 7.



CHAPTER 2

Low-Density Parity-Check Codes

LDPC codes are a class of linear block ECCs, which provide near-capacity performance
on a large set of data-transmission and data-storage channels. They were invented by
Robert Gallager in 1960 [1]. However, at that time, since the technology of the hardware
could not satisfy the requirements needed by their encoding, they were ignored for more
than 30 years. With the development of the Tanner graph [2] and Turbo codes, LDPC
codes were rediscovered by Mackay and Neal in 1996 [3]. In the recent years, the study
of LDPC codes has become the research hotspot in the research filed of ECCs. With
the great progress in the study of LDPC codes, LDPC codes have been or will be used
in many kinds of communications standards.

In this chapter, we provide an overview on LDPC codes as the basis for the following
chapters. In section 2.1, we first introduce the representation of LDPC codes. In section
2.2, regular and irregular LDPC codes are briefly introduced. Then, encoding of LDPC
codes is presented in 2.3. Finally, the iterative decoding of LDPC codes is described in
2.4,

2.1 Representations of LDPC Codes

LDPC codes are a special class of linear block codes, which can be represented by
the party-check matrixes H. The particularity of LDPC codes is that parity check
matrixes H of LDPC codes are sparse matrixes, most elements of which are 0 and only
a small part of elements are 1. LDPC codes can be denoted as (¥, d,, d.), where N is
the length of LDPC codes, d, is the column weight, which represents the number of
nonzero elements in a column of the parity-check matrix), and d, is the row weight,
which represents the number of nonzerc elements in a row of the parity-check matrix.
We illustrate the matrix representation of LDPC codes with a simple example as shown
in Fig. 2.1, which shows the party-check matrix of a (10, 3, 6) LDPC code.

Except using the matrix to represent LDPC codes, we can also use the Tanner graph
to represent LDPC codes. Fig. 2.2 shows the Tanner graph corresponding to the above
(10, 3, 6) LDPC code. As shown in Fig. 2.2, the Tanner graph consists of two types
of nodes and edges connecting only nodes of different types. The two types of nodes
in the Tanner graph are called the variable nodes (VNs) and the check nodes (CNs)
respectively. VNs correspond to the code bits, while CNs correspond to the parity-
check equations. An edge connects a VN and a CN if that bit is 1 included in the
corresponding parity-check equation. Therefore, the number of edges in the Tanner
graph is equal to the number of ones in the parity-check matrix. The number of the



11110110600
6011111100
0101010111
1010100111
110010101 1]

Figure 2.1: Matrix representation of the (10, 3, 6) LDPC code.
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Figure 2.2: Tanner graph of the (10, 3, 6) LDPC code.

edges connecting a node is called the degree of the node. The degree of each VN is
equal to the weight of its corresponding column, while the degree of each CN is equal
to the weight of its corresponding row. In this thesis, we use d, and d. to denote the
degree of VN and the degree of CN, respectively.

2.2 Regular and Irregular LDPC Codes

According to the number of the non-zero elements of the sparse matrix in the row and
column, LDPC codes can be divided into regular LDPC codes and irregular LDPC
codes. For a parity-check matrix H, if the numbers of the non-zero elements of each
row are the same, and the numbers of the non-zero elements of each column are also the
same, the LDPC code corresponding to H is the regular LDPC code. On the contrary,
if the above conditions do not satisfy, the LDPC code is the irregular LDPC code.



From [4], the basic structure of an LDPC code is defined by its degree distribution,
which are two polynomials that give the fraction of edges in the graph that are connected
to the VNs and the CNs, respectively. We call them degree distribution polynomials,
denoted by A(z) and p(z), respectively. We assume that dymee and demae denote the
maximum VN degree and CN degree, respectively. The degree distribution polynomials
can be expressed as

dvmrw:

Mz)= > Mz (2.1)

=2

dcma::

o)=Y o (2.2)

where A; corresponds to the fraction of edges connected to VNs, and p; corresponds
to the fraction of edges connected to CNs. The coefficients A; and p; must satisfy the
following constraints

0SH<Li220<py<L,5 22 (2.3)
dvmaac dcmnz
Z )\1, = 1; Z Pi = 1. (24)
=2 j=2

Furthermore, in order to be compatible with a given code rate R, the following linear
constraint must be satisfied for a degree distribution {5]:

dcmaz dvmu.x

S Z-a-ny a3 (2.5)

j=2 1=2

2.3  Encoding of LDPC Codes

The process of the encoding of LDPC codes basically includes two steps. The first step
is to construct a sparse parity-check matrix H. The second step is to generate LDPC
codewords ¢ using this matrix, and ¢ must satisfy cH” = 0, where the superscript ‘77
denotes the transpose operation.

2.3.1 Construction of Sparse Parity-Check Matrix

LDPC code is constructed based on the definition of the parity check maftrix. Therefore,
how to obtain the high sparse parity-check matrix with excellent performance is a key
technology in the encoding of LDPC codes.

In general, constructing an LDPC code parity check matrix can be divided into two
steps as follows:

1. Select a degree distribution expression;



2. Construct the structure of the parity check matrix; that is, arrange the specific
placement of the edge between the variable node and the check node.

We can design the optimal degree distribution with the aid of various types of per-
formance analysis tools, such as differential evolution, density evolution and EXIT chart
[19]. For the construction of the parity check matrix, there are many ways which are
summarized into two main classes: random constructions [22] and structural construc-
tions [23]. For the sake of conciseness, we do not present these approaches in detail at
here.

2.3.2 Encoding Based on Gauss-Jordan Elimination

The conventional encoding algorithm is based on the approach of Gauss-Jordan elimina-
tion. Let the M x N matrix H is a randomly generated party-check matrix. According
to the definition of linear block codes, for the input binary source bits u, the encoded
codeword c satisfies

cH” = 0. (2.6)

Since H is randomly generated, it is a non-systematic form in general. H is converted
to systematic form and then divided into an M X (N — M) matrix A and an M x M
matrix B as H = [A|B]. We can also partition the codeword c into message bits w,
and check bits p using the similar form. Based on (2.6), we have

(A B] m =0. (2.7)
From this, we have

Au+Bp=0 (2.8)
Hence, we can obtain the check bits p by

p=-B"Au (2.9)

This approach is performed with complexity O(M?), which is mainly decided by
the computation of B™?A. Equation (2.9) can be used to compute the check bits as
long as B is non-singular and not just when A is an identity matrix. In general, the
parity-check matrix H will not be sparse after the pre-processing. Thus the complexity
of conventional methods for the encoding of LDPC codes is high when the length of
LDPC codes is large.

2.3.3 Encoding Based on Approximate Lower Triangular Matrix

To solve the problem of the high complexity of encoding based on the Gauss-Jordan e-
limination, an efficient LDPC encoding algorithm, which encodes based on approximate
lower triangular matrix, was proposed by Richardson [23]. The detailed description of
this encoding approach is introduced in the following.
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Figure 2.3: Approximate lower triangular matrix.

The principle of this approach is that in order to keep the sparsity of the parity-
check matrix H, the transformation of the parity-check matrix is performed by using
only row and column permutations. Any arbitrary sparse matrix can be converted into
the parity check matrix H with an approximate lower triangular form as shown in Fig.
2.3. The flow of the encoding algorithm based on approximate lower triangular matrix
is illustrated as follows:

Step 1: Covert H into an approximate lower triangular form by performing row and
column permutation. H can be represented as

H = ["é g rlﬂ (2.10)

where A is (M —g) x (N —M),Bis (M —g) x g, Tisan (M —g) X (M — g) lower
triangular matrix, Cis g x (N — M), Dis ¢ X g and finally Eis ¢ X (M — g). The g
rows of H are called the gap of the approximate representation, and the smaller g is,
the lower is the encoding complexity for LDPC codes.

Step 2: Use Gauss elimination to clear E, which is performed as follows:

I 0]fA B T] A B T -
ET! 1|/ D B~ |-BT'A+C -ET'A+D 0 (2:11)
where T is an identity matrix.

Step 3: Consider the codeword ¢ consisting of a systematic part s and two parity
parts p; and p,, with lengths g and (M — g), respectively. That is, the codeword ¢ =
[s p; py] must satisfy the parity-check equation (2.6), we have

{ AsT +Bpl +Tpl =0
(_

ET A +C)s" + (~ET'B+D)pl =0 (2.12)

From (2.12) we can obtain the two parity check bits p; and p;. Then combining them
with the systematic part s, we can obtain the LDPC codewords.

The computation of p; and p, can be accomplished with complexity O(N + g?) and
O(N), respectively, which are much lower than that of the method of encoding based on
Gauss-Jordan elimination. Therefore, this method is the most popular one for encoding
LDPC codes.



2.4 Decoding of LDPC Codes

Decoding is a crucial factor for the performance of channel coding techniques. LDPC
codes have a variety of decoding methods, which are essentially based on the iterative
message-passing algorithm since their operation can be explained by the passing of
messages iteratively along the edges of a Tanner graph. LDPC decoding algorithm
can be decomposed into bit-flipping (BF) algorithm [1] and belief-propagation (BP)
algorithm [3] based on the different forms of messages sent in the iterative process.
The messages are binary bits in the BF algorithm; while the messages are probabilities
which represent the belief about each bit in the BP algorithm. The BF algorithm has a
lower complexity, but with worse decoding performance. In contrast, the BP algorithm
can achieve near-capacity performance with a higher implementation complexity. Since
the BP algorithm has been used in practical systems with the development of hardware
technology, we only present the BP algorithm in detail at here.

For the illustration of the following description, we will use the following assumption
conditions. We assume that an LDPC codeword ¢ = {¢, ¢, ...,en}, ¢ € {0,1} is first
mapped to binary phase shift keying (BPSK) symbol sequence x = {z;, 23, ...,zx},Z; €
{—1,-+1}, and then x is transmitted over an additive white Gaussian noise (AWGN)
channel. At the receiver, the received sequence is y = {1, s, ..., yn} . According y, the
decoded sequence is €.

The following notations will be used to describe the decoding algorithm of LDPC
codes. Rj is the set of checks in which bit j participates. Rj; is the set R; with check
node 4 excluded. Cj is the set of bits that participate in check 4. Cjy; is the set C;
with bit j excluded. 7;(b) is the probability of check ¢ when bit 4 of ¢ (¢; = b) and
other bits have a separable distribution given by the probabilities {gi;}, 2 03(0) Is
the probability that bit ¢ of ¢ ¢; = b, given the information obtained via checks other
than check j. F; is the a posterior probability of the transmitted codeword bit ¢; = 1,
which is obtained by the receive signals and the channel feature.

The flow of the BP decoding algorithm is as follows:
Step 1: Initialization

In the case of an AWGN channel with BPSK, the variables ¢;;(0) and g¢;(1) are
initialized using (2.13) and (2.14). Set the maximum number of iterations as I Npqg.

1
4(0) =1~ Fi = P(z; = +1[y;) = 15 e2mi/o” (2.13)

1
Gij(1) = Py = Pla; = —1ly;) = T 2wl (2.14)

Step 2: Row operation
11
ra(0) =545 [T 2501 (2.15)
€R;

r5i(1) = 1 ~15(0) (2.16)



Step 3: Column operation
g5(0) = Kyy(1 ~ P) ][ 73(0)
J'€Cig

g (1) = Ky P H (1)

€0

where Kj; is chosen such that ¢;;(0) + g;3(1) = 1.
Step 4: Decision

Qi(0) = K;(1 = P || (0)

JjeC;

Qi(1) = KP; | [ (1)

JeC;

where K; is chosen such that ¢;(0) -+ ¢;(1) = 1.

amt 90>a0

P, elsewhere

Step 5:Iteration stopping judgement

(2.21)

If ¢HT = 0, output & and stop the decoding. Otherwise, go to step 2 until the

maximum number of iterations /Npqz is reached.

If we use the log-likelihood ratio (LLR) to represent the probabilistic message of the
BP algorithm, we can obtain an enhanced version of the probabilistic BP algorithm,
which is called Log BP algorithm. Using this approach can reduce most multiplications
to additions. Therefore, the decoding complexity is greatly reduced. For more details,

we refer to [1] and [3].
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CHAPTER 3

Multiple-Symbol Differential Detection

In the communication systems with differential detection, the receiver can demodulate
the transmission of information bits without requiring carrier phase recovery and CSI
estimation. Therefore, differential detection can greatly reduce the implementation
complexity of the system, and can also be implemented in the severe channel, such as
fast fading channel, where the coherent detection systems are difficult to implement
since the CSI cannot be accurately estimated or carrier recovery is difficult. However,
differential detection also brings a performance loss of the system, thereby reducing its
practical value.

Conventional differential detection makes a decision using only the two adjacent
reception signal, which results in & considerable performance loss compared with co-
herent detection. In order to compensate this performance loss, MSDD [10] has been
proposed. By extending the length of the observation window size to more than two
symbols, MSDD makes a joint decision on those several symbols simultaneously rather
than symbol-by-symbol detection as in conventional differential detection. The perfor-
mance of MSDD for uncoded multiple-phase shift keying (MPSK) and amplitude/phase-
shift keying (APSK) systems has been analyzed and evaluated over AWGN, slow flat
Rayleigh fading and fast Rayleigh fading channels, respectively in [11] and [12]. It was
shown that MSDD is an effective approach to compensate for the performance loss
between the differential detection and the coherent detection.

In this chapter, we provide the fundamentals of MSDD as the basis for the following
chapters. In Section 3.1, we first describe the uncoded communication system model
with differential coding and MSDD. Then, the decision metric of MSDD is presented
in Section 3.2. Finally, the complexity of MSDD is analyzed in detail in Section 3.3.

3.1 System Model

A differential encoded transmission system with MSDD is shown in Fig. 3.1. At the
transmitter, the transmitted message bits b, are first mapped to MPSK symbols dj.
Then, the MPSK symbols are differentially encoded to symbols s;. The process of the
differential coding is

Sk = Sp—1dp. (3.1)

sp is a reference symbol and is known by the receiver. In this thesis, sq is set to 1.

‘We consider the transmission of MPSK signal over a channel with unknown random
phase and multiplicative fading. Differentially encoded MPSK symbols transmitted in

11
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Figure 3.1: System model of MPSK systems with MSDD.
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Figure 3.2: Partitioning of the received signals into groups {observation windows) for
MSDD.

the interval % can be expressed as
5y = apel¥k (3.2)

where q; is the transmitted signal amplitude, and ¢, is the transmitted signal phase.
Based on the above channel, the corresponding received signal in the same interval is

L= Skhkejak + ny (3.3)

where Ay is a sample of a normalized complex Gaussian process with mean h; and
variance 0%, ny is a sample of a zero mean complex Gaussian noise with variance o2,
and 0, which is assumed to be uniformly distributed in the interval (0,27), is an
arbitrary phase introduced by the channel.



At the receiver, MSDD is employed before performing the MPSK demodulator. The
received sequence of samples 7y, is partitioned into groups (observation windows) of L
samples each in such a way that the groups overlap in one sample as shown in Fig. 3.2.
Based on the principle of the differential coding, the overlap is necessary since the last
signal in the group ry_; need to be used as the reference symbol for the next group.

In the following, we use L to represent the observation window size of MSDD. The

L sample received sequence from interval k — L + 1 to interval £ can be rewritten into
the following vector form:

r=H"S+n (3.4)

— T — A3
where 1 = {’rka Th=13 < T}c——l;—{-l] ) H= dZ&g{hk, hk—l) very h‘k—L—i—l}s
i T 064117 _ T
Sy = [8re?%, sp1€7%1, L, Spepgr @) and ny = [N, g1, o, Np—rne1]”, and the
superscript “I” denotes the transpose operation.

3.2 Decision Metric of Multiple-Symbol Differential Detection

In many practical channels, it is reasonable to assume the channel phase 8, is indepen-
dent with & within an observation window. Therefore, (3.4) can be rewritten into

r= HTse’ +n. (3.5)

For MSDD over the assumed channel model, the CSI is unknown at the receiver. From
[11], the conditional probability density function (PDF) of r given s and 6 is given as:

1 1 N ~1 =\*
p(rls,8) = GrE iR exp {Hi(r —~ )R r —7T) } : (3.6)
where the superscript ‘+’ denotes complex conjugation, and
F=T se’® = Xe, (3.7)
and R. is the covariance matrix of r, which is expressed as
1
R = EE{(I‘ — ) -1} (3.8)

R has RT = R* and det R > 0, because it is a Hermitian positive definite. The i, jth
element of R. can be calculated as

1 . )
Ry = 53{(%—7‘0 (Tj—Tj)T}
= 5}8;07 pi; -+ Tabi; (3.9)

where p; ; denotes the normalized covariance function of the fading process as

s E{(hi — hy)*(hy — By)T}

Th

(3.10)

Pig =

13



and

1, i=j3
i = 3.11

Based on the Hermitian of R™!, submitting (3.7) into (r — T)TR™I(r — F)*, we can
get

r—-ATR I -7 =r"Rr" + XTRIX 2 [fTRTIX

cos(f — ), (3.12)

where

_;Im {TTR*lX*}
Re {rTR1X*}"
Averaging over the uniform distribution of §, and substituting (3.12) in (3.6), the

PDF of r given s can be expressed as

plrls) = / " p(els, O)p(6)de

-

1
©(2m)EdetR

where Ip(-) is the zero-order modified Bessel function of the first kind.

« = tan

(3.13)

exp {—%(rTR“lr* + XTR“lx*)} L(E™TR7IX*),  (3.14)

Using (3.14), MSDD makes a joint decision on the symbols in the observation window
based on the maximum likelihood (ML) principle. Therefore, the transmitted MPSK
symbols vector d is decided by

d= argmax p(r|s)= argmax Inp(rs). (3.15)
djei (60,0, L—1) i (§=0,000, L 1)

Since the natural logarithm is a monotonically increasing function, maximizing p(r|s)
over s is equivalent to maximizing Inp(r|s) over s. Therefore, equation (3.14) is equiv-
alent to choose sequence s that maximizes the decision metric:

n = —In{det R) %(rTR'lr* +sTHRHTs") + In (e PRI Ts*)).  (3.16)

Equations (3.14) and (3.16) are general decision metrics for several kind of channels.
In the following, we will discuss the decision metric of MSDD for different channels which
will be considered in the following chapters. :

3.2.1 MSDD of MPSK over AWGN Channels

In the case of AWGN channels, hy, =1 for all k and o7 = 0. Submitting them into (3.9)
and (3.14), the decision metric (3. 14) is simplified to

1
= ex E i (17 x In( E .
p(I'lS) (27?0'721)1’ e}‘p 9 121 £~ (]T [ + lS ] 0 n par 7'1. (3 17)
and the decision metric (3.16) is simplified to
n= o7 Ts* % (3.18)
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3.2.2 MSDD of MPSK over Rayleigh Fading Channels

In the case of Rayleigh Fading channels, E(h;) = 0 for any number of k. In this
condition, the decision metric (3.14) can be simplified to

1

p(rls) = BrEde R exp[m% TR}, (3.19)

and the decision metric (3.16) can be simplified to
1
7= —In(detR) — —i(rTR"lr*), (3.20)

and the element of R;; is
Ry = 518507 pig + 03015, (3.21)

where p; ; is the correlation coefficient of the fading process, which is given by [20] as

pij ~ Jo(2m fpTs|i — 7)), (3.22)

where fpT; is the normalized Doppler frequency, and Jp(-) is the zeroth order Bessel
function of the first kind.

3.3 Complexity of Multiple-Symbol Differential Detection

From the decision metric of MSDD, we can find that MSDD needs to consider all
candidate bit sequences. From this point, MSDD can be viewed as a tree decoding
problem. The hard output of MSDD is actually the path with the ML value of the
metric. Assuming the order of MPSK is M and the observation widow size is L, the
tree diagram of MSDD searching the maximum likelihood sequence is illustrated in Fig.
3.3, where the first symbol of the received sequence is the reference symbol, which is
the last symbol of the previous observation window in the received sequence.

From this figure, we can observe that the number of search paths equals to M*1,
Thus, the number of search paths increases exponentially with the observation window
size and the order of the modulation. MSDD calculates the metrics of all paths and
compares them at the receiver, and then the path that has the maximum metric is
decided as the I transmitted symbols. In calculating the metric of (3.18), it is necessary
to compute the inverse and the determinant of the matrix R. In case of a fairly large
L and M, the computation of the metric will consume much time. Generally, the
computational complexity of the inverse of the matrix is O(N?) [21]. Therefore, this
high complexity will result in an unacceptable decoding time delay, which limits the
practical application of MSDD.

15



Figure 3.3: Tree diagram for MSDD searching the maximum likelihood sequence (MP-

SK).
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CHAPTER 4

Iterative Multiple-Symbol Differential Detection for
Differentially Encoded LDPC Coded Systems

The performance of LDPC codes with differential detection over AWGN channels
were studied in [5] and [24]. The two papers mainly focused on how to design LDPC
codes for differential encoding with iterative differential detection. In [6]-[9], the perfor-
mance of LDPC codes with differential detection over flat Rayleigh fading channels was
studied. In [6] and [7], two kinds of metrics of a serial concatenation system of LPDC
codes and differential binary phase shift keying (DBPSK) were proposed. In (8] and [9],
a simple iterative differential detection and decoding receiver was proposed, and also
mainly focused on how to optimize the LDPC codes to fit for differential detection.

It is well known that conventional differential detection has considerably worse per-
formance than coherent detection. MSDD [10]-[12] has been proven to be an effective
approach to compensate for this performance loss. For serially concatenated coded sys-
tems consisting of a channel encoder and a differential encoder, an iterative decoding
scheme based on MSDD was proposed in [13]. In this scheme, the soft-input soft-output
demodulator (SISOD) with MSDD (called MSDD SISOD in this thesis) is used as the
inner decoder, and the iterative decoding is performed between the MSDD SISOD and
the outer decoder. Tt was shown that this iterative MSDD scheme can achieve a large
performance improvement compared with conventional differential detection. Up to
now, the iterative MSDD scheme has been widely studied, such as iterative MSDD for
turbo coded systems [14], for cooperative communication systems [15] and for spatial
division multiple access systems [16].

In this chapter, an iterative MSDD scheme for differentially encoded LDPC coded
system is studied. To make the MSDD suit for iterative decoding, a metric computation
algorithm which output soft information for MSDD are derived, and the performance
of the system is analyzed using the EXIT chart and computer simulations. Moreover,
the importance of the optimization of LDPC codes for MSDD SISOD with different
observation window size is studied.

4.1 System Model

A. Transmitter

The system model is shown in Fig. 4.1. A random message bit sequence b =
{b1,bz,...,bx}, b; € {0,1} is first encoded by a rate K/N LDPC encoder to a code se-
quence ¢ = {¢1, ¢z, ..., cy }, ¢ € {0,1}. The code sequence is then mapped to an M-ary

17
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Figure 4.1: System model.

PSK symbol sequence x = {z1,Zg, .., Zy/m |, @i € {2/ | i=0,1,..., M}, where m
is the number of bits of each M-ary PSK symbol. The sequence x is then differentially
encoded to a sequence s = {so,sl, ...,sN/m}, where s, is given by 8, = ZpSp_1. S is
a reference symbol and is known by the demodulator. In this thesis, sy is set to 1.
Different from general serially concatenated codes [25], the considered systems omit
the interleaver between the encoder and the modulator to reduce the complexity of the
system, because LDPC codes have an inherent interleaving nature since their parity
check matrixes are randomly constructed with a high degree of sparsity [26].

B. Channel

The differential encoded sequence s is transmitted to the receiver through the
Rayleigh fading channel with AWGN. The received discrete-time baseband signal, at
time k, can be written as

TR = ]’L}cS;;ejek + ng (4.1)

where fading coefficient /. is a sample of a normalized complex Gaussian process with
mean zero and variance o7, f, which is uniformly distributed over (0,27}, is the un-
known phase introduced by the channel, and ny is a sample of a zero mean complex
Gaussian noise with variance ¢2. It is assumed that hy, and ny, are mutually independent.

C. Receiver

At the receiver, the received signal is iteratively decoded by mutually exchanging
soft information between the inner decoder and outer decoder (LDPC decoder). The
inner decoder named MSDD SISOD is a soft-input soft-output demodulator based on
MSDD. The process of this demodulator-decoder iteration is denoted by the outer
iteration in this thesis. At each outer iteration, the MSDD SISOD produces the a
posteriort information Ly, based on the received signals and the a priori information
Lyt provided by the LDPC decoder, and produces the extrinsic information Ly,
by subtracting Ly from Ly, Then Ly, is passed to the LDPC decoder as the a
priori information Lp,. Based on Lp 4, the LDPC decoder performs a number of inner
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iterations, and makes a tentative hard decision. If the hard decision is determined to be
a legitimate codeword by checking the parity check constraints, the iterative decoding
will be terminated. Otherwise, the extrinsic information Lp. of the LDPC decoder,
which is obtained in a similar way to Ly, will be fed back to the MSDD SISOD as the
a priori information Ly, for the next outer iteration. This process is repeated until
the predefined maximum outer iteration number is reached or a legitimate codeword is
found.

4.2 Metric Derivation for MSDD SISOD

MSDD SISO outputs the soft information as the input to the LDPC decoder. This
is different from the conventional MSDD [11], which makes a hard decision through
Maximum Likelihood Detection (MLD). So we should derive the metric computation
algorithm to output the soft information for MSDD.

Assume that the OWS of MSDD SISOD is L, and ), remains constant over the entire
received sequence. From Chapter 3, we know that the received sequence is divided into
subblocks of L symbols each in such a way that the subblocks overlap in one symbol.
That is, the number of subblocks is (N/m)/(L — 1). For the kth subblock, we can
rewrite (4.1) in the following vector form

rp = Hsp, + 1y, (4.2)
where re = [Tk’o, Tk,l; ...,T]c’L_l]T, Sp = [Sk,gejg, sk,leje, ey Sk’L_Ieje]T,
Ny =[N0, 1, ---:nk,L—I]T
Let ¢, = [ck‘l,cklg,...,ck,m(L_l)]T denote the code bits corresponding to the kth
subblock of the received symbols. For the sake of clarity, we drop the index % in the
following. At the MSDD SISOD, the a posteriori probability (APP) of each coded bits
is computed. The APP of the code bit ¢; is written in terms of LLR

ple; = 0[r)

Lasp(c) =1 .
pl®) =108 L 1)

(4.3)

Based on the Bayesian formula, and assume that the coded bits are independent with
each other due to the inherent interleaving nature of LDPC codes, (4.3) is equivalent

to
N Ve PEIEP(S) L Vo Ple) TV p(ey)
Duaale) SIS IR T B, plrle) IS Tl

where the sums in the numerator and denominator are taken over all sequences ¢ whose
bit in position ¢ is the value 0 or 1, respectively. p(c;) is the a priori probability provided
by the LDPC decoder.

For the coded sequence ¢, M-ary PSK symbols sequence x and differential encoded

(4.4)
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sequence s are one to one mapping, we can rewrite (4.4) as

L-1
_ Zs:c;:[] p(r[s) H;‘T;(l,j#z’ p(cj)
e L-1 :
N p(cL H l)J Zs:c,:l ]J(I‘|S) H;‘r;(l,j;é% p(cj)j

apriort probobility

(4.5)

exirinsic probability

From (4.5), we can find that the LLR is the summation of the a priori information
and extrinsic information. The first part of (4.5) is related to the a priori probability
of the coded bit ¢;. The second part of (4.5) is related to the extrinsic information
of the coded bit ¢;, which is outputted into the LDPC decoder. In the first iteration,
because no a prior: probabilities of the coded bits are fed back, the transmitted bits
are assumed to have equal a priori probabilities, i.e. P(¢; =0) = P(g;=1)=1/2. In
the following iteration, the extrinsic information Lp . of LLR of the coded bits is fed
back to MSDD SISO as a priort probability, so P(c;) is given as

eLD.c(ci) l

ploi=0)= gy pla=1 =15 (4.6)

where Lp.(c;) is the extrinsic information outputted from the LDPC decoder corre-
sponding to the coded bit ¢;.

From Chapter 3, the likelihood function P(r[s) is given as

1 1 1
p(rls) = AR exp[—§ "R}, (4.7)
where R.is the covariance matrix of the received sequence r, and R~ denotes its inverse.
R;; of R is evaluated by

Ryj = 57850, pij -+ 0ij, (4.8)
where d;; = 1 when ¢ = j; otherwise, d;; = 0.
When we consider a Rayleigh fading channel, the correlation coefficient p;; is given
by [20]
pij = Jo(2m fpTs[i — j), (4.9)
where fpT; is the normalized Doppler frequency, and Jy(-) is the zeroth order Bessel
function of the first kind.

4.3 Extrinsic Information Transfer (EXIT) Chart Analysis of
the System

To better understand the behavior of the iterative decoding process of the considered
systems, we apply EXIT chart analysis [19] and {27] which can visualize the transfer
characteristics of the inner decoder and the outer decoder, and also the convergence
behavior of iterative decoding based on tracking the exchange of mutual information
between the component decoders.



In EXIT chart, the component decoders are characterized by the EXIT function-
s, which describe the output mutual information as a function of the input mutual
information. The mutual information between the transmitted coded bits ¢ and the
respective LLR values L{C') is defined as [19]

B . 3 1 o0 B 2pL(c) (l]C = C)
I =I{L(C): 0) =5 ,,;1 /-.oom@(lic =e) - logy P (€ = 0) +pre(C = 1)

(4.10)
where pr((l]C = ) is the conditional PDF of the LLR, values L(c) given ¢ € {0,1},
and 0< I, £ 1.

Using (4.10), the input mutual information I, , and the output mutual information
Ity of the MSDD SISO demodulator can be obtained. Viewing Ir,, . as a function
of I,,, and parameters of channel, the transfer characteristic of the MSDD SISOD is
defined as

dl,

B
ILM.c = Tll (IL.\[,ai ﬁ: fDTs): (4.11)

where % is the signal-to-noise ratio (SNR) of the channel.

Similarly, I, , and I, , of the LDPC decoder can be computed, and the transfer
characteristic of the LDPC decoder is defined as

Inpe ="To(ILp,)- (4.12)

To generate the EXIT chart, the PDFs of the LLRs corresponding to Ir,, . and I, ,
are assumed to be Gaussian distributed. When Iy, , and I, , are calculated, the PDF's
of Lye and Lp, are obtained by the histogram method [27]. As shown in Fig. 4.1, the
extrinsic information of the MSDD SISO demodulator is the a priori information of
the LDPC decoder and vice versa, which implies that I, , = Ir,,, and Iy, . = I1, ..
Therefore, the transfer characteristics of the MSDD SISO demodulator and the LDPC
decoder can be plotted into a signal diagram by switching the x-axis and the y-axis.
This diagrame is referred to as EXIT chart.

We plot the EXIT chart of MSDD SISOD of the systems under consideration in
Fig. 4.2-4.5. The system considers a regular rate-1/2 (3, 6) LDPC code with code
length 100800 with BPSK modulation over an AWGN channel and a Rayleigh Fading
channel, respectively. From [19], we know that if the EXIT curve of inner decoder has
a steep slope, the strong potential performance improvement can be got by iterative
decoding. And the bit error rate (BER) performance is determined by the location of
the intersection of the EXIT curves of the MSDD SISOD and the LDPC decoder. If
the location is at the left side of the EXIT chart, this means that the iterative decoding
stops quickly and high BER will be got. On the contrary, if the location is at the very
right side, it means that iterative decoding can converge at low BER.

Fig. 4.2 shows the transfer characteristics of MSDD SISOD with different OWS over
AWGN channels at Fy/Ng = 3.5 dB. In the figure, I, denotes the value of the OWS of
the MSDD SISOD. From Fig. 4.2, we can observe that the slopes of the MSDD SISOD
curves increase with the increase of the OWS, which implies that the performance of



MSDD SISOD can been improved by increasing the OWS and the number of iterations.
Whereas, because the MSDD SISOD curves are horizontal lines, the iterative decoding
is not valid with L = 2 (conventional differential detection). In addition, we can also
observe that the gap of the slopes of these curves becomes smaller and smaller with an
increase of OWS. This means that the performance improvement is not significant when
L increases to a relatively large value. Fig. 4.3 shows the transfer characteristics of
- MSDD SISOD with different OWS over Rayleigh fading channels with fpTs = 0.01 at
Ey/Ny = 6 dB. It is shown that the similar analysis results can be obtained for Rayleigh
fading channels. The difference is that the slops of the curves of Fig. 4.3 are smaller
than than that of Fig. 4.2 at the same value of L, which implies that for Rayleigh fading
channels, the performance improvement by increasing the OWS of MSDD SISOD is not
as significant as that for AWGN channels.

Fig. 4.4 shows the transfer characteristic curve of the LDPC decoder with different
iteration. It is shown that the steepness of the curves converges after the 10th iteration
number. From the 10th iteration to the 100¢h iteration, the curves of them are almost
overlapping with each other. That means the performance LDPC decoder can hardly
be improved after the 10th iteration, which will be supported by the BER performance
as shown in Fig. 4.7, :

Plotting the transfer characteristics of MSDD SISOD and the LDPC decoder into
a signal figure by switching the x-axis and the y-axis of the EXIT chart of the LD-
PC decoder, as shown in Fig. 4.5, we can obtain a EXIT chart which can help us to
analyze the convergence characteristics of the iterative decoding and predict the decod-
ing threshold of the systems under consideration. The decoding threshold is the SNR.
where a tunnel opens between the curves of the MSDD SISOD and the LDPC decoder.
It can be observed that a tunnel opens between the curves of MSDD SISOD and the
LDPC decoder with an increase of OWS. For example, the tunnel opens at SNR. = 6
dB for L = 6 in Fig. 4.5, which means that the iterative decoding can improve the
performance effectively and achieve low BER performance. So we can predict that the
decoding threshold appears near SNR = 6 dB for L = 6. All the above analysis re-
sults by the EXIT chart will be further supported by the simulation results in the next
section.
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Figure 4.2: EXIT chart of MSDD SISOD with different OWS over AWGN channels.
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Figure 4.3: EXIT chart of the MSDD SISOD with different OWS over Rayleigh fading
channels.
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Figure 4.6: Effect of observation interval size on BER performance.

4.4 Simulation Results and Analysis

In our simulations, unless otherwise indicated, regular rate-1/2 (3, 6) LDPC code with
length N = 1008 is used. The coded bits are modulated using BPSK for simplicity.
The Rayleigh fading channel considered at here is Jake’s model, and the normalized
maximum Doppler frequency fpTys is set to 0.001 for slow fading channels and 0.01 for
fast fading channels.

Fig. 4.6 shows the BER performance of MSDD SISOD with different OWS. In this
simulation, we focus on the effectiveness of the proposed metric computation algorithm
based on MSDD, the iteration number of sum~product algorithm is set to a small number
of 3. The iteration number between the MSDD SISOD and LDPC decoder is set to 6.
From Fig. 4.6 we can observe that the BER performance is improved with the increase
of L. And we note that the improvement of BER. performance is not significant when L
is bigger than 4. That means a significant gain can be got without a large observation
window size.

Fig. 4.7 shows the BER performance of the LDPC decoder with different iteration
numbers. L is set to 4, other simulation parameters is same as the above simulation. It
can be seen that the performance is improved with the increase of iteration number of
the LDPC decoder but not significantly when the iteration number is bigger than 10.
Considering from the balance between the performance and algorithm complexity, the
iteration number of sum-product algorithm is selected as 10 in the following simulations.
From the above analysis results, we can also find that the above simulation results
support the EXIT chart analysis results of Section 4.3.
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After testing the impact of the MSDD SISOD and the LDPC decoder on BER
performance, the impact of the iterative decoding between MSDD SISOD and LDPC
decoder on BER performance is shown in Fig. 4.8. It can be observed that the perfor-
mance is effectively improved with the increase of the iteration number. And we can
also observe that the performance improvement is very small after the third iteration.
That means the convergence rate of the iterative decoding of the proposed system is
fast. This conclusion can also be explained by the EXIT chart. From Fig 4.3, we can
observe that the slope of the curve of MSDD SISOD with L = 4 is not steep and close
to the slope of the curve of the LDPC decoder, which means that the convergence of
the iterative decoding only requires a small number of iterations [19],[27].

In Fig. 4.9, the BER performances of the proposed system over slow and fast fading
channels with different OWS are compared. And the performance of coherent detection
of BPSK of the proposed system with CSI known is also included for comparison.
We can observe that the performance of the proposed system can get close to that of
coherent detection. We can also find that the performance is much better in fast fading
channels. And extending L in fast fading channels, the improvement of performance is
more significant than that in slow fading channels. The same phenomena can be also
observed from Fig. 4.7 and Fig. 4.8. This is because the system under consideration
can exploit the time diversity benefit which is available in fast fading channels.

In addition, it is known that increasing the length of LDPC codes can greatly im-
prove the performance of the LDPC coded systems. The performance of the systems
under consideration with long LDPC codes is not shown on here, since the characteris-
tics of the performance is similar to that of the above simulation results. Furthermore,
in the case of DE-LDPC coded systems with regular LDPC codes, regardless of using
short or long codes, the performance almost cannot be improved by increasing the OWS
of MSDD SISOD when the OWS is bigger than 8. Moreover, there is a relatively large
gap between the performance of the systems under consideration with regular codes
and the capacity of the noncoherent MPSK channel with MSDD, which will be shown
in the next section. This is because regular LDPC codes, which have good performance
for coherent detection, are not optimized for the DE-LDPC coded systems with MSDD.
Therefore, in order to further improve the performance of the DE-LDPC coded systems
with MSDD, it is necessary to design the irregular LDPC codes for MSDD SISOD with
different OWS.
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channels.

4.5 LDPC Codes Optimization for DE-LDPC Coded Systems
with Iterative MSDD

Many works have been reported on how to design the irregular LDPC codes to close the
channel capacity of different systems, such as coherent detection systems over AWGN
channels, MIMO systems, etc. [22], [28]. In [28] and [5], an EXIT curve-fitting approach
was proposed to design the optimized irregular LDPC codes for MIMO systems. With
this approach, irregular LDPC codes optimized for serial concatenation systems of LD-
PC codes and differential modulation (DM) with coherent detection was studied in [5].
It was shown that the optimized LDPC codes for DM perform significantly better than
non-optimized LDPC codes. However, until now, optimizing the LDPC codes for the
iterative MSDD systems has not been studied.

In this section, we first introduce the irregular LDPC codes and its EXIT charts.
Then, we describe how to optimize irregular LDPC codes by EXIT chart for the systems
under consideration. Finally, the performance of the systems under consideration with
the optimized LDPC codes is evaluated using computer simulations.
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Figure 4.10: Block Diagram of the receiver of the systems under consideration.

4.5.1 Irregular LDPC Codes and Its EXIT Chart

From Section 2.2 of Chapter 2, an irregular LDPC code ensemble can be specified by
two polynomials:

dllmll.‘l(' dcma:x:

Ma)= Yo da™, ple)= ) pa (4.13)
=2 =2
where A; (p;) is the fraction of edges with variable (check) nodes of degree ¢ (J), and
dymaz (demas) is the maximum degree of variable (check) nodes, respectively. The coef-
ficients A; and p; must satisfy the following constraints:

duma:x: dcmax
ST N=L0<M<L Y p=10<p<] (4.14)
1=2 j=2
and
d d
emax . vmax )\'
S lhoaop S M (4.15)
j=2 J =

In the LDPC decoder, the sets of variable and check nodes are referred to as the
variable-node decoder (VND) and check-node decoder (CND), respectively. In order to
design irregular LDPC codes, in the EXIT chart analysis, similar to [5], we combine the
MSDD SISOD and VND into one component for the EXIT curve analysis and treats
the CND as the other as shown in Fig. 4.10, in contrast to treat the MSDD SISOD as
one component and the entire LDPC decoder as the other which is used in our previous
studies. In Fig. 4.10, the mutual information at the output of LDPC VND and CND
are denoted as Igpvyp and Izonp, respectively; the mutual information at the input and
output of the MSDD SISOD are labeled [4ps and Igas, respectively. The approximate
formulas of the EXIT curves Ipyyp and Ipenp are given as:

Ipynp = Z 2 (v (& = 1)(T (Ipawp))” + (J7 (Teaa) ), (4.16)
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Igcnp=1-— ij.](\/j —~1J7' (1 — Ipvab)), (4.17)
i

where the calculation of the functions J and J=! can refer to [28]. The examples of
the EXIT chart for the DE-LDPC coded systems under consideration with OWS L =
4 using a rate-1/2 (3, 6) regular LDPC code and an irregular LDPC code are shown in
Fig. 4.11 and 4.12, respectively. The irregular LDPC code is the optimized LDPC code
obtained by [22], of which the threshold value is only 0.06 dB away from the capacity
of AWGN channels. The degree distributions of this code are shown in Table 4.1.
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Figure 4.11: EXIT charts of the systems under consideration with OWS L = 4 and
rate-1/2 (3, 6) regular LDPC codes over AWGN channels with BPSK.

Table 4.1: Degree distribution of irregular LDPC codes [22]
Degree distribution
Ag = 0.17120, A3 = 0.21083, Ay = 0.0.00273, Ay = 0.00009,
Ag = 0.15269, A = 0.09227, Ay = 0.02802, A5 = 0.01206,
Ago = 0.0.07212, Asp = 0.25830.
pg = 0.33260, p1p = 0.08883, p1; = 0.57497.
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Figure 4.12: EXIT charts of the systems under consideration with OWS L = 4 and
optimized irregular LDPC codes of [22] over AWGN channels with BPSK.

4.5.2 Design and Optimization of Irregular LDPC Codes Based on EXIT
Charts

It is known that the iterative decoding can successfully converge when a tunnel is opened
between the Igyyp curve and the Igeyp curve. We can use the EXIT curve-fitting
approach to optimize irregular LDPC codes. The basic principle of this approach is
that searching the set of degree distributions of irregular LDPC codes makes the Iroyp
curve stay strictly below the /gy yp curve at an SNR as low as possible.

We construct a cost function to represent the relation of the two curves as follows
f = min {IEVND(Ii) — I)%%‘ND(Ii)} s 0 < Iz < 1, (418)

where I; is average selected between 0 and 1. Here should be noted that Ig5yp(fi)
denotes the inverse of Igcyp(l;), since the EXIT curve of the LDPC CND in the EXIT
chart corresponds to the inverse of Ig5yp. When f > 0, it means that the tunnel is
opened between the two curves. In contrast, when f < 0, it means that the two curves
intersect, that is, the tunnel is closed. Whereas, when f = 0, it means that the two
curves touch with each other, which means that the tunnel can be opened by a small
SNR increment.

Using the cost function of (4.18}, the procedure of optimizing irregular LDPC codes
is described as follows:

(1) Given a certain SNR, we first obtain the EXIT curve Igp of the MSDD SISOD.
Set, the maximum number of searches as Spqz.

(2) By differential evolution method {29], we search {);} and {p;} to maximize the
minimum of (4.18).
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Table 4.2: Degree distribution of optimized LDPC codes for L = 6 and 10
Degree distribution
L=6 | Ay =0.527, A3 =0.1217, A, = 0.3513,

L6 — 1.0.
L =10 | ha = 0.781, Az = 0.0037, Mg = 0.2153,
Ps = 1.0.

(3) If f > 0, decrease SNR, and go back to step 2. Otherwise, the set of {A;} and
{p;} corresponding to the maximum value of (4.18) is outputted.

Based on the principle of the EXIT curve-fitting approach, it is can be viewed as a
global optimization problem. When the numbers of {\;} and {p;} which are required
to be optimized are large, the complexity of the process of optimizing LDPC codes is
prohibitively high. To overcome this problem, in this thesis, following the method of
[28], we limit the number of different VN degrees and different CN degrees to 3 and 1,
respectively. In this case, based on the objective code rate and the degree distribution
constraints (4.14) and (4.15), the only one degree of VNs needs to be optimized. By this
way, the complexity of optimization of LDPC codes is greatly reduced. In the following,
we will show that we can obtain the well-designed LDPC codes using this method.

In the following, we give the two examples of the optimized LDPC codes using
the above method. We consider the optimization of a rate 1/2 irregular LDPC code
for the DE-LDPC coded systems with BPSK over AWGN channels. The optimized
examples of the systems under consideration with OWS L = 6 and 10 are detailed in
Table 4.2. The EXIT charts corresponding to the systems under consideration using
the two optimized codes and rate-1/2 (3, 6) regular LDPC codes are shown in Fig. 4.13
and 4.14, respectively. It is easy to see that using the optimized LDPC codes, tunnels
are opened for L = 6 and L = 10 at SNR, > 2.2 dB and SNR > 1.7 dB, respectively.
Thus, we can predict that the decoding thresholds of the system with the two optimized
LDPC codes are SNR = 2.2 dB for L = 6 and SNR = 1.7 dB for L = 10, respectively.
Whereas, It is obvious that the decoding threshold corresponding to the system with
ate-1/2 (3, 6) regular LDPC codes is much larger than that of the two optimized LDPC
codes. In order to more clearly understand the relation of the characteristics of the
MSDD SISOD and the LDPC decoder, we also present the EXIT charts for the system
model of Fig. 2.1 as shown in Fig. 4.15 and 4.16. From the two figures, we can also
obtain the same analysis results.
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Figure 4.15: EXIT chart of the systems under consideration with OWS L = 6 and
optimized LDPC codes for L = 6 with length 100800 over AWGN channels.
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Figure 4.16: EXIT chart of the systems under consideration with OWS L = 10 and
optimized LDPC codes for L = 10 with length 100800 over AWGN channels.
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4.5.3 FEvaluation of the Design Examples

Decoding thresholds corresponding to the design results of irregular LDPC codes for
MSDD SISOD with L = 6 and 10, which are predicted by Fig. 4.13 and 4.14, are
illustrated in Table 4.3. The results of the BER performance for the considered systems
with the optimized and non-optimized codes are shown in Fig. 4.15 and 4.16. In
the simulation, the code length of LDPC codes is 100800, and the maximum iteration
number of the LDPC decoder is set 20. Unless otherwise indicated, the maximum
iteration number between the MSDD SISOD and LDPC decoder is set to 8.

From the simulation results, we observe that compared to using the regular (3, 6)
LDPC codes, optimized irregular LDPC codes provide much better performance for the
considered systems. It is also shown that the gap to the decoding threshold can be
narrowed by using more iterations as shown in Fig. 4.16 and longer codes. Moreover,
the decoding thresholds observed from the BER performance is very close to that of
design results as shown in Table 4.3, which proves the accuracy of our optimization
method and results.

In addition, we also evaluate the performance of the systems under consideration
using the optimized LDPC codes for different OWS. As shown in Fig. 4.17, compared
with using non-optimized LDPC codes for the considered systems, the performance of
the system with L = 2,4, 10 can also be significantly improved by the optimized LDPC
codes for L = 6. This result shows the importance of optimizing LDPC codes for the
DE-LDPC coded systems with MSDD once again.

The above simulations are all for the very long LDPC codes. Whereas, in practical
systems, LDPC codes are generally limited to blocks of a few hundred to a few thousand
code bits. In the following, we evaluate the performance of the systems under consid-
eration using the optimized LDPC codes with finite length. It is known that we can
obtain a well-designed LDPC code with a very long length using the random construc-
tion approach to construct the LDPC code based on the degree distributions. However,
for finite length LDPC codes, we need to construct the LDPC codes to avoid the error
floor, which is easily appeared for the irregular LDPC codes with finite length. To im-
prove the error floor performance, we use the progressive-edge-growth (PEG) algorithm
[30] to construct the optimized LDPC codes. PEG is well-known for the construction
of good LDPC codes with short to medium block length. Using this algorithm, we can
remove the short cycles in the code graph. We use the PEG algorithm to construct an
LDPC code with length 1008 based on the degree distributions that is optimized for
L = 6. Using this LDPC code, the performance of the system under consideration over
Rayleigh fading channel with fpT, = 0.01 is shown in Fig. 4.18. We can observe that in
the case of short length code, the performance can also be improved significantly using
the optimized LDPC codes.
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Table 4.3: Comparison of decoding thresholds of the systems under consideration with

different LDPC codes over AWGN channels.

Decoding
threshold with
optimized codes

Decoding threshold
with rate-1/2 (3,6)
regular codes

Capacity of noncoherent
MPSK AWGN channel
with MSDD at rate 1/2

(31]
L= 2.2 dB 3.0dB 2.0 dB
L=10 1.7 dB 2.7 dB 1.3 dB
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Figure 4.17: BER performance comparison of the systems under consideration with
non-optimized LDPC codes and optimized LDPC codes for OWS L = 6.
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Figure 4.18: BER performance comparison of the systems under consideration with

non-optimized LDPC codes and optimized LDPC codes for OWS L = 10.
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Figure 4.19: BER performance of the systems under consideration with optimized LD-
PC codes for L = 6 using different OWS.
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CHAPTER 5

Improved Soft-Output M-Algorithm for
Differentially Encoded LDPC Coded Systems with
Iterative Multiple-Symbol Differential Detection

In Chapter 4, an iterative MSDD scheme is investigated for DE-LDPC coded sys-
tems. It is shown that the system performance can be improved by increasing the OWS
of the MSDD SISOD and the iteration number between the MSDD SISOD and the
LDPC decoder. However, the MSDD SISOD is a maximum a posteriori (MAP) detec-
tor, the computational complexity of which increases exponentially with the OWS and
the order of the modulator. The high complexity of the MSDD SISOD with a large
OWS makes its application infeasible in practical systems especially when the iterative
decoding is performed at the receiver. Therefore, it is necessary to develop an approach
to reduce the complexity of the MSDD SISOD while maintaining the reliability of its
soft-output. In this chapter, we propose an improved soft-output M-algorithm (ISO-
MA) and use it to reduce the computational complexity of DE-LDPC coded systems
with iterative MSDD. Simulation results show that the computational complexity of the
MSDD SISOD as well as the iterative decoding complexity of DE-LDPC coded systems
with iterative MSDD can be greatly reduced by the proposed ISOMA.

The remainder of this chapter is organized as follows. Section 5.1 introduces the
related works. In Section 5.2, after discussing the existing SOMA for the considered
systems, we propose the ISOMA. Then, performance analysis by computer simulation
is given in Section 5.3.

5.1 Related Works

In [12] and [32], in order to reduce the complexity of MSDD, the M-algorithm [33] was
adopted to MSDD for uncoded systems. However, the M-algorithm for the MSDD with
soft-output has not been investigated. Moreover, the M-algorithm cannot be directly
extended to the coded systems with MSDD, since only A4 best paths are retained in
the M-algorithm, which often leads to these paths having the same binary values in the
same bit positions. In such a case, the LLRs of these coded bits cannot be computed.
To solve this problem, two existing approaches can be utilized. In [34], an iterative
tree search detection based on the M-algorithm (ITS-MA) was proposed for iterative
BICM MIMO systems. In this approach, the soft information is computed based on
M retained paths. While for those bits whose soft information cannot be computed,
the clipping method is performed to assign fixed negative or positive values to these
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bits. However, this method reduces the reliability of the soft information of coded bits,
especially when M is small, which results in the degradation of the system performance.
In [36] and [37], 2 SOMA was proposed, which obtains the LLRs by using both of the
retained and terminated paths. The SOMA can avoid assigning the clipping values, but
its performance is close to that of the soft-output Viterbi algorithm (SOVA) [35] but
not close to that of the MAP algorithm.

5.2 Complexity of MSDD SISOD

As introduced in Chapter 3 and 4, MSDD makes a joint decision on several symbols
simultancously based on the ML principle by extending the OWS to more than two
symbols. For our considered systems, the MSDD SISOD outputs the soft information
for the LDPC decoder.

The system model under consideration is the same with Fig. 4.1. Here we assume
that the OWS of the MSDD SISOD is L, and the length of LDPC codes is N. Let m
denote the number of bits of each MPSK symbol. The received sequence r is divided
into sub-blocks ry, where k € {0, (N/m)/(L — 1)}.

Let sp = [$k,0, Sk,1, -+ Sk,—1] denote the differentially encoded sequence correspond-
ing to the kth sub-block of received symbols, and let c; = [ck,1, Cr2, v, Chyn(L--1)] denote
the coded bits vector corresponding to the si. For convenience, we drop the index & in
the following. Based on the principle of the MAP algorithm, as introduced in Section
4.3, the MSDD SISOD generates the a posteriori probability of the coded bit ¢;, written

in terms of LLR (L)
Zs:c.:(] }7(1‘[8) Hj:l p(Cj)
Ssreem1 P(18) T p(ey)

where the sums in the numerator and denominator are taken over all sequences ¢ whose
bit in position 7 is the value 0 or 1, respectively. p(c;) is the a priori probability provided
by the LDPC decoder. p(r|s) is the conditional PDF of r given s. In the case of AWGN
channels, p(r|s) is given by

L p(ci) = log (5.1)

L-1 L1
1 1 1 -
PUel) = (7 gzye plgg 2+ 1) g (S omsi), (52)
1= =

where Io(+) is the zero-order modified Bessel function of the first kind, and the super-
script “*’ denotes the complex conjugation. Since all terms that are not in the Bessel
function are common to all s, (5.2) can be simplified to

L1
E 7‘{8;

=0

) (5.8)

1
p(rls) o IO('J—Z

n

which is used in (5.1) to compute Ly, (c;).

The complexity of the MSDD SISOD with the MAP algorithm is mainly decided by
two aspects:
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1) Number of terms in the summation of (5.1): Since all candidate bit sequences
need to be taken into account in (5.1}, the number of terms in the summation of (5.1)
is equal to 2™(E~1) which increases exponentially with the OWS and the order of the
modulation.

2) Computation of the PDF p(r|s): Since in the absence of CSI at the receiver,
the computation of p(r|s) cannot be computed recursively as in the coherent detection
case. Thus, the computational of p(r|s) also becomes a large computational cost with
the increase of the OWS of the MSDD SISOD.

Therefore, the complexity of (5.1) will become prohibitively high as the OWS and
the order of the modulation become large. Especially for iterative decoding systems,
this high complexity will result in an unacceptable decoding time delay, which makes
difficult to achieve a realistic system. To solve this problem, we employ the M-algorithm
to reduce the complexity of the MSDD SISOD, which is specifically explained in the
following section.

5.3 SOMA for MSDD SISOD

5.3.1 M-Algorithm for MSDD

M-algorithm is a breadth-first tree search algorithm, which has been proved to be
highly efficient for tree decoding problems. The basic principle of the M-algorithm is
that starting from the first node of the decoding tree, only A paths which correspond
to the best M values of metrics are retained at each tree depth, and the rest paths are
discarded. When the M-algorithm reaches the end of the decoding tree, the fist-ranked
path in A4 paths is the most likely candidate.

Since the problem of MSDD also can be viewed as a tree decoding problem, the hard
output of MSDD actually is the path with the ML value of the metric. For uncoded
system with MSDD, the M-algorithm has been used to reduce the complexity of MSDD
[12], [32]. The metric of MSDD with M-algorithm is the PDF p(r|s).

A tree diagram of MSDD for M,PSK with M-algorithm is shown in Fig. 5.1. From
node ¢ = 1, the M-algorithm retains M Dbest states of S;...Sy_; which maximize p(r|s)
at any node of 4, and then moves on to the next node of 7 until the end of the tree
is reached. It should be noted that if A is larger than the number of all states of
S1...8.-1, the M-algorithm retains all states. From Table 5.1, it is shown that the
complexity of MSDD can be greatly by the M-algorithm.

Table 5.1: Number of search paths of MSDD for 16PSK

N 4 5 6
Conventional method (Full path search) | 4,096 | 65,536 | 1,048,576
M algorithm(Ad = 16) 528 784 1,040
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Figure 5.1: Tree diagram of MSDD for M;PSK with M-algorithm

5.3.2 M-Algorithm for the MSDD SISOD

From the principle of the Max-Log-MAP algorithm [38], the computation of (5.1) can
be approximated by two terms which have the best values of the numerator and the
denominator of (5.1}, respectively. That is, the output of the MSDD SISOD can be
approximately computed by only a few candidate bit sequences which have the large
values of the metric. Therefore, with small change of the metric of the path, the M-
algorithm can be extended to reduce the complexity of the MSDD SISOD. From (5.1),

the metric is given as
m{L~1)

p(r[s) H ples)- (5.4)

With this direct extension scheme, the complexity of the MSDD SISOD can be
reduced by the M-algorithm. However, this scheme cannot ensure the LLR of each
coded bit can be computed, since the best M retained paths often have the same
binary values in the same bit positions, which leads to the numerator or denominator
of (6.1) equaling to zero. To solve this problem, two existing schemes can be considered
to be used, which are briefly introduced as follows.

1) ITS-MA: The basic principle of the ITS-MA approach [34] is identical to the above
mentioned direct extension scheme of the M-algorithm for outputting soft information.
For those coded bits who cannot be computed by (5.1) using M finally retained paths,
the ITS-MA. assigns the appropriate clipping values for them. In [34], the clipping value
is selected as -3 or -+3. More specifically, if M retained paths only have 0 in the same
position, the LLR of this coded bit is set to +3 based on (5.1); otherwise, the LLR of
this coded bit is set to -3. When the value of M is the total number of tree paths, the
ITS-MA is actually equivalent to the MAP algorithm.

2) SOMA: The heart of the SOMA is that not only M retained paths but also the
discarded paths at each depth are used to compute the LLRs of coded bits. The compu-
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Figure 5.2: Percentage of bits with uncertain LLRs

tation method of the LLR is based on the metric difference between the approximated
ML path and the set of the discarded paths, which is similar to the operations of the
SOVA algorithm [35]. For more details, we refer to [36] and [37].

The above two approaches can be widely applied to concatenated code systems for
complexity reduction. The ITS-MA is easy to perform, however, the reliability of the
LLRs is significantly reduced especially when the value of A/ is small so that many bits
need to be assigned a clipping value. As shown in Fig. 5.2, which shows the percentage
of bits with uncertain LLRs using ITS-MA, about 30 percent of bits need to be assigned
clipping values in the case of the systems under consideration with L = 8 and M = 8
at SNR = 5dB. Moreover, the percentage of bits with uncertain LLRs increases with
the increase of the values of SNR and L. For the SOMA, it can avoid assigning the
clipping values. However, the performance of the SOMA. is close to that of the SOVA
algorithm but not close to that of the MAP algorithm. Therefore, the performance loss
still exists even a large value of M is used in the SOMA.

5.3.3 Proposed ISOMA for the MSDD SISOD

To overcome the disadvantages of the ITS-MA and SOMA, we propose an ISOMA
approach. The features of the ISOMA. are as follows:

1) Different from the ITS-MA computing the LLRs by (5.1) when the M-algorithm
reaches the end of the tree, the ISOMA computes the LLRs of coded bits at each depth

of the tree. More specifically, when computing the LLRs by (5.1) at each depth, similar
to the SOMA, the ISOMA considers both M retained paths and discarded paths. In
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other words, the LLRs are computed before discarding the paths at each depth. In
this case, the paths at each depth must contain the information of both 0 and 1 of the
coded bit corresponding to the current depth. Therefore, LLR of each coded bit can be
computed.

2) At each depth, not only the LLR of the coded bit corresponding to the current
depth is computed, the LLRs of coded bits corresponding to the positions before the
current depth are also recomputed and updated, if (5.1) can be computed for these bits
using the current paths. This feature of the ISOMA can guarantee the high reliability
of the LLRs of coded bits.

When the value of M is set to the total number of tree paths, in practice, the ISOMA
is also equivalent to the MAP algorithm as the I'TS-MA. From the above mentioned
features, we can find that the proposed ISOMA has features of both the ITS-MA and
SOMA. Next, we specifically introduce the application of the ISOMA for the MSDD
SISOD.

We introduce some notations that we will use in the following. For one sub-block
of s, let W, be the set of the paths at depth ¢. Denote the metric of the wth path at
depth 4 by ['(si,), which is computed by

m{i—1)

U(st,) =plrdsh,) [ plc,) (5.5)

p=1
where r; is the received signals with length 4, and ciu,p is the pth coded bit of the coded
bits vector corresponding to si,.

Using the above notations, (5.1) can be rewritten as

Esﬁ,,:c;:() F(SL:)
Esiuzc,-=1 P(SL,)

The specific procedure of the ISOMA for the MSDD SISOD is described as follows:

(1) Initialization. Let Wy be a set containing only the root node of the tree. The
root node is the first symbol of each sub-block of s, and Wy is set to 1 for the first
sub-block.

(2) In one sub-block, for depth ¢, 1 <i <L~ 1t

I) Extend each path in W;_; to the next depth and compute the metric of each path
in W; using (5.5).

IT) Compute the LLR of bit ¢; corresponding to the depth ¢ using all the paths in
Wi by (56)

IIT) Recompute and update the LLRs of the bits before ¢; using all the paths in W;

by (5.6). In the process of updating, if the LLRs of some bits cannot be recomputed,
original LLRs of them are retained.

L, ple;) = log (5.6)

IV) If the number of paths in W is larger than M, go to step V; otherwise return
to step 1.
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V) Sort the paths in W; according to their values of metrics. Retain M best paths
and extend them to the next depth ¢+ 1, then return to step I until the (L — 1)th depth
is reached.

(3) The last symbol of the best path in W_; is used as the root node of the tree
for the next sub-block. Then return to (2) until the LLR of each LDPC coded bit is
obtained.

5.3.4 Scaling Factor for the ISOMA

Due to only small fraction of all possible paths are considered in the computation of the
LLRs, similar to the Max-Log-MAP algorithm and SOVA, ISOMA also has the problem
of overestimating the LLRs, which is the main reason for degrading the performance
of the system, especially when the value of M is small. To improve the decoding
quality, the extrinsic LLIRRs are multiplied by a scaling factor for the Max-Log-MAP
algorithm [38]. However, the performance of the scaling factor employed by the soft-
output M-algorithm has not been studied in detail yet. The ISOMA with scaling factor
(ISOMA-SF) is performed as follows:

The extrinsic LLRs output of the ISOMA is multiplied by a constant SF, 0 < SF < 1,
that is
Ligelci) = SF - Lase(ci). (6.7)

The LIM]e(ci) is passed to the LDPC decoder as the a« priori information.

5.4 Simulation Results and Analysis

In this section, the simulation results are presented and discussed. Unless otherwise
indicated, the following simulation parameters are used for our simulations. We consider
regular rate-1/2 (3, 6) LDPC codes with length of 1008. The Gary mapping rule is used
for the modulator. Since we focus on the validity of ISOMA for the reduction of the
complexity of the MSDD SISOD, we only consider the system over AWGN channels
for the sake of simplicity. The maximum number of iterations of the LDPC decoder is
set to 20. The maximum number of outer iterations between the MSDD SISOD and
LDPC decoder is set to 8. In order to obtain the optimal performance of the SOMA
for comparison purpose, all terminated paths are used by the SOMA for computing the
LLRs.

5.4.1 BER Performance

Fig. 5.3 shows the BER performance of the ISOMA for the considered DE-LPDC coded
systems with BPSK and the OWS L = 10. The performances of the MSDD SISOD
using the MAP algorithm for L = 2,4 and 10 are also presented for comparison. We
observe that the significant performance improvement can be achieved when L is in-
creased from 2 to 4 and then to 10 along with the growth of the complexity of the MSDD
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SISOD. For L = 10, when the ISOMA is used in the MSDD SISOD, we observe that
when M = 16, the performance of the ISOMA can be very close to the performance
achieved by the MAP algorithm. In the case of the considered systems with QPSK and
L =17, M =16 is also enough for the performance of ISOMA to be close to that of the
MAP algorithm as shown in Fig. 5.4 (a). While for the case of 8PSK and L = 7, from
Fig. 5.4 (b), we observe that to approach to the performance of the MAP algorithm,
a larger M (32} is required by the ISOMA with respect to the case of BPSK, but the
retained paths are still a small fraction of the decoding tree.

Fig. 5.5 shows the performance comparison between the ISOMA. and ITS-MA for
the considered DE-LPDC coded systems with different maximum number of outer it-
erations for M = 4 and M = 186, respectively. We can observe that the performance
of the ITS-MA. is much worse than that of the ISOMA when the maximum outer iter-
ation number is smaller than 4, especially when M = 4. This is because the ITS-MA
significantly reduces the reliability of the LLRs especially when a small value of M is
used, as discussed in Section 5.3.2. In other words, the LLRs output of the MSDD
SISOD with the ISOMA is much more reliable than that of the MSDD SISOD with
the ITS-MA. In addition, we note that when the maximum outer iteration number is
increased to 8, the performances of the two approaches are very close. This implies that
the performance loss of the ITS-MA with respect to the ISOMA can be alleviated by
increasing the maximum outer iteration number of the considered systems. However,
it also implies that for the same BER performance, the ITS-MA requires more average
number of outer iterations compared to the ISOMA, which will be supported in the
next subsection.

Fig. 5.6 shows the performance comparison between the ISOMA and SOMA similar
to Fig. 5.5. For the ISOMA and SOMA with M = 4, from Fig. 5.6 (a), it can be
seen that the SOMA has the almost same iteration features and performance as that
of the ISOMA. While when M = 16, the results of Fig. 5.6 (b) show that the SOMA
has the almost same performance in the first few iterations but converges to worse per-
formance than the ISOMA with the increase of the outer iteration number. This can
be explained by the fact that with the increase of M, the performance of the SOMA is
close to that of the SOVA, whereas the performance of the ISOMA is close to that of
the MAP algorithm.
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Figure 5.3: Performance comparison between the MAP algorithm and ISOMA used in
MSDD SISOD for a DE-LDPC coded system with BPSK.

5.4.2 Decoding Complexity

In the following, decoding complexities of the system using the ISOMA, SOMA, I'TS-MA
and MAP algorithm are compared and analyzed by mainly considering the multiplica-
tion number (MN) and addition number (AN) of them. Due to the irregularity of the
reduced tree by the M-algorithm, the number of bits whose LLIRs cannot be recomput-
ed/computed based on current paths are random when the ISOMA and ITS-MA are
used. Therefore, we cannot give the accurate complexity of them. Thus, we assume that
the LLR of each depth can be recomputed/computed in the two approaches. The upper
bounds of the complexities of them are approximately given in the following simulation
results. In addition, the calculation of the logarithmic term also is ignored.

Table 5.2 shows the MN and AN of the MSDD SISOD computing the LLRs for
LDPC coded bits at each outer iteration by using the MAP algorithm and ISOMA,
respectively. Based on the above discussion, in order to obtain a small performance
loss, 16 is an appropriate value for M. In such a case, for BPSK with L = 10, we
observe that the complexity of the ISOMA is about 27% of that of the MAP algorithm.
In the case of QPSK with L = 7 using the ISOMA, about 5% of the complexity of
the MAP algorithm is needed. Whereas in the case of 8PSK with I, = 7 using the
ISOMA, only about 0.2% of the complexity of the MAP algorithm is needed. These
results confirm that a dramatic reduction of the computational complexity of the MSDD
SISOD is realized with the ISOMA, especially when the order of the modulation and
the value of L are large.

Next, we compare the complexities of the ISOMA, SOMA and ITS-MA with M = 16
at each outer iteration. In the following simulations, BPSK is used. As shown in Table
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Figure 5.4: Performance comparison between the MAP algorithm and ISOMA used in

MSDD SISOD for a DE-LDPC coded system with QPSK and 8PSK.
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5.3, we can observe that the three approaches have almost same complexity in terms
of the MN. This is because the three approaches all based on the M-algorithm need to
compute the same number of path metrics. On the other hand, due to the different
operations of computing the LLRs in the three approaches, we can observe that they
have different numbers in terms of the AN. It is shown that the ISOMA needs slightly
more number of additions compared to the ITS-MA and SOMA. Thus, from the point
of view of one outer iteration, the computation complexity of the ISOMA is slightly
more than that of the ITS-MA and SOMA.

In order to evaluate the decoding complexities of the considered DE-LDPC coded
systems using the three approaches, we need to further test the average iteration number
of the outer iteration and the LDPC decoder, respectively, since the LDPC decoder
can detect successful decoding and stop the iteration by checking the parity check
constraints of LDPC codes. Let nf,, and nZ, denote the average iteration number
of the outer iteration and the LDPC decoder, respectively. The corresponding results
for M = 16 are shown in Table 5.4 and 5.5. In addition, the results of the MAP
algorithm are also given for comparison. We observe that the ISOMA is very close
to the MAP algorithm in terms of nQ,, and n¥,. This implies that the fraction of the
saved complexity of all outer iterations using the ISOMA is similarly identical to that of
one outer iteration as discussed in the above. For the SOMA and ITS-MA, it is shown
that n%,, and nZ, required by the SOMA are both slight more than that required by
the ISOMA, while ng,, and nk , required by the ITS-MA are both obviously more than
that required by the ISOMA. Therefore, we can conclude that the proposed ISOMA
requires the least complexity for our considered DE-LDPC coded systems.

Table 5.2: Computational complexity for one outer iteration of the MSDD SISOD with
the MAP algorithm and ISOMA (BPSK)

i MAP TSOMA(M = 16) | ISOMA(M = 4)

MN AN MN AN MN AN
BPSK | 10 | 1.66E+6 | 1.558+6 | 4.495+5 | 4.045+5 | L44E+5 | 1.o2E+5
QPSK | 7 | 7.91E46 | 9.285+6 | 4.305+5 | 4.778+5 | 1.27E+5 | LB4E+5
SPSK | 7 | 3.38E+8 | 4.84E+8 | 6.27E+5 | 8.28B+5 | L.76B+5 | 2.226-15

Table 5.3: Computational complexity for one outer iteration of the MSDD SISOD with
the ISOMA, SOMA and ITS-MA (BPSK, M = 16)

MN AN
ISOMA 4.48E-+5 4.04E+5
SONMA 4.49E4-5 3.18E4+5
ITS-MA 4.485+4-5 3.16E+5
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Table 5.4: Average number of outer iterations for the MSDD SISOD with the MAP,
ISOMA, SOMA and ITS-MA (BPSK, M = 16): nS,,

SNR[AB] 3.0 35 4.0 i5
MAP 472 2.35 1.36 1.03
ISOMA 1.86 2.46 1.38 1.03
SOMA 5.18 2.71 1.43 1.04
ITS-MA 5.80 3.61 2.52 2.04

Table 5.5: Average number of inner iterations for the LDPC decoder for the MSDD
SISOD with the MAP, ISOMA, SOMA and ITS-MA (BPSK, M = 16): nZ,

SNR[dB] 3.0 3.5 40 i5
MAP 18.37 15.37 12.24 7.80
ISOMA 18.44 15.58 12.38 7.92
SOMA 18.72 16.26 12.67 8.04
TTS-MA 18.70 17.09 15.51 13.50

5.4.3 Performance of ISOMA with Scaling Factor

Fig. 5.7(a) shows the performance of the ISOMA with the best evaluated SF compared
to the standard ISOMA (SF = 1.0) for A = 4 and M = 16, respectively. For com-
parison, the same simulations are also evaluated for the MAP algorithm. For M = 4,
it, is shown that the ISOMA with SF = 0.7 can achieve a significant performance im-
provement compared to the standard ISOMA. At a BER of 1079, the performance of
the ISOMA with SF = 0.7 is about 0.6 dB better than that of the standard ISOMA.
For the ISOMA with M = 16 and the MAP algorithm with their best evaluated SFs,
we observe that the performance improvement is not as significant as the case of the
ISOMA using the best evaluated SF for A/ = 4. In addition, it is worth to note that the
performance of the ISOMA with the SF for M = 4 is very close to that of the ISOMA
with the SF for A/ = 16 and the MAP algorithm with the SE.

In order to understand why the SF can improve the performance of the ISOMA,
the performance comparison between the ISOMA with SF and the standard ISOMA for
different maximum number of outer iterations with M = 4 is examined as shown in Fig,
5.7(b). We observe that they have the same performance in the first outer iteration, but
the ISOMA. with the SF can achieve much more performance gain at each outer iteration
after the first outer iteration. Therefore, a possible explanation for the observation of
the performance improvement achieved by the SF is that the SF reduces the correlation
of the extrinsic LLRs which are outputted to the LDPC decoder. In addition, from Fig.
5.7(a), it is interesting to see that the performance of the ISOMA with the SF = 0.7 is
better than that of the standard MAP algorithm. The reason is that the LDPC code
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used in the simulation is a short code (length 1008). Its performance is limited by the
correlation of the extrinsic LLRs which is increased with the iterations. When a long
LDPC code is used, this observation may not arise, as shown in Fig. 5.8.

Finally, we examine the impact of the value of SF on the performance of the ISOMA,
as shown in Fig. 5.9. It is shown that the performance improvement achieved by the
proper selected SF is increased with the increase of the SNR. Furthermore, we can
observe that the best evaluated SF can be chosen for the whole SNR. region for a fixed
M. In other words, the best evaluated SF is not changed with the SNR.

Based on the above observations, we can confirm that the ISOMA with a properly
selected SF can be used to improve the performance of the ISOMA (also for ITS-MA
and SOMA). In addition, the performance gap between the small value and the large
value of Mfor the ISOMA with a properly selected SF is significantly reduced compared
to the case of the standard ISOMA. That is, in order to approach the performance of
the MAP algorithm, only a small value of M is required by the ISOMA when a proper
selected SF is employed. Therefore, more significantly, the decoding complexity of the
considered systems with the ISOMA can be further reduced by the ISOMA with the
proper selected SE.
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and the standard ISOMA.
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CHAPTER 6

Adaptive Iterative Decoding of Finite-Length
Differentially Encoded LDPC Coded Systems with
Tterative Multiple-Symbol Differential Detection

In Chapter 5, we have proposed an ISOMA scheme to greatly reduce the complexity
of MSDD SISOD. However, in general, to achieve excellent performance, the iterative
MSDD scheme requires the relatively large values of the OWS of MSDD SISOD and
the outer iteration number between the MSDD SISOD and the outer decoder. In this
case, even ISOMA is employed in MSDD SISOD, the complexity of MSDD SISOD
is still relatively high, and a long decoding delay will be produced when the outer
iteration number is also set to a large value. On the other hand, at low SNRs, very
little performance improvement is achieved by increasing the outer iteration number
and using a large OWS. Moreover, at high SNRs, most of the successful decodings
can be achieved in the first few iterations with a small OWS. This means that a large
outer iteration number and a large OWS are unnecessary in the two SNR regions. In
general, due to the fact that the SNR is unknown at the receiver, in order to further
reduce the complexity of the iterative decoding of the systems under consideration, it
is necessary to propose an adaptive iterative decoding approach (AIDA) to adjust the
OWS and the outer iteration number adaptively in a changing SNR, environment for
the coded systems using iterative MSDD. Moreover, Since LDPC codes are generally
limited to finite length blocks in practical systems, we consider fnite length DE-LDPC
coded systems with iterative MSDD in this chapter.

The remainder of this chapter is organized as follows. Section 6.1 introduces the
related works. In Section 6.2, the EXIT band chart analysis of the systems under
consideration is described. In Section 6.3, we propose the AIDA scheme, and propose
the new stopping criterion (SC) named DMI after discussing the existing SCs for the
systems under consideration. Finally, performance analysis by computer simulation is
given in Section 6.4.

6.1 Related Works

To adaptively adjust the OWS, an approach based on an analysis of the iterative de-
coding process using the EXIT chart technique [19] was proposed for “Turbo DPSK”
systems [14]. In this approach, the OWS is gradually increased by using a look-up table,
which is designed based on a designed iterative decoding trajectory obtained from the
EXIT chart. Using this approach, the complexity of iterative MSDD can be reduced.



However, the design of the OWS table is based on assuming that the iterative decoding
trajectory is well matched with the EXIT functions of the two component decoders of
the iterative decoder, which is valid for using codes with infinite-length but not for using
codes with finite-length [38]. Therefore, the approach of [14] is not suitable for using
finite-length LDPC codes. Whereas in practical systems, LDPC codes are generally
restricted to blocks of a few hundred to a few thousand code bits.

On the other hand, to adjust the outer iteration number adaptively, a SC, which
is used to judge whether the iterative decoding should be terminated or not, is needed
in AIDA. Up to now, many SCs have been proposed to terminate the iteration early
to prevent unnecessary iterations of the iterative decoding, such as the cross entropy
(CE) criterion [40], the sign-change-ratio (SCR) criterion [41], the sign difference ratio
(SDR) criterion [42] and the mean-estimate (ME) criterion [43]. All these criteria
were proposed for turbo coded systems and have been proven to be able to reduce the
iteration number significantly with little performance loss by comparing a predefined
threshold at high SNRs, where successful decodings are usually achieved in the first a
few iterations. In [44], the above criteria were modified to stop the iteration at low and
high SNRs for turbo coded systems by designing another stopping threshold for low
SNRs based on the decoding threshold obtained from the EXIT chart.

Although so many SCs have been proposed for turbo coded systems, little attention
has been paid to the iterative decoding of serially concatenated LDPC coded systems.
In contrast to turbo codes, LDPC codes can detect successful decoding to stop the
iteration by checking the parity check constraints of LDPC codes. Therefore, serially
concatenated LDPC coded systems are more concerned with the performance of the
SC for uncorrectable decodings. In order to satisfy this requirement, stopping rules
and thresholds of these existing SCs should be redefined. However, the analysis results
of Sections 6.3.3 and 6.3.4 will show that the redefined stopping rules and thresholds
are only suitable for a certain SNR region, which causes significant performance loss at
other SNRs. It is also shown that they need to be redefined when the LDPC code and
transmission channel parameters change.

6.2 EXIT Band Chart Analysis of the Finite-Length DE-LDPC
Coded Systems with Iterative MISDD

The system model under consideration is shown in Fig. 4.1. The convergence behavior
of the iterative decoding of serially concatenated systems can be visnalized and predicted
by EXIT chart analysis [19]. However, it is known that the analysis results of the EXIT
chart are accurate for infinite-length codes, but not for finite-length codes. Whereas in
practical systems, LDPC codes are generally limited to short or medium length with
a few hundred or thousand bits. In [39], an EXIT band chart, which is a convergence
analysis approach using an EXIT curve band instead of a single EXIT curve as in EXIT
chart, was proposed for finite-length turbo decoding. In this section, we extend this
approach to finite-length DE-LDPC coded systems with iterative MSDD.



In the EXIT band chart, the transfer characteristics of component decoders are
characterized by their EXIT functions for each random channel realization. Let [s]
denote the seed of the channel realization, and let [ 1) and [ L (1 Ll and [ Ll ) be
mutual informations between the transmitted coded blts and the LLRs at the output
and the input of MSDD SISOD (LDPC decoder, respectively). For a given [s], the
EXIT function of the MSDD SISOD over AWGN channels is defined as

IL“ HTII ](Ibk}‘u:%)w (61)
where -f#; is the SNR of the channel. Similarly, for a given [s], the EXIT function of the
LDPC decoder is defined as

IL[”I = T2 ( [q1n). (6.2)

The mutual information between the transmitted coded bits C' and the corresponding
LLR values L is calculated as [19]

QpL(lIC)
I, = IL:0) = “E:/ 1) - log, 4 (63
’ 59 ¢=0,1" (i) & nr(lle = 0) +py(lle=1) (6:3)

where pr(l|c) is the conditional PDF of the LLR values L given ¢ € {0,1}, and 0 <
I, < 1. Note that we drop the subscript of L in (6.3) to generally represent the LLRs in
(6.1) and (6.2). To generate the EXIT band chart, the PDFs of the LLRs corresponding

to [ okl and / ol are assumed to be Gaussian distributed. When I L and J Ll are
Me

1

calculated the PDFS of le 1 and Lg{e are obtained by the histogram method [19].

To obtain the EXIT transfer characteristic of the MSDD SISOD, we repeatedly
perform open loop simulations by changing the channel realization seed [s] and the

mutual information of the input priori information I;1q at the same SNR. For the
A[,a.

considered systems with finite-length LDPC codes, we obtain various values of I Ll

for different channel realizations even with the same values of 1 Lkl and SNR. Hence
in contrast to the considered systems with infinite-length LDPC codes whose EXIT
transfer characteristic of MSDD SISOD is a single curve, for the considered systems with
finite-length LDPC codes, the EXIT transfer characteristic of the MSDD SISOD is a
band of curves of [ L] with respect to [ ol - Similarly, the transfer characteristic of the
LDPC decoder for ﬁmte-length LDPC codes is also a band of curves of J 255 with respect
to I,1q . Similar to the analysis of [39], the EXIT band of the MSDD SISOD (LDPC
decoder) can be represented using the average curves avg(/ ol ) (avg(d 1 )) and the
upper and lower bound avg(/ g, ) £std(J R ) (avg(l o), ) :l: std( Ll ), respectwely)
where avg(-) and std(-) Lepresent the average “and the staud'ud devmtlon respectively.
The EXIT band chart can be obtained by plotting the EXIT bands of the MSDD SISOD
and the LDPC decoder into a signal diagram by switching the z-axis and the y-axis.

Fig. 6.1 shows the EXIT band charts of the considered systems with rate-1/2 (3, 6)
regular LDPC codes with different finite code lengths over AWGN channels with BPSI,
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Figure 6.1: EXIT band charts of the considered systems for MSDD SISOD with L
= 4 and rate-1/2 (3, 6) regular LDPC codes with different code lengths over AWGN
channels with BPSK at SNR = 3.5dB; inner iteration number of the LDPC decoder is
10; repeated 10000 frames.

where the number of inner iterations of the LDPC decoder is 10. For comparison, the
EXIT band chart for a very long code length of 100800 (can be viewed as infinite-
length) is also presented. We can observe that the shorter the code length is, the
wider the EXIT bands become. When the code length is increased to 100800, the
widths of the EXIT bands become zero. That is, the EXIT band chart of infinite-
length codes is actually equivalent to the ordinary EXIT chart. For infinite-length
LDPC codes, it is known that each frame has similar asymptotic performance when the
SNR is larger than the asymptotic decoding threshold; thus the uncorrectable frames
whose performance can only be improved marginally by increasing the iteration number
appear only at low SNRs (those SNRs smaller than the asymptotic decoding threshold).
Whereas for the same LDPC code ensemble with finite-length, due to the overlap of
the EXIT curve bands, uncorrectable frames still exist at certain SNRs which are above
the asymptotic decoding threshold. This means that uncorrectable frames appear at
low SNRs and also at medium SNRs. This conclusion can be further supported by Fig.
6.2, which shows three typical simulated snapshot iterative decoding trajectories for the
considered systems with rate-1/2 (3, 6) regular LDPC codes of length 1008 and L = 4
at SNR = 3.8dB. It is shown that these iterative decoding trajectories exhibit a greater
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Figure 6.2: Typical simulated snapshot iterative decoding trajectories of the considered
systems for MSDD SISOD with L = 4 and rate-1/2 (3, 6) regular LDPC codes with
length 1008 over AWGN channels with BPSK at SNR = 3.8dB; inner iteration number
of the LDPC decoder is 10.

variation from frame to frame when the code length is short. Some frames quickly or
slowly converge to successful decoding, while some frames cannot converge to successful
decoding.

Next, we analyze the impact of the OWS of the MSDD SISOD on system perfor-
mance. Fig. 6.3 shows the average EXIT curves of the LDPC decoder and the MSDD
SISOD with different OWS at SNR = 3.5dB. It is shown that the slopes of the EXIT
curves of the MSDD SISOD increase with an increase in I, which implies that the per-
formance of the systems can be improved by increasing L. However, at low SNRs, e.g.
1.0 dB, it can be expected that the EXIT band of the MSDD SISOD is almost entirely
under the EXIT band of the LDPC decoder even with large values of L, which means
that increasing L at low SNRs cannot improve the system performance much. On the
other hand, at high SNRs, e.g. 5.0 dB, it can be expected that a large tunnel is opened
" between the EXIT bands of the MSDD SISOD and the LDPC decoder even for L = 2,
which means that most of the frames can be decoded successfully using a small value of
L. While at medium SNRs, as shown in Fig. 6.1 for N = 1008 at SNR = 3.5dB, it can
be expected that the fraction of the overlap between the two EXIT bands will decrease
with an increase in L, and a tunnel will be opened when L > G. This means that the
probability of successful decoding can be increased, and thus a significant improvement
in average BER, performance can be achieved by increasing L at medium SNRs.
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Figure 6.3: Average EXIT curves of the considered systems for MSDD SISOD with
different L; rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN chan-
nels with BPSK at SNR = 3.5dB; inner iteration number of the LDPC decoder is 10;
averaged over 10000 frames.

6.3 AIDA

6.3.1 DMotivation of AIDA

The OWS of the MSDD SISOD and the outer iteration number are the two key pa-
rameters that determine the iterative decoding complexity and delay of the considered
systems. It is known that the complexity of MSDD grows exponentially with the OWS.
Therefore, the complexity of the M3SDD SISOD will become prohibitively high as the
OWS becomes large. Especially for iterative decoding systems with large outer itera-
tion numbers, this high complexity will result in an unacceptable decoding delay, which
makes it difficult to achieve a realistic system.

In [14], an approach which gradually increases the OWS in accordance with the
iteration number of turbo coded systems with MSDD by looking up an OWS table,
was proposed based on the analysis of the iterative decoding process using the EXIT
chart. It is proved that this approach can reduce the complexity of the iterative MSDD
decoding with negligible performance loss compared with the OWS with a fixed large
value [14)-[16]. In this approach, the OWS table and the maximum outer iteration
number are designed based on a designed iterative decoding trajectory obtained from
the EXIT chart. Since the two parameters are designed for a target BER at the expected
SNR, the decoding complexity and delay cannot be significantly reduced at all SNRs
by using this approach. Moreover, the design of the two parameters is based on the
assumption that the iterative decoding trajectory is well matched to the EXIT functions
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of the two component decoders of the iterative decoder, which is valid for codes with
very long length, but not for codes with short length.

Based on the analysis results of Section 6.2, a small OWS and a small outer iteration
number are sufficient for low SNRs and high SNRs. Furthermore, for medium SNRs,
the performance improvement achieved by increasing the OWS and the outer iteration
number varies from frame to frame when the code length is finite. Thercfore, it is nec-
essary to propose an adaptive iterative decoding approach (AIDA) to adjust the OWS
and the outer iteration number adaptively to reduce the iterative decoding complexity
and delay of the considered systems with finite-length LDPC codes in a changing SNR,
environment.

6.3.2 Principle of AIDA

In the proposed AIDA, in contrast to adjusting the OWS of the MSDD SISOD and
the outer iteration number according to the predesigned OWS table and the maximum
outer iteration number as in [14], the two parameters are adjusted according to the
convergence status of the iterative decoding. Fig. 6.4 shows the structure of AIDA.
Let L; and L. denote the OWS at the ith iteration and the predefined maximum
OWS of the MSDD SISOD, respectively. In the first iteration, L, is set to 2. If the
decoding of the LDPC decoder is successful, the iterative decoding will be stopped
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automatically; otherwise, the SC will be checked. If the evaluation of the SC indicates
that the requirement of stopping iteration is satisfied, the iterative decoding will be
stopped; otherwise, the iterative decoding will continue to be executed, and the OWS
will be increased by a predefined fixed value AL in the next iteration if L; < Lpeq. This
process is repeated until the requirement of stopping iteration is satisfied, or until the
predefined maximum iteration number is reached or decoding is successful. In the SC,
the requirement of stopping iteration is an indicator which can reflect the convergence
of the iterative decoding.

The SC is the key part in AIDA. In order for AIDA to be able to reduce the
iterative decoding complexity and delay with very little performance loss, a well designed
SC should be able to timely and accurately judge the convergence of the iterative
decoding. Up to now, many SCs have been proposed to reduce the iteration number
for turbo coded systems. In the following, some representative existing SCs are briefly
introduced, and these criteria for the considered systems are studied in Section 6.3.3.
Then, to circumvent the disadvantages of these criteria for the considered systems, a
new SC is proposed in Section 6.3.4.

6.3.3 FExisting SCs for the Considered Systems

Let Lei(cr) and Leo{cy) denote the extrinsic LLRs of the kth code bit of the two compo-
nent decoders of the turbo decoder, respectively, and let NV denote the length of turbo
codes. The existing SUs are introduced as follows.

1) CE criterion: CE is used to measure the closeness of two distributions. At the
ith iteration, let pi(c;) and pi(ck) denote the a posteriori probability distributions of
the outputs of the two component decoders of the turbo decoder, respectively. The CE
between pi(ci) and ph(cy) can be expressed as

T() = E{l Po Ci } Z |Le2 (ck) e2l(c/~)[ . (6.4)

i (ck) pt exp L;l (cr))

With an increase of the iteration number, the CE becomes smaller and smaller. When
T(%) is smaller than a predefined threshold (1072 ~ 107*)T'(1), the iterative decoding
is terminated.

2) SCR. criterion: SCR is based on measuring the sign changes C(¢) of Lea(cy) from
iteration (i-1) to iteration i. The principle of SCR. is to compute C(7) at each itera-
tion, and the iterative decoding is terminated when C(¢) is smaller than the threshold
(0.005 ~ 0.03)N.

3) SDR criterion: Let D(z) denote the number of sign differences between L, (cy)
and Lg(cy) in the same iteration. The principle of SDR is to compute D() after
each iteration and to terminate the iterative decoding when D(Z) is smaller than the
threshold (0.001 ~ 0.0L)N.

4) ME criterion: This approach is based on monitoring M|, the mean of absolute
LLR values of the second decoder over a block after each iteration. Simulation shows
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Figure 6.5: Average evaluations of the decision metrics of the existing SCs variation
with SNR and outer iteration number; rate-1/2 (3, 6) regular LDPC codes with length
1008 over AWGN channels with BPSK; OWS of MSDD SISOD corresponding to the
outer iteration number from 1 to 6 is [2,4,6,8,8,8]; inner iteration number of the LDPC
decoder is 10; averaged over 10000 frames.

that My increases as the number of errors decrease. Therefore, the iterative decoding
is terminated when My is bigger than a predifined threshold.

Since the iterative decoder of the considered systems, which consists of a demodu-
lator and a LDPC decoder, is different from the turbo decoder, the assumptions which
are used to obtain the approximation of CE as expressed in (6.4) [41], do not hold for
the iterative decoder of the considered systems. Thus, the CE criterion is modified to
be used only for the LDPC decoder, and the decision metric of the CE criterion for the
considered systems is turned into

N ; i 2
. | L plew) = Ly (ew)] .
T(i) ~ Z i1 : (6.5)
o exp(Lp(cx))
That is, the CE for the considered systems is used to measure the closeness of the
a posteriori probability outputted from the LDPC decoder in two consecutive outer
iterations. For SCR, SDR and ME criteria, these SCs can be used in the considered
systems directly. These SCs have been proved to be the efficient approaches to detect



the successful decoding before reaching the maximum iteration number by comparing
a predefined threshold. However, compared with turbo codes, LDPC codes can detect
successful decoding to stop the iteration by checking the parity check constraints of
LDPC codes. Thus, the SC for the considered systems is more concerned with stop-
ping the uncorrectable decodings which usually occur at low to medium SNRs for our
considered systems. In this situation, the stopping rules and the thresholds of the SCs
mentioned above should be redesigned to be applicable for this purpose.

To understand how to design the stopping rules and the thresholds of these SCs
for the considered systems, the average evaluations of the decision metrics of these
SCs variation with SNR, and outer iteration number are shown in Fig. 6.5. We can
observe that the stopping rules of the CE, SCR and ME criteria for our target are that
the evaluation of their decision metrics should be smaller than a threshold. On the
contrary, the stopping rule of the SDR criterion is that the evaluation of its decision
metric should be bigger than a threshold. However, we can observe that they do not
work well at all SNRs based on the redesigned stopping rules. For CE and SCR, criteria,
the iteration may be stopped prematurely at medium and high SNRs, which results in
performance losses at these SNIRs, since the evaluations of their decision metrics vary
non-monotonically with SNR as shown in Fig. 6.5(a) and 6.5(b). On the other hand,
for SDR and ME criteria, it is possible to design proper thresholds for them at low
SNRs based on Fig. 6.5(c) and 6.5(d). The low SNR region can be determined with
the aid of the asymptotic decoding threshold predicated by the EXIT chart for the
considered systems. In this SNR region, the iterative decoding of each frame should be
stopped after the first or second iteration also for finite-length LDPC codes. However,
it is difficult to design proper thresholds of them also valid for medium SNRs, since the
iterative decoding characteristics greatly vary from frame to frame for the considered
systems at medium SNRs as discussed in Section 6.2. Moreover, the low SNR region
where is no need for increasing iteration number is changed with a change in the LDPC
code and transmission channel parameters, which makes the defined thresholds of these
SCs need to be redesigned again.

6.3.4 Proposed SC

The basic reason of the disadvantages of these SCs is that these approaches are not good
methods to track the convergence status of the iterative decoding. From the decoding
trajectories of Fig. 6.2, we can observe that the value of 1, , increases significantly
between two consecutive outer iterations if the iterative decoding can improve the sys-
tem performance effectively, whereas the value of Iy, . remains almost unchanged as
the number of iterations increases when the iterative decoding has converged. Thus,
the change of I, , between two consecutive outer iterations can reflect the convergence
status of the iterative decoding. These observations motivate us to propose a new SC
named DMI criterion, which is based on tracking the difference of the output mutual
information of the LDPC decoder between two consecutive outer iterations. Based on
this idea, at the ith iteration, the decision metric of the DMI criterion can be written
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Figure 6.6: Averaged simulated iterative decoding trajectories of the considered systems
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LDPC codes with length 1008 over AWGN channels with BPSK at different SNRs; inner
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as ) . )
AI}/D‘G = I}:D'C - -E;];c' (6’6)

If AL, is smaller than a threshold Th, which means that the iterative decoding has
converged, the iterative decoding is stopped; otherwise, the next iteration is executed.

The computation of I, using (6.3), also called the histogram method, needs the
information about the transmitted coded bits and the PDF of LLR values, which is
impractical for realistic systems since the transmitted coded bits are unknown at the
receiver. Actually, (6.3) can be computed by the average method shown below without
these requirements [27]

N —1.1/2
! o—lial/2 )
ILN].H'A—IXEH[,<W>, (6()
n=

where NN is the code sequence length, [, is the LLR value of the nth bit of the code
sequence, and H, is the binary entropy function

Hy(p) = —plogep — (1 —p)logy(l —p),0 <p < L. (6.8)

Equation (6.7) is valid when the APP decoder is employed even if the distribution of
the LLR outputs of the decoder is non-Gaussian or unknown distributions [27]. Fig. 6.6
shows the comparison of the averaged simulated iterative decoding trajectories of the
considered systems at different SNRs obtained by the histogram method and the average
method, respectively. It is shown that the average method is a good approximation for
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the histogram method. Therefore, it is reasonable to use (6.7) to compute I, , after
each outer iteration for the considered systems where the LDPC decoder uses the sum-
product algorithm.

We must point out that the idea of SC based on (6.6) has been proposed in [45]
for turbo HARQ schemes, which is used to reduce the complexity while maintaining a
high throughput and a low packet-loss-ratio. However, since the purpose of our work is
different from that of [45], the SC based only on (6.6) is not the most effective approach
for our considered systems, which will be explained below and be supported in Section
6.4.2. Based on this fact, the principle of our proposed DMI criterion, which is also the
difference between our proposed DMI criterion and the SC of [48], is explained from
the following two aspects.

On one hand, it is obvious that using the SC with only the decision metric (6.6),
the system will execute at least two iterations before successful decoding. However, in
fact, in most cases, iterative decoding only needs to be executed once at low SNRs.
From Fig. 6.1 and 6.3, we can also observe that the EXIT curves of the MSDD SISOD
and the LDPC decoder intersect on the very left side of the EXIT band chart at low
SNRs corresponding to very small value of Ir, . Thus, to further reduce unnecessary
iterations at low SNRs, before evaluating the decision metric of the DMI criterion,

}JD is compared with another threshold Thy to decide whether to stop the iterative
decoding immediately.

On the other hand, as shown in Fig. 6.2, at medium SNRs, the iterative decoding
of some frames corresponding to the typical iterative decoding behavior of slow conver-
gence has the following features: I}', increases to a relatively large value and seems
to be unchanged (that is, AJ} Lp. VEIY smdll) after the first few iterations, but I} b, CALL
increase to the value of the rlght side of the EXIT band chart after some iterations,
which results in successful decoding at last. Owing to this fact, if the SC only con-
siders (6.6), this type of decoding behavior will be prematurely stopped, resulting in
a performance loss. Therefore, the proposed SC should consider how to avoid prema-
turely stopping this type of decoding behavior. We solve this problem as follows. We
define a threshold Th,\ ; which is bigger than the threshold Thy. At the ith iteration,
if AIE < Th but It ipe > Thas, which means that the current iterative decoding may
be the type of the slow convelgence, the iterative decoding is not stopped immediately
and let an indicator SN = SN + 1. Here SN is used to represent the number of times
of AIt 1. <Th when It e > Thy during the current iterations. If SN is bigger than
a defined number of times Thy, which means that the current iterative decoding is an
uncorrectable decoding with high probability, then decoding is stopped; otherwise, the
current iterative decoding may be the type of the slow convergence decoding, thus go
to the next iteration.

The proposed DMI criterion is summarized as follows:
At the ith outer iterative decoding(SN = 0):
Step 1: Compute I}',De using equation (6.7) at the ith iteration.

Step 2: If It p.e < Thy, stop the iterative decoding; otherwise, go to step 3.
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Step 3: If It pe < Thy and AIED . < Th, stop the iterative decoding; otherwise, go
to step 4.

Step 4: If ILD > Thy and AI’ < Th,let SN = SN + 1. If SN > Thy, stop
the iterative decodmg, otherwise, execute the (i -+ 1)th iteration.

Actually, we can find that the SC of [45] is equivalent to the proposed DMI criterion
with Thy, = 0.0 and Thp; = 1.0. It should be emphasized that the performance of AIDA
with the DMI criterion depends on the values of the thresholds Th, Thy, Thy and
Thy. The EXIT band chart of the system can simplify the process of choosing of these
thresholds. Although, generally speaking, the best choice of these thresholds should be
optimized for particular system parameters, the performance of the DMI criterion with
a set of determined thresholds is robust when the LDPC code and transmission channel
environment parameters are changed, which will be supported by the simulation results
presented in the next section.

6.4 Simulation Results and Analysis

The performances of the proposed AIDA with the existing SCs and the proposed SC for
the considered systems are evaluated and analyzed using computer simulations. Unless
otherwise indicated, the following simulation parameters are used for our simulations.
We consider rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN channels.
The coded bits are modulated using BPSK for simplicity. The maximum number of
outer iterations between the MSDD SISOD and the LDPC decoder is set to 6. The
maximum number of inner iterations of the LDPC decoder is set to 10. In AIDA, Lo
and AL are set to 8 and 2, respectively.

6.4.1 Selection of the DMI Criterion Thresholds

Based on the EXIT band chart analysis of the considered systems with the above simula-~
tion parameters, which is similar to the analysis of Fig. 6.1-6.3 and 6.6, the approximate
ranges of the thresholds Th, Thy, Thy and Thy can be first determined as follows:
Th <0.03, Thy <0.12, 0.3 < Thy < 0.7 and Thy < 3. Then, we can select appropri-
ate values for them in their corresponding ranges. More specifically, we first evaluate
the variation of the average number of outer iterations and the BER performance of the
considered systems using AIDA with the DMI criterion with different values of thresh-
old Th as shown in Fig. 6.7. Thy and Thy, are set to 0.0, 1.0, respectively. In this
situation, the performance of the DMI criterion is determined only by the threshold
Th. It is shown that the smaller T'h is, the smaller performance loss is, but the larger
number of outer iterations is required. In order to make a good trade-off between the
iterative decoding complexity and the performance loss, the value of T'h that is selected
is 0.02. After determining the value of Th, we can then determine the value of T'hy,, and
then determine the values of Thys and Thy together at last using simulations similar
to the process of the selection of Th. For the sake of conciseness, the specific processes
of the selection of Thy, Thys and Thy are not presented in detail here. Finally, the
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Figure 6.7: Performance of AIDA using the DMI criterion variation with the value of
threshold Th; Thr = 0.0 and Thy = 1.0; rate-1/2 (3, 6) regular LDPC codes with
length 1008 over AWGN channels with BPSK. (a) Average number of outer iterations.
(b) BER. performance.

thresholds Th, Thy, Tha and Thy of the proposed DMI criterion are set to 0.02, 0.07,
0.5 and 1, respectively, for the following simulations.

6.4.2 Performance of ATDA with the DMI Criterion

Fig. 6.8(a) shows the average number of outer iterations of the considered systems using
AIDA without SC and with SC of the proposed DMI criterion. Here, AIDA without
SC is that the early stopping approach is not used in AIDA. In case of AIDA without
SC, the OWS of MSDD SISO corresponding to the outer iteration number from 1 to 6
is [2,4,6,8,8,8], and the outer iterations are stopped when the maximum outer iteration
number is reached or a legitimate codeword is found. The simulation result of the con-
sidered systems with fixed L = 8 without AIDA is also presented for comparison. Since
the LDPC decoder can detect successful decoding and stop the iteration by checking the
parity check constraints of LDPC codes, it is shown that the average number of outer
iterations required by AIDA without SC gradually decreases with an increase in SNR.
When the DMI criterion is used in AIDA, since the DMI criterion adjusts the number
of outer iterations based on the convergence status of the outer iterations, we observe
that the average number of outer iterations can be reduced efficiently by AIDA with
the DMI criterion at low and medium SNRs. More specifically, the outer iterations are
stopped as early as possible at low SNRs, where the performance cannot be improved
by increasing the OWS and the number of outer iterations. At medium SNRs, where
the performance improvement can be gradually achieved by increasing the OWS and
the number of outer iterations, the average iteration number is gradually increased.
While at high SNRs, the average numbers of outer iterations required by AIDA with
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Figure 6.8: Performance of the considered DE-LDPC coded systems with and without
ATDA; rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN channels with
BPSK. (a) Average number of outer iterations. (b) BER performance.

and without the DMI criterion are the same, since almost all of the frames can be
successtully decoded in the first few iterations.

Fig. 6.8 also shows the performance comparison between AIDA with the DMI cri-
terion and AIDA with the SC of [45] that is equivalent to setting Th = 0.02, Thy, = 0.0
and Thys = 1.0 for the DMI criterion. We can observe that for the systems considered
here, the proposed DMI criterion performs better than the SC of [45] in terms of the
recuired average number of outer iterations at low SNRs and the performance loss at
medium and high SNRs, which supports the discussion of the difference between the
proposed DMI criterion and the SC of [45] in Section 6.3.4.

Next, we analyze the reduction of the iterative decoding complexity by using AIDA.
The evaluation of the iterative decoding complexity needs to consider the number of
outer iterations and the complexity of the MSDD SISOD and the LDPC decoder. Since
the LDPC decoder can detect successful decoding and automatically stop the iteration,
we evaluate the iterative decoding complexity by mainly considering the average mul-
tiplication number (AMN) and the average addition number (AAN) of the iterative
decoding of each frame for the considered systems with and without AIDA as shown in
Fig. 6.9. The method introduced in [46] is used to evaluate the decoding complexity
of the LDPC decoder using the sum-product algorithm. It should be noted that since
the number of divisions is far less than the number of multiplications in each iteration,
it is not considered in the evaluation of the iterative decoding complexity. In addition,
the calculation of the logarithmic term in (4.3) is also ignored.

Although from Fig. 6.8 it can be seen that the average numbers of outer iterations
from 2.7dB to 5.25dB required by AIDA without SC are about 0.2 to 0.5 times more
than that required without using AIDA for the considered systems, Fig. 6.9 shows that
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Figure 6.9: Computational complexity of the iterative decoding of each frame of the
considered DE-LDPC coded systems with and without AIDA; rate-1/2 (3, 6) regular
LDPC codes with length 1008 over AWGN channels with BPSK. (a) AMN. (b) AAN.

both the AMN and AAN are significantly reduced by AIDA without the SC at all SNRs.
For example, for SNR. = 4.5 dB, about 20% of the complexity of the iterative decoding
without AIDA is required by using AIDA. This is because the fraction of successful
decoding achieved by the MSDD SISOD with small L increases with an increase in
SNR values as shown in Fig. 6.10. For example, at SNR = 5.5 dB, we can observe that
about 98% of successful decodings can be achieved by L = 2, while only 2% of successful
decodings require L > 2. From Fig. 6.9, we also observe that AIDA using the DMI
criterion can further reduce the decoding complexity at low and medium SNRs. For
example, only about 3% of the complexity of the iterative decoding without AIDA is
required by using AIDA with the DMI criterion at SNR = 2 dB. Combining the above
observations and the results of the BER performance comparison of the considered
systems with and without AIDA as shown in Fig. 6.8(b), we can conclude that the
proposed AIDA with the DMI criterion can significantly reduce the iterative decoding
complexity and delay with negligible performance loss.

6.4.3 Performance of AIDA with Different SCs

In the following, performances of AIDA with different SCs are compared and analyzed.
The principle of the selection of the thresholds of the aforementioned existing SCs,
which is the same as that of [44], is that the outer iteration should be stopped imme-
diately when the SNR is below the asymptotic decoding threshold of the considered
systems. It should he noted that at least two outer iterations are performed before suc-
cessful decoding when CE and SCR are used. Based on the discussion of Section 6.3.3,
according to Fig. 6.5 and the asymptotic decoding threshold of the considered systems
with L = 8 and the rate-1/2 (3, 6) regular LDPC code ensemble over AWGN channels
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with BPSK as shown by the dotted lines in Fig. 6.5, the approximate ranges of their
thresholds can be determined from the y-axis of Fig. 6.5. Then, the preferred values
of their thresholds can be selected to meet the above principle in their corresponding
ranges using simulations similar to Fig. 6.7, the detailed process of which is omitted for
the sake of conciseness. For the systems considered here, the thresholds of CE, SCR,
SDR and ME criteria are selected as 0.035, 0.24, 0.37 and 2.2, respectively.

The same simulations of Fig. 6.8 are tested for AIDA with different SCs, as shown
in Fig. 6.11. For AIDA with CE, SCR and SDR, it is shown that the average numbers
of outer iterations are significantly reduced with very little performance loss at low
SNRs. However, large BER. performance losses are caused at medium and high SNRs,
since some correctable decodings are prematurely stopped by the three criteria. This
implies that the three existing SCs are not well suited for stopping the iteration of
the uncorrectable decodings for our considered systems. On the other hand, for AIDA
using the ME criterion, we observe that it has similar performance to AIDA using the
proposed DMI criterion.

To further evaluate and compare the performance of the ME criterion and the D-
MI criterion for AIDA, the same simulations of Fig. 6.11 are also tested for different
code structures and transmission channel environments respectively while keeping oth-
er simulation parameters constant. Fig. 6.12 shows the simulation results for rate-3/4
(3, 12) regular LDPC codes with length 1008 over AWGN channels. Fig. 6.13 shows
the simulation results for rate-1/2 (3, 6) regular LDPC codes with length 1008 over
non-frequency selective Rayleigh fading channels with normalized maximum Doppler



frequency fpTs = 0.01. It is shown that the ME criterion with the previously defined
threshold 2.2 for the two cases is not as effective as it is for rate-1/2 (3, 6) regular
LDPC codes over AWGN channels in term of the performance of the reduction of the
average number of outer iterations. These observations suggest that the performance
of the existing ME criterion is easily affected by changes in the LDPC code and trans-
mission channel parameters, and thus the threshold needs to be redesigned for the new
conditions, which supports the discussion in Section 6.3.3. On the contrary, we can find
that even if these conditions are changed, the proposed DMI criterion with previously
defined thresholds can still effectively reduce the average number of outer iterations
with very little performance degradation at all SNRs, which means that the proposed
DMI criterion is more robust than the ME criterion. This is due to the fact that the
proposed DMI criterion stops the iteration based on the convergence status of the iter-
ative decoding rather than comparing a predefined threshold for a certain SNR. region
like the existing SCs.

In addition, although the threshold of the M criterion can be redesigned to suit
new conditions, the workload of this process is large, since its threshold needs to be
carefully designed hased on a large number of simulations as shown in Fig. 6.5. In
contrast, the threshold of the proposed DMI criterion can be designed easily, since the
EXIT band chart is easily obtained.
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coded systems with rate-1/2 (3, 6) regular LDPC codes with length 1008 over AWGN
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we studied the iterative MSDD scheme for differentially encoded LDPC
coded systems. The conclusions are discussed in this chapter.

In this thesis, we consider DE-LDPC coded systems with iterative MSDD. At the
transmitter, the LDPC coded sequence is differential encoded by the differential en-
coder. At the receiver, the MSDD SISOD is viewed as an inner decoder, while the -
LDPC decoder is viewed as an outer decoder. The iterative decoding is performed be-
tween the MSDD SISOD and the LDPC decoder. The transfer characteristics of the
MSDD SISOD and the LDPC decoder were analyzed by the EXIT charts. It was shown
that the performance can be improved by increasing the OWS of the MSDD SISOD
and the number of iterations. Whereas, the performance gain cannot be achieved by
iterative decoding, when the inner decoder employs the conventional differential de-
tection. The BER performance of the systems under consideration was evaluated in
slow and fast Rayleigh fading channels, respectively. It was shown that these analysis
results obtained by the EXIT charts are supported by the computer simulation results.
Moreover, the simulation results also showed that in the case of fast fading channels,
the systems under consideration has better performance, and more performance gain
can be achieved by increasing the OWS and the number of iterations.

When the DE-LDPC coded systems use regular LDPC codes, the system perfor-
mance can only be improved marginally in the case of the OWS with a large value.
In order to solve this problem, we designed the irregular LDPC codes for the MSD-
D SISOD with large values of OWS by using the EXIT chart to optimize the degree
distributions of irregular LDPC codes. The simulation results demonstrated that the
performance of the DE-LDPC codes systems with a large OWS can be significantly
improved by using the optimized codes. Moreover, when the optimized irregular LDPC
codes with very long length, the performance of the systems under consideration can
close to the capacity of the noncoherent AWGN channel. Therefore, for the DE-LDPC
coded systems with iterative MSDD, it is important to optimize the LDPC codes for
different OWS, especially for the large OWS.

On the other hand, the complexity of the MSDD SISOD will become prohibitively
high as the OWS and the order of the modulation become large. This high complexity
will result in an unacceptable decoding time delay, which makes difficult to achieve a
realistic system. To solve this problem, we proposed an ISOMA to reduce the complexity
of the MSDD SISOD. The proposed ISOMA combines the features of the existing SOMA
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approaches, which can guarantee that the LLR of each coded bit can be computed with
high reliability. Through computer simulations, it was shown that the computational
complexity of the MSDD SISOD as well as the iterative decoding complexity of DE-
LDPC coded systems with iterative MSDD can be greatly reduced by the proposed
ISOMA. Furthermore, compared with the existing ITS-MA and SOMA, the proposed
ISOMA has better performance in terms of the BER performance and the ability of
reducing the decoding complexity of DE-LDPC systems with iterative MSDD.

Since the computation of the metric of the MSDD SISOD cannot be computed
recursively as in the coherent detection case, the complexity of the MSDD SISOD is still
relatively high even if the proposed ISOMA approach is used. In order to further reduce
the iterative decoding complexity and delay of the systems under consideration with
finite length LDPC codes, an AIDA scheme which can adaptively adjust the OWS of the
MSDD SISOD and the outer iteration number of the iterative decoder was proposed.
In AIDA, the OWS and the outer iteration number are adaptively adjusted by using
a SC to judge whether the iterative decoding converges or not. To circumvent the
disadvantages of the existing SUs, a new SC, which we call DMI criterion, was proposed
for tracking the convergence status of the iterative decoding by tracking the difference
of the output mutual information of the LDPC decoder between two consecutive outer
iterations of the considered systems. Simulation results showed that AIDA with the
proposed DMI criterion can significantly reduce the iterative decoding complexity and
delay of the considered systems at all SNRs. Moreover, compared with the existing SCs,
it is proved that the DMI criterion is more effective for the considered systems in terms
of reducing the average number of outer iterations, performance loss and robustness.

7.2 Future Work

In the future research, possible research topics of interest include the following aspects:

1) In this thesis, binary LDPC codes were considered for the studied systems. Com-
pared to binary LDPC codes, non-binary LDPC codes were confirmed that they have
a better error correction performance than that of binary LDPC codes [47], since they
can eliminate the impact of the four-cycle on the convergence performance of the itera-
tive decoding. Furthermore, non-binary LDPC codes are suit for combining with high
order modulations, thereby providing a higher data transfer rate and spectral efficien-
cy [48], [49]. As is well known, wireless transmission systems are required to provide
high-speed data transfer in the future. Therefore, the study of DE-non-binary LDPC
coded systems with iterative MSDD is desirable.

2) Orthogonal frequency division multiplexing (OFDM) [50] has been widely adopt-
ed by many wireless communication standards, such as HyperLAN/2, IEEES802.11a,
IEEER02.11g, and IEEES02.16a etc., since it can provide high data-rates with low sys-
tem complexity and robust against adverse channel effects. Many coded OFDM schemes
have been pursued to mitigate the deep channel fading. Up to now, most literatures
have focused on the coded OFDM systems with coherent detection. In this case, it is
required to use pilot symbols for obtaining CSI, which results in bandwidth consump-
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tion [51]. Moreover, the estimation of CSI is sometimes difficult to be realized, such
as vehicle-to-vehicle communications [62]. The differential modulation and detection
scheme has high spectral efficiency since it does not require the estimation of CSI. On
the other hand, the combination of LDPC codes and differentially coded OFDM still
has many problems that deserve to study in depth, such as the optimization of LDPC
codes for differentially coded OFDM. Therefore, we will further study the characteristic
and performance of DE-LDPC coded OFDM systems with iterative MSDD.
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AIDA
APSK
AWGN
BER
BPSK
BF

BP

CE

CN
CSI
DE-LDPC
DMI
DBPSK
BECCs
EXIT
LDPC
LLR
LLRs
MAP
ME

MI

ML
MLD
MPSK
MSDD

MSDD SISOD

OFDM
OWS

APPENDIX A

Abbreviations and Acronyms

Adaptive Iterative Decoding Approach
Amplitude/Phase-Shift Keying
Additive White Gaussian Noise

Bit Error Rate

Binary Phase Shift Keying
Bit-flipping

Belief-propagation

Cross Entropy

Check Node

Channel State Information

Differential Encoded Low-density parity-check
Differential Mutual information

Differential Binary Phase Shift Keying
Error Correction Codes

Extrinsic Information Transfer

Low-density parity-check

Log Likelihood Ratio

Log Likelihood Ratios

Maximum A Posteriori

Mean-estimate

Mutual information

Maximum Likelihood

Maximum Likelihood Detection
Multiple-Phase Shift Keying
Multiple-Symbol Differential Detection
MSDD SISO Demodulator

Orthogonal Frequency Division Multiplexing
Observation Window Size
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PDF
PEG
QPSK
SC
SDR
SCR
SF
SISO
SNR.
VN

Probability Density Function
Progressive-edge-growth
Quadrature Phase Shift Keying
Stopping Criterion
Sign-change-ratio

Sign Difference Ratio

Scaling Factor

Soft-Input Soft-output
Signal-to-Noise Ratio

Variable Node
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APPENDIX B
Notations

the 7, jth element of matrix A

complex conjugate of matrix A

transpose of matrix A

determinant

diagonal matrix

(statistical) mean value or expected value
exponential function

the maximum Doppler frequency

the normalized maximum Doppler frequency
zeroth order modified Bessel function of the first kind
V-1

zeroth order Bessel function of the first kind
the length of observation window size of MSDD
the length of LDPC codes

the symbol period
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