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Abstract 

In this paper, a prediction model was developed for forest management, including 

the detection system and prediction system. The detection system can obtain accurate 

data based on satellite image and aerial data, and the prediction system can forecast the 

condition of forests in the future. In this study, the high resolution aerial photographs, 

long-term investigated data and satellite images were analyzed by individual tree 

crown approach and gray theory model. The Individual Tree Crown method provides a 

good solution for detecting remotely sensed data over vast areas, and it can delineate 

trees at the individual level using aerial data and/or satellite images with high 

resolution of less than 1m. The Gray thoery, defined as Gray derivative and differential 

equation with correlation analysis and smooth discrete function, can forecast forest 

growth at individual tree level based on the long-term tracking investigation without 

environment data. Akazawa Reserve Forest in kiso town, Nagano Prefecture, central 

Japan is a precious forest for research and is well protected since its establishment. In 

1988, a permanent plot with an area of 4 ha was established in the old-growth 

Chamaecyparis obtusa forest with an age of over 300 years, and the surveys were been 

periodically conducted by each 5 years in the following 20 years. The objectives of this 

thesis, using high resolution aerial data, long-term investigation and satellite images, 

were first developing a systematic prediction system of tree individuals, which was 

used to analyze the change pattern of forest structure and development process. This 

study then attempted to provide a new detection method and forecast theory, and offer 

some recommendation for management of modern forest.  

Firstly, from detection system, the individual tree crown method can provide 

accurate method for obtaining accurate data based on high resolution aerial data and 

satellite images. For the accurate measurement of forest biomass in the Akazawa 

Forest Reserve, this study analyzed texture measures derived from GeoEye-1 satellite 

data using the individual tree crown (ITC) method. In this basis, canopy area, tree tops 

and tree species of individual trees were delineated. Tree crowns of 282 and tree tops  

of 352 were extracted. Canopy area was used to calculate the DBH of trees in canopy 

layer based on canopy-DBH curve in this stand. In the estimation models, between 



 

DBH and height, and between canopy area and DBH were developed by linear 

regression using forest survey data. Then, according to the interpreted results of 

satellite data, the biomass of each tree was calculated by biomass expansion factor 

(BEF). This method was verified against the survey data from old–growth 

Chamaecyparis obtusa stand composed of various cover types. For Chamaecyparis 

obtusa, the accuracy of biomass estimation was higher than 84%. However, the 

accuracy of Chamaecyparis pisifera was less than 60%, because the canopy area of 

Chamaecyparis pisifera was underestimated in the high-density stand. For Thujopsis 

dolabrata, the accuracy ranged from 22.4 % to 78.9%, and from 63.4% to 84.6% for 

broad-leaved trees, because many of them were in understory. On this basis, for 

improving the precision of tree detection, this paper analyzed texture measures derived 

from multispectral airborne digital data and LiDAR data. Canopy area was used to 

calculate the DBH of trees in canopy layer based on canopy-DBH curve in this stand. 

LiDAR data can be used to create DCHM data with 50-cm high resolution, and the 

height of all trees could be estimated from the DCHM data with the tree tops of all 

trees which were registered in the forest database using ArcGIS 10. For 

Chamaecyparis obtusa, the accuracy of biomass estimation was higher than 87%. The 

accuracy of Chamaecyparis pisifera was less than 60%, because the canopy area of 

Chamaecyparis pisifera was underestimated in the high-density stand. For Thujopsis 

dolabrata, the accuracy ranged from 22.4 % to 78.9%, and from 63.4% to 84.6% for 

broad-leaved trees, because many of them were in understory. These results indicated 

that this approach is useful for forest detection whether it is used to calculate biomass 

of individual tree or forest.  

Secondly, from prediction system, gray theory can provide a method for forecast 

forest growth with high prediction accuracy at individual tree level based on long term 

survey data. In this paper, with the gray theory of mathematics, this research developed 

a program of calculating tree growth by using the data of the stand surveyed in 1988, 

1998, 2003 and 2008. By this program, a prediction has been completed for the growth 

of the tree stand in 2018, 2028 and 2038, respectively. In the understory, the average 

forecast error of Chamaecyparis obtusa was 23.8% in 1998, 18.6% in 2003 and 11.9% 



 

in 2008. For Thujopsis dolabrata, it was 15.8%, 13.6% and 9.7%, respectively, in the 

three years. And broad-leaved trees’ error was 17.6%, 12.9% and 10.7% in 1998, 2003 

and 2008. In middle layer, Chamaecyparis obtusa’s errors were 22.8%, 16.8% and 

8.9% respectively, while they were 16.5%, 18.5% and 11.3% for Thujopsis dolabrata, 

and 14.9%, 11.9% and 8.7% for broad-leaved trees. In the dominant layer, they were 

22.4%, 13.6% and 6.8% for Chamaecyparis obtusa, 9.8%, 13.5% and 17.9% for 

Thujopsis dolabrata, and 15.6%, 12.8% and 8.9% for broad-leaved trees in the 

specified years respectively. The further development in the prediction, a stand 

prediction model of suitable sites for tree growth attempted to be presented in the 

old-growth Chamaecyparis obtusa forest. Survey results indicated that the total 

number of recruited tree of Thujopsis dolabrata was increased from 1998 to 2008, 

while the total number of recruited trees of Chamaecyparis obtusa was decreased in 

this period. Furthermore, the number of recruited trees of Thujopsis dolabrata will be 

increased and the number of recruited trees of Chamaecyparis obtusa will be decreased 

in the future. The prediction errors for the number of recruited Chamaecyparis obtusa 

trees ranged from 10.5% to 31.5%, and for recruited Thujopsis dolabrata trees, the 

prediction errors ranged from 10.2% to 28.7% in different layers. In addition, the 

suitable sites for tree’s growth in the future have been predicted by every 10 years from 

1998 to 2008 and compared with survey data. The prediction errors for suitable sites of 

tree growth of Chamaecyparis obtusa ranged from 21.3% to 40.3% in different layers. 

And the prediction errors for suitable sites of tree growth of Thujopsis dolabrata 

ranged from 14.2% to 53.1% in different layers. Finally, the suitable sites for tree’s 

growth in the future have been predicted by per 10 years from 2018 to 2038, where the 

relationship between tree growth and its suitable habitat was suggested well. 

 

 

 

 

 

 



 

Introduction 

1.1 Background 

Pure for economic development and neglect of environmental protection, global 

environment was led to worsen. Global environmental issues were not only partial 

destruction of environmental pollution and ecological balance. And some global 

environmental crisis have imperiled the survival and development of humankind, such 

as global warming, destruction of the ozone layer, acid rain, species extinction, 

reduction of biodiversity, soil erosion, and forest reduction. The international 

community has established extensive cooperation to combat global environmental crisis. 

Forests are significant global ecosystems, having some adjustment function for global 

environment, such as regulation circulation of air and water, inhibition of desertification 

and soil erosion and so on. Forest are dominating over 30 percent of the terrestrial 

landscape and providing habitat for many species of plant, animals, invertebrates and 

micro-organisms and numerous goods, services and benefits to people (FAO 2011). 

Forests are also a major part of the global carbon cycle, containing significant stocks of 

carbon and emitting carbon to the atmosphere during and following disturbances such 

as fire, storms or landslides or human disturbances such as timber harvesting or clearing 

for agriculture. Forests remove carbon from the atmosphere in periods of growth and 

recovery following these disturbances. Forests have been identified as a potential 

mechanism to human-induced climate change. Many governments and 

non-governmental organizations directly engage in programs of a forestation and to 

create forests, increase carbon capture and sequestration, and help to anthropogenic ally 

improve biodiversity. In some places, forests need help to reestablish themselves 

because of environmental factors. After large area of global reforestation program, 

sustainable forest management has gradually become the focus, broad social, economic 

and environmental goals. The "Forest Principles" adopted at The United Nations 

Conference on Environment and Development (UNCED) in Rio de Janeiro in 1992 

captured the general international understanding of sustainable forest management. In 

2007, the United Nations General Assembly adopted the Non-Legally 

bindinginstrument on all types of forests. The instrument was the first of its kind, and 

http://en.wikipedia.org/wiki/Carbon_capture
http://en.wikipedia.org/wiki/Carbon_sequestration
http://en.wikipedia.org/wiki/Biodiversity
http://en.wikipedia.org/wiki/Natural_environment
http://en.wikipedia.org/wiki/Natural_environment
http://en.wikipedia.org/wiki/Forest_Principles
http://en.wikipedia.org/wiki/Earth_Summit
http://en.wikipedia.org/wiki/Earth_Summit
http://en.wikipedia.org/wiki/Sustainability
http://en.wikipedia.org/wiki/United_Nations_General_Assembly
http://en.wikipedia.org/wiki/United_Nations_Forum_on_Forests#Non-Legally_Binding_Instrument_on_All_Types_of_Forests
http://en.wikipedia.org/wiki/United_Nations_Forum_on_Forests#Non-Legally_Binding_Instrument_on_All_Types_of_Forests


 

reflected the strong international commitment to promote implementation of sustainable 

forest management through a new approach that brings all stakeholders together. 

Forest management is a branch of forestry concerning with the overall administrative, 

economic, legal and social aspects and with the essentially scientific and technical 

aspects, especially silviculture, protection, and forest regulation. This includes 

management for biodiversity, Landscape aesthetics, wood products, forest genetic 

resources and other forest resource values. Management can be based on conservation, 

economics, or a mixture of the two. Techniques include timber extraction, planting and 

replanting of various species, cutting roads and pathways through forests, and 

preventing fire. Sustainable forest management is the management of forests according 

to the principles of sustainable development. 

Forest management is based on forest inventory and forest informatics. Forest 

inventory is the systematic collection of data and forest information for assessment or 

analysis. The aim of the statistical forest inventory is to provide comprehensive 

information about the state and dynamics of forests for strategic and management 

planning. Forest informatics is the combined science of Forestry and Informatics, with a 

special emphasis on collection, management, and processing of data, information and 

knowledge, and the incorporation of informatics concepts and theories specific to enrich 

forest management and forest science; it has a similar relationship to library science and 

information science. Forest informatics is an interdisciplinary science primarily 

concerned with the collection, classification, manipulation, storage, retrieval and 

dissemination of information. As in management science, forest informatics uses 

decision support systems, mathematical modeling, statistics, and algorithms from 

engineering, operations research, computer science, and artificial intelligence to support 

decision-making activities.  

Some parameters of forest, such as species composition, density, diameter and height 

structure, basal area and volume, were always adopted to describe forest structure and 

constitute information source of forest management in traditional forestry science. But 

these parameters can not meet the three-dimensional forest management because of 

lacking spatial information. Now, stand spatial structure defined to the management of 

http://en.wikipedia.org/wiki/Topic_outline_of_forestry#Branches_of_forestry
http://en.wikipedia.org/wiki/Forestry
http://en.wikipedia.org/wiki/Silviculture
http://en.wikipedia.org/wiki/Forest_protection
http://en.wikipedia.org/wiki/Forest_product
http://en.wikipedia.org/wiki/Forest_genetic_resources
http://en.wikipedia.org/wiki/Forest_genetic_resources
http://en.wikipedia.org/wiki/Nontimber_forest_products
http://en.wikipedia.org/wiki/Lumber
http://en.wikipedia.org/wiki/Afforestation
http://en.wikipedia.org/wiki/Reforestation
http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Wildfire
http://en.wikipedia.org/wiki/Forest_management
http://en.wikipedia.org/wiki/Sustainable_development
http://en.wikipedia.org/wiki/Forestry
http://en.wikipedia.org/wiki/Informatics_%28academic_field%29
http://en.wikipedia.org/wiki/Forest_management
http://en.wikipedia.org/wiki/Forest_science
http://en.wikipedia.org/wiki/Library_science
http://en.wikipedia.org/wiki/Information_science
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Management_science
http://en.wikipedia.org/wiki/Decision_support_system
http://en.wikipedia.org/wiki/Mathematical_modeling
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Decision-making


 

the forest using remote sensing and geographic information systems and precise global 

positioning system has gradually been introduced into forest structure and 

three-dimensional forest management research. Remote sensing is the use of aerial 

sensor technologies to detect and classify objects on earth (both on the surface, and in 

the atmosphere and oceans) by means of propagated signals without making physical 

contact with the object. Remote sensing is divided into main two main types of remote 

sensing: passive remote sensing and active remote sensing. Passive sensors detect 

natural radiation that is emitted or reflected by the object or surrounding areas. 

Reflected sunlight is the most common source of radiation measured by passive sensors 

such as film photography, infrared, charge-coupled devices, and radiometers. Active 

remote sensing emits energy in order to scan objects and areas whereupon a sensor then 

detects and measures the radiation that is reflected or backscattered from the target such 

as Radar and LiDAR. Remote sensing makes it possible to collect data on dangerous or 

inaccessible areas. Remote sensing applications of forestry include forest resource 

inventory, monitoring growth and deforestation and forest disaster. With its ability to 

directly measure forest structure, including canopy height and crown dimensions, 

remote sensing is increasingly used for forest inventories at individual tree level. 

Previous studies have shown that remote sensing data can be used to estimate a variety 

of forest inventory attributes including tree, plot and stand level estimates for tree height, 

biomass (Edson and Wing 2011), volume, basal area (Leckie et al., 2003) and tree 

species (Katoh et al., 2009). Forest environment depends on the geographical 

environment, which in turn acts on the surrounding geographical environment. 

Geographic information system can analyze the effect of forest environment and 

geographical environment, and lead to decisions regarding for forest management. 

Geographic information system (GIS) is a system designed to capture, store, manipulate, 

analyze, manage, and present all types of geographical data. Geographical information 

science refers to the academic discipline with geographic information systems and is a 

large domain within the broader academic discipline of geoinformatics. 

Remote sensing and geographic information science are used to gain a better 

understanding of how the underlying spatial patterns of vegetation, forest and natural 

http://en.wikipedia.org/wiki/Atmosphere
http://en.wikipedia.org/wiki/Oceans
http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Sunlight
http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Charge-coupled_devices
http://en.wikipedia.org/wiki/Deforestation
http://en.wikipedia.org/wiki/Geographic_data
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Geoinformatics


 

features are related, ultimately leading to more-informed decisions regarding the 

sustainable use of resources. 

In recent years, how to predict growth of forest was paid more and more attention 

(FFPRI, 2012). But now it seems that traditional prediction methods can not meet 

completely the need of modern forest with more emphasis on ecological protective 

function. Recently in Japan the long rotation management process of conifer plantation 

is being popular, and through predicting growth of forest plays a very important role for 

the long rotation management process of conifer plantation. In the traditional forest 

growth prediction, forest growth prediction systems need consider some factors such as 

environmental, geography and climate impact on tree growth. The calculation including 

impact of these factors is complex and difficult for tree growth prediction. Furthermore, 

how to determine and analyze the affect of these factors is a problem for tree growth 

prediction. Gray system, which defined gray derivative and differential equation with 

correlation analysis and smooth discrete function, need not consider the affect of 

environmental, geography and climate, and may resolve the above shortcomings in 

predicting forest growth. Because the impact of environment, geography and climate are 

consider incomplete information, and these impacts were reflected in the basic data of 

tree in gray theory. Gray system means that a system in which part of information is 

known and part of information is unknown. With this definition, information quantity 

and quality form a continuum from a total lack of information to complete information - 

from black through gray to white. Since uncertainty always exists, one is always 

somewhere in the middle, somewhere between the extremes, somewhere in the gray 

area. It defines situations with no information as black, and those with perfect 

information as white. Gray System Theory is a mathematics theory which can analyze 

the relevance of clear portion and not clear portion of information. Gray models predict 

the future values of a time series based only on a set of the most recent data depending 

on the window size of the predictor. Gray system theory is an interdisciplinary scientific 

area that was first introduced in early 1980s by Deng (1982). Since then, the theory has 

become quite popular with its ability to deal with the systems that have partially 

unknown parameters. As a superiority to conventional statistical models, gray models 

http://en.wikipedia.org/w/index.php?title=Information_quantity&action=edit&redlink=1
http://en.wikipedia.org/wiki/Information_quality
http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Perfect_information
http://en.wikipedia.org/wiki/Perfect_information


 

require only a limited amount of data to estimate the behavior of unknown systems 

(Deng, 1989). During the last decades, the gray system theory has been developed 

rapidly and caught the attention of many researchers. It has been widely and 

successfully applied to various systems such as economic (Wang, 2002), scientific and 

technological (Lee et al,. 2008), agriculture, industrial, transportation (Guo et al., 2005), 

mechanical, meteorological, ecological, hydrological, geological, medical, etc., systems. 

In these studies and the others, it is seen that grey system theory-based approaches can 

achieve good performance characteristics when applied to real-time systems, since grey 

predictors adapt their parameters to new conditions as new outputs become available. 

Because of this reason, grey predictors are more robust with respect to noise and lack of 

modeling information when compared to conventional methods. 

 

1.2 Objective 

Forest resource information, such as species composition, height and DBH, is the 

basis of sustainable forest management. Traditional field surveys for forest resource 

management include the number of trees, species and measurements of DBH and tree 

height in sample plots. One of objectives of this study is to estimate the accurate forest 

basic data at individual tree level (species, DBH, height, crown area) in the old–growth 

Chamaecyparis obtusa stand which is fixed amount of tree growth stand, based on new 

remote sensing method and high resolution remote sensing data.  

  The development of forest growth models can help to formulate management plans 

for sustainable development, protect forest reserve, and predict yields within the 

sustainable capacity of the forest, by providing quantitative data which will be made 

available to forest managers and land use planners. Informed decisions can then be 

made in regards to silvicultural alternatives. Access to better quantitative information 

through growth models will lead to increased levels of sustainable timber management. 

One of the most common and important tree characteristics used in forest management 

decision-making is tree diameter at breast height (DBH). This variable has numerous 

beneficial attributes. It is easy to measure and have strong correlations with other tree 

characteristics. The distribution of trees by DBH class allows foresters and ecologists to 



 

understand stand structure, stand dynamics, and future forest diversification. This study 

also attempted to authenticate the feasibility of tree growth prediction at individual tree 

level based on estimation data which were estimated from high resolution remote 

sensing data. Based on forecast data of DBH, forest manager can grasp the change of 

forest timely, and formulate appropriate management plans for management objective. 

  The third objective of this study is to develop one systematic system including a 

accurate forest data estimation system, tree growth prediction system and prediction 

system for suitable sites of tree growth at individual tree level. Making the system can 

work efficiently from estimation of forest information to the prediction calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2 Study area and survey data 

2.1 Overview of plot 

Study area and vegetation 

The study area is situated in the Akasawa Forest Reserve with an area of about 1046 

ha, Kiso town of Nagano Prefecture, central Japan (35°43'57"N, 137°37'50"E) (Figure 

1), which was the birthplace of forest bathing and known as one of three most beautiful 

forests in Japan (NRFO, 1985). The altitude ranges from 1080 to 1558 m above sea 

level. Annual precipitation is about 2500 mm, and snow accumulation is 50~100 cm 

per year. The reserve is on an elevated peneplain with a gentle slope. The geology is 

dominated by acidic igneous rocks such as granitite, granitite porphyry, and rhyolite. 

Soils are mainly dry and wet podzolic soils, although brown forest soils appear on 

hillsides and along mountain streams (NRFO, 1985). 

Chamaecyparis obtusa generally dominates the canopy layer within the reserve, with 

occasional associates of Thujopsis dolabrata and some hardwoods, while on lower 

slopes or along mountain streams, Chamaecyparis pisifera frequently occurs and 

dominates in some stands. Old-growth Chamaecyparis obtusa stands on this reserve, 

like other Chamaecyparis obtusa forests in the Kiso District, might have been 

established after the severe cutting during the years 1688-1703 (NRFO, 1985). Since 

that period most stands have been protected from clear-cutting, although selection 

cuttings have been made for purposes of forest management. 

 

 

Figure 2-1 The location of Akazawa Forest Reserve 



 

2.2 Basic characteristics of the forest 

In 1988, one permanent plot with size of 200 × 200 m was established in an 

old-growth Chamaecyparis obtusa stand with clear-cutting in 350 years ago and 

selective-cutting in 60 years ago. Field data were collected from 1988 to 2008 of every 

five years except 1993. All of trees whose DBH was larger than 5 cm were surveyed, 

including species, DBH, height, crown size, clear bole height and coordinate in 1988, 

1998, 2003 and 2008 (Hoshino et al., 2002; Hoshino et al., 2003; Yamamoto, 1993) 

(Figure 2). The location of plot was confirmed by a handheld GPS device in 2012. 

Additional Survey was held in 2012. 15 trees of each species were surveyed in different 

layers, including DBH, height and crown size. And the data was used for regression 

analysis. Additionally, trees of DBH≥ 5 cm had been confirmed as live or dead and all 

of live trees were selected to biomass estimation in this study. The positions of all trees 

in forest from the field survey were registered in the forest database using ArcGIS 10. 

 

 

Figure 2-2 Tree stand map with stratum from field-survey data 

 

Total numbers of live trees of the stand in study area was 4811 stems in 2008. 



 

Chamaecyparis obtusa was 702, accounted for about 14.6%. Chamaecyparis pisifera 

was 179, accounted for about 3.7%. Thujopsis dolabrata and broad-leaved trees were 

2605 and 1325, accounted for about 54.1% and 27.6% respectively (Figure 3).  

 

Figure 2-3 Stand Overview 

 

From DBH structure, the stand was dominated by Chamaecyparis obtusa in DBH or 

basal area. Other species dominated in some area where Chamaecyparis obtusa did not 

distributed, such as Chamaecyparis pisifera, Thujopsis dolabrata and broad-leaved 

trees. On the other hand, Thujopsis dolabrata was absolutely dominant in middle layer 

and understory (Figure 4). And they were distributed in the under layer of forest 

together with broad-leaved trees. The DBH structure of Chamaecyparis obtuse, the 

majority of Chamaecyparis obtuse are upper layer, accounted for about 82.6%. The 

DBH structure of Thujopsis dolabrata and broad-leaved tree, the majority of them are 

under growth layer, accounted for about 91.6% and 97.9% respectively (Figure 5). 

Because in order to promote the recruitment of Chamaecyparis obtusa, most 

individuals of Thujopsis dolabrata and broad-leaved tree with large size were cut by 

clear-cutting in 350 years ago and by selective-cutting in 60 years ago.  

 

Figure 2-4 DBH distribution by species 



 

 

Figure 2-5 Class distributions by DBH 

 

Height-diameter curve  

Height-diameter curve explains the relationship of height and DBH which were 

measured in the same stand and time. Some sample trees of each diameter class were 

used to determine height curve based on DBH and height. Change of height-diameter 

curve is small and stable during tree growth in natural forest (Oosumi, 1987). Tree 

height can be used to estimate DBH with height-diameter curve. In order to generate 

regressions for the height-diameter equations, height and DBH of 20 trees were 

collected respectively distrnguishing species Chamaecyparis obtusa, Chamaecyparis 

pisifera, Thujopsis dolabrata and broadleaved trees. The data were used to carry out 

regression analysis in Excel 2007(Figure 6), and then height-diameter equations were 

obtained respectively as follows: 

 
6511.0

o.Co.C D9243.1H 
     

Hc.o is height of Chamaecyparis obtusa, DC.o is DBH of Chamaecyparis obtusa, and 

correlation coefficient R
2
 is 0.8921. 

p.CD0082.0

p.C e079.16H     

HC.p is height of Chamaecyparis pisifera, DC.p is DBH of Chamaecyparis pisifera, e is 



 

constant 2.7183, and correlation coefficient R
2
 is 0.7594. 

3159.5D412.0H TT    

HT is height of Thujopsis dolabrata, DT is DBH of Thujopsis dolabrata, and correlation 

coefficient R
2
 is 0.9045. 

309.10D2665.0H BB    

HB is height of broadleaved trees, DB is DBH of broadleaved trees, and correlation 

coefficient R
2
 is 0.9241. 

 

Figure 2-6 Height-diameter curves 

 

Canopy area-diameter curves 

Canopy area-diameter curves 

The canopy is the main part for tree photosynthesis. The crown development directly 

affect the growth of trees, which related significance the most to the DBH. Crown 

radius was measured from four directions of east, south, west and north. And the 

average crown radius was calculated by the formula: 

4

)R+R+R+R(
=R

nwse

a
   

Ra is average crown size, Re, Rs, Rw and Rn were crown radius which were measured in 

four directions. Then crown projection area can calculate by the formula: 

2

aRπ=S
  

S is crown projection area, π is constant 3.14, Ra is average crown radius.  



 

Regression analysis for crown and DBH was generated with Excel 2007 (Figure 7), 

and crown size-diameter equations of tree species were obtained respectively as 

follows: 

4386.1

o.Co.C D1298.0=S   

Sc.o is canopy area of Chamaecyparis obtusa, DC.o is DBH of Chamaecyparis obtusa, 

and correlation coefficient R
2
 is 0.8834. 

4724.0

p.Cp.C D4.155=S    

SC.p is canopy area of Chamaecyparis pisifera, DC.p is DBH of Chamaecyparis pisifera, 

and correlation coefficient R
2
 is 0.107. 

471.95)Dln(748.43=S TT        

ST is canopy area of Thujopsis dolabrata, DT is DBH of Thujopsis dolabrata, and 

correlation coefficient R
2
 is 0.83.08. 

3069.1+D451.0=S BB            

SB is canopy area of broadleaved, DB is DBH of broadleaved, and correlation 

coefficient R
2
 is 0.6949. 

 

Figure 2-7 Canopy area-diameter curves using survey data 

 

2.3 Biomass estimation method  

The measurement of forest aboveground biomass involves extensive field surveys. 

The destructive weighting method is conducted by removing the leave and branches 



 

from trees step by step, and then weighting the cut-off materials successively. This 

direct measurement means is accurate, but it can obtain only single tree in general, and 

it is not suitable for research on the spatial distribution of biomass and changes. 

Moreover, destructive weighting biomass is forbidden in most environments. Biomass 

expanding coefficient method is small error, but laborious and expensive. Through 

regression analysis, numerical relationships of height-DBH and crown size-DBH curve 

were obtained, which would be used to calculate tree height and crown projection area 

of each tree. In addition, volume can be calculated with formulas of stem volume table 

(Forestry Agency Planning Division, 1970). 

 According to the estimation data of DBH and height, the biomass of each tree can be 

calculated with expanding coefficient method: 

D×BEF×V=B       

B is biomass, V is volume of tree, BEF is biomass expanding coefficient and D is bulk 

density. 

Estimation error for the four levels: all trees, the trees with DBH ≥35 cm, DBH ≥ 50 

cm and DBH ≥ 65 cm distinguishing species, may be calculated by the formula as 

follows: 

100×X÷M)-(X=φ      

where  is estimation error, X is the biomass of trees calculated by survey data, and M 

is estimated biomass. 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3 Estimation for forest information using ITC method and satellite data 

at individual tree level 

Some parameters, such as species composition, density, diameter and height structure, 

basal area and volume, were always adopted to describe forest structure in traditional 

forestry science, and they were classical and essential in forest research. But these 

indices lacked detailed spatial information, which led to that we did not know how to 

choose the objective trees in selection cutting and were difficult to evaluate the effect of 

management. Traditional approach of forest survey could not meet the need of modern 

forest management completely. In addition, traditional approach of forest survey is 

time-consuming, laborious and expensive, and it cannot be used for observation on large 

regional scales, although it is small error. Now stand spatial structure defined to 

management of the forest using remote sensing and Geographic information systems 

and other advanced technologies has gradually become the focus in forest structure 

research.  

 

3.1 Individual Tree Crown (ITC) Method 

Individual Tree Crown (ITC) method was developed by Gougeon in 1995. This 

method is a new method of digital remote sensing data analysis with the purpose of 

extracting individual tree crown based forestry parameters as automatically as possible, 

such as individual tree species and canopy area, crown and tree top extraction, stem 

density, crown closure and gap distribution. The method and its variants have shown 

good results in conifer stands, especially moderately dense stands (Andrew et al., 1999; 

Leckie et al., 1999). It is based on the assumption that on spectral imagery, trees are 

represented by bright pixels surrounded by lower intensity pixels in shaded areas or less 

illuminated parts of the crown. It is treating the intensity image like a topographic 

surface, thus it is a well-suited algorithm for isolating trees on satellite data or 

multi-color data as well. 

 

 

 



 

3.2 Estimation forest information using satellite data 

Satellite data and processing 

The optical satellite sensor GeoEye-1 was launched in 6 September, 2008. Image data 

were acquired on 27 October 2011 during clear weather conditions. The sensor provides 

panchromatic image at a geometric resolution of 0.41 m and 1.65m multi-spectral image 

in 15.2 km swaths. The spectral ranges of the four bands are 0.45–0.51 μm (band 1, 

coastal blue), 0.51–0.58 μm (band 2, green), 0.655–0.69 μm, (band 3, red), 0.78–0.92 

μm (band 4, near-infrared), stored as 16-bit data. The spacecraft is intended for a 

sun-synchronous orbit at an altitude of 681 km and an inclination of 98 degrees, with 

equator crossing time. GeoEye-1 can image up to 60 degrees off nadir. The original 

images with sensor orientation, topographic relief displacement, and systematic errors 

were rectified by ortho-correction based on X, Y, and Z values for sensor positions 

derived from a GPS system and the principal points and focal length of the sensor. The 

geographic projection was converted to WGS84 north Zone 54. The ground resolution 

of the multi-image was 2 m，and the ground resolution of panchromatic image was 50 

cm after correction. 

The geographic projection was converted to WGS84 north Zone 54, and study area 

was extracted from the multi-image and panchromatic-image respectively with GPS 

data and software ERDAS IMAGINE 8.6. Pixels classification on the extraction image 

was used to species classification. The training areas with Chamaecyparis obtusa, 

Chamaecyparis pisifera, Thujopsis dolabrata and broadleaved trees were selected from 

the field survey.  

On the other hand, ITC (Individual Tree Crown) method was used for tree tops, 

tree-crown delineations and species classifictiion of delineated tree-crown. ITC method 

is a new method of digital remote sensing data analysis with the purpose of extracting 

individual tree crown based forestry parameters as automatically as possible, such as 

individual tree species and canopy area, crown and tree top extraction, stem density, 

crown closure and gap distribution. GeoEye-1panchromatic image was used to 

delineate forest area and non-forest area based on THR (thresholding Image to bitmap) 

method. This method creates the boundary of each segment based on the spectral 

http://en.wikipedia.org/wiki/Sun-synchronous_orbit
http://en.wikipedia.org/wiki/Panchromatic


 

values which was specified range of non-forest area. It was important to separate 

non-forest regions in the image, such as roads and gap of crown. On this basis, the 

valley-following method from the NIR band of GeoEye-1 multi-color image was used 

to delineate tree crown (Gougeon 1995). This method compares the spectral values of 

each pixel, and then it treats the spectral values of the imagery as topography with 

shaded and darker areas representing valleys and bright pixels of the tree crowns. It 

produces a bitmap of segments of valley and crown materials. A rule-based system 

follows the boundary of each segment of crown material to create isolations, which are 

taken to represent tree crowns. The ITC image was classified into species using a 

supervised classification process of multi bands based on comparing crown signatures 

(Katoh 2009). Tree top detection method was used to detect tree tops of canopy tree 

and count their numbers automatically. Bitmap of tree tops was created based on the 

highest spectral values of pixels within delineated crown. It confirmed the number of 

canopy trees. Canopy area can be used to calculate the DBH using the result of image 

analysis and crown size-DBH regression equation. Then, projection results of DBH can 

be used to calculate the height based on height-diameter equations. Finally, the volume 

and biomass can be calculated based on volume formula and expanding coefficient 

method respectively. 

Panchromatic image was necessary to do smoothing based on their own ranges in the 

illumination image before crown extraction, which was done twice to smooth using an 

averaging filter of 3× 3 pixels (1.5 by 1.5 m). And the non-forest mask was established 

after the smoothing process. Typically, it smoothed the small tree areas with a 3x3 

average filter, and the big tree areas with a 5x5 filter on top of the 7x7 smoothing. 

However smoothing process was done by 3x3 average filters, although it is 350 years 

old-growth forest. Because tree crown growth was affected by high canopy density in 

this old-growth forest, and the diameter of the tree crowns ranged from 3 to 5 m, a filter 

size of 3 × 3 pixels was more suitable than 5×5 or 7× 7 pixels. The process was used to 

mask non-forest areas of the image, such as road and gap between crowns. The ITC 

isolation image was formalized the outlines of tree crowns and tree clusters partially 

delineated using valley-following approach producing an output bitmap representing 



 

lines and areas of shaded material between tree crowns depending on the non-forest 

mask. This is done by the valleys of shaded material (dark) between brighter tree 

crowns. Processing on details can be conducted aiming at some special areas, and the 

unnecessary or erroneous points can be revised or deleted (Figure 8). 

 

 

Figure 3-1 Distinction of forest and non-forest 

 

3.3 Results  

Estimation for tree information  

Some errors were generated from the automatic extraction in the tree crown 

delineation image, such as tree crown cross and split. The crown delineation processes 

may have difficulties with these trees which crowns were split up or merged. But this 

has little influence on this study, as the total number of trees is concerned for biomass 

estimation. Furthermore, tree tops extraction was used to detect number of these 

delineated crowns in medium to densely populated areas where some crowns had not 

been extracted yet apparently visible trees. This program moves a window of a given 

size on ITC isolation image and detects the local “centered” Gray-level maximum of 

each window's instance. Delineated crowns in the images corresponded well to 

dominant trees in the high-density field. In this study, 282 of tree crowns and 352 of tree 

tops were extracted (Figure 9). The number of crowns from the image analysis was 

fewer than the stems from the field survey, primarily because some trees in the image 



 

were misidentified as one large tree crown rather than a cluster of trees. In order to 

examine the accuracy of estimated the count of the number of trees using the new 

method, the number of estimation had been compared with field survey at four levels, 

including all trees, the trees with DBH ≥35 cm, DBH ≥ 50 cm and DBH ≥ 65 cm 

distinguishing species (Table 1). The errors for all trees, DBH ≥ 35 cm, DBH ≥ 50 cm 

and DBH ≥ 65 cm of Chamaecyparis Obtusa were 63.39%, 55.84%, 48.39%, and 

6.55% respectively. For Chamaecyparis pisifera, they ranged from -46.15% to 78.77%. 

The error for tree number of Thujopsis dolabrata ranged from -500% to 99.08%, and 

these of broad-leaved trees ranged from -200% to 97.28%.  

The results indicated that tree number estimation of Chamaecyparis pisifera was 

inferior to Chamaecyparis Obtusa owing to their large crowns and same spectrum 

characteristics resulted in one crown being sometimes misidentified as a cluster of 

crowns. The tree number estimation error for Thujopsis dolabrata and broad-leaved 

trees were relatively large, because Thujopsis dolabrata was absent in the large classes, 

while occurred in the small classes. And multilayered stands have some intermediate or 

understory trees that are difficult to be extracted using image analysis. 

 

 

Figure 3-2 Crown and tree tops extraction 

 

 



 

Table 3-1 Accuracy of tree number estimation 

Species 

Field survey data 

Estimated 

data 

Error(%) 

All 

Stems 

DBH≥

35cm 

DBH 

≥50cm 

DBH 

≥65cm 

All 

Stems 

DBH 

≥35cm 

DBH 

≥50cm 

DBH 

≥65cm 

Chamaecyparis 

obtusa 

702 582 498 275 257 0.63  0.56  0.48  0.07  

Chamaecyparis 

pisifera 

179 69 52 26 38 0.79  0.45  0.27  -0.46  

Thujopsis dolabrata 2605 25 14 4 24 0.99  0.04  -0.71  -5.00  

Broad-leaved trees 1325 16 14 12 36 0.97  -1.25  -1.57  -2.00  

 

Estimation for forest biomass by species at individual tree level  

There are numerous approaches to estimate aboveground dry biomass from satellite 

data. Regression analysis is the most common modeling approach, using most studies 

relating vegetation indices based on red and near-infrared (NIR) wavelengths with their 

field measurements. However, apart from the enhanced vegetation index (EVI), which 

was proved to be sensitive to canopy variations, and have achieved moderate success in 

old-growth forest, where biomass levels are high and forest canopy is closed with 

multiple layers. The method can capable of producing data at large areas, but it is just a 

rough estimate, for individual tree level the related accuracies generally are not 

satisfactory. 

Therefore, this study focuses on the concrete methods for acquiring biomass. For 

accurate measurement of forest biomass in the Akazawa Forest Reserve, this study 

analyzed texture measures derived from GeoEye-1 satellite data using the new remote 

sensing method. The goal is to develop improved biomass estimation models whether 

analysis objects is individual tree or large areas of forest, and evaluating both spectral 

and textural information. 

Two methods were used to classify tree species as Chamaecyparis obtusa, 

Chamaecyparis pisifera, Thujopsis dolabrata and broadleaved trees. Firstly, pixel 

based classification of the extraction image from multi-spectral images was fed into a 



 

supervised classification process, with training some areas of Chamaecyparis obtusa, 

Chamaecyparis pisifera, Thujopsis dolabrata, broadleaved trees and gaps based on the 

field survey (Figure 10). According to the results of the pixel based classification, the 

accuracy of Chamaecyparis obtusa was higher than other species, and the 

Chamaecyparis pisifera had a lowest accuracy (Table 2). Because Chamaecyparis 

obtusa dominated in this field. On the other hand, Chamaecyparis obtusa and 

Chamaecyparis pisifera belong to the same cupressaceae, and they have similar 

spectrum characteristics and are difficult to be distinguished in the multi-spectral 

images. Therefore, some pixels of Chamaecyparis pisifera might be misclassified into 

Chamaecyparis obtusa mutually in the classification process. Additionally, some 

Thujopsis dolabrata were misclassified into gaps, because small Thujopsis dolabrata 

distributed in these gaps. 

  

 

Figure 3-3 Tree species classification with pixel 

 

 

 

 

 



 

 

Table 3-2 Accuracy of tree species classification by pixel 

Class name 

Class 

NO. 

1 2 3 4 5 

Producter,s  

accuracy(%) 

Chamaecyparis 

obtusa 

1 64 1 1 1 0 95.5 

Chamaecyparis 

pisifera 

2 16 15 0 2 0 45.5 

Thujopsis 

dolabrata 

3 4 0 34 0 3 82.9 

Broad-leaved 

trees 

4 1 1 0 9 0 81.8 

Gap 5 1 0 2 0 24 88.9 

User,s 

accuracy(%) 

 74.4 88.2 91.9 75.0 88.9  

Secondly, the ITC isolation image and multi-spectral images were fed into a 

supervised classification process with training areas as the same classes as above 

(Figure 11). Results of indicated that Chamaecyparis obtusa had highest accuracy of 

classification, while that of broad-leaved trees was lowest (Table 3). Because crown size 

of broad-leaved trees is small in the high-density forest. Biomass estimation is 

necessary to confirm the species of crown. In the supervised classification, the ITC 

isolation mask and multispectral images were used to identify species for each crown 

(Figure 11). The results of crown classification shows tree crown species, size, density, 

and position. A comparison of the locations of canopy trees identified using the tree 

crown extraction method within the stand with those mapped through field survey 

indicated a close correspondence. Three counts of trees were compared against the field 

data; tree tops identified using local maxima filtering within the smoothed image, 

crowns identified using the ITC delineation and both treetops and crowns identified 

using pixel classification and crown classification. The number of crown was 282, tree 

tops was 352. These results showed that the number of trees by species determined by 



 

the new tree top method were less accurate than the total number of trees using the new 

method. This may be due to the underestimation of Chamaecyparis Obtusa, 

Chamaecyparis.Pisifera and Thujopsis dolabrata. Thus, the method can be used 

effectively to extract the number of stems of upper and intermediate canopy trees in 

pure conifer plantations when multiple layers or high densities are not involved. 

 

Figure 3-4 Classification of tree crown by species 

 

Table 3-3 Accuracy of classification of tree crown by species 

Class name 

Class 

NO. 

1 2 3 4 5 

Producer's 

Accuracy (%) 

Chamaecyparis 

obtusa 

2 12 86 0 2 0 86.8 

Chamaecyparis 

pisifera 

1 32 6 0 0 0 84.2 

Thujopsis 

dolabrata  

3 0 2 56 0 4 90.3 

Broad-leaved trees 4 0 0 2 20 0 91 

Gap 5 0 0 6 0 36 85.7 

User's accuracy(%)   72.7 91.5 87.5 91 90   

 



 

In order to examine the accuracy of estimated biomass using the new method, the 

biomass of estimation had been compared with field survey at four levels, including all 

trees, the trees with DBH ≥35 cm, DBH ≥ 50 cm and DBH ≥ 65 cm distinguishing 

species (Table 4). The errors for all trees, DBH ≥ 35 cm, DBH ≥ 50 cm and DBH ≥ 65 

cm of Chamaecyparis Obtusa were 16.1%, 11.94%, 12.36%, and -12.63% respectively. 

For Chamaecyparis pisifera, they ranged from-7.69% to 41.67%. The error for 

biomass estimation of Thujopsis dolabrata ranged from -370.58% to 78.67%, and 

these of broad-leaved trees ranged from -36.36% to 34.78%. The results indicated that 

biomass estimation of Chamaecyparis pisifera was inferior to Chamaecyparis Obtusa 

owing to their large crowns and same spectrum characteristics resulted in one crown 

being sometimes misidentified as a cluster of crowns. Furthermore, Chamaecyparis 

pisifera and broad-leaved trees were disadvantage of competition with Chamaecyparis 

Obtusa, which makes canopy area of Chamaecyparis pisifera smaller. Therefore, a 

large error of estimated DBH were produced using DBH-crown curve. The biomass 

estimation error for total of Thujopsis dolabrata was relatively large, because 

Thujopsis dolabrata was absent in the large classes, while occurred in the small classes. 

And multilayered stands have some intermediate or understory trees that are difficult to 

be extracted using image analysis. 

Table 3-4 Accuracy of biomass estimation 

Species Field survey data (t/ha)         Estimated data (t/ha) Error (%) 

All 

trees 

DBH≥ 

35cm 

DBH≥

50cm 

DBH≥ 

65cm 

 All 

trees 

DBH≥ 

35cm 

DBH≥ 

50cm 

DBH≥ 

65cm 

Chamaecyparis 

Obtusa 

103.31 10.22 9.87 7.68 8.65 16.10 11.94 12.36 -12.63 

Chamaecyparis 

Pisifera 

0.24 0.22 0.2 0.13 0.14 41.67 36.36 30.00 -7.69 

Thujopsis  

dolabrata 

0.75 0.13 0.085 0.034 0.16 78.67 -21.21 -88.24 -370.59 

Broad-leaved trees 0.23 0.13 0.12 0.11 0.15 34.78 -15.38 -25 -36.36 



 

In this chapter, a new remote sensing method was used to explore the potential of 

GeoEye-1 data for estimation of tree counting and biomass estimation of old-growth 

forest. The new method might be workable for the biomass estimation whether 

research object is individual tree or forest in canopy layer. Three kinds of errors were 

generated from estimation of tree counting and biomass estimation. Firstly, tree height 

is necessary to calculate volume and biomass. Height-diameter curve was used to 

estimate each tree height based on survey, and error was generated in this estimation 

process. LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 

data may resolve shortcomings in tree height estimation, which had been demonstrated 

potentially in measuring forest biomass. Secondly, the error was emerged in step of 

crown extraction. These errors because of the crown cross and split up, it was caused in 

canopy area calculation. In order to reduce the error, separation processing or 

connection was done manually by delineating crowns on the screen using the image 

editor of the Geomatica software. For the crown which can not be divided, canopy area 

was calculated as one crown. But this has little influence on this study, as the total 

number is concerned for biomass estimation. Because the DBH will change with the 

canopy area. Additionally, the crown of some trees couldn't be extracted in middle 

layer or under layer such as Thujopsis dolabrata. Because multilayered stands have 

some intermediate or understory trees that are difficult to extract using image analysis. 

Thirdly, the pixel based classification and object based classification produced errors 

in species classification and tree crown identification. Because Chamaecyparis obtusa 

and Chamaecyparis pisifera have similar spectrum characteristics, which led to one 

crown was sometimes misidentified as a cluster of crowns.  

The precision of biomass estimation for some species is not satisfied, and the main 

reasons are the poor precision of some species in satellite image and canopy area 

estimation. New instruments of higher resolutions in spatial, temporal and spectrum 

are devised for determining reliable forest aboveground biomass. With the 

development and improvement of the theories and models for biomass estimation by 

using of remote sensing data, great progress will be taken in the research of forest 

biomass on large scales. 



 

Some improved approaches for biomass estimation by species could attain high 

accuracy by combining with these methods. The next research subjects will include 

further application and testing extend larger areas, multiple scenes, varied topographies 

and different forest conditions using some other remote sensing data. Detailed 

comparisons with field survey results will be required to better ascertain the ultimate 

accuracy of this new method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4  Improved estimation for forest information at the individual tree 

level using multispectral airborne data and LiDAR data 

An integrated airborne measuring system offers high resolution multispectral data 

and LiDAR data for rapid tree species classification, estimating tree heights, timber 

volume, and forest biomass over designation areas. The airborne sensor can provide 

higher resolution data than satellite, and it helps to improve the classification accuracy 

of tree species, extract crowns of the under growth layer and estimate biomass. The 

LiDAR-based methods are less weather-dependent and capable of producing data from 

large areas with high temporal resolutions. 

 

4.1 Multispectral Airborne Data and processing 

The airborne sensor measure system was used in an aircraft developed by Asia Air 

Survey and contained a digital measurement camera (DMC). The image data have good 

color reproduction which was acquired by DMC. In addition, multi-color (Multi) data, 

panchromatic image and near-infrared image can be shot at one time without changing 

lens. Lens focal length of DMC is 120 mm. The image data were acquired on 30 

September 2010 during good weather and clear skies. Full-size images had multi-color 

(Multi) data consisting of four bands (visible blue, green, red, and near-infrared (NIR)) 

for 7680 lines × 13824 pixels at nadir with 16-bit data stored. The original images with 

sensor orientation, topographic relief displacement, and systematic errors were rectified 

by ortho-correction based on X, Y, and Z values for sensor positions derived from a 

GPS system and principal points and focal length of the sensor. The geometric 

projection was converted to WGS84 north Zone 54. The ground resolution of the Multi 

image was 20 cm after correction. Image processing and analysis were performed using 

ortho-correction processing in ERDAS IMAGINE 8.6 (ERDAS, 2012) and a tree-based 

stand map of field data was processed in ArcGIS 10. Tree-top detection and tree-crown 

delineations were performed using the Individual Tree Crown (ITC)-Suite (Gougeon 

and Leckie, 2003) in Geomatica 9.1(Geomatica 9, 2005). 

Airborne multispectral data offers exhaustive information of forest including forest 

edge and gaps. Some small trees located in the forest edge and gaps, and much of them 



 

are in understory layer. Near-infrared band of image was necessary to do smoothing 

based on their own ranges in the illumination image before crown extraction, which was 

done twice to smooth using two averaging filter of 3× 3 (0.6 by 0.6 m) pixels and 

7×7(1.4 by 1.4 m) pixels. Typically, it smoothed the undergrowth layer areas with a 3x3 

average filter, and the large crown areas with the 7×7 smoothing. However, the mask of 

non-forest areas, small crown areas and large crown areas can not be established well 

with smoothing processes were done by 3×3 or 7×7 average filters separately. Therefore, 

firstly, the non-forest mask was created based on luminance the pixel value of the image, 

which was used to distinguish forest area and non-forest area. Then, small crown area 

mask and large crown area mask were created based on the range of luminance values 

in the image. Among the two areas, one area was come under smoothing processing 

when another area was covered. Because smoothing processes is too big for under 

growth trees by windows size 7×7, it caused that small tree crowns were often merged 

in high-density stands or cannot be delineated. On the other hand, smoothing processes 

is too small for canopy trees by windows size 3×3 or windows size 5×5, it caused that 

the larger crowns were often split up. Therefore, the image was divided into three 

regions: larger crown areas, small crown areas and gaps based on the spectral values of 

Near-infrared band of the image. The smoothing processes of large crown areas was 

done by window size 7×7 based on concealing other areas which were designated as 

non forest mask and small crown areas mask. Similarly, the smoothing processes of 

small crown areas were done by window size 3×3 based on concealing other areas 

which were designated as non forest mask and large crown areas. The ITC isolation 

image was formalized the outlines of tree crowns and tree clusters partially delineated 

using valley-following approach producing an output bitmap representing lines and 

areas of shaded material between tree crowns depending on the non-forest mask. This is 

done by the valleys of shaded material (dark) between brighter tree crowns. Processing 

on details can be conducted aiming at some special areas, and the unnecessary or 

erroneous points can be revised or deleted (Figure 12). This done improved the accuracy 

of forest information estimation, although some errors were generated from the 

automatic extraction in the tree crown delineation image, such as tree crown cross and 



 

split. The crown delineation processes may have difficulties with these trees which 

crowns were split up or merged. But this has little influence on this study, as the total 

number of trees is concerned for biomass estimation. Furthermore, tree tops extraction 

was used to detect the number of these delineated crowns in medium to densely 

populated areas where some crowns had not been extracted yet apparently visible trees. 

This program moves a window of a given size on ITC isolation image and detects the 

local “centered” Gray-level maximum of each window's instance. Delineated crowns in 

the images corresponded well to dominant trees in the high-density field. In this study, 

673 of tree crowns and 953 of tree tops were extracted in the large crown areas, and 

1408 of tree crowns and 1452 of tree tops were extracted in the small crown areas. The 

number of crowns from the image analysis was fewer than the stems from the field 

survey, primarily because some trees in the image were misidentified as one large tree 

crown rather than a cluster of trees.  

 

 

Figure 4-1 Large crowns and Small crowns extraction 

 

 

4.2 LiDAR data and processing 

Lidar is a remote sensing technology that measures distance by illuminating a target 

http://en.wikipedia.org/wiki/Remote_sensing


 

with a laser and analyzing the reflected light. The term "lidar" comes from combining 

the words light and radar. Lidar is popularly used as a technology to make high 

resolution maps, with applications in geomatics, archaeology, geography, geology, 

geomorphology, seismology, forestry, remote sensing, atmospheric physics, airborne 

laser swath mapping (ALSM), laser altimetry, and contour mapping. Lidar combined 

laser’s focused imaging with radar’s ability to calculate distances by measuring the time 

for the signal to return. Airborne lidar sensors are used by companies in the remote 

sensing field. It can be used to create DTM (Digital Terrain Models) and DEM (Digital 

Elevation Models), which is a common practice for larger areas as a plane can take in a 

1 km wide swath in one flyover. An airborne lidar sensor is able to obtain the height of 

the canopy as well as the ground elevation. A reference point is needed to link the data 

with the WGS (World Geodetic System). In this study, LiDAR data was acquired on 26 

September 2010 from a helicopter. Average density was about 5/m
2
. The LiDAR data 

were geometrically corrected by software ENVI LIDAR3.2 using the DGPS-derived 

aircraft locations and INS data. And digital elevation model (DEM) data and digital 

surface model (DSM) data were created with 50cm high resolution using software 

ENVI LIDAR3.2 at the same time. Then, digital canopy height model (DCHM) data 

were created with the same resolution by subtracting DSM from the composite DEM 

using software ArcGIS 10. The Pixel value of DCHM data is tree height, which could 

be estimated from the DCHM data with the positions of tree tops using ArcGIS 10 

(Figure 13). 

 

 

Figure 4-2 Estimation for tree height by tree species using DCHM data 
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4.3 Biomass estimation method 

 Biomass calculation needs to calculate volume, and volume calculation needs DBH 

and tree height. According to estimation crown area, regression analysis for crown 

diameter-DBH curves was generated within Excel 2007 (Figure 14), the DBH can be 

calculated by crown size-diameter equations of tree species as follows: 

                       

Sc.o is canopy area of Chamaecyparis obtusa, DC.o is DBH of Chamaecyparis obtusa, 

and the determination coefficient R
2
 is 0.7864. 

                       

SC.p is canopy area of Chamaecyparis pisifera, DC.p is DBH of Chamaecyparis pisifera, 

and the determination coefficient R
2
 is 0.1716. 

                       

ST.d is canopy area of Thujopsis dolabrata, DT.d is DBH of Thujopsis dolabrata, and the 

determination coefficient R
2
 is 0.8354. 

                   

SB is canopy area of broadleaved trees, DB is DBH of broadleaved trees, and the 

determination coefficient R
2
 is 0.6752. 

 

 

Figure 4-3 Crown diameter-DBH curves by estimation data 

 

Based on crown diameter-DBH curves, the estimation accuracy of biomass for 



 

Thujopsis dolabrata was increased, and the estimation accuracy of biomass for 

Chamaecyparis obtusa was decreased. Because high resolution multispectral airborne 

data can be used to increase crown extraction of Thujopsis dolabrata, but it resulted 

that the large crown of Chamaecyparis obtusa was divided in the crown extraction 

process. 

 According to the estimation results of DBH and height, the biomass of each tree can 

be calculated with expanding coefficient method: 

D×BEF×V=B       

B is biomass, V is volume of tree, BEF is biomass expanding coefficient and D is bulk 

density. 

Estimation error for the four levels: all trees, the trees with DBH ≥35 cm, DBH ≥ 50 

cm and DBH ≥ 65 cm distinguishing species, may be calculated by the formula as 

follows: 

100×X÷M)-(X=φ      

where  is estimation error, X is the biomass of trees calculated by survey data, and M 

is estimated biomass.  

 

4.4 Results  

Tree species classification  

Airborne multispectral data offer higher resolution than satellite data. This helps to 

improve the estimation accuracy of forest information. Object-based supervised 

classification was used to classify tree species into Chamaecyparis obtusa, 

Chamaecyparis pisifera, Thujopsis dolabrata and broadleaved trees. The ITC isolation 

image and multi-spectral images were fed into a supervised classification process with 

training areas as the same classes as classified by GeoEye-1 (Figure 15). The kappa 

coefficient indicates a classification accuracy of 93.6%. Results indicated that 

Chamaecyparis obtusa had the highest accuracy of classification, while that of 

broad-leaved trees was lowest (Table 5). This is because Chamaecyparis obtusa 

dominate in this field. On the other hand, Chamaecyparis obtusa and Chamaecyparis 

pisifera belong to the same cupressaceae, and they have similar spectrum characteristics 



 

and are difficult to be distinguished in the multi-spectral images. Therefore, some pixels 

of Chamaecyparis pisifera might be mutually misclassified into Chamaecyparis obtusa 

in the classification process. Additionally, some Thujopsis dolabrata were misclassified 

into gaps and shadow, because small Thujopsis dolabrata distributed in these gaps and 

forest edge.  

 

 

Figure 4-4 Object classification of tree crown by species 

 

Table 4-1 Accuracy of object classification of tree crown by species 

Class name Class NO. 1 2 3 4 5 

Producer's 

accuracy(%) 

Chamaecyparis obtusa 1 102 8 0 0 0 92.7 

Chamaecyparis pisifera 2 13 52 0 0 0 80 

Thujopsis dolabrata  3 0 5 134 7 12 84.8 

Broad-leaved trees 4 0 0 11 56 6 67.5 

Gap 5 0 0 13 2 38 71.6 

User's
 
accuracy(%)   88.6 80 84.8 86.1 67.8   

 

 



 

Crown of species identification 

The location image of tree tops, object-based classification of tree crown image and 

location map were used for localization processing to identify species. A comparison of 

the locations of canopy trees identified using the tree crown extraction method within 

the stand with those maps through field survey indicated a close correspondence. Three 

counts of trees were compared against the field data; tree tops identified using local 

maxima filtering within the smoothed image, crowns identified using the ITC 

delineation and both treetops and crowns identified using pixel classification and crown 

classification. The results of crown classification show tree crown species, size, density, 

and position. The number of tree crowns and tops was 673 and 953, respectively, in the 

large crown areas, and 1408 of tree crowns and 1452 of tree tops were extracted in the 

small crown areas. These results showed that the number of trees by species determined 

by the new tree top method were less than the total number of trees using the new 

method. This may be due to the underestimation of Chamaecyparis Obtusa, 

Chamaecyparis.Pisifera and Thujopsis dolabrata. Thus, the method can effectively be 

used to extract the stems of upper and intermediate canopy trees in pure conifer 

plantations when multiple layers or high densities are not involved. 

  

Biomass estimation accuracy 

In order to examine the accuracy of estimated biomass using the new method, the 

biomass of estimation was compared with field survey at four levels, including all trees, 

the trees with DBH ≥35 cm, DBH ≥ 50 cm and DBH ≥ 65 cm distinguishing species as 

the same classes as biomass estimation by GeoEye-1 data (Table 6). The errors for all 

trees, DBH ≥ 35 cm, DBH ≥ 50 cm and DBH ≥ 65 cm of Chamaecyparis Obtusa were 

13.39%, 12.62%, 9.52%, and -16.28%, respectively. For Chamaecyparis pisifera, they 

ranged from -20.0% to 35.0%. The error of Thujopsis dolabrata ranged from 

-1464.71% to 29.07%, and that of broad-leaved trees ranged from -48.33% to 22.61%. 

The results indicated that biomass estimation of Chamaecyparis pisifera was inferior 

to Chamaecyparis Obtusa owing to their large crowns and same spectrum 

characteristics resulted in one crown being sometimes misidentified as a cluster of 



 

crowns. Furthermore, Chamaecyparis pisifera and broad-leaved trees were 

disadvantage of competition with Chamaecyparis Obtusa, which makes canopy area of 

Chamaecyparis pisifera smaller. Therefore, a large error of estimated DBH was 

produced using DBH-crown curve. The biomass estimation error for total of Thujopsis 

dolabrata was reduced significantly, because multispectral airborne data provide high 

resolution, which helps to extract crown of the undergrowth layer. Thujopsis dolabrata 

was absent in the large classes, while it occurred in the small classes. Though high 

resolution multispectral airborne data resulted in the high crown extraction error, this 

did not effect on biomass estimation. 

 

Table 4-2 Accuracy of biomass estimation using Multispectral Airborne Data 

Species Field survey data (t/ha) Estimatio

n 

data (t/ha) 

Error(%) 

All 

trees 

DBH  

above 

35cm 

DBH 

above 

50cm 

DBH 

above 

65cm 

All 

trees 

DBH 

above 

35cm 

DBH 

above 

50cm 

DBH 

above 

65cm 

Chamaecypa

ris.obtusa 

10.31 10.22 9.87 7.68 8.93 13.39 12.62 9.52 -16.28 

Chamaecypa

ris.pisifera 

0.24 0.22 0.2 0.13 0.156 35.00 29.09 22.00 -20.00 

Thujopsis.do

labrata 

0.75 0.132 0.085 0.034 0.532 29.07 -303.03 -525.88 -1464.71 

Broad-leaved 0.23 0.13 0.12 0.11 0.178 22.61 -36.92 -48.33 -61.82 

 

In this chapter, we proposed a method for improving forest biomass estimation. One 

object coverage model was used for improving biomass estimation of under growth 

layer in multispectral airborne images. The object coverage model was slightly better 

than the commonly used filters in terms of preserving details in forestry areas. The 

results showed the biomass estimation accuracy was significantly improved when 

object coverage model was used in comparison to estimating the biomass in 

multistoried forest. 



 

Chapter 5 Development tree growth prediction model with Gray theory 

Forests offer many different kinds of services, for example: wood production, 

environment protection, provision of scenic beauty and recreation, and so on (Forest 

Agency, 2006). However, they are effected easily in short term by all kinds of human 

disturbances, including harvesting, over-harvesting and degradation, fire control, and 

also impacted evidently by many natural causes such as large-scale occurrence of 

wildfires, strong winds, pest and disease outbreaks, snow damage，and especially 

climate change of long term (Morisawa, 1999). Studies on the change of forest in the 

past are to understand its development in the future, then provide some commendation 

for forest management and improve its function. In recent years, how to predict growth 

of forest was paid more and more attention (FFPRI, 2012). But now it seems that 

traditional prediction methods cannot meet completely the need of modern forest with 

more emphasis on ecological protective function. Recently in Japan the long rotation 

management process of conifer plantation is being popular，and through predict growth 

of forest plays a very important role for the long rotation management process of conifer 

plantation.  

Analysis on stand structure characteristics and reasonable forecast results were the 

important departments of forest management. The diameter at breast height (DBH) of 

tree describes the growth process of tree, and DBH has relationship with geographic 

factors and environmental factors (Minowa, 1995). So the diameter at breast height 

(DBH) of tree, a basic and very important parameter in forest research, was essential for 

calculation of tree volume and describing forest structure. Even though a great of forest 

forecast systems had been developed (Ando, 1968; Kikukawa, 1981; Matumoto, 2005; 

Shiraishi, 2005), most of them couldn’t predict DBH of tree individuals, and they 

needed environmental and geographical factors in forecasting growth of total stand. 

Gray theory, which defined Gray derivative and differential equation with correlation 

analysis and smooth discrete function, needn’t environment data and may resolve the 

above shortcomings in predicting forest growth (Deng, 1990). 

Although collected data can be used to do some simple prediction by simple line 

regression, the objective of this study, based on the survey of tree DBH in the past 20 



 

years, attempted to firstly develop a precise tool for forecasting DBH growth of tree 

individuals by mathematics. And then it was used to analyze the change law of forest 

structure and development process by every ten years. This paper might provide a new 

forecast theory and offer some recommendation for management of modern forest. 

 

5.1 Gray theory 

Gray theory developed by Julong Deng in 1982 is a subject of applied mathematics, 

which might be used to research the systems that include some known and also 

unknown information at same time (Deng, 1990). Both Gray theory and regression 

analysis are major tools in the field of prediction. In this theory, the completely known 

information was defined as white system, and completely unknown information was 

defined as black system, while incomplete information was defined as Gray system. 

And it defined Gray derivative and differential equation with correlation analysis and 

smooth discrete function. A differential equation model called GM (Gray Model) 

would be established when the known data set met the principle convergence of 

relevance (Usuki and Kitaoka, 2001). For example, GM (1, N) is a 1-order differential 

equation based grew model, which had N variables and might be expressed by the 

formula as follows: 

 
   

  
                        

And when the number of known variable is one, the above model became GM (1, 1) 

and might be represented by the formula as follow: 

     

  
          

 

5.2 Calculation process  

Tree growth was mainly decided by its gene and also influenced by a lot of factors 

such as site condition and climatic environment. However, it was difficult to express 

the information of tree’s gene and effect of environment using numerical value directly. 

DBH, one of basic parameters of forest structure, might be measured accurately and 

used to reflect the interaction of all of impact factors. It is completely known 



 

information in forest system. Therefore, Gray Model can be used to predict growth of 

trees well without local environment information. In this study, DBH of trees in the 

stand surveyed in 1988, 1998, 2003 and 2008 was as the completely known 

information and GM (1, 1) was adopted to establish derivative equation to forecast the 

growth of every tree individual. For prediction, time series data with even-interval such 

as 5 or 10 years is necessary. Because of lacking the survey data in 1993, the average 

growth of every tree from 1988 to 2008 was used to assess its DBH in 1993. Then the 

time series data in 1988, 1993, 1998, 2003 and 2008 was used to establish one-order 

matrix by the formula as follows: 

      
   

         
   

        
   

        
   

        
   

        
   

    

Where X(m)(n) is predictive value of tree DBH, m is tree No. marked in survey, and n 

is survey year. The differential equation of GM (1, 1) might be expresses as follows: 
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Where a is development parameter of the numerical sequence, u is the control 

parameter on a, and e is natural logarithm. The parameter a related with u as follows: 

a   a u T       

And a
^

 might be calculated by the formula: 

a   BTB  1B     

In the above equation, in order to explain the process of calculation easily, here Y was 

a code with no real meaning, and also for B. And BT is the transposed matrix of B. 

They might be expressed by the next matrixes as follows: 
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Finally, a program for the above calculation process was written by using the Visual 

Basic of Microsoft Corporation. By this program, the growths of tree individuals can 

be forecasted with every 5-year and we only have calculated the DBH of every tree in 

2018, 2028 and 2038 in this study. 

 

Prediction accuracy 

Forecast error may be calculated by the formula:  

              

Φ is forecast error, X is survey data and M is calculated by Gray program in same year. 

 

5.3 Results 

Prediction for Chamaecyparis obtusa growth 

The DBH distribution can be used to explain the change of forest dynamics. But 

finding the change of DBH distribution of old-growth forest needed much time and 

survey data. Using Gray theory of mathematics, this research developed a program of 

calculating tree growth by using the data of the stand surveyed in year 1988, 1998, 

2003, 2008 and the presumed data of 1993 by average growth method. By this program, 

the growth of every Chamaecyparis obtusa individual was predicted in 2018, 2028 and 

2038 respectively (Figure 16). According to survey data, average DBH increment of 

Chamaecyparis obtusa was only 0.5-1.5 cm in every 5 years, the DBH distribution had 

no significant change. In order to improve forecast accuracy and grasp the changes of 



 

forest dynamics, the DBH of every tree was grouped by 2 cm intervals, and all of trees 

were classified as under layer, middle layer or dominant layer based on their DBH. In 

this study, the DBH range of understory layer was 5cm to 24cm, middle layer was 

24cm to 58cm, and dominant layer was 58cm to 80cm. Results of prediction indicated 

that the DBH distribution of Chamaecyparis obtusa ≤ 24cm had no obvious change 

except the classes from 5 cm to 10 cm in the next 30 years (Figure 16). This is because 

sufficient light is necessary for the growth of Chamaecyparis obtusa, but in understory 

of the stand, illuminance was no enough due to the closed canopy, which led to the 

slow growth of Chamaecyparis obtusa trees in understory. Another season is a frost 

disturbance in 1998 may be a large part of a cause of mortality for stems in smaller size 

classes (Morisawa, 1999). In addition, a number of trees with DBH from 5 cm to 10 

cm may increase markedly in the next 30 years, because these saplings mainly 

distributed in the canopy gaps between in big trees. The canopy gaps may provide 

good light environment for the growth of Chamaecyparis obtusa. Furthermore, the 

forest floor was cleaned up in the clear-cutting in 350 years ago and selective-cutting 

in 60 years ago, thence Chamaecyparis obtusa seed can germinate on the forest floor, 

and these saplings can regenerate well. 

In middle layer of the forest, the number of Chamaecyparis obtusa trees from 36 cm 

to 42 cm may be decreases with time. However, the number of trees from 52 cm to 58 

cm may be increases. This illustrated that the Chamaecyparis obtusa in middle layer 

would have good growth and be in advantage in the competition with other species, 

because most of big Thujopsis dolabrata and Broad-leaved trees were cut in the 

selective-cutting of 60 years ago (Hoshino et al., 2002). In the dominant layer, the 

number of old-growth Chamaecyparis obtusa individuals would have no significant 

change. Even though some trees in middle layer will come into dominant layer, some 

old trees will die with natural succession and old-growth Chamaecyparis obtusa grow 

very slowly. 

 



 

 

Figure 5-1 Forecast of changes in DBH distribution of Chamaecyparis obtusa 

 

Prediction for Thujopsis dolabrata growth 

In this study, the species of Thujopsis dolabrata with DBH from 5cm to 14cm was 

classified as under layer to middle layer from 14cm to 27cm, and middle layer to 

dominant layer from 27cm to 48cm. Thujopsis dolabrata was absent in the larger 

classes, but more trees occurred in the smaller classes. The DBH distribution of 

Thujopsis dolabrata was characterized by L-shape, the features of natural regeneration, 

which showed an inverse pattern with Chamaecyparis obtusa (Figure 5-2). Saplings of 



 

Thujopsis dolabrata predominated understory of the stand with a mixture of 

broad-leaved trees. Forecast result showed that in the future 30 years, the number of 

Thujopsis dolabrata individuals with DBH from 5cm to 8 cm would decrease with 

time, while the trees with DBH from 8cm to 14cm would be increased (Figure 5-2). 

Because of vigorous growth of understory plants, it indicated that intra-species 

competition between saplings will become more and more severe and existing small 

trees will advance to higher-order DBH class with high-speed growth. 

The trees in middle layer will be increased significantly with time, which mainly 

result from fast growth of the trees distributed in the understory now. Closed canopy 

formed by big Chamaecyparis obtusa and Thujopsis dolabrata provided a suitable 

environment for the growth of regenerated Thujopsis dolabrata trees. On the other 

hand, the total number of trees in the dominant layer will be not changed in the next 30 

years, because of the lack of trees distributed in middle layer now. 

 



 

 

Figure 5-2 Forecast of changes in DBH distribution of Thujopsis dolabrata 

 

 

 

 

 



 

Prediction accuracy of tree growth 

In the understory, the average forecast error of Chamaecyparis obtusa was 23.8% in 

1998, 18.6% in 2003 and 11.9% in 2008. For Thujopsis dolabrata, it was 15.8% 13.6% 

and 9.7% respectively in the three years. And broad-leaved trees’ error was 17.6%, 

12.9% and 10.7% in 1998, 2003 and 2008. In middle layer, Chamaecyparis obtusa’s 

errors were 22.8%, 16.8% and 8.9% respectively, while they were 16.5%, 18.5% and 

11.3% for Thujopsis dolabrata, and 14.9%, 11.9%, 8.7% for broad-leaved trees. In the 

dominant layer, they were 22.4%, 13.6%, 6.8% for Chamaecyparis obtusa, 9.8%, 

13.5%, 17.9% for Thujopsis dolabrata, and 15.6%, 12.8%, 8.9% for broad-leaved trees 

in the three years respectively (Table 5-1). From the total stand, forecast error was 

highest in 1998, because snow and ice damage occurred in that time. Additionally, 

results of forecast indicated that prediction accuracy increased with the increment of 

DBH, because anti-interference ability of dominant trees is higher than the trees in 

middle layer and saplings when natural disturbance occurred. 

 

Table 5-1 Prediction accuracy validation 

Species Year 
Average prediction error (%) 

Understory layer Middle layer Dominant layer 

Chamaecyparis 

obtusa 

1998 23.8 22.8 22.4 

2003 11.9 12.5 13.6 

2008 9.6 8.9 6.8 

Thujops 

dolabrata 

1998 25.8 23.5 23.5 

2003 13.6 14.9 13.8 

2008 9.7 11.3 10.9 

broad-leaved 

1998 26.7 25.6 23.9 

2003 12.9 13.2 15.6 

2008 10.7 8.7 8.9 

 

In the 20 years, Chamaecyparis obtusa dominated canopy layer and Thujopsis 

dolabrata generally dominated understory and middle layer in the plot of this 



 

old-growth forest. However, the demographic parameters showed that Chamaecyparis 

obtusa is the least species. Chamaecyparis obtusa dominant species in the canopy 

layer has resulted in the dark forest floor environment except some places of canopy 

gap. The low light environment of forest floor may lead to the regeneration barriers of 

Chamaecyparis obtusa. Therefore, this species will decrease in importance in the 

canopy layer and will decline in the proportion of tree number in the future, although 

its bimodal DBH indicates presence of relatively abundant small or young stems. 

Chamaecyparis obtusa Saplings did not grow in the place around Thujopsis dolabrata, 

but some saplings were found in canopy gaps together with small broad-leaved trees. 

On the other hand, we can found that abundant young stems of Thujopsis dolabrata in 

understory and middle layer of the plot, which had very few canopy stems, probably 

due to its high shade tolerance and vegetative reproduction. It also indicates that such 

environment is appropriate for Thujopsis dolabrata’s growth, and it will increase in the 

canopy layer. Furthermore, a lot of Thujopsis dolabrata saplings will appear around 

Chamaecyparis obtusa saplings in the future, suggesting Thujopsis dolabrata will 

interfere with the growth of young Chamaecyparis obtusa and its natural regeneration 

will become more and more difficult. However, the forest will be dominated by 

Chamaecyparis obtusa in the canopy layer at long term if no major disturbance. But, if 

no some measurement for promoting regeneration of Chamaecyparis obtusa saplings 

in the canopy layer of this forest, Chamaecyparis obtusa will become less important 

and the more shade-tolerant species, Thujopsis dolabrata, will become more 

important(Hoshino et al., 2003), and the forest will be dominated by Thujopsis 

dolabrata finally after senescence and wilt of old-growth Chamaecyparis obtusa. This 

prediction is maintained from the results of this study. Accidental factors cause a 

decline in forecast accuracy, such as disaster, plant diseases and insect pests. Because 

Gray theory can not take into accidental factors. But the disturbance of accidental 

factors decrease the long forecast period. Therefore, Gray theory is suitable for 

Long-term forecasts of forest growth.  

 

 



 

Prediction for broad-leaved trees 

All of broad-leaved trees were divided into three layers: under layer is the trees with 

DBH from 5cm to 14cm, middle layer is from 14cm to 34cm, and dominant layer is 

from 34cm to 82cm. most of broad-leaved trees are mainly in under layer with 

DBH≤12 cm (Figure 18). The DBH distribution is also characterized by L-shape, 

showed the features of natural regeneration. Few broad-leaved trees with the DBH size 

over 54 cm survived in the plot because of the selective-cutting in 60 years ago. 

According to the survey, the understory is characterized by a dense coverage of 

Thujopsis dolabrata and broad-leaved saplings, so the growth of small trees in 

understory was mainly effected by the competition between Thujopsis dolabrata and 

broad-leaved trees. In the understory layer, the number of broad-leaved trees with DBH 

≤ 6 cm will be decreased evidently in the future 30 years. However, the trees with 

DBH from 6cm to 14cm will be increased. It indicated that inter-species competition 

between Thujopsis dolabrata and broad-leaved trees will become more and more 

severe and existing small broad-leaved trees will advance to higher-order DBH class 

with fast growth. In middle layer, the broad-leaved trees with DBH from 14 cm to 20 

cm will be increased with time, which mainly derived from the increase of trees in the 

understory. Additionally, the total number of trees in the dominant layer will be not 

changed in the next 30 years, because there are few trees distributed in middle layer 

growing into big individuals now. 

 

 



 

 

Figure 5-3 Forecast of changes in DBH distribution of broad-leaved trees 

 

 

 

 



 

Chapter 6 Prediction model for suitable sites of tree growth  

Old-growth forests have been studied partly because they represent the best fit of the 

vegetation to the long term climate, soils, and physiography of an area. This information 

is available on natural vegetation of forest. However, many factors influence the success 

of tree regeneration in managed old-growth forests, such as disaster, pest and disease 

outbreaks, and specially climate change of long term. Studies on the change of forest in 

the past are to understand its development in the future, then provide some 

commendation for forest management and improve its function. Analysis on stand 

structure characteristics and reasonable forecast results are the important departments of 

forest management. And forecast is an ecosystem-based, stand-level, forest growth 

simulator. Therefore, sophisticated computer models for forest growth have been 

imported into forest management and have become important forest management tools. 

In recent years, how to predict growth of forest was paid more and more attention 

(FFPRI, 2012). But now it seems that traditional prediction methods can’t meet 

completely the need of modern forest with more emphasis on ecological protective 

function. Recently in Japan the long rotation management process of conifer plantation 

is being popular, and predicts growth of forest plays a very important role for it. The 

survey data describes the growth process of tree, and has relationship with growth 

factors such as geographic factors and environmental factors (Minowa, 1995). 

Despite the abundant literature discussing the problems with using remnant or 

reconstructed old-growth to predict future forest composition and structure this process 

is still used to develop management guidelines in many forest types. However, most of 

them couldn’t predict growth of tree individuals, and they needed environmental and 

geographical factors in forecasting growth of total stand. Gray theory, which defined 

Gray derivative and differential equation with correlation analysis and smooth discrete 

function, needn’t environment data and may resolve the above shortcomings in 

predicting forest growth (Deng, 1990). 

In this study, the future structure of forest can be predicted based on the abiotic site 

characteristics of old-growth forest. Although collected data can be used to do some 

simple prediction by simple line regression, the objective of this study, based on the 



 

survey of recruited trees in the past 20 years, attempted to firstly develop a precise tool 

for forecasting suitable sites of tree growth as similar as possible by mathematics. And 

then it was used to analyze the change law of forest structure and development process 

by every ten years. This paper might provide a new forecast theory and offer some 

recommendation for management of modern forest. 

 

6.1 Calculation process  

Tree growth was mainly decided by its gene and also influenced by a lot of factors 

such as site condition and climatic environment. However, it was difficult to express 

the information of tree’s gene and effect of environment using numerical value directly. 

The location of recruited trees in the stand, one of basic parameters of forest structure, 

might be measured accurately and used to reflect the interaction of all of impact factors 

from site condition and climatic environment. It is completely known information in 

forest system. Therefore, Gray Model can be used to predict suitable sites of trees 

growth well without local environment information. In this study, coordinate of 

recruited trees in the stand surveyed in 1988, 1998, 2003 and 2008 was as the 

completely known information and GM (1, 1) was adopted to establish derivative 

equation to forecast the growth of every tree individual. For prediction, time series data 

with even-interval such as 5 or 10 years is necessary. Because of lacking the survey 

data in 1993, the average growth of every tree from 1988 to 2008 was used to assess its 

DBH in 1993. The recruited trees were selected based on the survey and assess data, 

and the coordinate of recruited trees were accomplished as time series data for 

prediction. 

Survey plot was equally divided into 11 rectangular areas, and named these areas 

from A1 to A11 respectively (Figure 19). These vertices were designated as its area 

reference point, and named these reference points from P1 to P12. These boundary 

lines of each rectangular area were desingated as reference lines and named these 

reference lines from L1 to L12 from northwest. The distances are from recruited tree to 

the two reference points within one rectangular area were used to establish one-order 

matrixes in 1993, 1998, 2003, and 2008 respectively by the formula as follows:  



 

      
   

          
   

        
   

        
   

        
   

       
   

  

Where P
 (m)

(n) is predictive value of distances which are from recruited tree to the two 

reference points within one rectangular area, m is reference point No. marked in survey, 

and n is survey year. The differential equation of GM (1, 1) might be expresses as 

follows: 
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Where aP(m) is development parameter of the numerical sequence, uP(m) is the control 

parameter on aP(m), and e is natural logarithm. The parameter aP(m) related with uP(m) as 
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Figure 6-1 Rectangular area and light intensity 

 



 

In the above equation, in order to explain the process of calculation easily, here YP(m) 

was a code with no real meaning, and also for BP(m). BP(m)
T
 is the transposed matrix of 

B. They might be expressed by the next matrixes as follows: 

        

       
   

       
   

       
   

   

 

      

 

 
 

        
   

        
   

 

 
 

 
        

   
        

   
 

 
 

 
        

   
        

   
 

 
 

 

 

 

          

     
    

        
   

        
   

 

 
 

        
   

        
   

 

 
 

        
   

        
   

 

 
   

  

    

A program for the above calculation process was written by using the Visual Basic of 

Microsoft Corporation. By this program, the distance is from recruited tree to the 

reference point can be forecasted by every 5-year and we only calculated the distance 

in 2018, 2028 and 2038 in this study. 

On the other hand, the distances which are from recruited tree to the two reference 

lines within one rectangular area were used to establish one-order matrixes in 1993, 

1998, 2003 and 2008 respectively by the formula as follows: 

      
   

         
   

        
   

        
   

        
   

          
   

   

  Where L
(m)

(n) is predictive value of distances which are from recruited tree to the two 

reference lines within one rectangular area, m is reference line No. marked in survey, 

and n is survey year. The differential equation of GM (1, 1) might be expressed as 

follows: 
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Where aL(m) is development parameter of the numerical sequence, uL(m) is the control 

parameter on a, and e is natural logarithm. The parameter a related with u as follows: 
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In the above equation, in order to explain the process of calculation easily, here YL(m) 

was a code with no real meaning, and also for BL(m). BL(m)
T
 is the transposed matrix of 

BL(m). They might be expressed by the next matrixes as follows: 

        

       
   

       
   

       
   

   

 

      

 

 
 

        
   

        
   

 

 
 

 
        

   
        

   
 

 
 

 
        

   
        

   
 

 
 

 

 

 

    

     
    

        
   

        
   

 

 
 

        
   

        
   

 

 
 

        
   

        
   

 

 
   

  

By the prediction program, the distance from recruited tree to the reference line 

within one rectangular area can be forecasted with every 5-year but we only calculated 

the distance in 2018, 2028 and 2038 in this study.  

The prediction distances data from recruited tree to the reference points and lines 

were used to create the buffer based on prediction distance data in 2018, 2028 and 

2038 respectively by ArcGIS 10 software. The overlapping portions of these buffers 



 

were considered as suitable sites of tree growth.  

 

Prediction accuracy of prediction model for suitable sites of tree growth 

Forecast error of suitable sites may be examined by three steps in this study. Firstly, 

the number of recruited trees was used to calculate the forecast error from 1993 to 

2008 within suitable sites in same year. Forecast error may be calculated by the 

formula:  

 100×X÷)M-X(=φ   

 is forecast error, X is the number of recruited trees of survey data and M is predicted 

number by Gray program in same year within same rectangular area.  

 is forecast error, X is the number of recruited trees of survey data and M is predicted 

number by Gray program in same year within same rectangular area.  

Secondly, in another paper of the author, the growths of tree individuals have been 

forecasted by every 5-year and have calculated the DBH of every tree in 2018, 2028 

and 2038 (Nan Wang et al., 2012). The predicted DBH might be used to determine the 

recruited trees and confirmed the location of the recruited trees within suitable sites of 

the plot in 2018, 2028 and 2038. Based on the prediction data, the number of recruited 

tree were counted within the suitable sites and forecast error may be calculated by the 

formula as follow:  

100×T÷)T-T(=θ aai
 

è is forecast error, Ti is the number of recruited trees of survey data within the suitable 

sites and Ta is the numbers of all the recruited trees in the same rectangular area which 

were calculated by Gray program in same year.  

All forest organisms ultimately depend on photosynthesis for their energy 

requirements. In this study, light intensity may be calculated by the formula: 

100×L÷L=μ oi  

ì is relative light intensity, Li is light intensity in the forest and Lo is light intensity 

outside the forest measured in same time. Finally, we analyzed the relationship 

between relative light intensity and the predicted suitable sites for tree growth.  

 



 

6.2 Results 

Basic characteristics of the forest 

Results of survey and assessment data indicated that the recruited trees of 

Chamaecyparis obtusa were 48 stems/ha, 27 stems/ha, and 25 stems/ha in 1998, 2003 

and 2008 respectively (Table 8). The total number of recruited trees of Chamaecyparis 

obtusa decreased significantly in the 10 years. This is because in understory of the 

stand, illuminance was not enough due to the closed canopy, which led to the slow 

growth of Chamaecyparis obtusa trees in understory. Besides, a frost disturbance was 

happened in 1998 explained the mortality of stems with small size classes (Morisawa, 

1999). The densities of recruited Thujopsis dolabrata trees were 317 stems/ha, 324 

stems/ha, and 391 stems/ha in 1998, 2003 and 2008 respectively (Table 8). The total 

number of recruited trees of Thujopsis dolabrata increased in the 20 years but had no 

obvious change from 1998 to 2003. Additionally, by counting the recruited trees within 

rectangular areas and analyzing the relationship between the position of recruited trees 

and the light intensity, we found that the recruited trees of Chamaecyparis obtuse was 

occurred infrequently in the understory and dominant layer, but most of them occurred 

in the middle layer (Table 8). This is because sufficient light is necessary for the 

growth of Chamaecyparis obtusa, but in understory of the stand, illuminance was not 

enough due to the closed canopy, which led to the slow growth of Chamaecyparis 

obtusa trees in understory. Contrary, the recruited trees of Thujopsis dolabrata was 

absent in the dominant layer, while many individuals occurred in the understory (Table 

8). This is probably due to its high shade tolerance.  

 

 

 

 

 

 

 

 



 

Table 6-1 Distribution of recruited tree based on survey data  

Species 

Layer 

Understory 

layer 

Middle 

layer 

Dominant 

layer The total number 

of recruited trees Year The number of recruited tree 

Chamaecyparis 

obtusa 

1998 8 34 6 48 

2003 3 19 5 27 

2008 4 18 3 25 

Thujops dolabrata 

1998 315 2 0 317 

2003 323 1 0 324 

2008 389 2 0 391 

 

Prediction for suitable sites of tree growth of Chamaecyparis obtusa  

 The number of the recruited trees can be used to explain the change of forest 

dynamics and to suggest whether the region meets the growth conditions of the trees or 

not. But forecasting the suitable sites of tree growth needed much time and survey data. 

According to survey data, average DBH increment of Chamaecyparis obtusa was only 

0.5-1.5 cm in every 5 years. In order to improve forecast accuracy and grasp the 

numbers of the recruited trees of Chamaecyparis obtusa, the DBH of every tree was 

grouped by 2 cm intervals and all of trees were classified into under layer, middle layer 

or dominant layer based on their DBH. In this study, the DBH range of understory 

layer was 5 cm to 24 cm, middle layer was 24 cm to 58 cm, and dominant layer was 58 

cm to 80cm. Using Gray theory of mathematics, this research developed a program of 

calculating tree growth by using the data of the stand surveyed in year 1988, 1998, 

2003, 2008 and the presumed data of 1993 by average growth method. By this program, 

the growth of every Chamaecyparis obtusa individual was predicted in 2018, 2028 and 

2038 respectively (Nan Wang et al., 2012). On the other hand, by the prediction 

program, the distance from recruited tree to the reference line within one rectangular 

area can be forecasted by every 5-year respectively, and then the results were used to 

create the buffer based on prediction distance data in 2018, 2028 and 2038 respectively 



 

by ArcGIS 10 software. The overlapping portions of these buffers were considered 

suitable sites of tree growth (Figure 20). Results of prediction indicated that the 

numbers of the recruited trees of Chamaecyparis obtusa ≤ 24cm had no obvious 

change in the rectangular areas in the next 30 years (Table 9). This is because sufficient 

light is necessary for the growth of Chamaecyparis obtusa, but in understory of the 

stand, illuminance was no enough due to the closed canopy, which led to the slow 

growth of Chamaecyparis obtusa in understory. Additionally, a frost disturbance in 

1998 may be a large part of a cause of mortality for stems in smaller size classes 

(Morisawa, 1999). The recruited trees will increase 7, and most of them will be 

distributed in the rectangular area of A2 in the next 30 years. This is because the small 

trees of Thujopsis dolabrata almost will not be distributied in this area, so there will be 

no tree species competition. On the other hand, the light intensity of rectangular areas 

A2 is 15%, which provides a good light environment for the growth of Chamaecyparis 

obtusa in understory.  

In middle layer of the forest, the number of the recruited trees of Chamaecyparis 

obtusa may be decrease with time in the rectangular areas except area A7 (Figure 20) 

(Table 9). This is because the forest floor of A7 locates at the area where, there is no 

rock coverage and good conditions of soil and light intensity with 30% for growth of 

Chamaecyparis obtusa (Hoshino D and Yamamoto S 2004). In the dominant layer, the 

total number of the recruited trees of Chamaecyparis obtusa has no significant change 

in the rectangular areas, but the appearance area for the recruited trees have significant 

change. Even though some trees in middle layer will come into dominant layer, some 

old trees will die with natural succession and old-growth Chamaecyparis obtusa will 

grow very slowly. In summary, the recruited trees of Chamaecyparis obtusa appear 

most at the area where the light intensity is from 10% to 20%, while they appear least 

at the area with light intensity from 40% to 50%. High light intensity is not conducitve 

for tree growth.  
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Table 6-2 Forecast rescult for recruited trees of Chamaecyparis obtusa  

Layer Year 

Rectangular areas   

Total  A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

Understory 

layer 

2018 0 2  1 1  1   0  5 

2028 1 3  1 1  0   1  7 

2038 0 2  0 0  1   0  3 

Total 1 7   2 2   2     1   15 

Middle 

layer 

2018 2 3 2 3 4 2 3 3 4 1 4 31 

2028 1 2 3 2 3 3 5 2 3 2 3 29 

2038 3 2 2 2 2 3 6 3 3 1 4 28 

Total 6 7 7 9 9 8 11 8 10 4 11 90 

Dominant 

layer 

2018 1 1  0 1 0 0 1 0 0 1 5 

2028 2 0  0 1 1 0 1 1 1 0 7 

2038 1 0  1 1 0 1 2 0 0 1 7 

Total 4 1   1 3 1 1 4 3 2 2 22 

Blank area represents that there is no recruited trees 

 

Prediction for suitable sites of tree growth of Thujopsis dolabrata 

Thujopsis dolabrata was absent in the larger classes, and most of them occurred in 

the smaller classes. Saplings of Thujopsis dolabrata predominated understory of the 

stand together with broad-leaved trees. Forecast results showed that the number of 

recruited trees of Thujopsis dolabrata will be increased in the A1, A3, A4 and A11 in 

understory in the future 30 years (Table 10). Because lots of Thujopsis dolabrata 

saplings in the understory were distributed in these areas. Besides, the forest state of 

canopy closure makes the dark forest floor which led to the protection for air humidity 

and the prevention for drying of soil, the appropriate environment for growth of 

Thujopsis dolabrata. The recruited trees in middle layer will be increased significantly 

with time, which mainly results from fast growth of the trees distributed in the 

understory now. Closed canopy formed by big Chamaecyparis obtusa and Thujopsis 



 

dolabrata provided a suitable environment for the growth of regenerated Thujopsis 

dolabrata trees. On the other hand, the total number of recruited trees in the dominant 

layer will not be changed in the next 30 years, because the lack of trees distributed in 

middle layer now (Figure 21) (Table 10). In summary, the recruited trees of Thujopsis 

dolabrata will appear most at the area with the light intensity from 10% to 20% with 

time. However, they will appear least at the area where the light intensity is from 40% 

to 50% in future 30 years. 

  

Table 6-3 Forecast rescult for recruited trees of Thujops dolabrata 

Layer Year 

Rectangular areas   

Total A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

Understory 

layer 

2018 13 13 13 17 20 24 27 34 26 25 26 238 

2028 15 15 16 20 22 27 29 33 24 22 30 253 

2038 18 14 20 24 21 26 32 38 29 26 33 281 

Total 46 42 49 61 63 77 88 105 79 73 89 772 

Middle 

layer 

2018 2 2 0 3 0 2 1 0 2 1 2 15 

2028 1 3 1 2 0 3 2 1 1 0 3 17 

2038 3 4 0 2 0 3 1 0 1 1 2 17 

Total 6 9 1 7 0 8 4 1 4 2 7 49 

Dominant 

layer 

2018 0 0 0 0 0 0 0 0 0 0 1 1 

2028 0 0 1 0 0 1 0 0 0 0 2 4 

2038 0 0 1 0 0 0 0 0 0 0 1 2 

Total 0 0 2 0 0 1 0 0 0 0 4 7 

Blank area represents that there is no recruited trees 
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Prediction accuracy of suitable sites  

In the understory, according to the predicted number of recruited trees, the average 

forecast error of Chamaecyparis obtusa was 12.3% in 1998, 11.9% in 2003 and 10.5% 

in 2008. For Thujopsis dolabrata, it was 23.6%, 14.3% and 10.2% respectively in the 

three years. In middle layer, Chamaecyparis obtusa’s errors were 31.5%, 30.3% and 

27.4% respectively, while they were 28.7%, 15.6% and 13.1% for Thujopsis dolabrata. 

In the dominant layer, they were 18.7%, 17.9% and 13.2% for Chamaecyparis obtusa, 

and 22.4%, 13.8% and 10.7% for Thujopsis dolabrata in the year of 1998, 2003, 2008 

respectively (Table 11). On the other hand, based on the forecast results of suitable sites 

of the recruited trees, the errors of the suitable sites were calculated by each rectangular 

area in 1998, 2003 and 2008 respectively (Table 12). In the understory, the average error 

for Chamaecyparis obtusa ranged from -38.3% to 40.3% in 1998, 2008 and 2008 

respectively. For Thujopsis dolabrata, it was 45.7%, 39.4% and 53.1% respectively in 

the three years. In middle layer, Chamaecyparis obtusa’s errors were 31.8%, 26.3% and 

23.5% respectively, while they were 28.4%, 32.6% and 24% for Thujopsis dolabrata. In 

the dominant layer, they were 16.9%, 25.6% and 21.3% for Chamaecyparis obtusa, and 

33.3%, 20% and 14.2% for Thujopsis dolabrata in the three years respectively. In view 

of the total stand, two kinds of errors were highest in 1998, because snow and ice 

occurred damage in that time. Additionally, results indicated that prediction accuracy 

increased with the increment of DBH, because anti-interference ability of dominant 

trees is higher than the trees in middle layer and saplings when natural disturbance 

occurred.  

 

 

 

 

 

 

 

 



 

Table 6-4 Forecast accuracy validation based on recruited trees number 

Species Year 

Average prediction error (%) 

understory layer Middle layer Dominant layer 

Chamaecyparis 

obtusa 

1998 12.3  31.5  18.7  

2003 11.9  30.3  17.9  

2008 10.5  27.4  13.2  

Thujops 

dolabrata 

1998 23.6 28.7 22.4 

2003 14.3 15.6 13.8 

2008 10.2 13.1 10.7 

 

Table 6-5 Forecast accuracy validation of suitable sites based on distribution of 

recruited trees 

Species Year 

Average prediction error (%) 

understory layer Middle layer Dominant layer 

Chamaecyparis 

obtusa 

1998 38.9  31.8  16.9  

2003 40.3  26.3  25.6  

2008 37.9  23.5  21.3  

Thujops 

dolabrata 

1998 45.7  28.4  33.3  

2003 39.4  32.6  20.0  

2008 53.1  24.0  14.2  

 

In the 20 years, the growth rate of Chamaecyparis obtusa was small where the DBH 

is from 5 cm to 15 cm, and that of Thujopsis dolabrata was greater than 

Chamaecyparis obtusa in the same DBH range. This is because Chamaecyparis obtusa 

dominated canopy layer and Thujopsis dolabrata generally dominated the understory 

of this old-growth forest. Chamaecyparis obtusa, the dominant species in the canopy 

layer has resulted dark forest floor environment except for some places of canopy gap. 

The low light environment of forest floor may lead to the regeneration barriers of 

Chamaecyparis obtusa, and defeat the competition with Thujopsis dolabrata which has 



 

strong shade tolerance. Therefore, Chamaecyparis obtusa will decrease in importance 

in the understory layer and decline in the proportion of tree number in the future. 

Furthermore, a lot of Thujopsis dolabrata saplings will appear around Chamaecyparis 

obtusa saplings in the future, suggesting that Thujopsis dolabrata will interfere with 

the growth of young Chamaecyparis obtusa and its natural regeneration will become 

more and more difficult. In addition, forecast results showed that few of recruited trees 

of Chamaecyparis obtusa distributed in the place where most recruited trees of 

Thujopsis dolabrata distributed in. But some Chamaecyparis obtusa saplings were 

found in canopy gaps together with small broad-leaved trees. On the other hand, we 

found that abundant young stems of recruited Thujopsis dolabrata trees located in 

understory and middle layer of the plot, which had very few canopy stems, probably 

due to its high shade tolerance and vegetative reproduction. It also indicated that such 

environment is appropriate for Thujopsis dolabrata’s growth, which will increase in 

the canopy layer. However, the forest will be dominated by Chamaecyparis obtusa in 

the canopy layer at long term if no major disturbance. If no some measurement for 

promoting regeneration of Chamaecyparis obtusa saplings, Chamaecyparis obtusa will 

become less important, while the shade-tolerant species, Thujopsis dolabrata, will 

become more important (Hoshino et al., 2003), and the forest will be dominated by 

Thujopsis dolabrata finally after senescence and wilt of old-growth Chamaecyparis 

obtusa.  

 In this study, forecast error is highest in understory layer and lowest in canopy layer 

for either Chamaecyparis obtusa or Thujopsis dolabrata. Accidental factors cause a 

decline in forecast accuracy, such as disaster, plant diseases and insect pests, because 

Gray theory can not take into accidental factors. But the disturbance of accidental 

factors decrease in the long forecast period. Therefore, Gray theory is suitable for 

Long-term forecasts of forest growth.  

 

 

 

 



 

Chapter 7 Conclusion 

  This paper, a prediction model for forest growth and growth suitable sites was 

developed including information collection system and prediction system, and verified 

the feasibility of the prediction model. The collection system can be used to detect and 

extract forest information at individual tree level based on high resolution remote 

sensing data and a new remote sensing method, and it can provide accurate data for 

prediction system to forecast forest growth and growth suitable sites at individual tree 

level. Satellite data can be used to collect the forest information in the wide rang of 

forest, but it can not provide sufficiently high accuracy data for prediction system using 

this information collection system. Although multispectral airborne data could be used 

to collect forest information using this collection system, it resulted in errors of tree 

crown and tree tops extraction. Thus, the collection portion of this system can be 

effectively used to extract the stems and estimate biomass of upper and intermediate 

canopy trees in pure conifer plantations when multiple layers or high densities are not 

involved.  

  The survey data of this study constitute a time series data for predicting using Gray 

Method. For prediction, Gray Method needs above four time series data collected with 

same time intervals. To constitute the time series data, we have to take a compromise. 

Because of lacking the survey data in 1993, the average growth of each tree from 1988 

to 2008 was used to assess its DBH in 1993. This reason led to the errors f prediction. 

Time series prediction refers to the process by which the future values of a system is 

forecasted based on the information obtained from the past and current data points. This 

paper forecasts the tree growth and growth suitable sites for tree growth using Gray 

models in time series prediction. It showed that the performance of the Gray predictors 

can be further improved by taking into account the error residuals. The results o f 

accuracy examination show that GM(1,1) model is able to make accurate predictions. 

However, Gray method can not reverse the prediction in the intermediate data of time 

series data used in this paper. Furthermore, Gray method can not consider the accidental 

factors which include the time series; this is one reason of prediction error. In order to 

improve the modeling accuracy of Gray models, several remedies have been discussed 



 

in the literature (Tan and Chang, 1996; Tan and Lu, 1996; Guo, Song, and Ye, 2005). 

Among these Gray models, the modified GM (1,1) using Fourier series in time is the 

best model in fitting and forecasting. 

Further application and testing are required to extend our results to larger areas, 

multiple scenes, varied topographies and different forest conditions. Field survey results 

will be required to better ascertain the ultimate accuracy of this system with the same 

time intervals in future. Improving the accuracy of the information collection system 

and prediction system and integrating the two parts of system are the subjects of 

ongoing research endeavors. 
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