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Abstract

The annihilation-creation operators of the harmonic oscillator, the basic and most
important tools in quantum physics, are generalised to most solvable quantum me-
chanical systems of single degree of freedom including the so-called ‘discrete’ quantum
mechanics. They admit exact Heisenberg operator solution. We present unified defi-
nition of the annihilation-creation operators (a(i)) as the positive/negative frequency
parts of the exact Heisenberg operator solution.

PACS : 03.65.-w, 03.65.Ca, 03.65.Fd, 02.30.1k, 02.30.Gp.

Introduction

The annihilation-creation operators are the simplest solution method for quantum mechani-
cal systems. In this Letter we provide unified definition of annihilation-creation operators for
most solvable quantum mechanical systems of one degree of freedom. A quantum mechanical
system is called solved or solvable if the entire energy spectrum {&,} and the corresponding
eigenvectors { ¢, }, Hon = E,¢, are known [I]. This is the solution in the Schrédinger picture.
We will show that they also possess exact Heisenberg operator solutions. The annihilation-
creation operators are defined as the positive/negative frequency parts of the Heisenberg

operator solution and they are hermitian conjugate to each other. This method also applies



to the ‘discrete’ quantum mechanical systems, which are deformations of quantum mechanics
obeying certain difference equations; see full paper [2]. Our results will be translated to those
of the corresponding orthogonal polynomials. In particular, the exact Heisenberg operator
solution of the ‘sinusoidal coordinate’ corresponds to the so-called structure relation [3] for

the orthogonal polynomials, including the Askey-Wilson and Meixner-Pollaczek polynomials

.
Heisenberg Operator Solution

We will focus on the discrete energy levels, finite or infinite in number, which are non-
degenerate in one dimension. For the majority of the solvable quantum systems [I], the n-th
eigenfunction has the following general structure ¢, (z) = ¢o(x)P,(n(z)), in which ¢g(x) is
the ground state wavefunction and P, (n(z)) is an orthogonal polynomial of degree n in a
real variable 7.

Our main claim is that this (x) undergoes a ‘sinusoidal motion’ under the given Hamil-
tonian H, at the classical as well as quantum level. The latter is simply the exact Heisenberg

operator solution. To be more specific, at the classical level we have
{H.AH,n}t} = —nRo(H) — R1(H). (1)

The two coefficients Ry and R_; are, in general, polynomials in the Hamiltonian H. This
leads to a simple sinusoidal time-evolution:

[e.e]

n(a;t) =Y ((=t)"/nl)(ad H)"n

n=0

- sin [t/ Ro(Ho) |
- {H7 77}0 RO(HO)

-+ (T](SL’)() + R_1(H0)/R0(H0)) COS [t Ro(Ho) ] y (2)

— R_1(Ho)/Ro(Ho)

in which ad’ HX = {H, X} and the subscript 0 means the initial value (at ¢ = 0). The

corresponding quantum expression is

[H, [H,n]] = n Ro(H) + [H,n] RBi(H) + R_1(H), (3)



in which Ry (H) is the quantum effect. The exact Heisenberg operator solution reads

o0

My (x)e” M = Z((it)”/n!)(ad H)"n
_ eia+(H)tn:0€ia—(H)t R ()R (H
- [ 7n(x)] Oé+(H) —Oé_(H) - —1( )/ 0( )

—a_ (H)eiour (H)t + oy (H)eia, (H)t
o (H) — a-(H) ’ @)

+ (n(x) + R_1(H)/Ro(H)) x

in which ad is now a commutator ad H X = [H, X, instead of the Poisson bracket. The two

“frequencies” are

ax(H) = (Ri(H) £ v/ Ri(H)? + 4Ro(H) ) /2,
ar(H) + a_(H) = Ri(H),
ar(H)a_(H) = —Ro(H). (5)

If the quantum effects are neglected, i.e. Ry = 0 and H — Hp, we have oy = —a_ =
v/ Ro(Hy), and the above Heisenberg operator solution reduces to the classical one (). When
the exact operator solution (H) is applied to ¢,, the r.h.s. has only three time-dependence,

6iai (En)t

and a constant. Thus the Lh.s. can only have two non-vanishing matrix elements
when sandwiched by ¢,,, except for the obvious ¢, corresponding to the constant term. In
accordance with the above general structure of the eigenfunctions, they are ¢,41; that is
(dm|n(x)|dn) = 0, for m # n £ 1,n. This imposes the following conditions on the energy

eigenvalues

gn-i—l — 8n = Oé+(£n>, gn—l — 8n = 0_ (gn)

These conditions, together with their ‘hermitian conjugate’ ones, combined with the ground
state energy & = 0 determine the entire discrete energy spectrum as shown by Heisenberg

and Pauli. In this letter we adopt the factorised Hamiltonian:
H=ATA/2, Apy=0=Hpy=0, & =0.

The consistency of the procedure requires that the coefficient of €'~ on the r.h.s. should

vanish when applied to the ground state ¢y:

—[H. n(x)]do + (n(x)as (0) — R-1(0)/a—(0)) ¢o = 0,
which is the equation determining the ground state eigenvector ¢ in the Heisenberg picture.
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Thus we arrive at a dynamical and unified definition of the annihilation-creation op-

erators:

My (x)e™™ = o (H,n)e’ T — R\ (H)/Ro(H) + o) (H,n)ei -0, (6)

a® = a(H, )
def

5 ()] F () + Ra(H)/Ro(H))ax(H)) / (o (H) = a-(H)). (7)

When acting on the eigenvector ¢,,, they read
+1
g (@) + (E — Ewn(x) +

gn-l—l -

R (€)>

gn:l:l

i)(bn(x) = Gn(). (8)

By using the three-term recursion relation of the orthogonal polynomial P,
NP, (1) = ApPori(n) + BuPa(n) + CoPri(n)

on the Lh.s. of (@), we arrive at

CL(+)¢” = An¢n+17 CL( ¢n = n¢n 1- (9>

Based on these relations, it is easy to show that a*) are hermitian conjugate to each other.

Sometimes it is convenient to introduce o’ with a different normalisation

d® o () (H) — a_(H)) (10)

= £[H,n(2)] F (n(z) + R-1(H)/Ro(H)) (M),

which are no longer hermitian conjugate to each other.

In the literature there is a quite wide variety of proposed annihilation and creation op-
erators [B]. Historically most of these operators are connected to the so-called algebraic
theory of coherent states, which are defined as the eigenvectors of the annihilation opera-
tor (AOCS, Annihilation Operator Coherent State). Therefore, for a given potential or a
quantum Hamiltonian, there could be as many coherent states as the definitions of the an-
nihilation operators. In our theory, on the contrary, the annihilation-creation operators are
uniquely determined except for the overall normalisation. In terms of the simple parametri-
sation 1 = > °° ¢, ¢n(z) the equation a7 = A, A € C can be solved with the help of
the formula ({)

) =p(A Z Hk = Paln(@), (11)
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To the best of our knowledge, the ‘sinusoidal coordinate’ was first introduced in a rather
broad sense for general (not necessarily solvable) potentials as a useful means for coherent
state research by Nieto and Simmons [6]. In [2] the necessary and sufficient condition for
the existence of the ‘sinusoidal coordinate’ (B) is analysed within the context of ordinary
quantum mechanics H = p?/2 + V(x). Tt turns out that the potential can be expressed in

terms of the n(x) and dn/dx

Vi) = (r"n?/2 4+ O + c) /(dnfdz)? = 11/8. (12)

The parameters appear in Ry(H) = ro "M+ 7“ , Ri(H) = r and R_1(H) = r(_lfH + r@f
and c is the constant of integration. These potentials are all shape invariant []. The Kepler
problems in various coordinates and the Rosen-Morse potential are not contained in ([[2),
though they are shape invariant and solvable.

We give three typical examples. See [2] for more.

Poschl-Teller potential
The Hamiltonian of the Poschl-Teller potential, the eigenvalues and the eigenfunctions are
0<x<7/2):
H (p —igcotx + ihtanz)(p + ig cotx — ih tanx)/2,
En=2n(n+g+h), g¢g,h>0, n(x)=-cos2z,
dn(z) = (sinz)?(cos )" PP (cos 2, (13)
in which P{*" (n) is the Jacobi polynomial and o = g — 1/2, f = h — 1/2. The classical
solution of the initial value problem is (H’ o+ (g+ h)?/2):

cos2x(t) = (cos 22(0) + g 7_-l’ ) cos|[2t\/2H} |
sin[2¢1/2H} | _g2—h2. (14)

— p(0) sin 22(0) S5 o
The corresponding quantum expressions are
[H, [H, cos 2z]] = cos 2z (SH' — 4) + 4[H, cos 2z] + 4(a® — 3?), (15)

with ag(H) = 2 £ 2v/2H’. The annihilation and creation operators are

d 2 52
a’™) HoVOH = +sin 20— + cos 22 V2H + — . 16
/2= dx VOH +1 (16)



When applied to the eigenvector ¢, as 2€, + (g + h)* = (2n + g + h)?, we obtain:

4
A (17)
") _An+1Dn+a+pB+1)
a /2¢n— 2n+a+ﬁ+2 ¢n+1- (18)

Deformed harmonic oscillator

The deformed harmonic oscillator is a simplest example of shape invariant ‘discrete’ quantum
mechanics. The Hamiltonian of ‘discrete’ quantum mechanics studied in this letter has the

following form [§] (with some modification for the Askey-Wilson case):

HE (V@) e V() + V@) e V@) = V) - V)©) /2. (19)

The eigenvalue problem for H, H¢ = £¢ is a difference equation, instead of a second order

differential equation. Let us define S4, T and A by

S, L eV (), S.E eV (a),
T, S1S, =/ V(z) e’ /V(z)",

T Este = V V() e P\/V(z),

AL (s, -8, Al =—i(st — 5. (20)

Then the Hamiltonian is factorized

H=(Ty +T- —V(z)—V(2)")/2
= (ST —ST) (S, —S5_)/2=ATA)2. (21)

The potential function V(x) of the deformed harmonic oscillator is V(z) = a + iz, —c0 <
x < 0o, a > 0. As shown in some detail in our previous paper [§], it has an equi-spaced
spectrum (&€, =n, n =0,1,2,...) and the corresponding eigenfunctions are a special case of

the Meixner-Pollaczek polynomial P\ ( : 7) M,

do(z) = VT(a +ix)T(a —iz), n(z)==x, (22)

() = do(x) Po(2), Pu(z) € P(z: 1), (23)

which could be considered as a deformation of the Hermite polynomial.



The Poisson bracket relations are {H,z} = —v/a? + 22 sinhp, {H,{H,z}} = —z, leading

to the harmonic oscillation,

x(t) = x(0) cost + v/ a? + 22(0) sinh p(0) sint, (24)

which endorses the naming of the deformed harmonic oscillator. The corresponding quantum

expressions are also simple: [H,z| = —i(Ty —1_)/2, [H,[H,z]] =z,
™M ye™™ = x cost +i[H,z] sint = x cost + (T, — T_)/2sint. (25)
The annihilation and creation operators are
d® =2aF =g+ [H, 2] =xFi(Ty —T.)/2. (26)

These operators were also introduced in [9] by a different reasoning from ours. The action

of the annihilation creation operators on the eigenvectors is
D¢, =(n+2a—1)p,1, P, = (n+1)dnsi. (27)

From these it is easy to verify the su(1,1) commutation relations including the Hamiltonian
H:
(H,dD] =+d®), [, ] =2(H +a). (28)

The coherent state ([Il), is simply obtained from the formula 7)) and a/(-) = 2a(7):

CN" Sy =

3

(@) = o(2) S

n=0

which has a concise expression in terms of the hypergeometric function | F}

a+ix

v(a) = dolw) A (1

) —4¢A>. (30)

Askey-Wilson polynomial

The Askey-Wilson polynomial belongs to the so-called g-scheme of hypergeometric orthog-
onal polynomials H]. It has four parameters a;,as, a3, aq on top of ¢ (0 < g < 1), and
is considered as a three-parameter deformation of the Jacobi polynomial. As a dynami-
cal system, it could be called a deformed Poschl-Teller potential. The quantum-classical

correspondence has some subtlety because of another ‘classical’ limit ¢ — 1.



The Hamiltonian of the Askey-Wilson polynomial has a bit different form from (I9):

HE (VVEOVVE +VVE ¢ VVE -V - VEy) /2, 61)
with a potential function V(z), 2 =€, 0 <z < 7:

H?:1(1 — a;z) def d d
= D=z—=—1—=np.
V(z) (1—22)(1—qz2)’ e Ydr P

We assume —1 < aq, a9, asz, a4 < 1 and ajasazay < q. The eigenvalues and eigenfunctions are

B:

1 - a1a2a3a4q )/27

\/ (273 9)
HJ 1(@525¢) o0 Hjt (@527 4)oo
n(z) = (z+27")/2 =cosz, ¢n(x) = ¢o(x)P,(cosx),
Pn(n) = pn(n§a17a27a3aa4|Q)7 (32)

in which p,(n; a1, as, as, as|q) is the Askey-Wilson polynomial [].
The classical sinusoidal motion () holds with the Hamiltonian (y = log ¢q):

He = \/700811729 (Ve(2) + Ve(2)7) /2,
Ve(2) = Hl(l —a;2)/(1=2°)" (33)
=
The coefficients in the classical expression are
Ro(H.) = v (H2 + eyHe + ¢2),
R_1(H.) = —*(esHe + c4),

with ¢ = 14 by, co = (1 —by)2/4, c3 = (b1 +b3)/4, cs = (1 —by)(by — b3)/8. Here we use the

abbreviation
4

def def def
bl = E Qaj , b3 = E a; QA , b4 = Haj .

1<j<4 1<j<k<I<4 j=1

The corresponding quantum expressions are
Ro(H) = qlg™" = 1*((1)* = (1+¢7")u/4)
Ri(H)=qlqg ' = 1)*H, H EH+(1+qb)/2,
Ra(H) = —qlq™ = V(b +q ") /4 + (1= q200) (b1 = b)/8).  (34)



The two frequencies are:

(M) = (g7 = 1)((1= M £ (1 + v/ =gy ) / 2.
The annihilation-creation operators are:

a®) = (:I:(q_1 1)z 1= ¢+ 2(1 — qz72)T) /4

+ coszas(H) £ R_y(H)as (H)‘1> / (as(H) — a_(H)).

Their effects on the eigenvectors are:

(1= ¢") [i<jenead — ajang™™)

Ny —

a (bn 2<1 _ b4q2n—2)(1 _ b4q2n_1) (bn—l,

1— b n—1

Cop - 14

e 2(1 — bag® 1) (1 — byg®) Prt1-

The coherent state is
= (20" Vo
V(x) = dolx) A" (a1a2a30459)2 Po(cost) .

e (759)n H1§j<k§4(ajak SO

n

(35)

(39)

Conclusions We have shown that most solvable quantum mechanics of one degree of free-

dom have exact Heisenberg operator solution. The annihilation-creation operators (a'*)) are

defined as the positive/negative frequency parts of the exact Heisenberg operator solution.

These (a'*)) are hermitian conjugate to each other. This method also applies to the so-called

‘discrete’ quantum mechanics whose eigenfunctions are deformations of the classical orthog-

onal polynomials known as the Askey-scheme of hypergeometric orthogonal polynomials.
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