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We propose a generalization of spin algebra using multi-index objects and a dynamical
system analogous to matrix theory. The system has a solution described by generalized
spin representation matrices and possesses a symmetry similar to the volume preserving
diffeomorphism in the p-brane action.

§1. Introduction

Group theoretical analysis has been applied successfully to a wide range of physi-
cal systems, because they are often invariant under certain transformations, and such
symmetry transformations, in many cases, form a group. Matrices can represent the
action of such group elements. Among physical quantities, the spin variables [on
which representation matrices of su(2) operate] have played important roles. Rela-
tivistic particles are classified with respect to two kinds of spin variables, because the
Lorentz algebra is essentially specified by su(2)×su(2).1) The spin variables and their
extensions appear in the non-commutative geometry, which is considered to repre-
sent a possible description of space-time at a fundamental level.2) For example, the
fuzzy 2-sphere constitutes a non-commutative space whose coordinates are inherently
representation matrices of the spin algebra.3) This space is used in the matrix de-
scription of a spherical membrane.4),5) It also appears as a solution of matrix theory
and the matrix model with a Chern-Simons-like term.6),7) Models related to higher-
dimensional fuzzy spheres have been examined in various contexts.8)–12) Hence, it is
a challenge to explore the generalization of spin algebra and representation matrices
in order to unveil yet unknown systems.

Recently, a generalization of spin algebra based on three-index objects has been
proposed, and the connection between triple commutation relations and uncertainty
relations has been investigated.13) This algebra can be generalized using an n-fold
product as the multiplication operation and an n-fold commutator among n-index
objects, as discussed below. Such n-index objects are called ‘n-th power matrices’,
which are interpreted as generalizations of ordinary matrices, and a new type of
mechanics has been proposed based on them.14),15) This type of mechanics can be
regarded as a generalization of Heisenberg’s matrix mechanics. It has interesting
properties, but it is not yet clear whether it is applicable to real physical systems
nor what physical meaning many-index objects possess. In an attempt to realize
a breakthrough with regard to the physical application of generalized matrices, we
shift our focus to other systems. With the expectation that studying the analogous
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670 Y. Kawamura

systems represented by matrix theory and the matrix model will provide some in-
formation, it is interesting to explore symmetry properties in dynamical systems of
generalized matrices, while keeping their classical counterparts in mind. One possible
classical analog is the system constituted by p-brane.17)

In this paper, we propose a generalization of spin algebra using n-th power
matrices, and a dynamical system analogous to matrix theory. This system has
a solution described by generalized spin representation matrices and possesses a
symmetry similar to the volume-preserving diffeomorphism in the p-brane action.

This paper is organized as follows. In the next section, we give a definition of
generalized spin algebras, generalized spin representation matrices and a variant of
a fuzzy sphere. We study a generalization of matrix theory based on generalized
matrices in §3. Section 4 is devoted to conclusions and discussion. In Appendix
A, we define n-th power matrices, an n-fold product, an n-fold commutator and
two kinds of trace operations. As we see from the definition of the n-fold product,
we do not use the Einstein summation rule that repeated indices are summed, to
avoid confusion. In Appendix B, we study transformation properties of hermitian
n-th power matrices. We explain the classical analog of generalized spin algebra in
Appendix C, and the framework of classical p-branes in Appendix D.

§2. Generalized spin algebra

First, we review the spin algebra su(2). This algebra is defined by

[Ja, Jb]mn = i�
∑

c

εabc(Jc)mn, (2.1)

where Ja (a = 1, 2, 3) are spin representation matrices, � is the reduced Planck
constant, and εabc is the Levi-Civita symbol. Matrices in the adjoint representation
are the 3 × 3 matrices given by

(Ja)mn = −i�εamn, (2.2)

where each of the indices m and n runs from 1 to 3.
Let us generalize the spin algebra defined by (2.1) using hermitian n-th power

matrices. (See Appendix A for the definition of hermitian n-th power matrices.) In
analogy to (2.2), we define the (n + 1) × (n + 1) × · · · × (n + 1) matrices that we
consider as follows:

(Ja)l1l2···ln = −i�(n)ε
al1l2···ln , (Ka)l1l2···ln = �(n)|εal1l2···ln |, (2.3)

where εal1l2···ln is the (n + 1)-dimensional Levi-Civita symbol, each of the indices a
and li (i = 1, 2, · · · , n) runs from 1 to n + 1, and �(n) is a new physical constant.
Hereafter, �(n) is set to 1 for simplicity. We find that the generalized matrices Ja

and Ka form the algebra

[Ja1 , · · · , Jan−2j , Kan−2j+1 , · · · , Kan ] = (−1)ji
∑
an+1

εa1a2···an+1Jan+1 , (2.4)

[Ja1 , · · · , Jan−2j−1, Kan−2j , · · · , Kan ] = (−1)j+1i
∑
an+1

εa1a2···an+1Kan+1 , (2.5)
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Dynamical Theory of Generalized Matrices 671

for an even integer n and j = 0, 1, · · · , n/2, and

[Ja1 , · · · , Jan−2j , Kan−2j+1 , · · · , Kan ] = (−1)j+1i
∑
an+1

εa1a2···an+1Kan+1 , (2.6)

[Ja1 , · · · , Jan−2j−1 , Kan−2j , · · · , Kan ] = (−1)j+1i
∑
an+1

εa1a2···an+1Jan+1 , (2.7)

for an odd integer n and j = 0, 1, · · · , (n − 1)/2. Here, the indices li are omitted,
and the n-fold commutator is defined by (A.4).

There exists the following subalgebra of the algebra defined by (2.4) and (2.5)
whose elements are Ga = (J1, · · · , Jn+1) for an even integer n:

[Ga1 , Ga2 , · · · , Gan ]l1l2···ln = i
∑
an+1

εa1a2···anan+1(Gan+1)l1l2···ln . (2.8)

Similarly, there exists a subalgebra of the algebra defined by (2.6) and (2.7) whose
elements consist of a suitable set of Jap and Kaq . For example, the elements Ga =
(J1, · · · , Jn, Kn+1) for an odd integer n form the algebra given by

[Ga1 , Ga2 , · · · , Gan ]l1l2···ln = −i
∑
an+1

εa1a2···anan+1(Gan+1)l1l2···ln . (2.9)

We refer to the algebra defined by (2.8) and (2.9) as a ‘generalized spin algebra’ and
collectively write

[Ga1 , Ga2 , · · · , Gan ]l1l2···ln = (−1)ni
∑
an+1

εa1a2···anan+1(Gan+1)l1l2···ln . (2.10)

We refer to the elements of the generalized spin algebra as ‘generalized spin repre-
sentation matrices’. We explain the classical analog of generalized spin algebra using
a generalization of Hamiltonian dynamics in Appendix C. Filippov also proposed a
generalization of Lie algebra using vectors in the n-dimensional Euclidean space as
elements and the vector product as the multiplication operation.18),∗) In that re-
alization, the basis vectors form an analog of the generalized spin algebra (2.10).
Xiong obtained an algebra that is essentially equivalent to the algebra (2.8), using
the n-th power matrices (Ta)i1i2···i2m ≡ εai1i2···i2m , (a = 1, · · · , N = 2m + 1).20) We
have generalized the construction to the case with an arbitrary integer N .

The elements Ga satisfy the so-called ‘fundamental indentity’,

[[Ga1, · · · , Gan ], Gan+1 , · · · , Ga2n−1]l1l2···ln

=
n∑

i=1

[Ga1 , · · · , [Gai , Gan+1 , · · · , Ga2n−1], · · · , Gan ]l1l2···ln . (2.11)

This identity is regarded as an extension of the Jacobi identity.

∗) See also Ref. 19) for a generalization of Lie algebra.
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672 Y. Kawamura

For later convenience, here we present several formulae for the generalized spin
representation matrices Ga. By using (2.10) and the relation

∑
a1,··· ,an

εaa1···anεba1···an

= n!δab, we obtain the formula

(Ga)l1l2···ln =
−i

n!

∑
a1,a2,··· ,an

εaa1a2···an [Ga1 , Ga2 , · · · , Gan ]l1l2···ln

= −i
∑

a1,a2,··· ,an

εaa1a2···an(Ga1Ga2 · · ·Gan)l1l2···ln . (2.12)

From (2.12), we derive the formulae∑
a

Tr(2)(G
a)2 ≡

∑
a

∑
l1,··· ,ln−1,ln

(Ga)l1···ln−1ln(Ga)l1···lnln−1

= − 1
n!

∑
a1,··· ,an

∑
l1,··· ,ln−1,ln

[Ga1 , · · · , Gan ]l1···ln−1ln [Ga1 , · · · , Gan ]l1···lnln−1

= − i

n!

∑
a,a1,··· ,an

∑
l1,··· ,ln−1,ln

εaa1···an(Ga)l1···ln−1ln [Ga1 , · · · , Gan ]l1···lnln−1

= −i
∑

a,a1,··· ,an

∑
l1,··· ,ln−1,ln

εaa1···an(Ga)l1···ln−1ln(Ga1 · · ·Gan)l1···lnln−1 , (2.13)

where Tr(2) is the second kind of trace operator defined by (A.17).
The coordinates Xi of a fuzzy 2-sphere are defined by the matrices J i (i = 1, 2, 3)

in the spin j representation as3)

(Xi)mn =
R√

j(j + 1)
(J i)mn, (2.14)

where R is regarded as the radius of the fuzzy 2-sphere. The coordinates Xi satisfy
the relations

[X i, Xj ]mn = i
R√

j(j + 1)

∑
k

εijk(Xk)mn,
∑

i

(Xi)2mn = R2δmn, (2.15)

where each of the indices m and n runs from 1 to 2j + 1. Similarly, the coordinates
X i (i = 1, 2, · · · , 2k + 1) of a fuzzy 2k-sphere are the (tensor products of) matrices
which satisfy the relations9)

[Xi1, Xi2 , · · · , X i2k ]mn = iζ
∑
i2k+1

εi1i2···i2ki2k+1(Xi2k+1)mn, (2.16)

∑
i

(Xi)2mn = R2δmn, (2.17)

where ζ is a constant parameter. These fuzzy spheres are typical examples of a
non-commutative space.
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Dynamical Theory of Generalized Matrices 673

Now we propose a variant of a fuzzy sphere based on hermitian n-th power
matrices Xi (i = 1, 2 · · · , n+1). The variables X i are interpreted as the coordinates
that satisfy the relations

[Xi1 , Xi2 , · · · , X in ]l1l2···ln = iη
∑
in+1

εi1i2···inin+1(Xin+1)l1l2···ln , (2.18)

∑
i

∑
l1,··· ,ln−2,k

(Xi)l1···ln−2ln−1k(Xi)l1···ln−2kln = R2δln−1ln , (2.19)

where η is a constant parameter. The variables describing this new kind of n-
dimensional space are, in general, non-commutative and non-associative for the n-
fold product (A.2). The above relations (2.18) and (2.19) are invariant under the
rotation

(Xi)l1l2···ln → (Xi)′l1l2···ln =
∑

j

Oi
j(X

j)l1l2···ln , (2.20)

where Oi
j are elements of (n + 1)-dimensional orthogonal group. We assume that an

infinitesimal rotation is generated by the transformation

δ(Xi)l1l2···ln =
∑

j

θij(Xj)l1l2···ln = i[Θ1, · · · , Θn−1, X
i]l1l2···ln , (2.21)

where θij(= −θji) are infinitesimal parameters and Θk (k = 1, · · · , n − 1) are the
“generators” of rotations. If the generators Θk are given by Θk =

∑
i θ

(k)
i X i, then

θij is written

θij = −η
∑

i1,··· ,in−1

εi1···in−1ijθ
(1)
i1

· · · θ(n−1)
in−1

, (2.22)

where θ
(k)
i are infinitesimal parameters.

§3. Dynamical system of generalized matrices

In this section, we study a generalization of matrix theory using hermitian n-
th power matrices. We write down the Lagrangian, the Hamiltonian, the equation
of motion, and a solution in terms of generalized spin representation matrices, and
study their symmetry properties.

Let us study the system described by the following Lagrangian:

L =
1
2

∑
i

∑
l1,l2,··· ,ln

(D0X
i)l1l2···ln(D0X

i)l2l1···ln

+
α

n · n!

∑
i1,i2,··· ,in

∑
l1,l2,··· ,ln

[Xi1 , Xi2 , · · · , X in ]l1l2···ln [Xi1 , Xi2 , · · · , X in ]l2l1···ln

− β
∑

i

∑
l1,l2,··· ,ln

(Xi)l1l2···ln(Xi)l2l1···ln

− γ
2i

n + 1

∑
i,i1,i2,··· ,in

∑
l1,l2,··· ,ln

f ii1i2···in(Xi)l1l2···ln(Xi1X i2 · · ·X in)l2l1···ln , (3.1)
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674 Y. Kawamura

where X i = X i(t) (i = 1, 2, · · · , N) are time-dependent hermitian n-th power matri-
ces, α, β and γ are real parameters, and f ii1i2···in are real antisymmetric parameters.
The covariant time derivative D0 is defined by

(D0X
i)l1l2···ln ≡ d

dt
(Xi(t))l1l2···ln + i[A1, · · · , An−1, X

i(t)]l1l2···ln

=
d

dt
(Xi(t))l1l2···ln + i

∑
m1,m2,··· ,mn

A(t)m1m2···mn
l1l2···ln (Xi(t))m1m2···mn , (3.2)

where Ak (k = 1, · · · , n − 1) are hermitian n-th power matrices and A(t) is the
“gauge field” of time. The first and second lines in (3.2) are similar to (D.13) and
(D.8), respectively. Let us require that the Leibniz rule with regard to the covariant
time derivative hold for the n-fold commutator [B1(t), · · · , Bn(t)] as follows:

(D0[B1(t), · · · , Bn(t)])l1l2···ln =
n∑

l=1

[B1(t), · · · , D0Bl(t), · · · , Bn(t)]l1l2···ln . (3.3)

This requirement is satisfied for an arbitrary matrix (A1)l1l2 with respect to the
usual commutator [B1(t), B2(t)], but it is not necessarily satisfied for arbitrary n-th
power matrices (Ak)l1l2···ln with respect to the n-fold commutator for n ≥ 3. We
find that the Leibniz rule (3.3) holds for an arbitrary Bl(t) (l = 1, 2, · · · , n) if the
matrices Ak are normal n-th power matrices and the antisymmetric object defined
by A(t)l1l2···ln ≡ (−1)n−1 ˜(A1 · · ·An−1)l1l2···ln satisfies the cocycle condition

(δA(t))m0m1···mn ≡
n∑

i=0

(−1)iA(t)m0m1···m̂i···mn = 0, (3.4)

where the index m̂i is omitted. [Also, see (A.6) for the definition of ˜(A1 · · ·An−1).]
Then, the covariant time derivative (3.2) is written

(D0X
i)l1l2···ln ≡ d

dt
(Xi(t))l1l2···ln + iA(t)l1l2···ln(Xi(t))l1l2···ln . (3.5)

In the case n = 2, α = 1 and β = γ = 0, the Lagrangian (3.1) is reduced to the
bosonic part of BFSS matrix theory by setting R = gls = 1.21) Here, R is the com-
pactification radius, g is the string coupling constant, and ls is the string length scale.
The term with γ is regarded as a generalization of the Myers term. It is known that
the Myers term appears in the case of a background antisymmetric field.6) The BFSS
matrix theory describes a system of D0-branes, and it has been conjectured that it
provides a microscopic description of M-theory in the light-front coordinates.∗) The
Lagrangian of the matrix theory is derived through the dimensional reduction of a
(9+1)-dimensional super Yang-Mills Lagrangian to a (0+1)-dimensional Lagrangian.
The matrix theory is also interpreted as a regularization of supermembrane theory.4)

There are several proposals for a “discretization” or quantization of a p-brane
system.19),23),24) Our realization employing n-th power matrices is one of these,

∗) See Ref. 22) for a comprehensive review of matrix theory.
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Dynamical Theory of Generalized Matrices 675

because the first and second terms in (3.1) can be regarded as counterparts to (D.10).
In our system with n ≥ 3, it is not clear whether there exist such interesting physical
implications as in the BFSS matrix theory.

The Hamiltonian is given by

H =
1
2

∑
i

∑
l1,l2,··· ,ln

(Π i)l1l2···ln(Π i)l2l1···ln

− α

n · n!

∑
i1,i2,··· ,in

∑
l1,l2,··· ,ln

[Xi1 , Xi2 , · · · , X in ]l1l2···ln [Xi1 , Xi2 , · · · , X in ]l2l1···ln

+ β
∑

i

∑
l1,l2,··· ,ln

(Xi)l1l2···ln(Xi)l2l1···ln

+ γ
2i

n + 1

∑
i,i1,i2,··· ,in

∑
l1,l2,··· ,ln

f ii1i2···in(Xi)l1l2···ln(Xi1X i2 · · ·X in)l2l1···ln , (3.6)

where Π i is the canonical momentum conjugate to X i.
The following equation of motion is derived from the Lagrangian (3.1):

(D2
0X

i)l1l2···ln +
2α

n!

∑
i1,··· ,in−1

[Xi1 , · · · , X in−1, [X i1 , · · · , X in−1 , Xi]]l1l2···ln

+2β(X i)l1l2···ln + 2iγ
∑

i1,i2,··· ,in
f ii1i2···in(Xi1X i2 · · ·X in)l1l2···ln = 0. (3.7)

Now we consider the case that fa1a2···an+1 = εa1a2···an+1 (where ak, k = 1, 2, · · · ,
n+1), and other components of f ii1i2···in vanish. In this case, we find the non-trivial
solution

(Xa)l1l2···ln = ξ(Ga)l1l2···ln , (Xq)l1l2···ln = 0, A(t)m1m2···mn
l1l2···ln = 0, (3.8)

where Ga (a = 1, 2, · · · , n + 1) are generalized spin representation matrices and
q = n + 2, · · · , N . The parameter ξ depends on α, β and γ as

ξ =

(
γ ±

√
γ2 − 4αβ

2α

) 1
n−1

. (3.9)

This solution is interpreted as the counterpart of the n-brane solution in the BFSS
matrix theory. For simplicity, we consider the case with β = 0 and α = γ = 1. Then
we have the solution with ξ = 1,

(Xa)l1l2···ln = (xa + vat)δl1l2···ln + (Ga)l1l2···ln ,

(Xq)l1l2···ln = (xq + vqt)δl1l2···ln , A(t)m1m2···mn
l1l2···ln = 0, (3.10)

where xa, va, xq and vq are constants and δl1l2···ln = δl1l2 · · · δln−1ln . The Hamiltonian
takes a negative value for this solution:

H =
1 − n

n(n + 1)

∑
a

∑
l1,l2,··· ,ln

(Ga)l1l2···ln(Ga)l2l1···ln . (3.11)
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676 Y. Kawamura

Hence the energy eigenvalue of this vacuum is lower than that of the trivial solution,
i.e., X i = A(t) = 0.

Next, we study the symmetry properties of the above system. (See Appendix
B for discussion of the transformation properties of hermitian n-th power matrices.)
The system for n = 2 is invariant under the time dependent unitary transformation

(X i(t))l1l2 → (Xi(t))′l1l2 =
∑

m1,m2

U(t)l1m1(X
i(t))m1m2U(t)†m2l2

, (3.12)

(A1(t))l1l2 → (A′
1(t))l1l2 =

∑
m1,m2

U(t)l1m1(A1(t))m1m2U(t)†m2l2

+ i
∑
m

d

dt
U(t)l1m · U(t)†ml2

, (3.13)

where U(t)lm is an arbitrary unitary matrix. Infinitesimal transformations are given
by

δ(X i(t))l1l2 = i[Λ(t), Xi(t)]l1l2 , (3.14)

δ(A1(t))l1l2 = − d

dt
Λ(t)l1l2 + i[Λ(t), A1(t)]l1l2 , (3.15)

where Λ(t) is the hermitian matrix related to U(t) as U(t) = exp(iΛ(t)). The
transformations (3.12) and (3.14) can be rewritten as

(Xi(t))l1l2 → (Xi(t))′l1l2 =
∑

m1,m2

R(t)m1m2
l1l2

(Xi(t))m1m2 , (3.16)

δ(Xi(t))l1l2 = i
∑

m1,m2

λ(t)m1m2
l1l2

(Xi(t))m1m2 , (3.17)

respectively. Here R(t) and λ(t) are the “transformation matrices” given by R(t)m1m2
l1l2

= U(t)l1m1U(t)∗l2m2
and λ(t)m1m2

l1l2
= Λ(t)l1m1δl2m2 − Λ(t)m2l2δl1m1 . They are related

as R(t) = exp(iλ(t)). (Note that here we use different notation for the transformation
matrix, (λ(t)), from that in Appendix B, (r(Λ)).) In terms of R(t) and λ(t), the finite
and infinitesimal transformations of A(t) are given by

A(t)m1m2
l1l2

→ A′(t)m1m2
l1l2

=
∑
n1,n2

∑
k1,k2

R(t)n1n2
l1l2

A(t)k1k2
n1n2

R(t)−1m1m2

k1k2

+i
∑
n1,n2

d

dt
R(t)n1n2

l1l2
· R(t)−1m1m2

n1n2
, (3.18)

δA(t)m1m2
l1l2

= − d

dt
λ(t)m1m2

l1l2
− i

∑
n1,n2

A(t)n1n2
l1l2

λ(t)m1m2
n1n2

+i
∑
n1,n2

λ(t)n1n2
l1l2

A(t)m1m2
n1n2

, (3.19)

respectively. Here we have A(t)m1m2
l1l2

= A1(t)l1m1
δl2m2 − A1(t)m2l2

δl1m1 , and R(t)−1

is the inverse of the transformation matrix R(t). These matrices satisfy the relations∑
n1,n2

R(t)n1n2
l1l2

R(t)−1m1m2

n1n2
=
∑
n1,n2

R(t)−1n1n2

l1l2
R(t)m1m2

n1n2
= δl1m1δl2m2 . (3.20)
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Dynamical Theory of Generalized Matrices 677

Now let us study the extension of the unitary transformation of Xi(t) and A(t)
to the case with n ≥ 3. First we consider the infinitesimal transformations of Xi(t)
generated by the set of “generators” Λk (k = 1, 2, · · · , n − 1) through the n-fold
commutator defined as follows:

δ(X i(t))l1l2···ln = i[Λ1, · · · , Λn−1, X
i(t)]l1l2···ln

= i
∑

m1,m2,··· ,mn

λ(t)m1m2···mn
l1l2···ln (Xi(t))m1m2···mn . (3.21)

The expression (3.21) is similar to (D.18) and (D.14). Under the transformation
(3.21), the covariant time derivative D0X

i transforms covariantly,

δ(D0X
i)l1l2···ln = i

∑
m1,m2,··· ,mn

λ(t)m1m2···mn
l1l2···ln (D0X

i)m1m2···mn , (3.22)

if A(t) transforms simultaneously as

δA(t)m1m2···mn
l1l2···ln = − d

dt
λ(t)m1m2···mn

l1l2···ln − i
∑

k1,k2,··· ,kn

A(t)k1k2···kn
l1l2···ln λ(t)m1m2···mn

k1k2···kn

+ i
∑

k1,k2,··· ,kn

λ(t)k1k2···kn
l1l2···ln A(t)m1m2···mn

k1k2···kn
. (3.23)

The expression (3.23) is similar to (D.15). We can show that the first and third
terms in (3.1) are invariant under the above infinitesimal transformations (3.21) and
(3.23). However, the second and fourth terms in (3.1) are not necessarily invariant,
because the n-fold commutator [X i1 , Xi2 , · · · , X in ] transforms as

δ[Xi1 , Xi2 , · · · , X in ]l1l2···ln =
n∑

k=1

[Xi1 , · · · , δ(X ik), · · · , Xin ]l1l2···ln

= i
∑

p

∑
(j1,··· ,jn)

∑
k

sgn(P )(Xj1)l1···ln−1k

· · ·
∑

m1,m2,··· ,mn

λ(t)m1m2···mn
l1···ln−pkln+2−p···ln(Xjp)m1m2···mn · · · (Xjn)kl2···ln (3.24)

under the transformation (3.21), and the transformation (3.24) is not always covari-
ant form. If [Xi1 , Xi2 , · · · , X in ] transforms covariantly, i.e.,

δ[Xi1 , Xi2 , · · · , X in ]l1l2···ln
= i

∑
m1,m2,··· ,mn

λ(t)m1m2···mn
l1l2···ln [Xi1 , Xi2 , · · · , X in ]m1m2···mn , (3.25)

our entire system possesses local symmetry.
We now discuss the case in which the covariant time derivative is given by (3.5).

In this case, (D0X
i) is invariant under the transformation of Xi(t) and A(t) given

by

δ(Xi(t))l1l2···ln = i[Λ1, · · · , Λn−1, X
i(t)]l1l2···ln
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= iΛ(t)l1l2···ln(Xi(t))l1l2···ln , (3.26)

δA(t)l1l2···ln = − d

dt
Λ(t)l1l2···ln , (3.27)

where Λk (k = 1, · · · , n − 1) are real normal n-th power matrices, and Λ(t) is a real
antisymmetric object defined by

Λ(t)l1l2···ln ≡ (−1)n−1 ˜(Λ1 · · ·Λn−1)l1l2···ln . (3.28)

Here, we require that the function Λ(t) has the property

(δΛ(t))m0m1···mn ≡
n∑

i=0

(−1)iΛ(t)m0m1···m̂i···mn = 0. (3.29)

When the antisymmetric objects A(t) and Λ(t) are treated as n-th power matrices,
the transformation (3.27) is rewritten

δA(t)l1l2···ln = − d

dt
Λ(t)l1l2···ln − i[A1, · · · , An−1, Λ(t)]l1l2···ln

+ i[Λ1, · · · , Λn−1, A(t)]l1l2···ln . (3.30)

Note that the last two terms in (3.30) are canceled out. The expression (3.30) is
similar to (D.19). The finite versions of the transformations (3.26) and (3.27) are
given by

(X i(t))l1l2···ln → (Xi(t))′l1l2···ln = eiΛ(t)l1l2···ln (Xi(t))l1l2···ln , (3.31)

A(t)l1l2···ln → A(t)′l1l2···ln = A(t)l1l2···ln − d

dt
Λ(t)l1l2···ln , (3.32)

respectively. It is easy to see that the Lagrangian (3.1) is invariant under the trans-
formations (3.26) and (3.27) or (3.31) and (3.32). If A(t) is a coboundary, i.e.,
A(t) = δΩ(t), there is the extra symmetry according to which A(t) is invariant
under the transformation

Ω(t)m1m2···mn−1 → Ω′(t)m1m2···mn−1

= Ω(t)m1m2···mn−1 + (δΘ(t))m1m2···mn−1 , (3.33)

where Θ(t) is an (n − 2)-th rank antisymmetric object.
Next we discuss a generalization of the unitary transformations (3.16) and (3.18),

which are given by

(X i(t))l1l2···ln → (Xi(t))′l1l2···ln
=

∑
m1,m2,··· ,mn

R(t)m1m2···mn
l1l2···ln (Xi(t))m1m2···mn , (3.34)

A(t)m1m2···mn
l1l2···ln → A′(t)m1m2···mn

l1l2···ln
=

∑
n1,n2,··· ,nn

∑
k1,k2,··· ,kn

R(t)n1n2···nn
l1l2···ln A(t)k1k2···kn

n1n2···nn
R(t)−1m1m2···mn

k1k2···kn

+ i
∑

n1,n2,··· ,nn

d

dt
R(t)n1n2···nn

l1l2···ln · R(t)−1m1m2···mn

n1n2···nn
, (3.35)
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where R(t) is a “transformation matrix” and R(t)−1 is its inverse. In the case that
R(t) can be factorized into a product of matrices as

Rm1m2···mn
l1l2···ln = V m1

l1
V m2

l2
· · ·V mn

ln
, (3.36)

the first and third terms in (3.1) are invariant under the transformation in the case
that V m

l is an orthogonal matrix Om
l . We find that the Lagrangian (3.1) is invariant

under the discrete transformation for which V m
l = δ

σ(m)
l . Here, σ(m) stands for the

permutation among indices.
We have studied the transformation properties of the system described by the

Lagrangian (3.1). Note that there is a similarity between generalizations of the
unitary transformation in the dynamical system of generalized matrices and the
volume preserving diffeomorphism in the classical system of p-branes. It is important
to explore the relationship between these two systems and make clear whether our
theory describes the microscopic physics of p-brane-like extended objects.∗)

Finally, we comment on several other similar systems.
(i) Supersymmetric theory:

The supersymmetric version of the Lagrangian (3.1) with α = 1 and β = γ = 0 is
given by the following:

L =
1
2

∑
i

∑
l1,l2,··· ,ln

(D0X
i)l1l2···ln(D0X

i)l2l1···ln

+
1

n · n!

∑
i1,i2,··· ,in

∑
l1,l2,··· ,ln

[Xi1 , Xi2 , · · · , X in ]l1l2···ln [Xi1 , Xi2 , · · · , X in ]l2l1···ln

+
i

2

∑
l1,l2,··· ,ln

(S̄)l1l2···ln(D0S)l2l1···ln

+
i

2(n − 1)!

∑
i1,··· ,in−1

∑
l1,l2,··· ,ln

(S̄)l1l2···lnγi1···in−1 [Xi1 , · · · , X in−1 , S]l2l1···ln , (3.37)

where S is a Grassmann-valued n-th power matrix, and γi1···in−1 is a product of
Dirac γ matrices. This Lagrangian is the counterpart of the super p-brane given
by (D.21), and the system possesses supersymmetry between Xi and S for specific
values of n and N .

(ii) Generalization of the matrix model:
The action of the 0-dimensional system analogous to matrix model is

S =
α

n · n!

∑
µ1,µ2,··· ,µn

∑
l1,l2,··· ,ln

[Xµ1 , Xµ2 , · · · , Xµn ]l1l2···ln [Xµ1 , Xµ2 , · · · , Xµn ]l2l1···ln

−β
∑

µ

∑
l1,l2,··· ,ln

(Xµ)l1l2···ln(Xµ)l2l1···ln

∗) Matsuo and Shibusa have given a representation of the volume preserving diffeomorphism

using the non-commutative branes.26) It is interesting to establish a link between their results and

our realization.

 at Shinshu U
niversity on Septem

ber 11, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/


680 Y. Kawamura

−γ
2i

n + 1

∑
µ,µ1,µ2,··· ,µn

∑
l1,l2,··· ,ln

fµµ1µ2···µn(Xµ)l1l2···ln(Xµ1Xµ2 · · ·Xµn)l2l1···ln , (3.38)

where Xµ are hermitian n-th power matrices, and α, β and γ are real parameters.
This action with β = γ = 0 is interpreted as the n-th power matrix analog of the
action (D.24). In the case with n = 2, α = 1/g2 and β = γ = 0, the action is
equivalent to the bosonic part of the type IIB matrix model.25)

§4. Conclusions

We have proposed a generalization of spin algebra using multi-index objects
called n-th power matrices and studied a dynamical system analogous to matrix
theory. We have found that this system has a solution described by generalized spin
representation matrices and possesses a symmetry similar to the volume preserving
diffeomorphism in the classical p-brane action.

Our system is interpreted as a generalization of the bosonic part of the BFSS
matrix theory. The BFSS matrix theory has several interesting physical implications.
For example, it is regarded as a regularized theory of a supermembrane, and it de-
scribes a system of D0-branes and can offer a microscopic description of M-theory.
This theory also has a special position with regard to symmetry properties. Our
system for n = 2 has a larger symmetry, that is, invariance under an arbitrary time
dependent unitary transformation, but it seems to possess a restricted type of local
symmetry for n ≥ 3. We have treated the abelian local transformations (3.31) and
(3.32) as an example. We have also considered the case in which the transformations
form a group whose elements are factorized into a product of matrices, as an exten-
sion of unitary transformations. It is important to explore the physical implications
and transformation properties beyond the group theoretical analysis in our system
for n ≥ 3.
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Appendix A
Definition of n-th Power Matrices

In this appendix, we define n-index objects, which we refer to as ‘n-th power
matrices’,∗) and define related terminology.14) An n-th power matrix is an object with
n indices written Bl1l2···ln . This is a generalization of an ordinary matrix, written
analogously as Bl1l2 . We treat n-th power “square” matrices, i.e., N × N × · · · ×
N matrices, and in many cases treat the elements of these matrices as c-numbers
throughout this paper.

∗) Many-index objects have been introduced to construct a quantum version of the Nambu

bracket.20), 23) The definition of the n-fold product we use is the same as that used by Xiong.
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First, we define the hermiticity of an n-th power matrix by the relation Bl′1l′2···l′n =
B∗

l1l2···ln for odd permutations among indices and refer to an n-th power matrix pos-
sessing the property of hermiticity as a ‘hermitian n-th power matrix’. Here, the
asterisk indicates complex conjugation. A hermitian n-th power matrix satisfies the
relation Bl′1l′2···l′n = Bl1l2···ln for even permutations among indices. The components
for which at least two indices are identical, e.g., Bl1···li···li···ln , which is the coun-
terpart of the diagonal part of a hermitian matrix, are real-valued and symmetric
with respect to permutations among indices {l1, · · · , li, · · · , li, · · · , ln}. We refer to
a special type of hermitian matrix whose components possessing all distinct indices
vanish as a ‘real normal form’ or a ‘real normal n-th power matrix’. A normal n-th
power matrix is written

B
(N)
l1l2···ln =

∑
i<j

δliljblj l1···l̂i···l̂j ···ln , (A.1)

where the summation is over all pairs among {l1, · · · , ln}, the hatted indices are
omitted, and blj l1···l̂i···l̂j ···ln is symmetric under the exchange of any (n − 2) indices,
excluding lj .

We define the n-fold product of n-th power matrices (Bi)l1l2···ln (i = 1, 2, · · · , n)
by

(B1B2 · · ·Bn)l1l2···ln ≡
∑

k

(B1)l1···ln−1k(B2)l1···ln−2kln · · · (Bn)kl2···ln . (A.2)

The resultant n-index object, (B1B2 · · ·Bn)l1l2···ln , is not necessarily hermitian, even
if the n-th power matrices (Bi)l1l2···ln are all hermitian. Note that the above product
is, in general, neither commutative nor associative; for example, we have

(B1B2 · · ·Bn)l1l2···ln �= (B2B1 · · ·Bn)l1l2···ln ,

(B1 · · ·Bn−1(BnBn+1 · · ·B2n−1))l1l2···ln �= ((B1 · · ·Bn−1Bn)Bn+1 · · ·B2n−1)l1l2···ln .

(A.3)

The n-fold commutator is defined by

[B1, B2, · · · , Bn]l1l2···ln
≡

∑
(i1,i2,··· ,in)

∑
k

sgn(P )(Bi1)l1···ln−1k(Bi2)l1···ln−2kln · · · (Bin)kl2···ln , (A.4)

where the first summation is over all permutations among the subscripts {i1, i2, · · · ,
in}. Here, sgn(P ) is +1 and −1 for even and odd permutations among the subscripts
{i1, i2, · · · , in}, respectively. If the n-th power matrices (Bi)l1l2···ln are hermitian,
then i[B1, B2, · · · , Bn]l1l2···ln is also hermitian.

We now study some properties of the n-fold commutator [B1, B2, · · · , Bn]l1l2···ln .
This commutator is written

[B1, B2, · · · , Bn]l1l2···ln = (B1)l1l2···ln ˜(B2B3 · · ·Bn)l1l2···ln
+(−1)n−1(B2)l1l2···ln ˜(B3 · · ·BnB1)l1l2···ln
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+ · · · + (−1)n−1(Bn)l1l2···ln ˜(B1B2 · · ·Bn−1)l1l2···ln
+([B1, B2, · · · , Bn])0l1l2···ln , (A.5)

where ˜(B2B3 · · ·Bn)l1l2···ln and ([B1, B2, · · · , Bn])0l1l2···ln are defined by

˜(B2B3 · · ·Bn)l1l2···ln
≡

∑
(i2,i3,··· ,in)

sgn(P )
(
(Bi2)l1···ln−2lnln(Bi3)l1···ln−3lnln−1ln · · · (Bin)lnl2···ln−1ln

+ (−1)n−1(Bi2)l1···ln−3ln−1ln−1ln(Bi3)l1···ln−4ln−1ln−2ln−1ln · · · (Bin)l1···ln−2ln−1ln−1

+ · · · + (−1)n−1(Bi2)l1···ln−1l1(Bi3)l1···ln−2l1ln · · · (Bin)l1l1l3···ln
)

(A.6)

and

([B1, B2, · · · , Bn])0l1l2···ln
≡

∑
(i1,i2,···in)

∑
k �=l1,l2,··· ,ln

sgn(P )(Bi1)l1···ln−1k(Bi2)l1···ln−2kln · · · (Bin)kl2···ln , (A.7)

respectively.
We now discuss features of ˜(B1B2 · · ·Bn−1)l1l2···ln . It is skew-symmetric with

respect to permutations among indices; i.e., we have

˜(B1B2 · · ·Bn−1)l1···li···lj ···ln = − ˜(B1B2 · · ·Bn−1)l1···lj ···li···ln (A.8)

if each (Bk)lj l1···l̂i···ln (k = 1, · · · , n − 1) is symmetric with respect to permutations

among the n-indices {lj , l1, · · · , l̂i, · · · , ln}, as are hermitian n-th power matrices.
Here we define the following operation on an n-th antisymmetric object ωm1m2···mn :

(δω)m0m1···mn ≡
n∑

i=0

(−1)iωm0m1···m̂i···mn , (A.9)

where the operator δ is regarded as a coboundary operator that changes n-th anti-
symmetric objects into (n+1)-th objects. This operator is nilpotent, i.e. δ2(∗) = 0.∗)

If ωm1m2···mk
satisfies the cocycle condition (δω)m0m1···mn = 0, it is called a cocycle.

For arbitrary normal n-th power matrices B
(N)
j , the n-fold commutator among

B and B
(N)
j is given by

[B(N)
1 , · · · , B

(N)
n−1, B]l1l2···ln = (−1)n−1 ˜

(B(N)
1 · · ·B(N)

n−1)l1l2···lnBl1l2···ln . (A.10)

If
˜

(B(N)
1 · · ·B(N)

n−1)l1l2···ln is a cocycle for normal n-th power matrices B
(N)
j , the fol-

lowing fundamental identity holds:

[[C1, · · · , Cn], B(N)
1 , · · · , B

(N)
n−1]l1l2···ln

∗) See Ref. 27) for treatments of cohomology.
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=
n∑

i=1

[C1, · · · , [Ci, B
(N)
1 , · · · , B

(N)
n−1], · · · , Cn]l1l2···ln . (A.11)

Next, we give two kinds of trace operations on n-th power matrices. The first
one is a generalization of the trace of Bl1l2 , defined by

TrB ≡
∑

l

Bll =
∑
l1,l2

Bl1l2δl1l2 . (A.12)

We define the trace operation on the n-th power matrix Bl1l2···ln by

Tr(1)B ≡
∑

l

Bll···l =
∑

l1,l2,··· ,ln
Bl1l2···lnδl1l2···ln , (A.13)

where δl1l2···ln ≡ δl1l2δl2l3 · · · δln−1ln . The second one is a generalization of the trace
of (B1B2)l1l2 , which is written

Tr(B1B2) ≡
∑
l1

∑
k

(B1)l1k(B2)kl1 =
∑
l1,l2

(B1B2)l1l2δl1l2 . (A.14)

Here we define the product of the n-th power matrices B1 and B2 by

(B1B2)l1l2···ln ≡
∑

k

(B1)l1···ln−1k(B2)l1···ln−2kln . (A.15)

This product is also obtained by setting B3 = · · · = Bn = T in the n-fold product
(A.2), where T is the n-th power matrix in which every component has the value of
1, i.e., Tl1l2···ln = 1. Note that this product is not commutative, but it is associative:

(B1B2)l1l2···ln �= (B2B1)l1l2···ln , (B1(B2B3))l1l2···ln = ((B1B2)B3)l1l2···ln . (A.16)

Now we define the trace operation on the n-th power matrix (B1B2)l1l2···ln by

Tr(2)(B1B2) ≡
∑

l1,l2··· ,ln
(B1B2)l1l2···lnδln−1ln

=
∑

l1,l2··· ,ln

∑
k

(B1)l1···ln−1k(B2)l1···ln−2klnδln−1ln

=
∑

l1,··· ,ln−1,ln

(B1)l1···ln−1ln(B2)l1···lnln−1 . (A.17)

For a hermitian n-th power matrix Bl1···ln , the second kind of trace for (B2)l1l2···ln is
positive semi-definite:

Tr(2)B
2 =

∑
l1,··· ,ln

|Bl1···ln |2 ≥ 0. (A.18)

For hermitian n-th power matrices B1 and B2, the following formula holds:

Tr(2)(B1B2) =
∑

l1,··· ,ln−1,ln

(B1)l1···ln−1ln(B2)l1···lnln−1

=
∑

l1,l2··· ,ln
(B1)l1l2···ln(B2)l2l1···ln . (A.19)
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Appendix B
Transformation Properties of n-th Power Matrices

In this appendix, we study the analog of unitary transformations for n-th power
matrices. First, we review unitary transformations for ordinary matrices. A unitary
transformation for Bl1l2 is defined by

Bl1l2 → B′
l1l2 =

∑
m1,m2

Ul1m1Bm1m2U
†
m2l2

=
∑

m1,m2

Ul1m1U
∗
l2m2

Bm1m2

≡
∑

m1,m2

Rm1m2
l1l2

Bm1m2 , (B.1)

where Ulm is a unitary matrix (
∑

m UlmU †
mn =

∑
m U †

lmUmn = δln) and Rm1m2
l1l2

is
a “transformation matrix” defined by Rm1m2

l1l2
≡ Ul1m1U

∗
l2m2

. By the definition of
Rm1m2

l1l2
, we have the relation

(Rm1m2
l1l2

)∗ = Rm2m1
l2l1

. (B.2)

Then, from the unitarity of Ulm, we obtain the relations∑
m

Rmm
l1l2 = δl1l2 ,

∑
l

Rm1m2
ll = δm1m2 , (B.3)

∑
k

Rm1m2
l1k Rn2n1

kl2
= Rm1n1

l1l2
δm2n2 , (B.4)

∑
k,l

Rm1m2
lk Rn2n1

kl = δm1n1δm2n2 . (B.5)

In terms of Rm1m2
l1l2

, the quantities δl1l2 and TrB ≡∑l Bll are shown to be invariant
under the unitary transformation from the first and second relations in (B.3), re-
spectively. The relation (B.4) is related to the covariance of Cl1l2 = (B1B2)l1l2 under
the unitary transformation

Cl1l2 → C ′
l1l2 ≡ (B′

1B
′
2)l1l2 =

∑
m1,m2

Rm1m2
l1l2

Cm1m2 . (B.6)

The relation (B.5) is related to the invariance of (B1B2)ll under the unitary trans-
formation.

An infinitesimal unitary transformation is given by

δBl1l2 = i[Λ, B]l1l2 = i
∑

m1,m2

r(Λ)m1m2

l1l2 Bm1m2 , (B.7)

where the “transformation matrix” r(Λ)m1m2

l1l2 is given by r(Λ)m1m2

l1l2 = Λl1m1δl2m2 −
Λm2l2δl1m1 . We find that the identity∑

n1,n2

(r(Λ)n1n2

l1l2 r(Λ′)m1m2

n1n2
− r(Λ′)n1n2

l1l2 r(Λ)m1m2

n1n2
) = r([Λ,Λ′])m1m2

l1l2 (B.8)
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holds among transformation matrices, from the Jacobi identity. We can also show
that the commutator [B1, B2] transforms as

δ[B1, B2]l1l2 = [δB1, B2]l1l2 + [B1, δB2]l1l2

= i[Λ, [B1, B2]]l1l2 = i
∑

m1,m2

r(Λ)m1m2

l1l2 Bm1m2 . (B.9)

Next, we study the case of n-th power matrices with n ≥ 3. We define an
extension of the unitary transformation (B.1) for Bl1l2···ln by

Bl1l2···ln → B′
l1l2···ln =

∑
m1,m2,··· ,mn

Rm1m2···mn
l1l2···ln Bm1m2···mn , (B.10)

where Rm1m2···mn
l1l2···ln is a “transformation matrix”. From the transformation (B.10) and

the hermiticity of Bl1l2···ln , we obtain the relations

(Rm′
1m′

2···m′
n

l′1l′2···l′n )∗ = Rm1m2···mn
l1l2···ln (B.11)

for odd permutations among the pairs of indices (lk, mk) (k = 1, · · · , n), and

(Rm′
1m′

2···m′
n

l′1l′2···l′n ) = Rm1m2···mn
l1l2···ln (B.12)

for even permutations among the pairs of indices (lk, mk) (k = 1, · · · , n). When
the transformation (B.10) is given by an n-fold product, the transformations do not
necessarily form a group, because the n-fold product is, in general, not associative.
However, for simplicity, here we treat the case in which the transformations form a
group and the transformation matrix Rm1m2···mn

l1l2···ln can be factorized into a product of
matrices as

Rm1m2···mn
l1l2···ln = V m1

l1
V m2

l2
· · ·V mn

ln
, (B.13)

where V m
l should be a real matrix, from the relations (B.11) and (B.12). The form of

the matrix V m
l is restricted by suitable requirements. We now give examples of such

requirements. The first requirement is that the second kind of trace, Tr(2)(BC) =∑
l1,l2,··· ,ln Bl1l2···lnCl2l1···ln be invariant under the transformation

Bl1l2···ln → B′
l1l2···ln =

∑
m1,m2,··· ,mn

Rm1m2···mn
l1l2···ln Bm1m2···mn ,

Cl1l2···ln → C ′
l1l2···ln =

∑
m1,m2,··· ,mn

Rm1m2···mn
l1l2···ln Cm1m2···mn . (B.14)

The necessary condition to satisfy this requirement is∑
l1,l2,··· ,ln

Rm1m2···mn
l1l2···ln R

m′
2m′

1···m′
n

l2l1···ln = δm1m′
1
δm2m′

2
· · · δmnm′

n
, (B.15)

in which case Rm1m2···mn
l1l2···ln is given by

Rm1m2···mn
l1l2···ln = Om1

l1
Om2

l2
· · ·Omn

ln
, (B.16)
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where Om
l is an orthogonal matrix (

∑
l O

m
l On

l = δmn,
∑

m Om
l Om

n = δln).
Next, we require that the trace Tr(2)C

2 =
∑

l1,l2,··· ,ln Cl1l2···lnCl2l1···ln be invariant
under the transformation

(Bk)l1l2···ln → (Bk)′l1l2···ln =
∑

m1,m2,··· ,mn

Rm1m2···mn
l1l2···ln (Bk)m1m2···mn , (B.17)

where Cl1l2···ln is the n-fold product given by Cl1l2···ln = (B1B2 · · ·Bn)l1l2···ln . We
find that the following Rm1m2···mn

l1l2···ln satisfies the above requirement:

Rm1m2···mn
l1l2···ln = Dm1

l1
Dm2

l2
· · ·Dmn

ln
, (B.18)

where Dm
l = δ

σ(m)
l , and σ(m) stands for a permutation of the index m. Note that

Di
l satisfies the relations∑

i

Di
m1

Di
m2

· · ·Di
mk

= δm1m2···mk
,

∑
m

Di1
mDi2

m · · ·Dik
m = δi1i2···ik (B.19)

for an arbitrary integer k. Using the relations (B.19) with k = n, we find that δl1l2···ln
and Tr(1)B are invariant under the extended transformation (B.10). Further, we find
that the n-fold product Cl1l2···ln = (B1B2 · · ·Bn)l1l2···ln transforms covariantly, i.e.,

Cl1l2···ln → C ′
l1l2···ln =

∑
m1,m2,··· ,mn

Rm1m2···mn
l1l2···ln Cm1m2···mn , (B.20)

under the transformation (B.17) with the transformation matrix (B.18).
Finally, we study the generalization of the infinitesimal transformation (B.7) for

n-th power matrices with n ≥ 3. We consider the following transformation by use of
n-fold commutator:

δBl1l2···ln = i[Λ1, · · · , Λn−1, B]l1l2···ln
= i

∑
m1,m2,··· ,mn

r(Λ)m1m2···mn

l1l2···ln Bm1m2···mn . (B.21)

Here, r(Λ)m1m2···mn

l1l2···ln is a “transformation matrix”, and Λk, (k = 1, · · · , n) is a set of
“generators”. The n-fold commutator [B1, B2, · · · , Bn] transforms as

δ[B1, B2, · · · , Bn]l1l2···ln =
n∑

k=1

[B1, · · · , δ(Bk), · · · , Bn]l1l2···ln

= i
∑

p

∑
(i1,··· ,in)

∑
k

sgn(P )(Bi1)l1···ln−1k

· · ·
∑

m1,m2,··· ,mn

r(Λ)m1m2···mn

l1···ln−pkln+2−p···ln(Bip)m1m2···mn · · · (Bin)kl2···ln(B.22)

under the transformation

δ(Bk)l1l2···ln = i
∑

m1,m2,··· ,mn

r(Λ)m1m2···mn

l1l2···ln (Bk)m1m2···mn . (B.23)
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Note that the transformation law

δ[B1, B2, · · · , Bn]l1l2···ln
= i

∑
m1,m2,··· ,mn

r(Λ)m1m2···mn

l1l2···ln [B1, B2, · · · , Bn]m1m2···mn (B.24)

does not necessarily hold for n-th power matrices with n ≥ 3. This means that the
fundamental identity does not always hold among n-th power matrices with n ≥ 3.
Here we treat the case that Λk (k = 1, 2, · · · , n) are normal n-th power matrices
as an example that the law (B.24) holds. In this case, the n-th power matrices Bk

transform as

δ(Bk)l1l2···ln = i[Λ1, · · · , Λn−1, Bk]l1l2···ln = iΛl1l2···ln(Bk)l1l2···ln , (B.25)

where Λl1l2···ln = (−1)n−1( ˜Λ1 · · ·Λn−1)l1l2···ln . In terms of Λl1l2···ln , the transforma-
tion matrix r(Λ) is written

r(Λ)m1m2···mn

l1l2···ln = Λm1m2···mnδm1
l1

δm2
l2

· · · δmn
ln

. (B.26)

If Λl1l2···ln satisfy the cocycle condition,

(δΛ)l0l1···ln ≡
n∑

i=0

(−1)iΛl0l1···l̂i···ln = 0, (B.27)

we find that the n-fold commutator [B1, B2, · · · , Bn] transforms covariantly:

δ[B1, B2, · · · , Bn]l1l2···ln = iΛl1l2···ln [B1, B2, · · · , Bn]l1l2···ln . (B.28)

Appendix C
Classical Analog of Generalized Spin Algebra

In this appendix, we study the classical analog of generalized spin algebra. First,
we consider the following action integral, whose variables are φi(t):28)

S =
∫ (∑

i

Ai(φ)
dφi

dt
− H(φ)

)
dt. (C.1)

The change in S under an infinitesimal variation of φi(t) is given by

δS =
∫ ∑

i


∑

j

Fij(φ)
dφj

dt
− ∂H

∂φi


 δφidt, (C.2)

where Fij(φ) is defined by

Fij(φ) ≡ ∂Aj

∂φi
− ∂Ai

∂φj
. (C.3)
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From the least action principle, we obtain the equation of motion

dφi

dt
=
∑

j

F ij ∂H

∂φj
, (C.4)

where F ij is the inverse of Fij , i.e.,
∑

j F ijFjk = δi
k. Then, the Poisson bracket is

defined by

{f, g}PB ≡
∑
i,j

F ij ∂f

∂φi

∂g

∂φj
, (C.5)

and using it, the equation of motion (C.4) is rewritten

dφi

dt
= {φi, H}PB. (C.6)

When the variables compose a triplet Xi (i = 1, 2, 3) and are such that we have
F ij =

∑
k εijkXk, then these variables form the algebra described by

{X i, Xj}PB =
∑

k

εijkXk. (C.7)

This is the classical analog of the spin algebra su(2). In this case, the first term of
the action integral (C.1) is rewritten as∫ ∑

i

Ai(X)dX i =
1
2

∫ ∫ ∑
i,j

Fij(X)dX i ∧ dXj =
∫ ∫

R sin θdθ ∧ dϕ, (C.8)

where ∧ represents Cartan’s wedge product, and the variables X i are coordinates on
S2 with radius R, which can therefore be written in polar coordinates as

X1 = R sin θ cos ϕ, X2 = R sin θ sinϕ, X3 = R cos θ. (C.9)

The action integral (C.8) is regarded as an area on S2.
Next, we consider a generalization of the action integral (C.1) whose variables

are φi = φi(t, σ1, · · · , σn−1),

S =
∫

· · ·
∫ ( ∑

i1,··· ,in−1,in

Ai1···in−1in(φ)
∂φi1

∂σ1
· · · ∂φin−1

∂σn−1

∂φin

∂t

− H1
∂(H2, · · · , Hn)
∂(σ1, · · · , σn−1)

)
dσ1 · · · dσn−1dt, (C.10)

where Ai1···in(φ) is antisymmetric under the exchange of indices and the quantities
Hi are “Hamiltonians”. The change in S under an infinitesimal variation of φi is
given by

δS =
∫

· · ·
∫ ∑

j,i1,··· ,in−1

(∑
in

Fji1···in−1in

∂φin

∂t

− ∂(H1, H2, · · · , Hn)
∂(φj, φi1 · · · , φin−1)

)
δφj ∂φi1

∂σ1
· · · ∂φin−1

∂σn−1
dσ1 · · · dσn−1dt, (C.11)
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where Fji1···in is defined by

Fji1···in ≡ ∂Ai1···in
∂φj

+ (−1)n ∂Ai2···inj

∂φi1
+ · · · + (−1)n ∂Aji1···in−1

∂φin
. (C.12)

From the least action principle, we obtain the equation of motion

dφi

dt
=

∑
i1,··· ,in

F ii1···in ∂(H1, H2, · · · , Hn)
∂(φi1 · · · , φin)

, (C.13)

where F ii1···in is the inverse of Fii1···in , i.e.,
∑

i1,··· ,in F ii1···inFi1···inj = δi
j . Then the

Nambu bracket is defined by

{f1, · · · , fn+1}NB ≡
∑

i1,··· ,in+1

F i1···in+1
∂f1

∂φi1
· · · ∂fn+1

∂φin+1
, (C.14)

and using it, the equation of motion (C.13) is rewritten

dφi

dt
= {φi, H1, · · · , Hn}NB. (C.15)

The equation of motion (C.15) is equivalent to the Hamilton-Nambu equation.16)

When the variables compose an (n + 2)-let X i (i = 1, · · · , n + 2) and are such
that we have F i1···in+1 =

∑
in+2

εi1···in+1in+2X in+2 , then these X i form the algebra
described by

{X i1 , · · · , X in+1}NB =
∑
in+2

εi1···in+1in+2X in+2 . (C.16)

This is the classical analog of the generalized spin algebra. In this case, the first
term of the action integral (C.10) is rewritten as

1
n!

∫
· · ·
∫ ∑

i1,··· ,in
Ai1···in(X)dX i1 ∧ · · · ∧ dX in

=
1

(n + 1)!

∫
· · ·
∫ ∑

i1,··· ,in+1

Fi1···in+1(X)dX i1 ∧ · · · ∧ dX in+1

=
∫

· · ·
∫

Rn sin θ2 sin2 θ3 · · · sinn θn+1dθ2 ∧ dθ1 ∧ dθ3 ∧ · · · ∧ dθn+1, (C.17)

where the variables X i are coordinates on Sn+1 with radius R, which therefore can
be written in polar coordinates as

X1 = R sin θn+1 sin θn · · · sin θ3 sin θ2 cos θ1, (C.18)
X2 = R sin θn+1 sin θn · · · sin θ3 sin θ2 sin θ1,

X3 = R sin θn+1 sin θn · · · sin θ3 cos θ2, · · · , Xn+1 = R sin θn+1 cos θn,

Xn+2 = R cos θn+1.

The action integral (C.17) is regarded as an “area” on Sn+1.
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Appendix D
Classical Analog of Generalized Matrix Systems

In this appendix, we explain the framework of classical p-branes. The bosonic
p-brane action is given by17)

S = −
∫

dp+1σ
√−g, (D.1)

where dp+1σ represents the (p + 1)-dimensional world-volume element, and g =
detgαβ. Here, gαβ is the induced world-volume metric given by

gαβ =
∑
µ,ν

ηµν
∂Xµ

∂σα

∂Xν

∂σβ
, (D.2)

where Xµ (µ = 0, 1, · · · , D − 1) are the target space coordinates of the p-brane
and σα (α = 0, 1, · · · , p) are the (p + 1)-dimensional world-volume coordinates. We
assume that the target space is the D-dimensional Minkowski space. Then, the
action integral (D.1) is invariant under the reparametrization

δXµ =
∑
α

εα∂αXµ, (D.3)

where εα is an arbitrary function of σα.
Let us next introduce the light-cone coordinates in space-time:

X± =
1√
2
(X0 ± XD−1). (D.4)

The transverse coordinates are denoted by Xi (i = 1, · · · , D − 2). By using the
reparametrization invariance, we can choose the light-cone gauge,

X+ = x+ + p+τ, (D.5)

where x+ and p+ are the center of mass position and momemtum, respectively, and
τ = σ0. In the light-cone gauge, the action is written (up to a zero mode term)

S =
1
2

∫
dp+1σ

(∑
i

(D0X
i)2 − detgab

)
, (D.6)

where gab is the induced p-dimensional metric given by

gab =
∑
i,j

ηij
∂X i

∂σa

∂Xj

∂σb
. (D.7)

Here, σa (a = 1, · · · , p) are the p-dimensional volume coordinates. The covariant
time derivative D0 is defined by

D0X
i ≡

(
∂

∂τ
+
∑

a

ua ∂

∂σa

)
X i, (D.8)
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where ua is regarded as the “gauge field” of time, which should satisfy the equation∑
a

∂ua

∂σa
= 0. (D.9)

The action (D.6) is rewritten

S =
1
2

∫
dp+1σ


∑

i

(D0X
i)2 − 1

p!

∑
i1,··· ,ip

{X i1 , · · · , X ip}2


 , (D.10)

where the symbol {f1, · · · , fp} is defined by

{f1, · · · , fp} ≡
∑

a1,··· ,ap

εa1···ap
∂f1

∂σa1
· · · ∂fp

∂σap
. (D.11)

(If the coordinates σi form a canonical p-let, the symbol {f1, · · · , fp} is regarded
as the Nambu bracket.) In the case that ua is written in terms of functions Ak

(k = 1, · · · , p − 1) as

ua =
∑

a1,··· ,ap−1

εa1···ap−1a ∂A1

∂σa1
· · · ∂Ap−1

∂σap−1
, (D.12)

the covariant time derivative (D.8) can be written as

D0X
i =

∂Xi

∂τ
+ {A1, · · · , Ap−1, X

i}. (D.13)

The action (D.10) is invariant under the p-dimensional volume preserving diffeomor-
phism:

δX i =
∑

a

λa∂aX
i, (D.14)

δua = −∂λa

∂τ
−
∑

b

ub∂bλ
a +

∑
b

λb∂bu
a, (D.15)

where λa satisfies the condition ∑
a

∂λa

∂σa
= 0. (D.16)

In the case that λa can be written in terms of functions Λk (k = 1, · · · , p − 1) as

λa =
∑

a1,··· ,ap−1

εa1···ap−1a ∂Λ1

∂σa1
· · · ∂Λp−1

∂σap−1
, (D.17)

the transformation laws of the p-dimensional volume preserving diffeomorphism
(D.14) and (D.15) are rewritten as

δX i = {Λ1, · · · , Λp−1, X
i}, (D.18)

δua = −∂λa

∂τ
− {A1, · · · , Ap−1, λ

a} + {Λ1, · · · , Λp−1, u
a}, (D.19)
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respectively. This system has the extra symmetry that ua =
∑

b ∂bW
ab is invariant

under the transformation

W ab


=

∑
a1,··· ,ap−2

εa1···ap−2ba ∂A1

∂σa1
· · · ∂Ap−2

∂σap−2
Ap−1




→ W ′ab = W ab +
∑

c

∂cΘ
abc, (D.20)

where Θabc is an arbitrary antisymmetric function of σa.
Next, we write down the action integral of the super p-brane:

S =
1
2

∫
dp+1σ


∑

i

(D0X
i)2 − 1

p!

∑
i1,··· ,ip

{X i1 , · · · , X ip}2

+
i

2
S̄D0S +

1
(p − 1)!

∑
i1,··· ,ip−1

S̄γi1···ip−1{X i1 , · · · , X ip−1 , S}2


 . (D.21)

Here, S on the right-hand side is a spinor of SO(d− 2), and γi1···in−1 is a product of
Dirac γ matrices. It is well known that super p-branes exist in space-times possessing
certain particular numbers of dimensions.29)

Finally, we discuss an alternative formulation of bosonic p-branes. First, the
action (D.1) is rewritten as

S = −
∫

dp+1σ

√
1

(p + 1)!

∑
µ1,··· ,µp+1

{Xµ1 , · · · , Xµp+1}2, (D.22)

where the symbol {f1, · · · , fp+1} is defined by

{f1, · · · , fp+1} ≡
∑

α1,··· ,αp+1

εα1···αp+1
∂f1

∂σα1
· · · ∂fp+1

∂σαp+1
. (D.23)

Then by introducing the auxiliary field e = e(σ), we can write down the following
action, which is classically equivalent to the above action (D.22):

S =
1
2

∫
dp+1σ


 1

(p + 1)!e

∑
µ1,··· ,µp+1

{Xµ1 , · · · , Xµp+1}2 − e


 . (D.24)

The action (D.24) is a p-brane generalization of the so-called Schild action.30)
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