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Generalized Heisenberg Dynamics
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We formulate a dynamical system based on many-index objects. These objects yield
a generalization of the Heisenberg equation. Systems describing harmonic oscillators are
presented.

§1. Introduction

Recently, a new type of mechanics has been proposed that is based on three-
index objects, 1) and its basic structure has been studied from an algebraic point of
view. 2), 3) This mechanics has a counterpart in the canonical structure of classical
mechanics, or Nambu mechanics, 4) and it can be interpreted as its ‘quantum’ or
‘discretized’ version. It can also be regarded as a generalization of Heisenberg’s
matrix mechanics, because generalizations of the Ritz rule and the Bohr frequency
condition are employed as guiding principles.

The same type of mechanics in the case that physical variables are n-index
objects (n ≥ 4) was also proposed in Ref. 1), but its formulation has not yet been
completed. The purpose of the present paper is to construct a mechanics for multi-
index objects that models the dynamical structure of Heisenberg’s matrix mechanics.

This paper is organized as follows. In the next section, we define n-index objects.
We formulate a dynamical system based on n-index objects in §3. Section 4 is devoted
to conclusions.

§2. Generalized matrices

2.1. Definitions

Here, we define n-index objects (referred to as “n-th power matrices”)∗∗) and
define related terminology. An n-th power matrix is an object with n indices written
Al1l2···ln . This is a generalization of a usual matrix, written analogously as Bl1l2 . We
treat n-th power ‘square’ matrices, i.e., N × N × · · · × N matrices, and treat the
elements of these matrices as c-numbers throughout this paper.

First, we define the hermiticity of an n-th power matrix by the relation Al′1l′2···l′n =
A∗

l1l2···ln for odd permutations among indices and refer to an n-th power matrix
possessing the property of hermiticity as a hermitian n-th power matrix. Here, the
asterisk indicates complex conjugation. A hermitian n-th power matrix satisfies the

∗) E-mail: haru@azusa.shinshu-u.ac.jp
∗∗) Many-index objects have been introduced to construct a quantum version of the Nambu

bracket. 5), 6) The definition of the n-fold product we use is the same as that used by Xiong.
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relation Al′1l′2···l′n = Al1l2···ln for even permutations among indices. The components
for which at least two indices are identical, e.g., Al1···li···li···ln , which is the counterpart
of the diagonal part of a hermitian matrix, are real-valued and symmetric with
respect to permutations among indices {l1, · · · , li, · · · , li, · · · , ln}. We refer to a special
type of hermitian matrix whose components with all different indices are vanishing
as a “real normal form” or a “real normal n-th power matrix”. A normal n-th power
matrix is written

A
(N)
l1l2···ln =

∑
i<j

δliljalj l1···l̂i···l̂j ···ln , (2.1)

where the summation is over all pairs among {l1, · · · , ln}, the hatted indices are
omitted, and alj l1···l̂i···l̂j ···ln is symmetric under the exchange of n−2 indices {l1, · · · , l̂i,
· · · , l̂j , · · · , ln}.

We define the n-fold product of n-th power matrices (Ai)l1l2···ln , (i = 1, 2, · · · , n)
by

(A1A2 · · ·An)l1l2···ln ≡
∑
k

(A1)l1···ln−1k(A2)l1···ln−2kln · · · (An)kl2···ln . (2.2)

The resultant n-index object, (A1A2 · · ·An)l1l2···ln , is not necessarily hermitian, even
if the n-th power matrices (Ai)l1l2···ln are hermitian. Note that the above product
is, in general, neither commutative nor associative; for example, we have

(A1A2 · · ·An)l1l2···ln �= (A2A1 · · ·An)l1l2···ln ,

(A1 · · ·An−1(AnAn+1 · · ·A2n−1))l1l2···ln
�= ((A1 · · ·An−1An)An+1 · · ·A2n−1)l1l2···ln . (2.3)

The n-fold commutator is defined by

[A1, A2, · · · , An]l1l2···ln
≡

∑
(i1,···,in)

∑
k

sgn(P )(Ai1)l1···ln−1k(Ai2)l1···ln−2kln · · · (Ain)kl2···ln , (2.4)

where the first summation is over all permutations among the subscripts {i1, · · · , in}.
Here, sgn(P ) is +1 and −1 for even and odd permutations among the subscripts
{i1, · · · , in}, respectively. If the n-th power matrices (Ai)l1l2···ln are hermitian, then
i[A1, A2, · · · , An]l1l2···ln is also hermitian.

2.2. Properties

Here, we study some properties of the n-fold commutator [A1, A2, · · · , An]l1l2···ln .
This commutator is written

[A1, A2, · · · , An]l1l2···ln = (A1)l1l2···ln ˜(A2A3 · · ·An)l1l2···ln
+(−1)n−1(A2)l1l2···ln ˜(A3 · · ·AnA1)l1l2···ln
+ · · · + (−1)n−1(An)l1l2···ln ˜(A1A2 · · ·An−1)l1l2···ln
+([A1, A2, · · · , An])0l1l2···ln , (2.5)
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where ˜(A2A3 · · ·An)l1l2···ln and ([A1, A2, · · · , An])0l1l2···ln are defined by

˜(A2A3 · · ·An)l1l2···ln

≡
∑

(i2,···,in)

sgn(P )
(

(Ai2)l1···ln−2lnln(Ai3)l1···ln−3lnln−1ln · · · (Ain)lnl2···ln−1ln

+ (−1)n−1(Ai2)l1···ln−3ln−1ln−1ln(Ai3)l1···ln−4ln−1ln−2ln−1ln · · · (Ain)l1···ln−2ln−1ln−1

+ · · · + (−1)n−1(Ai2)l1···ln−1l1(Ai3)l1···ln−2l1ln · · · (Ain)l1l1l3···ln
)

(2.6)

and

([A1, A2, · · · , An])0l1l2···ln
≡

∑
(i1,···in)

∑
k �=l1,l2,···,ln

sgn(P )(Ai1)l1···ln−1k(Ai2)l1···ln−2kln · · · (Ain)kl2···ln , (2.7)

respectively.
We now discuss features of ˜(A1A2 · · ·An−1)l1l2···ln . It is skew-symmetric with

respect to permutations among indices, i.e.,

˜(A1A2 · · ·An−1)l1···li···lj ···ln = − ˜(A1A2 · · ·An−1)l1···lj ···li···ln , (2.8)

if each (Ak)lj l1···l̂i···ln , (k = 1, · · · , n − 1) is symmetric with respect to permutations

among the n-indices {lj , l1, · · · , l̂i, · · · , ln}, as are hermitian n-th power matrices. We
define the following operation on k-th antisymmetric objects ωl1l2···lk :

(δω)l0l1l2···lk ≡
k∑

i=0

(−1)iωl0l1···l̂i···lk . (2.9)

Here, the operator δ is regarded as a coboundary operator that changes k-th antisym-
metric objects into (k + 1)-th objects, and it is nilpotent, i.e. δ2(∗) = 0.∗) If ωl1l2···lk
satisfies the cocycle condition (δω)l0l1l2···lk = 0, it is called a k-cocycle. We now give
an example of a solution for the cocycle condition (δ ˜(A1A2 · · ·An−1))l0l1l2···ln = 0.
When one Al is an arbitrary hermitian n-th power matrix and all the rest have com-
ponents in the form (Al)lj l1···l̂i···ln =

∑
lk �=l̂i

(al)lk , then ˜(A1A2 · · ·An−1)l1l2···ln can be
written

˜(A1A2 · · ·An−1)l1l2···ln =
n∑

i=1

(−1)i−1γl1···l̂i···ln ≡ (δγ)l1l2···ln , (2.10)

where each γl1l2···ln−1 is an (n − 1)-th power antisymmetric object. Then, the n-
th antisymmetric object ˜(A1A2 · · ·An−1)l1l2···ln automatically satisfies the cocycle
condition

(δ ˜(A1A2 · · ·An−1))l0l1l2···ln = (δ2γ)l0l1···l̂i···ln = 0 (2.11)

∗) See Ref. 7) for treatments of cohomology.
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due to the nilpotency of coboundary operations. This type of solution is called an
n-coboundary.

We can demonstrate the following relations regarding the n-fold commutator
from the above expressions and properties.

1. For arbitrary n-th power hermitian matrices Aj , we have [A1, · · · , An−1, ∆]l1l2···ln
= 0 with ∆l1l2···ln =

∏
i<j δlilj . Here, the product is over all pairs among indices.

2. For arbitrary normal n-th power matrices A
(N)
j , the n-fold commutator among

A and A
(N)
j is given by

[A, A
(N)
1 , · · · , A(N)

n−1]l1l2···ln = Al1l2···ln
˜

(A(N)
1 · · ·A(N)

n−1)l1l2···ln . (2.12)

3. The n-fold commutator among arbitrary normal n-th power matrices A
(N)
i is

vanishing:

[A(N)
1 , A

(N)
2 , · · · , A(N)

n ]l1l2···ln = 0. (2.13)

4. If
˜

(B(N)
1 B

(N)
2 · · ·B(N)

n−1)l1l2···ln is an n-cocycle for normal n-th power matrices

B
(N)
j , the following fundamental identity holds:

[[A1, · · · , An], B(N)
1 , · · · , B(N)

n−1]l1l2···ln

=
n∑

i=1

[A1, · · · , [Ai, B
(N)
1 , · · · , B(N)

n−1], · · · , An]l1l2···ln . (2.14)

§3. Dynamical system

In this section, we employ generalizations of the Ritz rule and the Bohr frequency
condition as guiding principles and construct a generalization of Heisenberg’s matrix
mechanics based on hermitian n-th power matrices.

3.1. Framework

The time-dependent variables are hermitian n-th power matrices given by

(Vα(t))l1l2···ln = (Vα)l1l2···lneiΩl1l2···ln t, (3.1)

where the angular frequency Ωl1l2···ln has the properties

Ωl′1l′2···l′n = sgn(P )Ωl1l2···ln , (3.2)

(δΩ)l0l1l2···ln ≡
n∑

i=0

(−1)iΩl0l1···l̂i···ln = 0. (3.3)

The frequency Ωl1l2···ln is regarded as an n-cocycle, from Eq. (3.3). This equa-
tion is a generalization of the Ritz rule,∗) and it is required for the consistency

∗) The Ritz rule is given by Ωl1l3 = Ωl1l2 + Ωl2l3 in quantum mechanics, where Ωlilj is the

angular frequency of the radiation from an atom.
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of the time evolution of a system, as shown below. Note that the n-fold product,
(Vα1Vα2 · · ·Vαn)l1l2···lneiΩl1l2···ln t, takes the same form as (3.1), with the relation (3.3).

The time-independent variables are real normal n-th power matrices given by

(Ua)l1l2···ln =
∑
i<j

δlilj (ua)lj l1···l̂i···l̂j ···ln . (3.4)

These variables are conserved quantities, and they are regarded as generators of a
symmetry transformation.

Next we discuss the time evolution of physical variables. It is expressed as
a symmetry transformation if the physical system is closed. In our mechanics, we
conjecture that real normal n-th power matrices generate such a transformation. We
refer to these as ‘Hamiltonians’ HA (A = 1, · · · , n − 1) . Hamiltonians are functions
of physical variables: HA = HA(Vα(t), Ua). By analogy with Heisenberg’s matrix
mechanics, we require that the n-th power matrices (Vα(t))l1l2···ln yield the following
generalization of the Heisenberg equation:

d

dt
(Vα(t))l1l2···ln =

1
ih̄(n)

[Vα(t), H1, · · · , Hn−1]l1l2···ln , (3.5)

where h̄(n) is a new physical constant. The left-hand side of (3.5) is written

d

dt
(Vα(t))l1l2···ln = iΩl1l2···ln(Vα(t))l1l2···ln , (3.6)

by definition (3.1), while the right-hand side is written

1
ih̄(n)

[Vα(t), H1, · · · , Hn−1]l1l2···ln

=
1

ih̄(n)
( ˜H1 · · ·Hn−1)l1l2···ln(Vα(t))l1l2···ln , (3.7)

by use of the formula (2.12). From Eqs. (3.6) and (3.7), we obtain the relation

h̄(n)Ωl1l2···ln = −( ˜H1 · · ·Hn−1)l1l2···ln . (3.8)

This relation is a generalization of Bohr’s frequency condition.∗)

Let us make a consistency check for the time evolution of a system. By definition,
an arbitrary normal n-th power matrix A(N) [and the time-independent part of Vα(t)]
should be a constant of motion, and this is verified by use of the equation of motion,

d

dt
(A(N))l1l2···ln =

1
ih̄(n)

[A(N), H1, · · · , Hn−1]l1l2···ln = 0, (3.9)

where the formula (2.13) has been used. Because the Hamiltonians are real nor-
mal n-th power matrices, they are conserved quantities. The n-fold commutator,

∗) Bohr’s frequency condition is given by h̄Ωl1l2 = −H̃l1l2 = El1 − El2 in quantum mechanics,

where El is the energy eigenvalue of an atom.
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i[V1(t), · · · , Vn(t)] should satisfy the fundamental identity including the Hamiltoni-
ans,

[i[V1(t), · · · , Vn(t)], H1, · · · , Hn−1]l1l2···ln

=
n∑

i=1

i[V1(t), · · · , [Vi(t), H1, · · · , Hn−1], · · · , Vn(t)]l1l2···ln (3.10)

from the requirement that the derivation rule for the time hold as follows:

d

dt
i[V1(t), · · · , Vn(t)]l1l2···ln =

n∑
i=1

i[V1(t), · · · , d

dt
Vi(t), · · · , Vn(t)]l1l2···ln . (3.11)

The fundamental identity (3.10) holds in the case that the frequency Ωl1l2···ln is an
n-cocycle from the 4-th relation regarding the n-fold commutator.

3.2. Examples

Now, we study the simple example of a harmonic oscillator whose variables are
two kinds of hermitian n-th power matrices given by ξ(t)l1l2···ln = ξl1l2···lneiΩl1l2···ln t

and η(t)l1l2···ln = ηl1l2···lneiΩl1l2···ln t. Here, each of the indices li runs from 1 to n.
The coefficients ξl1l2···ln and ηl1l2···ln are given by

ξl1l2···ln =

√
h̄(n)

2mΩ
|εl1l2···ln |, ηl1l2···ln =

1
i

√
mΩh̄(n)

2
εl1l2···ln , (3.12)

where the quantity m in the square root represents a mass, Ω = |Ω12···n|, and εl1l2···ln
is the n-dimensional Levi-Civita symbol.

If Ωl1l2···ln = −Ωεl1l2···ln , we obtain the equations of motion describing the har-
monic oscillator:

d

dt
ξ(t)l1l2···ln =

1
m

η(t)l1l2···ln , (3.13)

d

dt
η(t)l1l2···ln = −mΩ2ξ(t)l1l2···ln . (3.14)

The Hamiltonians HA satisfy the relation

h̄(n)Ωεl1l2···ln = ( ˜H1 · · ·Hn−1)l1l2···ln (3.15)

from the requirement that physical variables yield the generalized Heisenberg equa-
tion (3.5). As an example of HA, we have

(H1)n n 1···n−2 = h̄(n)Ω, (HB)n n 1···̂i···n−1 = δn−i B , (3.16)

where each HA is symmetric with respect to permutations among indices, other
components of HA are vanishing, and B runs from 2 to n−1. The following algebraic
relation holds among ξ(t), η(t) and the Hamiltonians HA:

(H1)l1l2···ln = iΩ[ξ(t), η(t), H2, · · · , Hn−1]l1l2···ln . (3.17)
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Finally, we give an example of an ‘n-plet’, (Vα(t))l1l2···ln (α = 1, · · · , n), where
each of the indices li runs from 1 to n2. The components of Vα(t) are defined by

(Vα(t))l1l2···ln ≡



η(t)l1l2···ln for li = (α − 1)n + 1, (α − 1)n + 2, · · · , αn,
ξ(t)l1l2···ln for li = αn + 1, αn + 2,

· · · , (α + 1)n (mod n2),
(ζn−j)l1l2···ln for li = (α + j − 1)n + 1, (α + j − 1)n + 2,

· · · , (α + j)n (mod n2),

(3.18)

where (ζn−j)l1l2···ln represents the n × n × · · · × n matrices whose non-vanishing
components are given by

(ζn−j)kn kn (k−1)n+1··· ̂(k−1)n+i···kn−1
= δn−i n−j+1. (3.19)

Here, i and j run from 2 to n − 1 and each ζn−j is symmetric with respect to
permutations among indices {kn kn (k − 1)n + 1 · · · ̂(k − 1)n + i · · · kn − 1} for k =
1, · · · , n. We find that the time-dependent components in Vα(t) yield the equation of
motion of harmonic oscillators for the Hamiltonians whose non-vanishing components
are given by

(H1)kn kn (k−1)n+1···kn−2 = (−1)k(n−1)h̄(n)Ω, (3.20)
(HB)

kn kn (k−1)n+1··· ̂(k−1)n+i···kn−1
= δn−i B, (3.21)

where B runs from 2 to n − 1 and k runs from 1 to n. The Hamiltonians HA are
symmetric with respect to permutations among indices. The n-th power matrices
(Vα(t))l1l2···ln form an algebra characterized as follows:

[V1(t), V2(t), · · · , Vn(t)]l1l2···ln = −ih̄(n)(J (N))l1l2···ln , (3.22)

where (J (N))l1l2···ln is the real normal n2×n2×· · ·×n2 matrices whose non-vanishing
components are given by

(J (N))kn kn (k−1)n+1···kn−2 = (−1)k(n−1). (3.23)

In both cases, the n + 1 variables, (ξ(t), η(t), HA) or (Vα(t), J (N)), form a closed
algebra for the n-fold commutator, which is regarded as a generalization of the spin
algebra. 9), 8), 6), 10)

§4. Conclusions

We have defined n-index objects (n-th power matrices) and their algebraic prop-
erties and formulated a dynamical system based on hermitian n-th power matrices.
The basic structure of our mechanics is summarized as follows. For hermitian n-
th power matrices (Vα(t))l1l2···ln = (Vα)l1l2···lneiΩl1l2···ln t, their time evolution is re-
garded as the symmetry transformation generated by the Hamiltonians (HA)l1l2···ln
given by ih̄(n)δ(Vα(t))l1l2···ln = [Vα(t), H1, · · · , Hn−1]l1l2···lnδt, which is a generaliza-
tion of the Heisenberg equation. The Hamiltonians (HA)l1l2···ln are real normal forms,
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where ( ˜H1 · · ·Hn−1)l1l2···ln satisfies the n-cocycle condition. Among the Ωl1l2···ln and
HA, we have the relation h̄(n)Ωl1l2···ln = −( ˜H1 · · ·Hn−1)l1l2···ln . An arbitrary nor-
mal n-th power matrix A

(N)
l1l2···ln is a constant of motion; i.e., ih̄(n)dA

(N)
l1l2···ln/dt =

[A(N), H1, · · · , Hn−1]l1l2···ln = 0. There are simple systems of harmonic oscillators
described by hermitian n-th power matrices.

Our mechanics can be regarded as a generalization of Heisenberg’s matrix me-
chanics because they are equivalent in case n = 2. In quantum mechanics, a matrix
element Al1l2 is interpreted as a probability amplitude between the state labeled by
l1 and that labeled by l2. A similar interpretation for an n-th power matrix element
(n ≥ 3), however, is not yet known, and it is not clear whether many-index objects
are applicable to real physical systems.∗) It would be worthwhile to explore the
physical meaning of many-index objects based on generalized spin variables.
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