Generalized Heisenberg Dynamics

Yoshiharu Kawamura*)
Department of Physics, Shinshu University, Matsumoto 390-8621, Japan

(Received April 6, 2004)

Abstract

We formulate a dynamical system based on many-index objects. These objects yield a generalization of the Heisenberg equation. Systems describing harmonic oscillators are presented.

§1. Introduction

Recently, a new type of mechanics has been proposed that is based on threeindex objects, ${ }^{1)}$ and its basic structure has been studied from an algebraic point of view. ${ }^{2)}{ }^{3)}$ This mechanics has a counterpart in the canonical structure of classical mechanics, or Nambu mechanics, ${ }^{4)}$ and it can be interpreted as its 'quantum' or 'discretized' version. It can also be regarded as a generalization of Heisenberg's matrix mechanics, because generalizations of the Ritz rule and the Bohr frequency condition are employed as guiding principles.

The same type of mechanics in the case that physical variables are n-index objects $(n \geq 4)$ was also proposed in Ref. 1), but its formulation has not yet been completed. The purpose of the present paper is to construct a mechanics for multiindex objects that models the dynamical structure of Heisenberg's matrix mechanics.

This paper is organized as follows. In the next section, we define n-index objects. We formulate a dynamical system based on n-index objects in $\S 3$. Section 4 is devoted to conclusions.

§2. Generalized matrices

2.1. Definitions

Here, we define n-index objects (referred to as " n-th power matrices")**) and define related terminology. An n-th power matrix is an object with n indices written $A_{l_{1} l_{2} \cdots l_{n}}$. This is a generalization of a usual matrix, written analogously as $B_{l_{1} l_{2}}$. We treat n-th power 'square' matrices, i.e., $N \times N \times \cdots \times N$ matrices, and treat the elements of these matrices as c-numbers throughout this paper.

First, we define the hermiticity of an n-th power matrix by the relation $A_{l_{1}^{\prime} l_{2}^{\prime} \ldots l_{n}^{\prime}}=$ $A_{l_{1} l_{2} \cdots l_{n}}^{*}$ for odd permutations among indices and refer to an n-th power matrix possessing the property of hermiticity as a hermitian n-th power matrix. Here, the asterisk indicates complex conjugation. A hermitian n-th power matrix satisfies the

[^0]relation $A_{l_{1}^{\prime} l_{2}^{\prime} \cdots l_{n}^{\prime}}=A_{l_{1} l_{2} \ldots l_{n}}$ for even permutations among indices. The components for which at least two indices are identical, e.g., $A_{l_{1} \cdots l_{i} \cdots l_{i} \cdots l_{n}}$, which is the counterpart of the diagonal part of a hermitian matrix, are real-valued and symmetric with respect to permutations among indices $\left\{l_{1}, \cdots, l_{i}, \cdots, l_{i}, \cdots, l_{n}\right\}$. We refer to a special type of hermitian matrix whose components with all different indices are vanishing as a "real normal form" or a "real normal n-th power matrix". A normal n-th power matrix is written
$$
A_{l_{1} l_{2} \cdots l_{n}}^{(N)}=\sum_{i<j} \delta_{l_{i} l_{j}} a_{l_{j} l_{1} \cdots \hat{l}_{i} \cdots \hat{l}_{j} \cdots l_{n}},
$$
where the summation is over all pairs among $\left\{l_{1}, \cdots, l_{n}\right\}$, the hatted indices are omitted, and $a_{l_{j} l_{1} \cdots \hat{l}_{i} \cdots \hat{l}_{j} \cdots l_{n}}$ is symmetric under the exchange of $n-2$ indices $\left\{l_{1}, \cdots, \hat{l}_{l}\right.$, $\left.\cdots, \hat{l}_{j}, \cdots, l_{n}\right\}$.

We define the n-fold product of n-th power matrices $\left(A_{i}\right)_{l_{1} l_{2} \cdots l_{n}},(i=1,2, \cdots, n)$ by

$$
\left(A_{1} A_{2} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}} \equiv \sum_{k}\left(A_{1}\right)_{l_{1} \cdots l_{n-1} k}\left(A_{2}\right)_{l_{1} \cdots l_{n-2} k l_{n}} \cdots\left(A_{n}\right)_{k l_{2} \cdots l_{n}}
$$

The resultant n-index object, $\left(A_{1} A_{2} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}}$, is not necessarily hermitian, even if the n-th power matrices $\left(A_{i}\right)_{l_{1} l_{2} \cdots l_{n}}$ are hermitian. Note that the above product is, in general, neither commutative nor associative; for example, we have

$$
\begin{align*}
& \left(A_{1} A_{2} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}} \neq\left(A_{2} A_{1} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}} \\
& \left(A_{1} \cdots A_{n-1}\left(A_{n} A_{n+1} \cdots A_{2 n-1}\right)\right)_{l_{1} l_{2} \cdots l_{n}} \\
& \quad \neq\left(\left(A_{1} \cdots A_{n-1} A_{n}\right) A_{n+1} \cdots A_{2 n-1}\right)_{l_{1} l_{2} \cdots l_{n}}
\end{align*}
$$

The n-fold commutator is defined by

$$
\begin{align*}
& {\left[A_{1}, A_{2}, \cdots, A_{n}\right]_{l_{1} l_{2} \cdots l_{n}}} \\
& \quad \equiv \sum_{\left(i_{1}, \cdots, i_{n}\right)} \sum_{k} \operatorname{sgn}(P)\left(A_{i_{1}}\right)_{l_{1} \cdots l_{n-1} k}\left(A_{i_{2}}\right)_{l_{1} \cdots l_{n-2} k l_{n}} \cdots\left(A_{i_{n}}\right)_{k l_{2} \cdots l_{n}},
\end{align*}
$$

where the first summation is over all permutations among the subscripts $\left\{i_{1}, \cdots, i_{n}\right\}$. Here, $\operatorname{sgn}(P)$ is +1 and -1 for even and odd permutations among the subscripts $\left\{i_{1}, \cdots, i_{n}\right\}$, respectively. If the n-th power matrices $\left(A_{i}\right)_{l_{1} l_{2} \cdots l_{n}}$ are hermitian, then $i\left[A_{1}, A_{2}, \cdots, A_{n}\right]_{l_{1} l_{2} \cdots l_{n}}$ is also hermitian.

2.2. Properties

Here, we study some properties of the n-fold commutator $\left[A_{1}, A_{2}, \cdots, A_{n}\right]_{l_{1} l_{2} \cdots l_{n}}$. This commutator is written

$$
\begin{align*}
{\left[A_{1}, A_{2}, \cdots, A_{n}\right]_{l_{1} l_{2} \cdots l_{n}}=} & \left(A_{1}\right)_{l_{1} l_{2} \cdots l_{n}}\left(A_{2} \widetilde{\left.A_{3} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}}}\right. \\
& +(-1)^{n-1}\left(A_{2}\right)_{l_{1} l_{2} \cdots l_{n}}\left(A_{3} \cdots A_{n} A_{1}\right)_{l_{1} l_{2} \cdots l_{n}} \\
& +\cdots+(-1)^{n-1}\left(A_{n}\right)_{l_{1} l_{2} \cdots l_{n}}\left(A_{1} A_{2} \cdots A_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}} \\
& +\left(\left[A_{1}, A_{2}, \cdots, A_{n}\right]\right)_{l_{1} l_{2} \cdots l_{n}}^{0},
\end{align*}
$$

where $\left(A_{2} \widetilde{A_{3} \cdots} A_{n}\right)_{l_{1} l_{2} \cdots l_{n}}$ and $\left(\left[A_{1}, A_{2}, \cdots, A_{n}\right]\right)_{l_{1} l_{2} \cdots l_{n}}^{0}$ are defined by

$$
\begin{align*}
& \left(A_{2} \widetilde{\left.A_{3} \cdots A_{n}\right)_{l_{1} l_{2} \cdots l_{n}}} \begin{array}{l}
\equiv \sum_{\left(i_{2}, \cdots, i_{n}\right)} \operatorname{sgn}(P)\left(\left(A_{i_{2}}\right)_{l_{1} \cdots l_{n-2} l_{n} l_{n}}\left(A_{i_{3}}\right)_{l_{1} \cdots l_{n-3} l_{n} l_{n-1} l_{n}} \cdots\left(A_{i_{n}}\right)_{l_{n} l_{2} \cdots l_{n-1} l_{n}}\right. \\
\quad+(-1)^{n-1}\left(A_{i_{2}}\right)_{l_{1} \cdots l_{n-3} l_{n-1} l_{n-1} l_{n}}\left(A_{i_{3}}\right)_{l_{1} \cdots l_{n-4} l_{n-1} l_{n-2} l_{n-1} l_{n}} \cdots\left(A_{i_{n}}\right)_{l_{1} \cdots l_{n-2} l_{n-1} l_{n-1}} \\
\left.\quad+\cdots+(-1)^{n-1}\left(A_{i_{2}}\right)_{l_{1} \cdots l_{n-1} l_{1}}\left(A_{i_{3}}\right)_{l_{1} \cdots l_{n-2} l_{1} l_{n}} \cdots\left(A_{i_{n}}\right)_{l_{1} l_{1} l_{3} \cdots l_{n}}\right)
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& \left(\left[A_{1}, A_{2}, \cdots, A_{n}\right]\right)_{l_{1} l_{2} \cdots l_{n}}^{0} \\
& \quad \equiv \sum_{\left(i_{1}, \cdots i_{n}\right)} \sum_{k \neq l_{1}, l_{2}, \cdots, l_{n}} \operatorname{sgn}(P)\left(A_{i_{1}}\right)_{l_{1} \cdots l_{n-1} k}\left(A_{i_{2}}\right)_{l_{1} \cdots l_{n-2} k l_{n}} \cdots\left(A_{i_{n}}\right)_{k l_{2} \cdots l_{n}},
\end{align*}
$$

respectively.
We now discuss features of $\left(A_{1} A_{2} \widetilde{\cdots} A_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}}$. It is skew-symmetric with respect to permutations among indices, i.e.,

$$
\left(A_{1} A_{2} \widetilde{\cdots} A_{n-1}\right)_{l_{1} \cdots l_{i} \cdots l_{j} \cdots l_{n}}=-\left(A_{1} \widetilde{A_{2} \cdots} A_{n-1}\right)_{l_{1} \cdots l_{j} \cdots l_{i} \cdots l_{n}}
$$

if each $\left(A_{k}\right)_{l_{j} l_{1} \cdots \hat{l}_{i} \cdots l_{n}},(k=1, \cdots, n-1)$ is symmetric with respect to permutations among the n-indices $\left\{l_{j}, l_{1}, \cdots, \hat{l}_{i}, \cdots, l_{n}\right\}$, as are hermitian n-th power matrices. We define the following operation on k-th antisymmetric objects $\omega_{l_{1} l_{2} \cdots l_{k}}$:

$$
(\delta \omega)_{l_{0} l_{1} l_{2} \cdots l_{k}} \equiv \sum_{i=0}^{k}(-1)^{i} \omega_{l_{0} l_{1} \cdots \hat{l}_{i} \cdots l_{k}}
$$

Here, the operator δ is regarded as a coboundary operator that changes k-th antisymmetric objects into $(k+1)$-th objects, and it is nilpotent, i.e. $\delta^{2}(*)=0 .{ }^{*)}$ If $\omega_{l_{1} l_{2} \cdots l_{k}}$ satisfies the cocycle condition $(\delta \omega)_{l_{0} l_{1} l_{2} \cdots l_{k}}=0$, it is called a k-cocycle. We now give an example of a solution for the cocycle condition $\left(\delta\left(A_{1} A_{2} \cdots A_{n-1}\right)\right)_{l_{0} l_{1} l_{2} \cdots l_{n}}=0$. When one A_{l} is an arbitrary hermitian n-th power matrix and all the rest have components in the form $\left(A_{l}\right)_{l_{j} l_{1} \cdots \hat{l}_{i} \cdots l_{n}}=\sum_{l_{k} \neq \hat{l}_{i}}\left(a_{l}\right)_{l_{k}}$, then $\left(A_{1} A_{2} \widetilde{\cdots} A_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}}$ can be written

$$
\left(A_{1} A_{2} \widetilde{\cdots} A_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}}=\sum_{i=1}^{n}(-1)^{i-1} \gamma_{l_{1} \cdots \hat{l}_{i} \cdots l_{n}} \equiv(\delta \gamma)_{l_{1} l_{2} \cdots l_{n}}
$$

where each $\gamma_{l_{1} l_{2} \cdots l_{n-1}}$ is an $(n-1)$-th power antisymmetric object. Then, the n th antisymmetric object $\left(A_{1} A_{2} \cdots A_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}}$ automatically satisfies the cocycle condition

$$
\left(\delta\left(A_{1} A_{2} \widetilde{\cdots} A_{n-1}\right)\right)_{l_{0} l_{1} l_{2} \cdots l_{n}}=\left(\delta^{2} \gamma\right)_{l_{0} l_{1} \cdots \hat{l}_{i} \cdots l_{n}}=0
$$

[^1]due to the nilpotency of coboundary operations. This type of solution is called an n-coboundary.

We can demonstrate the following relations regarding the n-fold commutator from the above expressions and properties.

1. For arbitrary n-th power hermitian matrices A_{j}, we have $\left[A_{1}, \cdots, A_{n-1}, \Delta\right]_{l_{1} l_{2} \cdots l_{n}}$ $=0$ with $\Delta_{l_{1} l_{2} \cdots l_{n}}=\prod_{i<j} \delta_{l_{i} l_{j}}$. Here, the product is over all pairs among indices.
2. For arbitrary normal n-th power matrices $A_{j}^{(N)}$, the n-fold commutator among A and $A_{j}^{(N)}$ is given by

$$
\left[A, A_{1}^{(N)}, \cdots, A_{n-1}^{(N)}\right]_{l_{1} l_{2} \cdots l_{n}}=A_{l_{1} l_{2} \cdots l_{n}}\left(A_{1}^{(N)} \widetilde{\cdots} A_{n-1}^{(N)}\right)_{l_{1} l_{2} \cdots l_{n}}
$$

3. The n-fold commutator among arbitrary normal n-th power matrices $A_{i}^{(N)}$ is vanishing:

$$
\left[A_{1}^{(N)}, A_{2}^{(N)}, \cdots, A_{n}^{(N)}\right]_{l_{1} l_{2} \cdots l_{n}}=0
$$

4. If $\left(B_{1}^{(N)} B_{2}^{(\widetilde{N)}} \cdots B_{n-1}^{(N)}\right)_{l_{1} l_{2} \cdots l_{n}}$ is an n-cocycle for normal n-th power matrices $B_{j}^{(N)}$, the following fundamental identity holds:

$$
\begin{align*}
& {\left[\left[A_{1}, \cdots, A_{n}\right], B_{1}^{(N)}, \cdots, B_{n-1}^{(N)}\right]_{l_{1} l_{2} \cdots l_{n}}} \\
& \left.\quad=\sum_{i=1}^{n}\left[A_{1}, \cdots,\left[A_{i}, B_{1}^{(N)}, \cdots, B_{n-1}^{(N)}\right], \cdots, A_{n}\right]\right]_{l_{1} l_{2} \cdots l_{n}}
\end{align*}
$$

§3. Dynamical system

In this section, we employ generalizations of the Ritz rule and the Bohr frequency condition as guiding principles and construct a generalization of Heisenberg's matrix mechanics based on hermitian n-th power matrices.

3.1. Framework

The time-dependent variables are hermitian n-th power matrices given by

$$
\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}=\left(V_{\alpha}\right)_{l_{1} l_{2} \cdots l_{n}} e^{i \Omega_{l_{1} l_{2} \cdots l_{n}} t}
$$

where the angular frequency $\Omega_{l_{1} l_{2} \cdots l_{n}}$ has the properties

$$
\begin{align*}
& \Omega_{l_{1}^{\prime} l_{2}^{\prime} \cdots l_{n}^{\prime}}=\operatorname{sgn}(P) \Omega_{l_{1} l_{2} \cdots l_{n}} \\
& (\delta \Omega)_{l_{0} l_{1} l_{2} \cdots l_{n}} \equiv \sum_{i=0}^{n}(-1)^{i} \Omega_{l_{0} l_{1} \cdots \hat{l}_{i} \cdots l_{n}}=0
\end{align*}
$$

The frequency $\Omega_{l_{1} l_{2} \cdots l_{n}}$ is regarded as an n-cocycle, from Eq. (3•3). This equation is a generalization of the Ritz rule, ${ }^{*)}$ and it is required for the consistency

[^2]of the time evolution of a system, as shown below. Note that the n-fold product, $\left(V_{\alpha_{1}} V_{\alpha_{2}} \cdots V_{\alpha_{n}}\right)_{l_{1} l_{2} \cdots l_{n}} e^{i \Omega_{l_{1} l_{2} \cdots l_{n} t} t}$, takes the same form as (3•1), with the relation (3•3).

The time-independent variables are real normal n-th power matrices given by

$$
\left(U_{a}\right)_{l_{1} l_{2} \cdots l_{n}}=\sum_{i<j} \delta_{l_{i} l_{j}}\left(u_{a}\right)_{l_{j} l_{1} \cdots \hat{l}_{i} \cdots \hat{l}_{j} \cdots l_{n}}
$$

These variables are conserved quantities, and they are regarded as generators of a symmetry transformation.

Next we discuss the time evolution of physical variables. It is expressed as a symmetry transformation if the physical system is closed. In our mechanics, we conjecture that real normal n-th power matrices generate such a transformation. We refer to these as 'Hamiltonians' $H_{A}(A=1, \cdots, n-1)$. Hamiltonians are functions of physical variables: $H_{A}=H_{A}\left(V_{\alpha}(t), U_{a}\right)$. By analogy with Heisenberg's matrix mechanics, we require that the n-th power matrices $\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}$ yield the following generalization of the Heisenberg equation:

$$
\frac{d}{d t}\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}=\frac{1}{i \hbar^{(n)}}\left[V_{\alpha}(t), H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}}
$$

where $\hbar^{(n)}$ is a new physical constant. The left-hand side of $(3 \cdot 5)$ is written

$$
\frac{d}{d t}\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}=i \Omega_{l_{1} l_{2} \cdots l_{n}}\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}
$$

by definition $(3 \cdot 1)$, while the right-hand side is written

$$
\begin{align*}
\frac{1}{i \hbar^{(n)}} & {\left[V_{\alpha}(t), H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}} } \\
& =\frac{1}{i \hbar^{(n)}}\left(H_{1} \widetilde{\cdots H_{n-1}}\right)_{l_{1} l_{2} \cdots l_{n}}\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}
\end{align*}
$$

by use of the formula (2•12). From Eqs. (3•6) and (3•7), we obtain the relation

$$
\hbar^{(n)} \Omega_{l_{1} l_{2} \cdots l_{n}}=-\left(H_{1} \widetilde{\cdots H_{n-1}}\right)_{l_{1} l_{2} \cdots l_{n}}
$$

This relation is a generalization of Bohr's frequency condition.*)
Let us make a consistency check for the time evolution of a system. By definition, an arbitrary normal n-th power matrix $A^{(N)}$ [and the time-independent part of $V_{\alpha}(t)$] should be a constant of motion, and this is verified by use of the equation of motion,

$$
\frac{d}{d t}\left(A^{(N)}\right)_{l_{1} l_{2} \cdots l_{n}}=\frac{1}{i \hbar^{(n)}}\left[A^{(N)}, H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}}=0
$$

where the formula $(2 \cdot 13)$ has been used. Because the Hamiltonians are real normal n-th power matrices, they are conserved quantities. The n-fold commutator,

[^3]$i\left[V_{1}(t), \cdots, V_{n}(t)\right]$ should satisfy the fundamental identity including the Hamiltonians,
\[

$$
\begin{align*}
& {\left[i\left[V_{1}(t), \cdots, V_{n}(t)\right], H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}}} \\
& \quad=\sum_{i=1}^{n} i\left[V_{1}(t), \cdots,\left[V_{i}(t), H_{1}, \cdots, H_{n-1}\right], \cdots, V_{n}(t)\right]_{l_{1} l_{2} \cdots l_{n}}
\end{align*}
$$
\]

from the requirement that the derivation rule for the time hold as follows:

$$
\frac{d}{d t} i\left[V_{1}(t), \cdots, V_{n}(t)\right]_{l_{1} l_{2} \cdots l_{n}}=\sum_{i=1}^{n} i\left[V_{1}(t), \cdots, \frac{d}{d t} V_{i}(t), \cdots, V_{n}(t)\right]_{l_{1} l_{2} \cdots l_{n}}
$$

The fundamental identity $(3 \cdot 10)$ holds in the case that the frequency $\Omega_{l_{1} l_{2} \cdots l_{n}}$ is an n-cocycle from the 4 -th relation regarding the n-fold commutator.

3.2. Examples

Now, we study the simple example of a harmonic oscillator whose variables are two kinds of hermitian n-th power matrices given by $\xi(t)_{l_{1} l_{2} \cdots l_{n}}=\xi_{l_{1} l_{2} \cdots l_{n}} e^{i \Omega_{l_{1} l_{2} \cdots l_{n}} t}$ and $\eta(t)_{l_{1} l_{2} \cdots l_{n}}=\eta_{l_{1} l_{2} \cdots l_{n}} e^{i \Omega_{l_{1} l_{2} \cdots l_{n} t}}$. Here, each of the indices l_{i} runs from 1 to n. The coefficients $\xi_{l_{1} l_{2} \cdots l_{n}}$ and $\eta_{l_{1} l_{2} \cdots l_{n}}$ are given by

$$
\xi_{l_{1} l_{2} \cdots l_{n}}=\sqrt{\frac{\hbar^{(n)}}{2 m \Omega}}\left|\varepsilon_{l_{1} l_{2} \cdots l_{n}}\right|, \quad \eta_{l_{1} l_{2} \cdots l_{n}}=\frac{1}{i} \sqrt{\frac{m \Omega \hbar^{(n)}}{2}} \varepsilon_{l_{1} l_{2} \cdots l_{n}}
$$

where the quantity m in the square root represents a mass, $\Omega=\left|\Omega_{12 \cdots n}\right|$, and $\varepsilon_{l_{1} l_{2} \cdots l_{n}}$ is the n-dimensional Levi-Civita symbol.

If $\Omega_{l_{1} l_{2} \cdots l_{n}}=-\Omega \varepsilon_{l_{1} l_{2} \cdots l_{n}}$, we obtain the equations of motion describing the harmonic oscillator:

$$
\begin{align*}
\frac{d}{d t} \xi(t)_{l_{1} l_{2} \cdots l_{n}} & =\frac{1}{m} \eta(t)_{l_{1} l_{2} \cdots l_{n}} \\
\frac{d}{d t} \eta(t)_{l_{1} l_{2} \cdots l_{n}} & =-m \Omega^{2} \xi(t)_{l_{1} l_{2} \cdots l_{n}}
\end{align*}
$$

The Hamiltonians H_{A} satisfy the relation

$$
\hbar^{(n)} \Omega \varepsilon_{l_{1} l_{2} \cdots l_{n}}=\left(H_{1} \widetilde{\cdots H_{n-1}}\right)_{l_{1} l_{2} \cdots l_{n}}
$$

from the requirement that physical variables yield the generalized Heisenberg equation $(3 \cdot 5)$. As an example of H_{A}, we have

$$
\left(H_{1}\right)_{n n 1 \cdots n-2}=\hbar^{(n)} \Omega, \quad\left(H_{B}\right)_{n n 1 \cdots \hat{i} \cdots n-1}=\delta_{n-i B},
$$

where each H_{A} is symmetric with respect to permutations among indices, other components of H_{A} are vanishing, and B runs from 2 to $n-1$. The following algebraic relation holds among $\xi(t), \eta(t)$ and the Hamiltonians H_{A} :

$$
\left(H_{1}\right)_{l_{1} l_{2} \cdots l_{n}}=i \Omega\left[\xi(t), \eta(t), H_{2}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}}
$$

Finally, we give an example of an ' n-plet', $\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}(\alpha=1, \cdots, n)$, where each of the indices l_{i} runs from 1 to n^{2}. The components of $V_{\alpha}(t)$ are defined by

$$
\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}} \equiv\left\{\begin{array}{lc}
\eta(t)_{l_{1} l_{2} \cdots l_{n}} & \text { for } l_{i}=(\alpha-1) n+1,(\alpha-1) n+2, \cdots, \alpha n \\
\xi(t)_{l_{1} l_{2} \cdots l_{n}} & \text { for } l_{i}=\alpha n+1, \alpha n+2, \\
& \\
\left(\zeta_{n-j}\right)_{l_{1} l_{2} \cdots l_{n}} & \text { for } l_{i}=\left(\alpha+j-(\alpha+1) n\left(\bmod n^{2}\right),\right. \\
& \cdots,(\alpha+j) n\left(\bmod n^{2}\right),
\end{array} \quad(3 \cdot 18,1,(\alpha+j-1) n+2,\right.
$$

where $\left(\zeta_{n-j}\right)_{l_{1} l_{2} \cdots l_{n}}$ represents the $n \times n \times \cdots \times n$ matrices whose non-vanishing components are given by

$$
\left(\zeta_{n-j}\right)_{k n k n(k-1) n+1 \cdots(k-1) n+i \cdots k n-1}=\delta_{n-i n-j+1} .
$$

Here, i and j run from 2 to $n-1$ and each ζ_{n-j} is symmetric with respect to permutations among indices $\{k n k n(k-1) n+1 \cdots(k-\widehat{1)} n+i \cdots k n-1\}$ for $k=$ $1, \cdots, n$. We find that the time-dependent components in $V_{\alpha}(t)$ yield the equation of motion of harmonic oscillators for the Hamiltonians whose non-vanishing components are given by

$$
\begin{align*}
& \left(H_{1}\right)_{k n k n(k-1) n+1 \cdots k n-2}=(-1)^{k(n-1)} \hbar^{(n)} \Omega \\
& \left(H_{B}\right)_{k n k n}(k-1) n+1 \cdots(k-\widehat{1) n}+i \cdots k n-1
\end{align*}=\delta_{n-i},
$$

where B runs from 2 to $n-1$ and k runs from 1 to n. The Hamiltonians H_{A} are symmetric with respect to permutations among indices. The n-th power matrices $\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}$ form an algebra characterized as follows:

$$
\left[V_{1}(t), V_{2}(t), \cdots, V_{n}(t)\right]_{l_{1} l_{2} \cdots l_{n}}=-i \hbar^{(n)}\left(J^{(N)}\right)_{l_{1} l_{2} \cdots l_{n}}
$$

where $\left(J^{(N)}\right)_{l_{1} l_{2} \cdots l_{n}}$ is the real normal $n^{2} \times n^{2} \times \cdots \times n^{2}$ matrices whose non-vanishing components are given by

$$
\left(J^{(N)}\right)_{k n k n(k-1) n+1 \cdots k n-2}=(-1)^{k(n-1)} .
$$

In both cases, the $n+1$ variables, $\left(\xi(t), \eta(t), H_{A}\right)$ or $\left(V_{\alpha}(t), J^{(N)}\right)$, form a closed algebra for the n-fold commutator, which is regarded as a generalization of the spin algebra. ${ }^{9), ~ 8), ~ 6), ~ 10) ~}$

§4. Conclusions

We have defined n-index objects (n-th power matrices) and their algebraic properties and formulated a dynamical system based on hermitian n-th power matrices. The basic structure of our mechanics is summarized as follows. For hermitian n th power matrices $\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}=\left(V_{\alpha}\right)_{l_{1} l_{2} \cdots l_{n}} e^{i \Omega_{l_{1} l_{2} \cdots l_{n} t}}$, their time evolution is regarded as the symmetry transformation generated by the Hamiltonians $\left(H_{A}\right)_{l_{1} l_{2} \cdots l_{n}}$ given by $i \hbar^{(n)} \delta\left(V_{\alpha}(t)\right)_{l_{1} l_{2} \cdots l_{n}}=\left[V_{\alpha}(t), H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}} \delta t$, which is a generalization of the Heisenberg equation. The Hamiltonians $\left(H_{A}\right) l_{1} l_{2} \cdots l_{n}$ are real normal forms,
where $\left(H_{1} \widetilde{\cdots} H_{n-1}\right)_{l_{1} l_{2} \cdots l_{n}}$ satisfies the n-cocycle condition. Among the $\Omega_{l_{1} l_{2} \cdots l_{n}}$ and H_{A}, we have the relation $\hbar^{(n)} \Omega_{l_{1} l_{2} \cdots l_{n}}=-\left(H_{1} \widetilde{\cdots H_{n-1}}\right)_{l_{1} l_{2} \cdots l_{n}}$. An arbitrary normal n-th power matrix $A_{l_{1} l_{2} \cdots l_{n}}^{(N)}$ is a constant of motion; i.e., $i \hbar^{(n)} d A_{l_{1} l_{2} \cdots l_{n}}^{(N)} / d t=$ $\left[A^{(N)}, H_{1}, \cdots, H_{n-1}\right]_{l_{1} l_{2} \cdots l_{n}}=0$. There are simple systems of harmonic oscillators described by hermitian n-th power matrices.

Our mechanics can be regarded as a generalization of Heisenberg's matrix mechanics because they are equivalent in case $n=2$. In quantum mechanics, a matrix element $A_{l_{1} l_{2}}$ is interpreted as a probability amplitude between the state labeled by l_{1} and that labeled by l_{2}. A similar interpretation for an n-th power matrix element $(n \geq 3)$, however, is not yet known, and it is not clear whether many-index objects are applicable to real physical systems.*) It would be worthwhile to explore the physical meaning of many-index objects based on generalized spin variables.

Acknowledgements

This work was supported in part by Scientific Grants from the Ministry of Education, Culture, Sports, Science and Technology, Nos. 13135217 and 15340078.

References

1) Y. Kawamura, Prog. Theor. Phys. 107 (2002), 1105; hep-th/0203007.
2) Y. Kawamura, Prog. Theor. Phys. 109 (2003), 1; hep-th/0206184.
3) Y. Kawamura, Prog. Theor. Phys. 109 (2003), 153; hep-th/0207054.
4) Y. Nambu, Phys. Rev. D 7 (1973), 2405.
5) H. Awata, M. Li, D. Minic and T. Yoneya, J. High Energy Phys. 02 (2001), 013.
6) C.-S. Xiong, Phys. Lett. B 486 (2000), 228.
7) R. Bott and L. Tu, Differential forms in algebraic topology (Springer, 1982).
C. Nath and S. Sen, Topology and Geometry for Physicists (Academic Press, London, 1983).
8) J. Hoppe, Helv. Phys. Acta. 70 (1997), 302.
9) V. A. Filippov, Sib. Math. J. 26 (1985), 126.
10) Y. Kawamura, Prog. Theor. Phys. 110 (2003), 579; hep-th/0304149.
[^4]
[^0]: ${ }^{*)}$ E-mail: haru@azusa.shinshu-u.ac.jp
 ${ }^{* *)}$ Many-index objects have been introduced to construct a quantum version of the Nambu bracket. ${ }^{5), 6)}$ The definition of the n-fold product we use is the same as that used by Xiong.

[^1]: ${ }^{*)}$ See Ref. 7) for treatments of cohomology.

[^2]: ${ }^{*)}$ The Ritz rule is given by $\Omega_{l_{1} l_{3}}=\Omega_{l_{1} l_{2}}+\Omega_{l_{2} l_{3}}$ in quantum mechanics, where $\Omega_{l_{i} l_{j}}$ is the angular frequency of the radiation from an atom.

[^3]: ${ }^{*)}$ Bohr's frequency condition is given by $\hbar \Omega_{l_{1} l_{2}}=-\widetilde{H}{l_{1} l_{2}}=E_{l_{1}}-E_{l_{2}}$ in quantum mechanics, where E_{l} is the energy eigenvalue of an atom.

[^4]: ${ }^{*)}$ In Ref. 10), a generalization of spin algebra using three-index objects is proposed, and the connection between triple commutation relations and uncertainty relations is discussed.

