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We propose a generalization of Heisenberg’s matrix mechanics based on many-index
objects. It is shown that there exists a solution describing a harmonic oscillator and that
the many-index objects lead to a generalization of spin algebra.

§1. Introduction

Until the end of 19th century, it was generally believed that any experimental
results could be explained with classical mechanics (CM). The phenomenon of black
body radiation destroyed this belief, and the concept of energy quanta was introduced
by Planck in 1900 to overcome the difficulty presented. Since that time, quantum
mechanics (QM) has been applied to very broad areas of physics with indisputable
success. Considering its success, it is natural to ask the following questions:

1. Why does QM describe the microscopic world so successfully?

2. Does QM hold without limit?

3. If there are limitations, how is QM modified beyond them?
Unfortunately, we presently have no definite answers to these questions, although
there are some conjectures. We expect that a generalization of CM and/or QM will
provide information that can help to answer the above questions. From this point
of view, it is meaningful to construct a new, generalized mechanics based on CM
and/or QM.

Nambu proposed a generalization of Hamiltonian dynamics through the exten-
sion of phase space based on the Liouville theorem and gave a suggestion for its
quantization.!) The structure of this mechanics has been studied in the framework
of constrained systems? and in geometric and algebraic formulations.® There are
several works in which the quantization of Nambu mechanics is investigated.?)®)
This approach is quite interesting, but it is not the unique way to explore new me-
chanics. There is also the possibility of examining the generalization of QM directly,
and here we consider this possibility.

In this paper, we propose a generalization of Heisenberg’s matrix mechanics
based on many-index objects (which we refer to as the M-matrix).* It is shown
that there exists a solution describing a harmonic oscillator and that the many-index

*) B-mail: haru@azusa.shinshu-u.ac.jp

**) Recently, Awata, Li, Minic and Yoneya introduced many-index objects to quantize Nambu
mechanics.®) We find that our definition of the triple product among cubic matrices is different from
theirs, because we require a generalization of the Ritz rule in the phase factor, but not necessarily
the associativity of the products.
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objects lead to a generalization of spin algebra. A conjecture concerning operator
formalism is also given.

This paper is organized as follows. In the next section, we review Heisenberg’s
matrix mechanics and explore its generalization. We formulate (cubic) matrix me-
chanics based on three-index objects in §3. Section 4 is devoted to conclusions and
discussion.

§2. Matrix mechanics and generalization

2.1. Heisenberg’s matriz mechanics

Here we review Heisenberg’s matrix mechanics. For a closed physical system,
physical quantities are represented by hermitian square matrices that can be written
as

Fon(t) = Fppe'@mnt = F et Em=En)t, (2:1)

where the phase factor implies that a change in energy E,, — E,, appears as radiation
with angular frequency (2,5, and the hermiticity of F,,,(t) is expressed by F  (t) =
Fyn(t). By the usual definition of the product of two square matrices A, (t) =
A€t and By (t) = Byupetmnt,

(AB)mn(t) = > Api(t) Brn(t) = > A Brne™ >, (2:2)
k k

it is seen that the product (AB);,,(t) has the same form as (2-1), with the Ritz rule
Qn = Qg + i The time development of F,,,(t) is expressed by the Heisenberg
equation

d , i
Ean(t) = 12y Fon = ﬁ(Em - En)an(t)
= (FO My — HFO)n) = O, Hl, (23)

where the Hamiltonian H is a diagonal matrix written H,, = Emmn.

Here we give a simple example of a harmonic oscillator whose variables are two
hermitian matrices, &,n(t) = Emne™ ™t and Nyn(t) = Nmne’®mnt. The coefficients
Emn and N,y are given by

h

m(gl)mn and Nhmn =

mi2h
2

Emn = (Uz)mna (2'4)
respectively. Here the quantity m in the square root represents a mass, the (6%)mn
are Pauli matrices, and 2 = (251(> 0). The variables &, (t) and 1,y (t) satisfy the
following anticommutation relations:

h

{S(t)ag(t)}mn = mé’mna {n(t)vn(t)}mn = mgh(smna (25)

{g(t)an(t)}mn =0. (2.6)
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With the above, we obtain the equations of motion describing the harmonic oscillator,

d 1 1
_mnt:._aHmn:_mnty 2-7
Emn(t) = =16 Hln = (1) (27)
d 1 9
anan) - E[U, H]mn - _mQ gmnu)a (28)
where the Hamiltonian H,,,, is written
1
Hpyp = Z-sz:gmk(t)nkn(t) = _ih“o(o'g)mn' (2'9)

2.2. Conjecture on M-matrix mechanics

Let us extend the formulation described in the previous subsection to a system
with M-matrix valued quantities, whose variables are given by

Frimgomy, (1) = Froymgem,, € 2mmasmat (2-10)

where the angular frequency (2,,,m,...m,, is Wwritten in terms of antisymmetric quan-
tities W mo-m,_1 @S

n

Donymiemn = O ()" Ty = (09)myms-my - (2:11)
j=1

Here we assume the generalization of Bohrs’ frequency condition*)
1 n
lemz"-mn - ﬁ Z(_l)n_]Eﬂ%"-mj71mj+1"-mn' (2'12)
=1

The antisymmetric property is expressed by

oty et = SEU(P) inyma oy Wiyt =SSP )Wrmyma-omy 15 (2:13)

1 n—

where sgn(P) is +1 and —1 for even and odd permutation among indices, respec-
tively. The operator 9 is regarded as a boundary operator that changes k-th an-
tisymmetric objects into (k + 1)-th objects, and this operation is nilpotent, i.e.
9%(x) = 0.9 Hence a homology group can be constructed from a set of phase fac-
tors of M-matrices. The $2,,,m,...m, are regarded as (n — 1)-boundaries. We define
the hermiticity of an n-index object by Frupmy.mr (1) = F3, iy, (1) for odd per-
mutations of the subscripts. If we define an n-fold product among F,(,fl)mQ...mn (t)
(a=1,2,...) by

(FO - PO e, () = S F o OFS e ) F ()

k
e Z(F(l) e F(n))mlmQ.“mneiﬂmlm?"mnt7 (214)
k

h
27
expectation that M-matrix mechanics reduces to QM in a particular limit and is characterized by

the same physical constant.

*) Here and hereafter we use the reduced Planck constant A = as the unit of action, with the
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the outcome has the same form as (2-10) with the relation (992)m mo-mny; = 0,
which is a generalization of the Ritz rule.
Next, we discuss the time evolution of M-matrices, Fr(,fl)mz...mn (t). It is natural

to have conjecture that the equation of motion is given by

d a . a
_ngn)mzv--mn (t) = ZQm1mz---mnFT(n1)mz---mn (t)

dt
i o ; (a)
= ﬁ Z(_l)n JEm1--~mj—1mj+1--~mnFm1m2~~-mn (t)
j=1
1 _

= E(F(a)(t)aK(l)a S KO 2)7H)m1m2--~mn7 (2:15)
where the quantities K, .., K("=2) and H are time-independent n-index objects
called Hamiltonians, and (,%,---,%) is a linear combination of n-fold products
among variables. Equation (2-15) is regarded as a generalization of the Heisenberg

equation. An ansatz for Hamiltonians and (x, x, - - , %) is given by

KV = .= K2 =
= ZIml-..mi,1mimiJrl---mj,lmjijrl---mn7 (216)
(4,3)
1 e
Hm1m2---mn = _5 Z(_l) Eml"'mjflijrl"'mn(Smj—lmj (2'17)
j=1
and
(FO F@ oo PO, = Z (FOF@ . pe)y o o,
cyclic
— Z (F(n) .. .F(Q)F(l))mlm%mn’ (2-18)
cyclic

where Iml"'mi—lmim”lmmj_lmjmj"'lmm" = (5mim]— H(k,l);ﬁ(i,j)(l - 5mkml) and 6moﬂ"b1 =

Omy,m, 10 (2-17), and the summation in (2-18) is over all cyclic permutations. The
quantity Iy, my...m, Plays the role of a unit matrix.
We now give a comment on a set of n-index objects. We find that the (n+ 1) x

(n+1) x -+- x (n+ 1) matrices defined by J,Sfl)mz...mn = —iheamimy--m, satisfy the
following interesting algebra:

[Jlan) glaz) oo glan)]
n(n+l)(n—-1) ne— an
— (=) T T (i) eayanananss ot . (2:19)
In this equation, the n-fold commutator is defined by
[F(al)7F(a2)’ - 7F(an)]m1m2._.mn
= Z sgn(P)(FFlaz) . plan)y (2-20)

where the summation is over all permutations among the superscripts. The algebra
(2:19) is a generalization of ordinary spin algebra [su(2) algebra] and is equivalent
to a special case of M-algebra discussed in Ref. 5).
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2.3. Relation to classical dynamics

Before we study a cubic matrix, we discuss the structure of classical dynamics
from the viewpoint of matrix mechanics. First we review the relation between CM
and QM. A physical variable F'(t) in CM is regarded as a linear combination of
one-index objects (a 1 x 1 matrix) such that

F(t) =Y Fne'", (2-21)

where F¥ = F_,,, because F(t) should be a real quantity, and the angular frequency
{2,, is an integer multiple of the basic frequency w, i.e. {2, = nw. Under the guidance
of Bohrs’ correspondence principle and the frequency condition, we obtain a relation
between w and the Hamiltonian H,

. QAn o . Qn+Ann . . En+An — En . dFE . OH
w = = lim | = — =

An  mdnl, An ndnl, hdn a7~ aJ’

(2-22)

where J is the action variable and we use J = § pdq = hn (Bohr-Sommerfeld quan-
tization condition). The equation of motion for F'(¢) is written
%F(t) = Zn:inaneZQ"t = gf—cgg_]j ={F(t),H}ps, (2-23)
where {*,*}pp is the Poisson bracket and we use the fact that J is the canonical
conjugate of the angle variable wt. Equation (2-23) is Hamilton’s canonical equation.
Next, we study the ‘classical’ limit of M-matrix mechanics based on an n-index
object, whose frequency condition is given by (2-12). We require that there are
generalizations of Bohr’s correspondence principle and the Bohr-Sommerfeld quan-
tization condition and that the ‘classical’ counterpart of the n-index object satisfies
Hamilton’s canonical equation. A system which satisfies these requirements is ob-
tained under the assumption that the variables depend on intrinsic (n—2) parameters
& = (o1, ,0n—2); that is, a physical variable F'(t, &) is given by

F(t,3) =Y Fu(&)e" ™, (2:24)

where F¥(&) = F_,,(¢) and §2,, = nw. The energy E(J(&)) is given by the functional
integral

E(J(7)) = /25(,](&))@1"20, (2-25)

where X is a closed (n — 2)-dimensional surface and J(&) is an action variable. The
correspondence of E(J(&)) to Em,my--m,_, is obtained by the replacement of X' with
an oriented (n—1)-simplex d(mima - - - my,) = Zyzl(—l)"ﬂ(ml S MM M),

n

/ EJ(@E)d" %0 =Y (~1)"I / E(J(E))d" %0
Amama--my,) : (M- 1m 1)

=D (1) Emyeny iy (2-26)
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that is,
/ E(J(3)d" 20 <= Emyom;_imjotomns (2:27)
(ma-mj_1mji1--my)

where <= indicates the correspondence. Generalizations of Bohr’s correspondence
principle and the Bohr-Sommerfeld quantization condition are given by

QAN li Qn—l—Ann,l---n—l—Anln

YTTAN T anSo AN (2:28)
and
/ J(&)d" %0 = hAN, (2-29)
AXY

respectively. Here AN is a function of the quantities An; and goes to zero as the
An; do, and AX is an infinitesimal closed (n — 2)-dimensional surface attached to a
point &. By use of (2:12), (2-28) and (2-29), we derive the relation

n .
Zj:l (_1)n JEn+Ann—1---n+Annfj+1n+Annfjf1---n+An1n

w= lim

AN—=0 hAN
Jax E(J(G))d" 20
fAZ dn &4
_ Jas(EUJ(@) + AJ(F) — £(J(3)))d" 20 _ SE(J(3) _ OH

. — 2 (230
fAEAJ )d"—20 i) sa (230

where we have used a special type of infinitesimal deformation of J such that J =
J+ AJ =0 on AY with £(J = 0) = 0, and §/8.J(F) represents the functional
derivative with respect to J(&). Hence, we find that F(¢,5) satisfies Hamilton’s
canonical equation dF'/dt = {F, H}pp.

Finally, we discuss the physical meaning of the (n — 2) parameters &. The
position of an object is represented by z(t, @), or z#(r, &) in a system with relativistic
invariance. Here, 7 is a parameter that corresponds to time development and the
o are interpreted as spatial coordinates that describe an extended object. In this
way, we have arrived at the interesting conjecture that the ‘classical’ counterpart of
an n-index object is an (n — 2)-dimensional object and that M-matriz mechanics can
describe the ‘quantum’ physics of extended objects.

§3. Cubic matrix mechanics

3.1. Cubic matriz

We now consider a three-index object (cubic matrix) given by
Clmn(t) = Clmneiﬂlmnta (31)

where the Cj,,, possesses cyclic symmetry, i.e., Ciynn = Chnni = Chim, and the
angular frequency {2y, has the form

'len = Wim — Wip, + Wmn = (6w)lmna Wml = —Wim- (32)
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The angular frequencies {2;,,,, have the following properties:

iy = SgH(P)lem (33)
(ag)lmnk = Qinn — Pimk + Cink — Pk = 0. (34)
The relations (3-2) and (3-4) show that the (2;,,,, are 2-boundaries when 0 is regarded
as a boundary operator. We define the hermiticity of a cubic matrix by Cjyp(t) =

C o (t) for odd permutations among indices. For a hermitian cubic matrix, there
are relations

Clmn(t) = Cmnl(t) = Cnlm(t) = :nln(t) = Cl*nm(t) = ;kz,ml(t)' (35)

If we define the triple product among cubic matrices Cpy,(t) = Clppemnt,
Dlmn(t) = Dlmne’tnlnnlt and Elmn(t) — Elmnelﬂlmnt 'by

(C(t)D(t)E(t))lmn = Z Clmk(t)len(t)Ekmn(t) = (CDE)lmneinmnt7 (36)
k

the product takes the same form as (3-1) with the relation (3-4). Note that this
product is, in general, neither commutative nor associative, that is, (CDE);,, #
(DCE) iy and (AB(CDE))imn # (A(BCD)E) iy, # (ABC)DE) . Taking the
hermitian conjugate of products for hermitian cubic matrices, we obtain the relations

(CODBE®))imn = (E@Q)D@)C ()5 = (C(ER@) D)),

nml — mlin
= (D)CWH)E())inm = (D) E)C(#))nim = (E@)C(E)D(E))mnt- (3-7)
The triple-commutator and anticommutator are defined by
[C(t), D(t), E(t)]umn = (C(t)D(t)E(t) + D(t) E(t)C(t) + E(t)C(t)D(t)
—D()CR)E(t) = CHER)D(t) — E@)D(#)C(t))umn (3-8)

and
{C(t), D(t), E(t) timn = (C(£)D()E(t) + D(t)E(t)C(t) + E(t)C(t)D(t)
+D()CH)E(t) + CR)E®)D(t) + E@X)D()C(t))imn, (3:9)
respectively. With the above definitions, we have the relation
A1), A (#), A ()i = sen(P)[A (1), A (1), A9 )i (3-10)

If Cinn(t), Dimn(t) and Ejy,,(t) are hermitian matrices, [C(t), D(t), E(t)]imn and
{C(t), D(t), E(t) }imn are also hermitian cubic matrices.

3.2. Dynamics

The cyclically symmetric cubic matrices Cl(;)n(t) yield the generalization of the
Heisenberg equation
i @ 1y — Lo .
= 12 Cyypr (1) = ,h[C (t), K, H|mn, (3-11)

1
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where K and H are time independent 3-index objects. A possible form of K and H
is given by
Kign = I + ' + 1™y = Ty (312)
1 1 1
Hlmn = Emmnllmn + §hwnlllmn + §hwlm1lmn7 (313)

where I;,,", I;"™,, and I',,,, are defined by
Ilmn = 5lm(1 - 5nl)7 Ilmn = 6ln(1 - 5mn)7 Ilmn = 5mn(1 - 5lm) (314)

Our triple-commutator in general, does not satisfy conditions such as the deriva-
tion rule (which is a counterpart of the Leibniz rule in differential calculus) and a
generalization of the Jacobi identity called a fundamental identity, both of which
are possessed by the Nambu-Poisson bracket. As an exceptional case, the deriva-
tion rule and the fundamental identity hold for the triple-commutator including the
Hamiltonians K and H:

& (CWDOEW i = (dfli 'p(o)Ee >) (e )

)
= i1mn (C(t) D (t)E(t))zmn
= ([C(t), K, HID@})E(t))imn + (C()[D(t), K, HIE(t))mn
+(C ()D(t)[E(t) H))tmn
=[C(t)D(H)E(®), K, H]zmn (3-15)

for (CDE)um = (CDE)iu = (CDE)yy and

[[C(t)vD(t)vE(t)]va H]lmn = [[C( ) K, H] D(t)7E(t)]lmn
+ [C(t)7 [D(t)7K’ H]7E(t)]lmn + [C( ) ( )7 [E(t) K, HHlmn (3'16)

It is thus seen that our description of the time development is consistent for cyclically
symmetric matrices.

3.3. FExzample

We now study the simple example of a harmonic oscillator whose variables are
two hermitian 3 x 3 x 3 matrices &nn(t) = Emne™mrt and Nmn(t) = e Pmnt.
The coefficients &,y and myyy, are given by

glmn - = \/ M—QTElmna Nimn = ; \/ T‘Slmnv (3 17)

where the quantity m in the square root represents a mass, and 2 = (2321 (> 0). The
variables &p, (t) and ny,, (t) satisfy the relations

h

Ilmny (€2I)lmn = m

(152)lmn = mna (glf)lmn = Il ns (318)

2mJy?2 2mJy?
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aAm{?2 hm{? AmS?

(1772)lmn = —Ilmn7 (7]2I)lmn = TI mn;s (nln)lmn = Ilmrw (319)
(Ign)lmn + (Ing)lmn = (nt)lmn + (ngl)lmn = (gln)lmn + (njf)lmn =0, (320)
(Ing)lmn = Zhll(jl)nv (nél)lmn = ?IB)me (gln)lmn = ﬂl( " n’ (3'21)
(I(g)ng)lmn = ghllmny (ngl(g))lmn = Z; mn» (fl ® )lmn = %Ilm'm (322)
(53)lmn = (gzn)lmn == (n2§)lmn = (77 )lmn =0, (323)

where T = Iy, and 1®) = 1) = 18" L 1@ 4 1O Here 18" 101, and
1 l(g)mn are defined by

n m
Il(jl) = 5lm5mn7 I(g)lmn = 5mn€nl7 Il(g) n = 5ln5lm> (324)

where €19 = €93 = €31 = —€91 = —e30 = —e13 = 1. With the above, we obtain the
equations of motion describing the harmonic oscillator

L () = 16 K, Hlimn = (1) (3-25)

dt Imn - ih s £y lmn — mnlmn )

d 1

%nlmn(t) = E[na K7 H]lmn = _m02£lmn(t)7 (326)

where K and H are given by

)
Klmn = [g I( ]lmn = Ilmna Hlmn = 60[57 Ian]lmn = __hQIl(m)n (327)

3.4. Operator formalzsm

In the preceding sections, we have studied a generalization of QM using the M-
matrix formalism. The mechanics we obtain has an interesting algebraic structure,
but the formalism is not practical, because it is only applicable to stationary systems.
From experience, it is known that in order to be of practical use operator formalism
must be capable of handling problems in a wider class of physical systems. By
analogy to QM, we now study the operator formalism of cubic matrix mechanics.
First, we make the following basic assumptions.

1. For a given physical system, there exist triplet of state vectors |m1; Poymoms)
|ma; Prymams) and |ms; Poymoms) that depend on both the quantum numbers
m;, (e.g., these m; represent [, m or n) and their ordering. Here, the ordering
is represented by a permutation (denoted by Pp,,m,ms) for a standard ordering,
(e.g., m1 =1,mgy =m,m3 =n).
2. For every physical observable, there is a one-to-one correspondence to a linear
operator C.
Under the above assumptions, it is natural to identify the cubic matrix element Cj,,,,,
with C’]l;an>|m; Pnn)|7; Pimn).  In general, the quantity Cp,moms 1S identified
with C|m1; Prymams ) |M2; Praymams ) 135 Pmymams). By use of (3-11), the following
equations of motion for the states are derived:

zh%|l;len> = [K, H|l; Pyn), m%m; Pinn) = [K, H]|m; Pin),
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ili—|1; Py = [K, H|1; Py (3-28)

Here, [K, H] is the commutator of the operators K and H. (Note that [K,H]
in the third equation corresponds to Y (KiknHimn — HignKkmn) in cubic matrix
mechanics.) The above equations (3:28) are regarded as a generalization of the
Schrédinger equation. The commutator H = [K JH | is interpreted as the generalized
Hamiltonian operator. By use of (3-12) and (3-13), the time evolution of state vectors
is given by

1

|l; len> = exp <§(wnl + u}lm)t> |l; len>07

1

’m; len) = €Xp <2

(wlm + Wmn)t) ‘m; ]Dlmn>07
7
|n; len> = eXp <§(wmn + wnl)t> ‘n; len>0y (3'29)

where the subscript 0 indicates that the state is that at an initial time. In the same
way, the time development of state vectors for the matrix element C,,, is given by

1

|l; Pmln) = €Xp <2

(wml + Wln)t> |l7 Pmln>07

7
’m; Pmln) = exp <§<wnm + wml)t) ‘mS Pmln)Oa

7
|n; Pmln> = eXp <§(wln + an)t> ‘n; Pmln>0- (3'30)

We can identify |I; P,,,) with the complex conjugate of |I; Piyy) from (3-29) and
(3-30). It is seen that this identification is consistent with the relations (3-5).

§4. Conclusions and discussion

We have proposed a generalization of Heisenberg’s matrix mechanics based on
many-index objects. It has been shown that there exists a solution describing a
harmonic oscillator [the three-index objects &, (t) and 7y, (t) defined by (3-17)
satisfy Egs. (3-25) and (3-26)] and that many-index objects lead to a generalization

of spin algebra [the 4 x 4 x 4 matrices defined by J, (@ — —ihequmn satisfy the algebra

Ilmn
[J@ g Je, .. = h25abcd‘]l(:z)nv where a,b,c,d,l,m,n are integers from 1 to 4.]
We have studied the ‘classical’ limit of generalized matrix mechanics and obtained
evidence that M-matrix mechanics can be regarded as a ‘quantum’ theory of extended
objects. We have also made a conjecture on the operator formalism of cubic matrix
mechanics. The basic equations are given by (3-28).
Finally we give comments regarding the questions raised in the Introduction.
With regard to the question of why QM describes the microscopic world so

successfully, the simplicity or wvariety of structure in mechanics could be the key.
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Quantum mechanics might represent a special case in the entirely M-matrix me-
chanics. For example, matrix mechanics with many-index objects could be reduced
to Heisenberg’s matrix mechanics or to a physically meaningless system by a change
of variables. It is important to make clear the entire structure of M-matrix mechanics
and find relations between its various limiting forms.

With regard to the question of whether QM holds without limit, there is the
proposal that QM should be modified near the Planck scale, on the basis of the
problem of information loss at a black hole.!®) This problem is deeply related to
the difficulty involved in the quantization of gravity. Superstring theory and/or M-
theory are the most promising theories that include quantum gravity. In fact, the
problem of the counting of entropy has been solved for a class of (near) extremal
black holes in superstring theory.!!)

With regard to the question of how QM is modified if it has limitations, if
elementary objects in nature are not point particles but, rather, extended objects,
the correct way to arrive at a final theory must be to construct a theory based on
a (new) mechanics appropriate for these fundamental constituents. The study of
generalized matrix mechanics might shed new light on this subject. Or, there is
the possibility that superstring theory and/or M-theory can be used to build a new
mechanics. It would be worthwhile to explore the generalization of QM in order to
approach the construction of a fundamental theory of nature from every possible
direction.*)

References
1) Y. Nambu, Phys. Rev. D 7 (1973), 2405.
2) F. Bayen and M. Flato, Phys. Rev. D 11 (1975), 3049.
N. Mukunda and E. C. G. Sudarshan, Phys. Rev. D 13 (1976), 2846.
3) L. Takhtajan, Commun. Math. Phys. 160 (1994), 295.
P. Gautheron, Lett. Math. Phys. 37 (1996), 103.
Y. L. Daletskii and L. A. Takhtajan, Lett. Math. Phys. 39 (1997), 127.
4) R. Chatterjee and L. Takhtajan, Lett. Math. Phys. 37 (1996), 475.
G. Dito, M. Flato, D. Sternheimer and L. Takhtajan, Commun. Math. Phys. 183 (1997),
1.
G. Dito and M. Flato, Lett. Math. Phys. 39 (1997), 107.
5) J. Hoppe, Helv. Phys. Acta. 70 (1997), 302.
6) H. Awata, M. Li, D. Minic and T. Yoneya, J. High Energy Phys. 02 (2001), 013.
7) B. Pioline, hep-th/0201257.
8) D. Minic and C.-H. Tze, hep-th/0202173.
9) C. Nath and S. Sen, Topology and Geometry for Physicists (Academic Press, London,
1083).

10) S. W. Hawking, Commun. Math. Phys. 87 (1982), 395.
11) A. Strominger and C. Vafa, Phys. Lett. B 379 (1996), 99.
C. G. Callan and J. M. Maldacena, Nucl. Phys. B 472 (1996), 591.
G. Horowitz and A. Strominger, Phys. Rev. Lett. 77 (1996), 2368.
12) M. Ginaydin, C. Piron and H. Ruegg, Commun. Math. Phys. 61 (1978), 69.
S. L. Adler, Quarternionic quantum mechanics and quantum field theory (Oxford Press,
1995).
S. Weinberg, Ann. of Phys. 194 (1989), 336.

*) Several different ideas have been proposed for the generalization of QM.'?

¥102 ‘TT Jequierdss uo A1sieAlun nusuiys e /61o'sfeuno pioxo-did//:dny wouy pspeojumod


http://ptp.oxfordjournals.org/

