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Split Multiplets, Coupling Unification and an Extra Dimension
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We study a gauge coupling unification scenario based on a non-supersymmetric 5-
dimensional model. Through an orbifold compactification, we obtain the Standard Model
with split multiplets on a 4-dimensional wall, which is compatible with a grand unification.

The Standard Model (SM) has been established as an effective theory below
the weak scale. One of intriguing investigations beyond the SM is to unify gauge
interactions under a simple group, such as SU(5). 1) This scenario is very attractive, 2)

but it suffers from several problems in the simplest version. The first problem is that
gauge coupling constants do not meet at a high-energy scale, based on the desert
hypothesis. 3) The second problem is that a dangerous proton decay is induced by
an exchange of X and Y gauge bosons. 4) The last problem is that the weak scale is
not stabilized by quantum corrections (the gauge hierarchy problem). 5)

The introduction of supersymmetry (SUSY) solves the first 6) and the third
problems. 7),∗∗) A supersymmetric grand unified theory (SUSY GUT) is an attractive
possibility as a high-energy theory, 8) but proton stability is threatened due to a
contribution from the dimension 5 operator in the minimal SUSY SU(5) GUT. 9), 10)

Recently, stronger constraints have been obtained from analysis including a Higgsino
dressing diagram with right-handed matter fields. 11)

A new possibility 12) has been proposed to solve the above problems. Starting
from a 5-dimensional (5D) SUSY SU(5) model, we have obtained a low-energy theory
with particles of the minimal supersymmetric standard model (MSSM) on a 4D
wall through compactification upon S1/(Z2 × Z ′

2). In this theory, proton stability
is guaranteed due to the presence of a suppression factor in the coupling to the
Kaluza-Klein modes if our 4D wall fluctuates flexibly.

In this paper, we propose another possibility to solve the first and second
problems based on a 5D model without SUSY. Here the gauge coupling unifica-
tion is realized by the introduction of extra multiplets that split after an orbifold
compactification.∗∗∗) The splitting originates from a non-universal parity assign-
ment on a compact space among components in each multiplet. The proton decay is
sufficiently suppressed by a suppression factor in the coupling to the Kaluza-Klein

∗) E-mail: haru@azusa.shinshu-u.ac.jp
∗∗) The gauge hierarchy problem is solved partially in the sense that the hierarchy is stabi-

lized against radiative corrections perturbatively, as described by a non-renormalization theorem,

although the origin at the tree level is not understood.
∗∗∗) There are several works treating SU(5) grand unification under the assumption that there

are split multiplets 13) - 15) and SU(N) (N ≥ 6) one with a radiative splitting mechanism. 16)
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excitations if our 4D wall fluctuates pliantly. In the following, we derive a model
discussed in Ref. 15) as an example of a low-energy theory from a 5D SU(5) model
through compactification upon S1/(Z2 × Z ′

2).
The space-time is considered to be factorized into a product of 4D Minkowski

space-time M4 and the orbifold S1/(Z2×Z ′
2),

∗) whose coordinates are denoted by xµ

(µ = 0, 1, 2, 3) and y (= x5), respectively. The 5D notation xM (M = 0, 1, 2, 3, 5) is
also used. The orbifold is regarded as an interval with a distance of πR/2. There are
two 4D walls placed at fixed points y = −πR/2 and y = 0 (or y′ = 0 and y′ = πR/2)
on S1/(Z2 × Z ′

2), where y′ ≡ y + πR/2.
We assume that the 5D gauge boson AM (xµ, y) and four kinds of scalar fields

ΦR(xµ, y) (R =5, 5, 10, 10) exist in the bulk M4×S1/(Z2×Z ′
2). The fields AM and

ΦR form an adjoint representation 24 and a representation R of SU(5), respectively.
We assume that our visible world is a 4D wall fixed at y = 0 (We call it “wall I”.)
and that three families of quarks and leptons, 3{ψ5 + ψ10}, are located on wall I.
(Here and hereafter we suppress the family index.) The representations of ψ5 and
ψ10 are 5 and 10 of SU(5), respectively. Note that matter fields contain no excited
states along the S1/(Z2 × Z ′

2) direction.
The gauge invariant action is given by

S =
∫

d5x

(
−1
2
trF 2

MN +
∑
R

|DMΦR|2 − V (ΦR)

)

+
1
2

∫
d5xδ(y)

∑
3families

(iψ10γMDMψ10 + iψ5γMDMψ5

+fU(5)Φ5ψ10ψ10 + fD(5)Φ5ψ10ψ5 + fQ(5)Φ10ψ5ψ5 + h.c.)
+(terms from a wall fixed at y = −πR), (1)

where DM ≡ ∂M − ig(5)AM (xµ, y), g(5) is a 5D gauge coupling constant, and fU(5),
fD(5) and fQ(5) are 5D Yukawa coupling matrices. In the 4D action, the bulk fields
AM and ΦR are replaced by fields including the Nambu-Goldstone boson φ(xµ)
at wall I such that they acquire the functional dependences AM (xµ, φ(xµ)) and
ΦR(xµ, φ(xµ)). The Lagrangian is invariant under the Z2 × Z ′

2 transformation

Aµ(xµ, y) → Aµ(xµ,−y) = P Aµ(xµ, y)P−1,

A5(xµ, y) → A5(xµ,−y) = −PA5(xµ, y)P−1,

ΦR(xµ, y) → ΦR(xµ,−y) = P ΦR(xµ, y), (R = 5, 5)
ΦR(xµ, y) → ΦR(xµ,−y) = P ΦR(xµ, y)P−1, (R = 10, 10) (2a)
Aµ(xµ, y′) → Aµ(xµ,−y′) = P ′Aµ(xµ, y′)P ′−1,

A5(xµ, y′) → A5(xµ,−y′) = −P ′A5(xµ, y′)P ′−1,

ΦR(xµ, y′) → ΦR(xµ,−y′) = P ′ΦR(xµ, y′), (R = 5, 5)
∗) Recently, Barbieri, Hall and Nomura have constructed a constrained standard model upon a

compactification of a 5D SUSY model on the orbifold S1/(Z2×Z′
2).

17) They used a Z2×Z′
2 parity to

reduce SUSY. There are also several works on model building through a reduction of SUSY 18) - 21)

or a gauge symmetry 22) by the use of a Z2 parity. Attempts to construct GUT have been made

through dimensional reduction over coset space. 23)
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ΦR(xµ, y′) → ΦR(xµ,−y′) = P ′ΦR(xµ, y′)P ′−1, (R = 10, 10) (2b)

where P and P ′ are 5 × 5 matrices that satisfy P 2 = P ′2 = I where I is the unit
matrix. Here AM and Φ10(10) are expressed by 5× 5 symmetric and anti-symmetric
matrices, respectively. The intrinsic Z2 × Z ′

2 parity of each component is given by
an eigenvalue of P and P ′.

When we use P = diag(1, 1, 1, 1, 1) and P ′ = diag(−1,−1,−1, 1, 1),∗) the SU(5)
gauge symmetry is reduced to that of the SM, GSM ≡ SU(3) × SU(2) × U(1), in
the 4D theory.∗∗) This is because the boundary conditions on S1/(Z2 × Z ′

2) given
in (2b) do not respect SU(5) symmetry, as we see from the relations for the gauge
generators T A (A = 1, 2, ..., 24),

P ′T aP ′−1 = T a, P ′T âP ′−1 = −T â. (3)

The T a are gauge generators of GSM, and the T â are the other gauge generators.
The parity assignment and mass spectrum after compactification are given in Table
I. The scalar fields ΦR are broken up into several pieces as

Φ5 = φC + φW , Φ5 = φC + φW ,

Φ10 = Q + U + E, Φ10 = Q + U + E. (4)

In the second column, we give SU(3) × SU(2) quantum numbers of 4D fields. In
the third column, (±,±) and (±,∓) denote the eigenvalues (±1,±1) and (±1,∓1)
of Z2 × Z ′

2 parity. The fields φ±±(xµ, y) and φ±∓(xµ, y), whose values of intrinsic
parity are (±1,±1) and (±1,∓1), are Fourier expanded as

φ++(xµ, y) =
√

2
πR

∞∑
n=0

φ
(2n)
++ (xµ) cos

2ny

R
, (5a)

φ+−(xµ, y) =
√

2
πR

∞∑
n=0

φ
(2n+1)
+− (xµ) cos

(2n + 1)y
R

, (5b)

φ−+(xµ, y) =
√

2
πR

∞∑
n=0

φ
(2n+1)
−+ (xµ) sin

(2n + 1)y
R

, (5c)

φ−−(xµ, y) =
√

2
πR

∞∑
n=0

φ
(2n+2)
−− (xµ) sin

(2n + 2)y
R

, (5d)

where n is zero or a positive integer, and the fields φ
(2n)
++ (xµ), φ

(2n+1)
±∓ (xµ) and

φ
(2n+2)
−− (xµ) acquire masses 2n

R , 2n+1
R and 2n+2

R upon compactification. Note that
4D massless fields appear only from components with even parity (+1,+1). The
contribution from the potential V (ΦR) is not considered in the fourth column. In
the low-energy spectrum, there are a pair of lepto-quark bosons, Q(0) and Q

(0), which
∗) The exchange of P for P ′ is equivalent to the exchange of two walls.

∗∗) Our symmetry reduction mechanism is different from the Hosotani mechanism. 24) In fact,

the Hosotani mechanism does not work in our case, because Aa
5(x

µ, y) has odd parity, as given in

(2a), and its VEV should vanish.
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Table I. Parity and mass spectrum.

4D fields Quantum numbers Z2 × Z′
2 parity Mass

A
a(2n)
µ (8,1) + (1,3) + (1,1) (+,+)

2n

R

A
â(2n+1)
µ (3,2) + (3,2) (+,−) 2n + 1

R

A
a(2n+2)
5 (8,1) + (1,3) + (1,1) (−,−) 2n + 2

R

A
â(2n+1)
5 (3,2) + (3,2) (−,+)

2n + 1

R

φ
(2n+1)
C (3,1) (+,−) 2n + 1

R

φ
(2n)
W (1,2) (+,+)

2n

R

φ
(2n+1)

C (3,1) (+,−) 2n + 1

R

φ
(2n)

W (1,2) (+,+)
2n

R

Q(2n) (3,2) (+,+)
2n

R

U
(2n+1)

(3,1) (+,−) 2n + 1

R

E
(2n+1)

(1,1) (+,−) 2n + 1

R

Q
(2n)

(3,2) (+,+)
2n

R

U (2n+1) (3,1) (+,−) 2n + 1

R

E(2n+1) (1,1) (+,−) 2n + 1

R

have both color and weak charge. The SM gauge bosons and the weak Higgs doublet
are equivalent to A

a(0)
µ and φ

(0)
W (or φ

(0)
W ), respectively. The mass split of the bosons

is realized by the Z2 × Z ′
2 projection.

After integrating out the fifth dimension, we obtain the 4D Lagrangian density

L(4)
eff = −1

4

∑
a

F a(0)
µν

2
+ |Dµφ

(0)
W |2 + |Dµφ

(0)
W |2

+|DµQ(0)|2 + |DµQ
(0)|2 − V (φ(0)

W , φ
(0)
W , Q(0), Q

(0))

+
∑

3families

(iψ10γµDµψ10 + iψ5γµDµψ5

+fUφ
(0)
W qu + fDφ

(0)

W
qd + fDφ

(0)

W
le + fQQld + h.c.) + · · · , (6)

where Dµ ≡ ∂µ − igUA
(0)
µ and the dots represent terms including Kaluza-Klein

modes. In this equation, gU (≡ √
2/πRg(5)) is a 4D gauge coupling constant, fU

(≡ √
2/πRfU(5)), fD (≡ √

2/πRfD(5)) and fQ (≡ √
2/πRfQ(5)) are 4D Yukawa

coupling matrices, q, u and d are quarks, and l and e are leptons. With our parity
assignment, we have obtained an extension of the SM with two Higgs doublets, φ

(0)
W

and φ
(0)
W , and extra lepto-quark bosons Q(0) and Q

(0).
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The theory predicts that coupling constants are unified around the compactifi-
cation scale MC(≡ 1/R) to zero-th order approximation, as in the ordinary SU(5)
GUT, 1)

g3 = g2 = g1 = gU , fd = fe = fD , (7)

where fd and fe are Yukawa coupling matrices on down-type quarks and electron-
type leptons, respectively. As shown in Ref. 15), this type of extension of the SM
can survive with the precision measurements at LEP. 3)

It is known that there is a significant contribution to the proton decay, due to
the X and Y gauge bosons in the minimal SU(5) GUT. 4) In our model, we have
diagrams similar to those in the minimal SU(5) GUT, because a quark and lepton
couple to the Kaluza-Klein modes of extra vector bosons at the tree level. However,
we expect that proton stability is guaranteed if our 4D wall fluctuates flexibly. This
is due to the fact that there is an exponential suppression factor in the coupling to
the Kaluza-Klein excitations by the brane recoil effect. 25)

We have obtained the simplest extension of the SM compatible with SU(5) grand
unification. It would be possible to construct more complex models by increasing
the number of extra multiplets. For reference, the pattern of split due to Z ′

2 parity is

Table II. Split due to Z′
2 parity.

R Quantum numbers Z′
2 parity

5 (3,1) P5

(1,2) −P5

10 (3,2) P10

(3,1) + (1,1) −P10

15 (3,2) P15

(6,1) + (1,3) −P15

24 (8,1) + (1,3) + (1,1) P24

(3,2) + (3,2) −P24

45 (8,2) + (3,2) + (1,2) P45

(6,1) + (3,1) + (3,1) −P45

+(3,3)

75 (6,2) + (6,2) + (3,2) P75

+(3,2)

(3,1) + (3,1) + (1,1) −P75

+(8,3) + (8,1)

given in Table II for several low dimen-
sional representations of SU(5). In the
second column, we give SU(3) × SU(2)
quantum numbers for split multiplets.
In the third column, PR is an eigenvalue
of Z ′

2 parity, i.e., PR = 1 or −1. The ta-
ble includes components that can induce
a rapid nucleon decay when they couple
to quarks and leptons.

Our grand unification scenario is
phenomenologically interesting because
it suggests the existence of extra split
multiplets at the weak scale. However,
there is a problem of determining how to
break the electro-weak symmetry natu-
rally and how to stabilize the weak scale;
that is, our model suffers from a natu-
ralness problem. 26) There is an alterna-
tive description in which the extra space
has a large radius. 27) In this case, the
low-energy gauge coupling unification is
expected to be realized by a power-law
correction. 28)
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