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Low-energy effective Lagrangian from nonminimal supergravity with unified gauge symmetry
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From general supergravity theory with unified gauge symmetry, we obtain the low-energy effective Lagrang-
ian by taking the flat limit and integrating out the superheavy fields in a model-independent manner. The scalar
potential possesses some excellent features. Some light fields classified by using a supersymmetric fermion
mass, in general, would get intermediate masses at the tree level after the supersymmetry is broken. We show
that the stability of the weak scale can be guaranteed under some conditions. There exist extra nonuniversal
contributions to soft supersymmetry-breaking terms which can give an impact on phenomenological study.

PACS numbegs): 04.65+e, 12.10--g, 12.60.Jv

I. INTRODUCTION fact that flavor-changing neutral curre@CNC) processes
are suppressed experimentally]. However, we can relax
The minimal supersymmetric standard mo@dISSM) is this assumption since the supp_ression of FCNC processes
the most attractive candidate for a realistic theory beyond théu€ to SUSY particle loops requires only degeneracy among
standard model. The naturalness problem is elegantly solvezfluarks with the same flavor. Second there is no strong rea-
by the introduction of supersymmet§BUSY) [1]. SUSY  SOn that the realistic SUGI’?A takes the minimal structure. In
requires new particles called “superpartners,” whose massel@Ct: the effective SUGRAs derived from superstring theo-

are free parameters in the MSSMyut are estimated as at res(SST’9 have, in general, nonminimal structures and they

can lead to effective theories with nonuniversal soft param-
most of or‘fjer 1 Tev from the naturalne;s argument. Theeters[?].And it was pointed out that higher order corrections
search for “superpartners” is one of the main purposes of thg[18

. . ; . . enerally destroy the minimal form of the Klar potential
experimental projects using huge colliders, which have bee 1. Last the effects of SUSY grand unified theai@UT)

planned now2]. _ . were little considered although SUSY GUB] has been
It is, however, believed that the MSSM is not the uItlmate_hopefm as a realistic theory. The unification dogité] has
theory because there are many problems not solved by iferit in that the number of independent parameters is re-
Here we pick out two problems. First, the MSSM lacks pre-quced due to a large gauge symmetry. Further SUSY58U
dictability since there are so many free parameters which cagyT is supported by the experimenfl] at the CERN
be fixed only by experiments for the present, such as gauge'e~ collider LEP and predicts a long lifetime of nucleons
couplings, Yukawa couplings, and soft SUSY-breaking paconsistent with the present ddt2]. Even if we take a mini-
rameters. Second, the mechanism of SUSY breaking is unmal SUGRA as a starting point, the radiative correction from
explained. This problem is partly related to the first one sincev to My changes the universal form of SUSY-breaking
the pattern of soft SUSY-breaking terms depends on théerms into a nonuniversal one. These renormalization effects
SUSY-breaking mechanism. were discussefi13], but we need to consider effects on the
It is expected that they are solved in a more fundamentadymmetry breaking further. It is shown that new contribu-
theory. SupergravitySUGRA) [3] is an attractive candidate. tions to SUSY-breaking terms can appear at the tree level
When we take SUGRA as an effective theory at the Planckfter integrating out superheavy fieldst]. Analyses includ-
scaleMp;, SUGRA offers the following interesting scenario ing the effects were started recenfs].
[4]. SUSY is spontaneously or dynamically broken in the Now we should stress the importance of studying the soft
so-called hidden sector and the effect is transported to th8USY-breaking terms. The reason is that they can be a pow-
observable sector by the gravitational interaction. In this sceerful probe to SUSY GUT, SUGRA, and/or SST since the
nario, the form of soft SUSY-breaking terms is determinedweak scale SUSY spectrum can directly reflect the physics at
by the structure of SUGRA. very high energies. For example, we can check the GUT
The analyses based on the MSSM motivated by a minimaécenario experimentally by measuring the gaugino masses
SUGRA are energetically investigat¢8]. They are highly [16]. Also, the scalar mass spectrum has certain “sum rules”
constrained by the assumption that the soft SUSY-breakingpecific to symmetry-breaking patterfis7]. Therefore, pre-
parameters are universal at the gravitational sddler a  cision measurements of the SUSY spectrum are very impor-
unification scaleMy. It is quite interesting because the tant. And it is a meaningful subject to obtain the low-energy
theory has high predictabilities and is testable enough, but itheory in a more general framework and to grasp the pecu-
is not necessarily realistic. Let us list the reasons. First théiarities concerning the SUSY-breaking terms in advance.
assumption of a universal scalar mass is motivated by the In this paper, we derive the low-energy effective theory
from nonminimal SUGRA with unified gauge symmetry. We
write down the theory in terms of SUGRA in order to get
Yn this paper, we do not assume universality of the soft SUSY-4nformation on the structure of SUGRA directly. The starting
breaking parameters from the beginning when we use the terminoSUGRA has a more general structure than those considered
ogy “MSSM.” before[18,19,14; i.e., the Kaler potential is nonminimal
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and we do not impose kiddenansatz on the superpotential. the nonzero vacuum energi/) of order mj,M? at this
Here thehiddenansatz means that the superpotential is sepaevel, which could be canceled by quantum corrections. We
rate from the hidden sector to the visible one. Then dangecan show that the VEV’s of th® auxiliary fields become
ous terms, which destabilize the gauge hierarchy, generallyery small(D%)<O(m3,,), as will be shown in Appendix A.
appear at the tree level. We discuss conditions that the hiek/e shall call the fields which induce the SUSY breaking
archy is preserved, and take the flat limit and integrate outhidden fields” and denote those scalar components Bnd
superheavy fields without identifyinlflx with M. We find  components a&' andF', respectively. We require that those
various contributions to the SUSY-breaking terms. It isyE\V's should satisfy(7')=0O(M) and(F')=0(m,M). We

shown that our result reduces to that obtained in Rl in  shajl call the rest “observable fields” and denote the scalar
the limit Myx/M—0 when we take a certain type of total components ag*.

Kahler potential.

The paper is organized as follows. In Sec. Il, we first
review the low-energy effective Lagrangians from SUGRA
following the historical development. We derive the low- Minimal SUGRA has a canonical 'Kéer potential
energy effective scalar potential starting from SUGRA with aK = |z*|?+|Z'|2. We take thehiddenansatz for the superpo-
general total Khler potential and unified gauge symmetry in tential asWsg=W(2z)+W(Z). After we take the flat limit,
Sec. lll. In Sec. IV, we discud3-term contributions to scalar j.e., M —o but mg,, kept finite, we obtain a scalar potential
masses and make clear the relation between our result ar@ich aq4]
that in Ref.[14]. Section V is devoted to conclusions.

B. Effective theories from minimal SUGRA

V=Vsusyt Veott: (6)
II. HISTORICAL BACKGROUND
~ 12
A. Scalar sector in SUGRA 1 2
Vsusy= 7% +§ga[2:(T“)fz"]2, (7)

We begin by reviewing the scalar sector in SUGRA It
is specified by two functions, the total "Klgr potential
G(z,z*) and the gauge kinetic functioh,;(z) with «, g8 . IW
being indices of the adjoint representation of the gauge Vo= AW+ BZ* azK+H.c.+|B|Zzﬁzk, (8
group. The former is a sum of the Kler potentialK and
(the logarithm of the superpotentialVsg such as

) s whereW is defined asi={expK/2M?2))W. Vg,sy Stands
G(z,z*)=K(z,2")+ M?In|Wsd(2)/ M|, (1) for the supersymmetric part, whil¢ o, contains the soft

, . SUSY-breaking terms. The parameté&ysand B are written
We have denoted the scalar components of chiral multipletgg

by z' and their complex conjugates § . The scalar poten-
tial is given by

(FYKy .,
1 A=—yz ~3Mze, €)
2
V=M?2etM U+§(Ref‘1)a5D“D5, 2
B=m3,. (10
where

U= GI(K—l)iJGJ_?)MZ, &) 'Sl'gli§ form of SUSY-breaking terms is referred to as “univer-
D*=G,(T?2)' = (ZTTa)JGJ. 4) The low-energy scalar potential is obtained from minimal

SUGRA with a unified gauge symmetry by taking the flat
Here G,=dGldz', G'=dGldz} , etc., andT® are gauge ![ir:nit an? iln'iggra::]in?tﬁut su_fper?eavy fields s_(ijmu![t_?ncejoqil]y on
transformation generators. Also (R€),z and K1)} are e postulation that the unification scal is identified wi

the inverse matrices of Rgs and Kf respectively, and sum- M [18]:
mation overe, ... andl, ... is understood.

ff_ \seff ff
Let us next summarize our requirements on the SUSY VE=Vsisvt Vet (11
breaking. The gravitino mass,, is given by
Wer| ~ 1
M32= < eK/2|VI2\/I\\;I_SZG> ' (5 Vslsv= x| " 2 GZ (TO2), (12

where angular brackets denote the vacuum expectation value . A W,
(VEV) of the quantity. We identify the gravitino mass with Vo= AWeg+ szﬁk—+H-C-+|B|22’kc Z*+AV, (13
the weak scale. ThE auxiliary fields of the chiral multiplets

are defined ag'=Me®2M*(K~1)!G’ and we require that .

those VEV's should satisfyF'y<O(m;,M). It follows that L aAv  IWegt

(G)),(G')<0O(M) and (U)<O(M?). Note that we allow AV=—3AWet AZ P H.c., (14
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wherez® are the light scalar fieldsa is the index of genera- SUSY-breaking terms show a nonuniversal form. As an ex-
tors of unbroken gauge group, aWdy is the superpotential cellent feature, the. parameter of ordems, originates in

W with the extremum values for superheavy fields pluggeaIhe second and third terms in BQ0) [22].

. ; . . When thehiddenansatz is taken off, the following extra
in. The scalar mass terms are still universal with the Same. s should be added:

massB.3
The universal structure of the low-energy Lagrangian led e Y Y
to a number of strong conclusions, like the natural absence of — (K HY—+AC(z,z*)+(F')—+H.c,,
flavor-changing neutral currenit§] or the radiative breaking iz} gz 9z
scenario due to the heavy top qudg0]. Because of these (21)

successes, the phenomenological analysis has become po
lar based on SUSY models with universal soft SUSY-
breaking termg¢5]. However, it becomes increasingly appar-
ent that SUGRA may not have the minimal form, and it is
important to study the consequences on the low-energy e

QVLHereAC(z,z*) is a bilinear polynomial oz andz*. The
magnitude of the third term and its Hermitian conjugate can
be of orderm%,ZM, and so a large mixing mass of Higgs
foublets can be introduced. Hence we need to impose the

fective Lagrangian. condition
C. Effective theories from nonminimal SUGRA <|”:|> &%/ _ O(m4 ) 22)
P 3/2

The scalar potential is also obtained from nonminimal

SUGRA[21]: to guarantee the stability of the weak scale.
Effective theories based on nonminimal SUGRA with uni-

(non) _ y 7(non) (non) . . . .
v VsusyT Vsott (15 fied gauge symmetry also have been studied in the literature,
P but a complete analysis has not been carried out yet. For
vEen — 1 4 Z g2 2% (T P2, (16) example2 Hallet al. sh_owed that the universality Qf scalar
Jz 2 masses is preserved in SUGRA whosehlea potential has

5 U(n) symmetry among tha chiral fields[18]. Drees studied
on” ; the low-energy theory based on SUGRA with a noncanonical
9z% +H.c+B(2)B(2)+C(z.2"), kinetic function parametrized by one chiral field which trig-
(170  gers the SUSY breakind.9].
As a recent development, the low-energy effective theory
where has been derived from SUSY GUT with a certain type of
nonuniversal soft SUSY-breaking terms, which can be de-

Ve =A% +BX(2)

B*(2)=my,z" ~ Ki(F), (18 tived from a certain type of nonminimal SUGRA with uni-
. TN fied gauge symmetry and tiddenansatz by taking the flat
C(z,z")=—(F) &*KI(F}) limit first [14],
1 .. N Veff(non):Veﬁ(non)+veﬁ(non)’ (23)
| S (ENRD(ED) ~3mad? | 52K —vsbey o
W a? 1
My ) 6K+ . Vel =| | +39dz (THZP (24
—A{mgH(z) —(FX)Hi(z)}+H.c, (19 0T

Vgggtnon) =A‘7://éff+ Bk(z)eﬁEk_ +H.c.

glsthe case that we take tiiddenansatz. Here7"is defined +BX2)etBi(2) e+ C(2,2* ) o
. L +A VoD, (25)
7"=W+mgH(z)—(F)H'(2), (20) . .
where 7 o, BX(2)et, and C(z,2*) ¢ are 77, BX(z), and
whereH(2) is the holomorphic part o£* in K. And 6°K,  C(z,z*) with the extremum values for superheavy fields
6°K;, and 5°K] are the quantities of orden3,, m3,/M,  plugged in, ancA V(™" is a sum of extra contributions spe-
andm3,/M? in K, K;, andK!, respectively. Note that the cific to the extra gauge symmetry breaking. The most impor-
tant one is @-term contribution to the scalar maséds.the
absence of a Fayet-lliopould term, sizableD-term contri-
%Hall et al. assumed that the supersymmetric masses of light fieldfutions can appear under the following conditiofi3.SUSY
from the superpotential are zero. It is straightforward to generalize
their analysis into the case that the light fields have nonzero but
O(mgy) masses. “Historically, it was demonstrated that thz-term contribution
3Throughout this subsection, it is assumed that the vacuum energyccurs when the gauge symmetry is broken at an intermediate scale
(V) vanishes. In the presence of the vacuum energy, the value afue to the nonuniversal soft scalar masses in 3] and its ex-
scalar mas$B|? is replaced byB|2+(V)/M2. istence in a more general situation was suggested in[R4F.
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GUT has nonuniversal soft SUSY-breaking terrt®. The  (z*) is near to thatz§ in the SUSY limit, i.e.,
rank of the gauge group is reduced by the gauge symmetry;<)=z5+ O(ms,).2 Some observable scalar fields have the
breaking. As the other feature, the gauge hierarchy achievegevs of O(My).

by a fine-tuning in the superpotential is preserved for SUSY- (5 All the particles can be classified as hedwjth mass
GUT models derived from the SUGRA with theddenan- O(MX)] or ||ght [Wlth massO(m3/2)]_ There are no ||ght
satz and no light observable singlets after the SUSY breaksinglet fields which induce a large tadpole contribution to
Ing. Higgs masses by coupling to Higgs doublets renormalizably
In the next section, we derive the low-energy scalar poin the superpotential. For simplicity, the light observable
tential from a more general SUGRA and write it down in fields are gauge nonsinglets and have fluctuations only of

terms of SUGRA. O(mgy). The fields classification is stable irrespective of the
SUSY breaking; i.e., the weak scale does not destabilize due
IIl. DERIVATION OF THE EFFECTIVE LAGRANGIAN to the SUSY breaking. ThB-term contribution to the scalar

masses for the light fields is not larger than théerm one.
(6) We study the case that the equalities hold for the es-
We shall first list our basic assumptions based on the hidtimations of the scalar masses for simplicity.
den sector SUSY-breaking scenario.
(1) At the gravitational scalé, the theory is described B. Vacuum solutions
effectively as nonminimal SUGRA with a certain unified
gauge symmetry whose 'Keer potential and superpotential

are given as V=VF 1y (29)

A. Basic assumptions

The scalar potential is given as

K=K@Z)+ Az 22) tH(zZZ) +He (29 VP=M2exgGIM?)[G' (G 1H{G,-3M2], (30

and 1
. . . VP)=Z(Ref 1), zDDA. (31)
Wse=W(2) +W(z,2), (27) 2
1 The indexl,J, ... runs all scalar species,j, ... runs the
W(z,i)simm(i)z"zur gfkw(i)z"z*z“jL . hidden fields, andc,\, ... runs the observable fields. The

28) D%s are deformed as

a_ a)\K— (5TTC K

respectively. Here the ellipsis stands for terms of higher or- DI=K(T72)"=(z'T).K (32)
_ders in_z. The gauge group is not necessarily _grand unifiedyom the gauge invariance of the superpoteritial.
into aS|mpIe'gro_up. The theory has no Fayet-lliopould@$)U The vacuum solutioz') is determined by solving the
D term for simplicity” stationary conditionssV/3z'=0. The conditions that the

(2) SUSY is spontaneously broken by theterm conden-  gysy not be spontaneously broken in the observable sector
sation in the hidden sector. The hidden fields are gauge singe simply expressed a\V/dz*=0 andD®=0. We denote
glets and they have the VEV's @(M). The magnitudes of o <outions of the above conditions 2=z

Wse and F componentFi of 2 are O(mg,M ?) and The supersymmetric fermion mags; is given as
O(my,M), respectively. The derivatives of the Kar po-

tential with respect ta andz* are at most of order unit§in ) G,G; oy
units where M is taken to be unity namely, M= < MeSM G+ W—Gl'(Gl)yGfJ)>-
(Kfll_' 7Y<O(1). This will be justified if Planck scale physics (33)

plays an essential role in the SUSY breaking. _ | . . .
(3) The gravitino mass is of order of the weak scale. =~ We take a basis of' to diagonalize the SUSY fermion
(4) The unified gauge symmetry is broken at a sddle ~ Mass matrixu,; . Then we assume that the scalar fields are
independent of the SUSY breaking. Our vacuum solutiorclassified either as “heavy” complex fields,z", ...,

“light” fields z,2', ..., Z',2), ... such asux =0O(My),
M =0(mgp), wi;=0(mg,), or Nambu-Goldstone fields
5The extension of the theory with the Fayet-liopoubsterm  Z°,Z°, ... (which will be discussed just belgwThe observ-
[25] is straightforward. We discuss it in Appendix B. able fieldsz* consist ofz¥, z¥, andz*. It is shown that the

®0ur discussion is also applicable to the case of SUSY breakingiidden fieldsz' belong to the light sector in Appendix A.
by gaugino condensation if the freedoms are effectively replaced by The mass matrix of the gauge bosoms)“# is given as
some scalar multiplets whose VEV’s are of ordéras the models
derived from SST.

"This assumption is a little too strong since we only need to re- e can show that there exists at least such a vacuum solution in
quire that the soft SUSY-breaking masses be of order of the weathe case that the scalar potential has no flat directions in the SUSY
scale. In fact, there is quite an interesting sceng?®| that the  limit.
gravitino mass is decoupled to the soft parameters and the magni-"When the superpotential is not gauge invariant under (&) U
tude of SUSY breaking is determined by the gaugino masses. transformation, the Fayet-lliopould3 term existg27].
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(M2)*F=2((2"TP) K5 (Te2)M), (34)

3783

By using the expansion@7) and(38), we find the esti-
mations

up to the normalization due to the gauge coupling constants,

and it can be diagonalized so that the gauge generators are

classified into “heavy” (those broken aMy) TATE, ...
and “light” (which remain unbroken abovemsy,)
T3 TP ... . For the heavy generators, the field3"z)")

correspond to the directions of the Nambu-Goldstone fields

(G)=0(M), (Gk)<O(My),

(GA)=O(M3/My), (G)=0, (39

(Gly=1, (Gh=1, (Gk)<O(My/M),

in the field space, which span a vector space with the same

dimension as the number of heavy generators. We can take a

basis of the Nambu-Goldstone multiplet$,z8, . . ., sothat

V2((TA2)By=M%E. (35

Here the Nambu-Goldstone fields are taken to be orthogonal

to the heavy and light fields such g$T*z)X)=0 and

{((TA2)%)=0. To be more precise, the imaginary parts of the
Z"s are the true Nambu-Goldstone bosons which are ab-
sorbed into the gauge bosons, and the real parts acquire t
same mass of orddl x as that of the gauge bosons from the
D termV(®) in the SUSY limit. Hence the Nambu-Goldstone

multiplets belong to the heavy sector.

Let us give the procedure to obtain the low-energy effec

tive theory.

(1) We calculate the VEV’s of the derivatives of the po-

tential and we write down the potential as
1
V= §<V,J>Az'Az3+---, (36)

where the scalar fieldg''s are expanded ag =(z')+AZ'
around the vacuuniz'y.

(2) When there exists a mass mixing between the heavy

(GL)=<O(Mx/M), (GL)=0, (40)

(Gij)=1, (Gk)s=O(M /mgp), (Ggj)<O(Mx/M),
(Gaj)<O(Mx/M), (Gy;)=0,

<GKB>S1’ <GK|>51' (41)

Qﬁmre Mg, is the SUSY fermion mass coming from the

superpotential. Here we used the assumption that our
vacuum solution is near to that in the SUSY limit and a
perturbative argument to derive the second relatio(38).

"And we used the relation@5) and(D%)<0(mj3,,) to derive

the third relation in(39).
By using the equality from the gauge invarian@e), we
derive the relations

and light sectors, we need to diagonalize them to identify the

light and heavy fields correctly.

(3) We solve the stationary conditions of the potential for
the heavy scalar fields while keeping the light scalar fieldgWggaw)<O(Mz,/My),

(Ga)=O(1IMy), (Gap)=<O(1My),
(Gaga)<O(IMy), (Gakp=<O(1/M),
(Gas)<O(LM), (Gp;j)<O(1M) (42)
or
(Wscagl)<O(mg/My),

arbitrary and then integrate out the heavy fields by inserting

the solutions of the stationary conditions into the potential<WSGABc><o(mSIZ/Mx),

We take the flat limit simultaneously.

C. Derivatives of K and W

It is convenient to write both the Kder potentialk and
the superpotentialWsg in terms of the variationg\z' and
AZ} as

K=(K)+(K)AZ'+(K)AZ} +(K})AZ'AZS

1 | J 1 1J * *
+§<K|J>AZ Az +§<K >AZ| AZJ+~”
(37)

and

1
Wse=(Wsg) +(Wsg)AZ + §<WSGIJ>AZIAZJ

1 ’
+ §<WSG|JJ'>AZIAZJAZJ +.ee (39)

where the ellipses represent higher order termAin

(Wsaakj) <O(mg/M),

(Wsgagj)<O(mg/M),  (Wsgaij)<O(mg,/M). (43

D. Stability of gauge hierarchy

The mass-squared matrices of the scalar fields are simply
given by the VEV’s of the second derivatives of the poten-
tial. From Egs.(29)—(32), we get the relations

, PV
VI T o%
0z’ 97}

_ MZ(eG/Mz).IJU + MZ(eG/Mz)IUJ+ MZ(eG/MZ)JUI
1
+M2eSMU]+ 2 (Ref 1)), DDF
+(Ref )5, D*(DP)’+ (Ref ~1);,,D*(D”),

+(Ref 1) ,zD*(DP)} + (Ref 1) ,5(D*);(D#)’
(44)

and
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2 2 ’
\/Uzﬁl_vJ (Me® MGy )(F7) <O(mgMy), (50
0z' 9z
(Me®M°G,  W(F' )Y <O(my,M2/M) (51)
:MZ(eG/Mz)IJu+M2(eG/M2)IUJ+MZ(eG/MZ)Jul Kjd’ = 372V % ,
2 ’
IRVERCTIC (Rer_) e (Me®2°Gjy )(F)<O(mg My /M). (52
aB,1d
The conditions(48)—(52) correspond to the statement that

+(Ref 1) 5/ D*(DP);+ (Ref 1) .5 ,D*(DP), the magnitudes of(MeG/ZMZGm,}(FJ') are equal to or
smaller than the rest terms. Th&ldenansatz trivially satis-
+(Ref 1), zDDP) 5+ (Ref 1) ,5(D*),(DF);. fies the above conditions. The gauge hierarchy problem has

been discussed based on the postulationNhats identified

| | 9 ith M in Ref.[28]
By using the relation$39)—-(43), the VEV's of Vi’ and V), The contributions from th® term are naively estimated
are estimated as as
Ly __ 2 B
(VIPR)=0(M%), (VPR)=0(m3p), (VOMN=0(M2), (VIDh=0(M2),
(VE=0(m3)y), (VLY (VLY =0(M¥M),
(VPh=0(m3p), (VIFR)=0(mg,My), (V2 (VRN =O(M3/M),
(F)l'y— .
(VP =0(mg M), (VP (VPy = O(M%/M?),
(VPLY=0(mg,M2/M), (VELY=0(mZ,), (VoL <V(D> 0, (53)

(VL =0(m3 My /M), (VPl=0 (46)  where we used the relation((D*),)=((z'TA) K)
=0(My)K?'. Under the conditions thatV(®})=<(v(M})
and(V{P)y=< (V") for the light fieldsz', we obtain relations

(V (F>> O(MmgM), (V (F)) o( ms/z) such as

and

2
(Vi) =0(mgM), <K§>,<KAk>=o(E—32’2) (54)
X

(Vi) =0(mgM), (Vi) =0(mg M), and

(Vi) =0(mg,M),

(K (Ka)=0| 11 ;A) (55

<V(F>> O(mgpM), <V(F)> Om3,2) (V > Om3,2)

The analysis could be made based on weaker requirements

(Vi§)=0, (47 than(48)—(55), but we will not discuss it further to avoid a
complication and a subtlety in this paper.

respectively. The quantities of ordety,M in (V{) origi-
nate in the term<MeG/2MZG|‘]‘]’><FJ/>- If (Vi;)'s are E. Diagonalization of the mass matrix
O(my;,M) for the light fieldsz', the masses of light fields
can get intermediate values after the diagonalization of mass
matrix. The masses of those fermionic partners stay at the
weak scale. The weak scale can be destabilized in the pres- 1 .
ence of weak Higgs doublets with intermediate masses. This vmass=— (Vi) AzZ'AZY, (56)
is so called “gauge hierarchy problem.” Only when 2

(Me®M°G, 1, )(F?'}'s meet some requirements does the hi-
erarchy survive. In this paper, we require the conditions

The mass term is written as

where Az'Af(AzK,AzEEAz’,_‘ ;AzA,AzE‘EAz’é A AFI=
AZF ;AZAZ'=AZ}). From the discussion in the previous
<MeG/ZMZGIJJ/><FJ’><O(m§/2) (48  subsection, the orders ¢¥3) are estimated as

for the light fieldsz' andz’, , ,
My My mgpMy

G/2M? J' 2
(Me Gy )(F7 )<O(MY) (49) (vip=o| ML MLZ mj, (57)

. 2 2
for the heavy fieldg' andz’, and MgpMyx Mgzp M3
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; - Ko A oA A oK R R c1 . ..
for gauge nonsinglet fieldsAz"*;Az*; AZ*) and K=(K)+(Ki)AZ + E(K;g)Ai'Ai% o 65
MZ MZ Mg M /M
“ ~ -1 . o
(Vi5=0 M M% m3,Mx /M Wig= (W) +(Wi)AZ'+ 2 (Wi3)AZ'AZ
Mg MM m5My /M M3,
(58) 1 . Al AT AT
o + a(Wm,)Az'AzJAzJ +.-, (66)
for gauge singlet fields XZ¥;AZz*;AZ'). As the matrix '
(Vi3) is Hermitian, it can be diagonalized by the use of aand
certain unitary matri>dJ'~ The mass eigenstates are re-
lated toAZ' as ¢ = UL Az We denote the heavy fields with D= (K\+KjAU)(TM(z9)+(U"H5AZ], (67)

mas§O(MX) as¢>7’ and the light fields with mase (ms.) here the eII' ses represent terms of higher orders and
as¢” where. 7= (K,A) and 7= (i k). Next we would like - P P '9

to integrate out the heavy fields”. For this purpose, it is U3 _5A+AU )
convenient to choose the variables “For later convemence, we defori” as
A7/ 1 ///
=(U? ,) ¢ (59 . " a = a
7 VP =expKIM?)| So(K™ 17,
AAV ( </r) 1¢ (60) | |2
+ Z(RYI 7, —3z | FAVE (68)
or
. where
AZ=U3AZ, (62) R,
Ce= 0t GKTH (K g, (69)
PN - .
- ' (U3 U5 H=L+ (KK H1Z, (70)
U:]E ‘2 _ %, . (62)
(Ug) U5 I o Kia
o= I’ + WW*, (71)
Here we used the fact that (Hbf:,=1+ o(m3,/M3%) and A
detU ;/,—1+O(m§,le>2<) and neglected the higher order f;’lz\i\/l—}-%w (72)
terms. The orders of off-diagonal eIementsLAd)'jc are esti-
mated as and
A L (m2 (K™Yi=(R=Y T (R~ #(K) (K™Y, (79
- m . m p :
UF=o| 22|, 0*=0| =%, (63) :
i My | 2
AVP=exg( KIMA{Z1A (0K~ HI T,
2 _
~ K Mg/ ~A M3z S =13 A ([
K_of 2872 A_ + .
U: o( v ) U; o(MMX). (64) (KT HGA(U);
+ ZTRHPAD !
F. Calculation of the effective theory T( )7L )J
The rest in the procedure are as followd) We write +(K_l)"A(U_1)i]f?/j}
down the scalar potential by using new variabd&s; (2) We (12
take the flat limit and integrate out the heavy fields by insert- +O((AUT)9). (79
ing the solutions of the stationary conditions into the full = "
potential. We should not confuse K™*)", 7, and 7, with

We can write down the Kaer potentialk, the superpo- (K~ l)'J Z=, and %, , respectively(Note the difference of
tential Wsg, and theD auxiliary fieldsD® in terms of the  the size of the cargtHere (), is the inverse matrix of
variationsAz' as (K 1)’“’. The scalar mass matrix is diagonalized up to
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O(mg;,/My) in terms ofAii, and so the fieldaz* can be P S K <l (W) . e
regarded as properly normalized fields and 6" G n=(Wan)0Z + 5(Wa) 62" 62 + 57 (Ka3) 62°6
) H{(K)A((K™H") 8%+ 5((K) as(K ™) 87
A - - m
<(K*1)K)\>:5K7\ 1+ 0 _342):| (75) (83)
Ile
and

up to off-diagonal element of ord€d(ms,/My) after the
scale transformation is made. We expakd in powers of (\7V>
Mg, such as P ~

82 877 =(Wy)+ 1z (K, (84)

AP =55+ 8%+ ..., (76)

N AU
. . 825 =(Wy)) 62"+ E(W,-,sz' 67’
with 5”“'=O(mg,le§’1) and AZ=0(mj,,) for the light

fields, e.g.,6°Z¢= 6°Z=...=0. In the same way, we ex-

1/1 . ~ A A B
J0°Z - Bl et 5L SSM/R RS
pand the;, 5, andD“ in powers ofm, such as MVE 2<WL"">5Z OZ(K )+ (WK 3) o7 ).,

(85)
Gi=853+ 855+ -, (77) A
respectively. While the expansion Bf* gives
Gi=8G+ P+, (78)
SDA= (K, ) (TA)R 62~
and +(Rin) 52+ (R a0 (THXZS,  (89)
D= 5D+ 8D+ - - -. (79)

FDA=(R,\)(TAN 6%+ 501! 62°]

Those orders are given ass" 3 =0(my/M% ?), A . .
8" =0(mj/M""2), and5"D*=0O(m3,/M% " ?) up to the + ((Kj\) 822 +(Kj3,) 62' 62
factor O((My/M)").
The following relations are derived from the expansions © o orT
of %, and & H(K)STUN(TH)(Z)
. W + (Kin) 82+ (KD a0 (TA)02°. - (87)
5:;K:<WK>+<WKL>5ZL+W<KK>

R MK~ Yy 67, (80)  The stationary conditiongV/dz“=0 andoV/9z*=0 give
825 = (Wi ) 8221+ (Wi ) 677 + (Wi ) 522 A > 1L\ s
K KL K% KA <W>KL<(K ) M>5Q§l::0’ (88)

1.
+ E(WKW)éz“&z“

101 . (Wi (K™Y 8257 = = 65 72((K™ 1P MWW, i) 62
+W §<WLM>5ZL5ZM<KK>+<W><KK3>5ZJ + const (89)
HK)k) (KDY 827+ 8((K)i( K™ 87,

81)

and

8T A= ((K) Al ((K"1)1) 67, 82) (Ref L) {((2T%)#)(Ka) 8DE=0, (90)
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(Ref ) (ZT))(Ka) D= ESZZ((KTH™) 7 = AV o+ B (z)effﬁty//eff +H.c.
X (W, ,a) 527+ const, Za
(93)
B (2)eBi(2)efi+ C(2) et

respectively. Herd& = (exp/M?)).
From Egs.(80), (82), (84), and(88), we find 62=0 by
using (52%)=0. Equation(89) gives the solution fo2%y

as

FATHAPP), (98)
whereA 7+ A7) is a sum of contributions such as

5= (7~ (KRONW K87 5((K™H#M)

" 5= AP L A 5AD) L A FAF) L A 5AD)
X (W) 62, (92) A7=A74 '+ A7 AT AT, (99

where a constant factor a2y is denoted ag ?) From
A— SA Z ~ ~ ~ N r -
Egs. (64) (86) and (90) we find 5D =0 andéz —0 By A%gF)EE[ _|52*(§)K 2+|62’g/‘A|2+ 5:;»;5AB@G '(;)B_l— H.c.
using the relatlons(WABk) O(mg/My) and <WAB,)
=0(m3,/M), we can show that?D? is a constant inde-

" - ~ 1 .
pendent of the light fields. Therefore we will denote it by +525§;5"L(<WLK)62“+ §<WLk,>52k52'+ -
(D).
Now it is straightforward to calculate the scalar potential
7°% in the low-energy effective theory by substituting the +H.c.p, (100

solutions of the stationary conditions for the heavy fields.
The result can be compactly expressed if we define the ef-
fective superpotentiat/ o as

AT D =(Ref 1) (DANK1,) 82 (TE)R 627, (100

. R P
7 (D)= 57 [ 6267 + ahklmfszkaz' 67™, (93
A7 FI=E{65:6% (K )65, + 65:6(K 1™ T

where + H.cl, (102
fa=EY2 (W, >+<W><|“< y—(K ¢><(|A<—1)TJ>5(;% 54D) — 1V DAV RN 551 559 TBYN 74
i R VR ki - A77=(Ref sg(D")(Ki3\) 62 62°(T7)(2"), (103
(M3, (94
. - A“iz7/"<F):E[consﬂLxE<\7v,_k|)52k52'+H.c. (104
hiim=EYA W) (95 2
Then we can write down the scalar potential of effective
theory a$’ A A= A om = .
E[consi-=E{5578(U) (K™ H)'") + S((K™ ) 8(U)}§
efi_ eff ff +553/*[((}2*1)%5(0*1)I
7= 7 syt 7 sot- (96) ! J
(K™Y U1} (109
s 12
2 _ a%eﬁ T A2rsk Ta —5172 9
7 susY™ ook zga[z (THaz 1%, O)  The quantities with a prime such &’ <§B mean that the

terms proportional to5?z' are omitted. The ellipsis in Eq.
(100 represents other terms &% £ — (Wy, ) 5°2". [Refer to
10HereAwe omitted the terms irrelevant to the gauge nonsingleEq. (81).] The parametera, Bk(z)eﬁ, and(‘;(z)eff are given
fields 6z¢ and the terms whose magnitudes are less @mj,,). as
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A=mz, —3m3,, (106
B (2)efr= (Mot M5 +m3" )i 8462, (107

C(2)e=ES5T{(K™ 1)'J>( 1!<\7v,-.33,>52'52352y+<Mﬂ2>52’kj )

+H.c.+E| 67762 (K™ 1187+ 7z 82K K

_ _ K K e
—{(m3") (Mg}, kk+(mg,/2)kl(m§/2m)‘}§k 6267 —{(Mizj) m O™ (Mo + M) 162462+ H.c}

El/2(< 2><Kkl> <Kk||><(K 1)i_j>55‘;/] +(mGp) | 62462, (108
[
where (MP) =M+ (A7 )+ (A7), (113
< W)
(Mg =EY2 7 847, (109 P Pz
o ¥ ()= —B "(@)en—Bul2) et —— ClDer,
(9 &Z
'WQZEH<J«K iy 57,, (110 (119
_ z 52 ",|: -1 oy
(Mya=—EYAKG(K"H1)s7, (11 (M7= — 7 A75+ (Ret g} (D) (TP,
(115

(M) i = —EYAR G((K D™ 67, . (112
2

The A7? andA 7 come from theD term of the heavy
gauge sector and are referred to asiEhterm contributions,
while the others are called tifeterm contributions. (116
The scalar potential obtained should be regarded as the
effective theory renormalized at the scMe . This potential  The term (no)k| is present before the heavy sector is inte-
serves a matching condition when we solve one-loop renorgrated out and so it respects the original unified gauge sym-
malization group equations above and below the sbile  metry. On the other hand, other terms coming frami” can
The potential is written in terms of SUGRA, and so it will be pick out effects of the symmetry breaking.
useful to disclose the structure of SUGRA from the measure- The last terms in Eqs(115 and (116) are theD-term
ment of the SUSY spectrum. contributions. We discuss the conditions of their existence.
We should consider the renormalization effects for theThe nonzero VEV of th® term is allowed for a (1) factor,
soft SUSY-breaking parameters and diagonalize the scalae., a diagonal generator from the gauge invariance. And the
mass matrix(Vij) after SU2), X U(1)y breaking to derive D term for an unbroken generator cannot have its VEV. Thus

. d - A A
AT )= — A+ 2AREGHOM R (T,

the weak scale SUSY spectrum. it can arise when the rank of the gauge group is reduced by
the gauge symmetry breaking. Tieterm contribution is
IV. FEATURES OF THE EFFECTIVE LAGRANGIAN proportional to the charge of the broken(lly factor and

ives mass splittings within the same multiplet in the full

The effective theory obtained in the previous section ha§g heory. We can rewrite?DA—= <DA> as

some excellent features. We discuss two topics.

}
17

Skl

A. Chirality-conserving mass <DA>:2(M\7Z)ABE&'/KK‘S-?//X{GE\(QTB)”"“ GH*(T®)

A~
[S=N

Let us discuss achirality-conserving mass M),

namely, the coefficient 06Z“67Z'. They are easily extracted by using the gauge invariance. We can see that the VEV's
from 7/50ft and given by vanish up toO(mg‘,le)Z() at M when the Kaler potential
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has a minimal structur€.Hence a sizabl®-term contribu- V. CONCLUSIONS

tion can appear a1 when the Kaler potential has a non- . . .
minimal structure. We have derived the low-energy effective Lagrangian

The other terms in Eq$115 and (116 are related to the from SUGRA with nhonminimal structure and unified gauge

F terms. They can be neglected in the case that the superpgYMMetry under some physical assumptions and require-
tential couplings are weak arf-parity conservation is as- ments in a model-independent manner. We have calculated

sumed. Therefore phenomenologically teterm contribu- the scalar potential by taking the flat limit gnd in_tegrating out
tion to the scalar masses is important to probe SUSY-GUThe heavy sector. The result is summarized in E§8)—
models because it can give an additional contribution td112. The potential is written down in terms of SUGRA, and
squarks, sleptons, and Higgs bos@hg]. so it will be useful to disclose the structure of SUGRA from
measurement of the SUSY spectrum. We state our chief re-
sults in correspondence with the assumptions.
We have assumed that the starting SUGRA consists of a
Finally we discuss the relation between our result and thathonminimal Kaher potential and a superpotential without
in Ref. [14]. For later convenience, we list features in thethe hidden ansatz. It is important to investigate its conse-
approach of Ref{14]. . 3 _ quences at low energy because nonminimal SUGRA appears
(1) The starting theory is a unified theory obtained by natyrally in many circumstanses. For example, SST's lead to
taking the flat limit of SUGRA with a certain type of total nonminimal SUGRA's effectively. Even if SUGRA has the
Kahler potential, and so terms of ordery,(Mx/M)" are  minimal structure at the tree level, it can get renormalized
neglected. Since the unification scafl is now believed to  and as a result, in general, become nonminimal. The non-
be lower than the gravitational scaié from LEP datd11],  mjinimality leads to nonuniversal soft SUSY-breaking terms
this procedure can be justified in such a model. However, is nointed out in Refl21]. The dangerou® term, which
will be important when higher order corrections are (0 begestapilizes the weak scale, can exist if any conditions are
considered. Then we must incorporate threshold effects anght imposed on Yukawa couplings in the superpotential.
loop effects. _ _ We have assumed that SUGRA has unified gauge symme-
(2) The hidden assumption on the superpotential wWaStry which is broken down ably . Some scalar fields get the
taken because it was proposed to discuss consequences indg\/'s of O(My). There exist heavy fields with masses of
pendent_of the dgtails of ee_lch model. The stability of_ theO(MX) in addition to light fields with masses @f(my,). In
gauge hierarchy is automatically guaranteed under this agych a situation, there appear extra nonuniversal contribu-
sumption. o tions to the soft SUSY-breaking terms reflected in the com-
(3) Heavy-light mixing, in general, can occur after soft yination of the nonminimality of Kiaer potential and the
SUSY-breaking terms are incorporated. Then we must redg;reakdown of extra gauge symmetry. The most important
fine the scalar fields _by diagonalizjng thr—; mass matrix. It Wagyne comes from theD-term condensations of the heavy
assumed that there is no heavy-light mixing after the SUSYy5,ge sector. This contribution is proportional to the charge

B. Specific case

breaking. . _ . of broken diagonal generators, and so we can know the large
We shall fcfjenve the previous one? (nom, from our scalar gauge symmetry by the precision measurement of scalar
potential 7" by referring to the list. . masses. Its phenomenological implications were discussed in
(1) When we take the limiM, /M —0, we find that some  Ref. [17]. Another important point is the gauge hierarchy
terms vanish. For examplemg),),; andA 7" vanish. problem. Many SUSY-GUT models achieve a small Higgs
(2) We take thehiddenansatz(W,...,...)=0. Then the doublet masses by a fine-tuning of the parameters in the su-
trilinear coupling constant is reduced to perpotential. If SUSY breaking due to the hidden field con-

densations is turned on, a SUSY-breaking Higgs boson mass

term can become heavy and the weak scale can be destabi-

lized. We have shown that the masses of light fields remain

at the weak scale if the couplings of hidden-sector fields to
(3) When we take a model with no heavy-light mixing, Visible-sector fields in the superpotential satisfy certain re-

A7) does not exist. We can find an ansatz for thélka ~ duirements. -

potential that the heavy-light mixing does not occur in the We have identified the gravitino mass at the weak scale.

gauge nonsinglet sector after taking the flat limit. For ex-However, our argument can be applied to models in which
ample, the ansatz the gravitino mass is decoupled to the soft parameters; that

is, soft parameters except gaugino masses vanish [#6].

Then we should use gaugino masses in placengf as a
parameter in the expansion because the scalar potential gets
the radiative corrections due to gauginos.

~ 1 -
AEY W) + > (M54 M%) W) . (118)

K=K\"(z7,2%,2,2%) + KW (2,28 ;2,7*) (119

fulfills our requirement. Our procedure is applicable to effective SUGRA's derived
We find that?®™ reduces tove™"°", after the above pro- from SST’s. It is known that there are many string models
cedures. with GXU(1)" [29] and some models have anomaloud)U

symmetry{ 30] which generates a Fayet-lliopoulbBsterm by
one-loop effectd31]. The anomalies are canceled by the
The D-term contributions can be sizable Mty by the radiative =~ Green-Schwarz mechanisf82]. The form of the effective
correction even when they vanish Mt theory reflects the breakdown of extra gauge symmetry, and
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so it is important to search for a realistic string model byTaking its VEV, we find
taking care of extra (1) symmetries.

We have rederived the results in REf4] by taking the
limit My/M—0 and imposing some ansatz. We also have
treated SUGRA with a Fayet-lliopould3 term at the tree 1
level independently to avoid a complication. + 5((Ref_l)ﬁw(T”Z)')(DB)(Dy)

It is believed that measurements of the SUSY spectrum at
the weak scale can be useful in probing physics at SUSY 1 5
GUT, SUGRA, and/or SST, if the SUSY-breaking scenario + §<(Refil)ﬁy>(MV)ay<D'B>' (AB)
through the gauge singlet sector in SUGRA is realized in
nature. Hence precision measurements should be carried ophere M2)B=2(('TP),K}(T2)") is, up to the normal-

by colliders in the near future. ization due to the gauge coupling constants, the mass matrix
of the gauge bosons. Recalling that{)“# are assumed to
be O(M)z() for broken generators of the GUT symmetry, we
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Joichi and especially M. Yamaguchi for useful discussions.
This work was supported by the Grant-in-Aid for Scientific
Research(No. 07740212 from the Japanese Ministry of
Education, Science and Culture.
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(D*y<0(m3,), (A7)

as the first three terms of E¢A6) are already of order
m3,M% or less. It is noteworthy that quite a similar equation
to (A7) is obtained for the case of a nonlinear realization of
the gauge symmetry.

In this appendix, we give some consequences of the sta- From Egs(4) and(A7), we find(G*)<O(m5,/My). By
tionary conditiongV,)=(aV/dz'y=0. From Eq.(2), we find  using relationg39), we find

APPENDIX A: CONSEQUENCES OF (9V/dz')=0

v.=MZ(eG/M2)|u+M2eG’M2u,+%(Rer—l)aB,.DaDB (Ff)=0(mgM), (A8)

+(Ref1),,,DYD#), (F)=0(mg,My). (A9)
B T A )tk Tk e v o

~ G (K YK} (K6 + G} (Me®2M°G ) (F'y=0(m,M), (A10)

" %(Ref_l)aﬁ,lD”DB+(Ref_l)aﬁD”‘(ZTTB)JK|J- (MeS2Y'G, )(F')<O(m3,My). (A11)

(A1)

; G/2M? _
Let us now multiply T%z)' to the above, or project on a Since(Me Giy) = s+ O(mgp), the above reads

heavy-real direction. Using the identities derived from the
gauge invariance of the total Ker potential, wii{F"y=0(mj,M), (A12)

G1(T*2)*+ Gy(T*)] - K{(z'T*);=0, (A2) i ENY<O(m2My). (A13)

Since we assume thaty, is O(My) for heavy complex

GlJJ'(TaZ)y + GIJ’(Ta)j, + GJJ'(Ta)i], fields? we find

~(@' Ty K =0, (A3) (F)=0(mi). (A1)

I a3 3 e 13 The relationu;;=O(mg,) is derived from the above rela-
Kiy (T2 +K5,(TY)} =[G (2'T%) 5 ]=0, (A4)  tions (A8) and (A12). Therefore, in our convention, the
hidden-sector fields are contained in the light sector.

We can derive the following formula for thHg-term con-
densation:

we obtain

Vi(T%2)' = M2 (2+ U/M?) D~ F'F3[ G (2!T), ]}

12Note that a careful analysis tells us thatF¥)
<O(m3Z*)/My), whereMy is the mass of* from the super-

. 3t potential. Thus as far a&*)~My, the VEV of its F term is
+(Ref ™) 5,(T*2)'Kj(2'T7) D7, (A5)  always small,~m2,.

1 ef*l aNNBHY
+5(Ref 14, ,(T°2)'DPD
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ay _ —2yaB/El\/E* Ve t18y 79 G=G,XU(1)gr whereGy, is a unified group.
(DH=2(MHAFAFINICT (ZTO]) (ALS) Th(;J scalaerotentiaIiUsgiven as 9roup
from Eq. (A6). We shall discuss the condition that sizable
D-term condensations dD(m3,) exist atM. In the case
with a minimal Kaler potential, formulgA15) turns into a
simpler form as

V=VF v (B1)

VE=MZexpG/M?)[G'(G™Y)/G,-3M?], (B2

1 1
(DY=2(My ) HFNFDHTAY. (A16) V=S ga(D*)?+ SgR(DM)?, (B3)

It is shown that the(D®) is estimated as less than ypere the index,J, ... runs over all scalar species, the in-
O(mslzéM x) because(F")<0(m3;) and (F5)=msAG")  gex « runs over the generators of the SM gauge group, and
<O(m5;/M) in the absence of a Fayet-lliopouldsterm.  pR=G,(QRz)'. Here we denote the gauge coupling constant
Hence we find that the existence of a nonminimahka  ang U1) charge of W1)s asgg and Qg, respectively. We
potential and/or Fayet-lliopouloB term is essential to the find thatDR contains a constant ter@g(W)M? since
appearance of sizab[@-term condensations &.

DR=K;(QR2)'+ Qr(W)M?, (B4)

APPENDIX B: SUGRA WITH A FAYET-ILIOPOULOS _ )
D TERM where we used the fact that the superpotential carries a non-

zeroU(1)g chargeQgr(W), i.e.,

In this appendix, we investigate the low-energy theory
derived from SUGRA with a Fayet-lliopould3 term at the IWsg
tree level. This subject has not been completely examined in 0z
the literature[33,34]. The theory has necessarily loca(1)
symmetry{27]. The superpotential is not neutral for thigl) It is easy to find that a Fayet-lliopould®s term[25] exists in
charge. Hereafter we denote the Fayet-lliopoul@$)dym-  the second term o¥/(P). Note that the coefficient of the
metry as U1)r. The anomaly cancellation condition related Fayet-lliopoulosD term is fixed from the (1) g symmetry.
to U(1) g can give a strong constraint on model build[i3g]. The UQ1)R is broken by the condensations bfbecause

Let us explain our starting point. The gauge group isV(®) is a dominant part of/. The orders of those VEV's are
G=GgyxXU(1)r where Ggy is the SM gauge group estimated as(z)=O(M). Hence the breaking scale of
SU(3) c X SU(2) X U(1)y. Two types of chiral multiples ex- U(1) is of orderM.
ist. One is a set 06y, singlet fields denoted &. Some of Now we compute the scalar potential of the low-energy
them have nonzero () r charge and induce @)z break- effective theory by taking the flat limit and integrating out
ing. We assume that SUSY is broken by théerm conden- the heavy fields irz’'s simultaneously. Th®-term contribu-
sations ofz's. The second one is a set &), nonsinglet tion is added to the scalar masses in comparison with the
fields z*. For simplicity, we treat alk*’'s as light fields. Of result in Ref.[21]. We write it down in the form that the
course, we can generalize the case that the gauge groupssalar masses are read off,

(Q%2)' = Qr(W)Wsg. (B5)

VIV ViR AV, &0
(FI) _(7?\]/2 1 21 5% TaK}\Z B7
SUSY™ | 7% +§ga[zx( Nz 1% (B7)
(F) — AVML RK a TR R Bih Ny ER
Voot =AW+ B*(2) 07 +H.ct | Imgy M2 S+ (FYKEKL —KEO(FT)
+9§<DR>QE5ﬁ]ZK2’{ +{—<'Ei>H§KA<|E?>+m3/2<|~:i>Hm+m§/z<|~:T>HLx}Z"ZX+ H.c., (B8)
AV<F'>—(9\7V* K1) W F Gl H B9
—E« )i>g+< >E+ .C., (B9)

up to constant terms and higher order term@aﬁfng,le). HereB*(z), C(z,z*), 7, andW have been already defined in
Sec. II C.

We find that the 1)z D-term contribution to scalar masses can destroy universality among scalar masées|st
existence was suggested in RES3], but we have proved it by deriving the full low-energy scalar potential from SUGRA
directly) As its contribution is proportional to the () g charge, the (1) g charge of matters can be known from measure-
ments of the weak scale SUSY spectrum.
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