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Supersymmetric grand unified theories with nonuniversal soft supersymmetry- (SUSY-) breaking
terms are studied. By integrating out the superheavy Gelds at a unification scale, we compute their
low-energy effective Lagrangian. We find new contributions to the scalar potential speci6c to the
nonuniversal supersymmetry breaking. A D-term contribution to the scalar masses is one example.
The gauge hierarchy achieved by a 6ne-tuning in the superpotential would be violated in general
due to the nonuniversal SUSY-breaking terms. We show, however, it is preserved for a certain class
of the soft terms derived from a hidden ansatz. We also discuss some phenomenological implications
of the nonuniversal supersymmetry breaking, including predictions of the radiative electroweak
symmetry-breaking scenario and of no-scale-type models.
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I. INTRODUCTION

Supersymmetry (SUSY) has been regarded as a beau-
tiful mechanism which ensures the stability of the hierar-
chy between the weak scale and the grand unified theory
(GUT) [1] or Planck scale against radiative corrections.
There is, however, another virtue of SUSY which is not
often quoted: the SUSY-breaking terms at the weak scale
directly refIect the physics at very high energies thanks
to the moderate renormalization effects, i.e., the absence
of the quadratic divergences. For instance, one can study
experimentally whether the weak scale SUSY spectrum
is consistent with the GUT by measuring the gaugino
masses [2]. Also, the scalar mass spectrum has certain
"sum rules" specific to symmetry-breaking patterns [3,4].
Therefore, it is important to know the predictions of the
various models on the SUSY-breaking terms at low en-
ergy.

Many efforts have been devoted to the low-energy pre-
dictions under the assumption of the universal SUSY-
breaking terms, which have led to remarkable progress
in recent years [5,6]. The idea of the universal SUSY-
breaking terms was led by the nonobservation of the
large fIavor-changing neutral current processes due to the
SUSY particle loops [7]. And the hidden sector SUSY
breaking [8] combined with the minimal supergravity in-
deed leads to the universal SUSY-breaking terms, with
or without grand unification [9]. However, a decade after
these works, there are increasing interests in the nonuni-
versal form of the SUSY-breaking terms, at least due
to the following two reasons: (1) The unification scale
is now believed to be substantially lower than the grav-

itational scalei Mpi/+8m, and the radiative correction
changes the form of the supersymmetry breaking terms;
(2) the superstring theory implies a highly nonuniversal
form of the Kahler potential in general [10]. Therefore,
it is an important task to see what low-energy theory re-
sults &om the unified theories with a nonuniversal form
of the supersymmetry-breaking terms.

There are some indications that the nonminimal
SUSY-breaking terms give potentially important conse-
quences in the low-energy effective Lagrangian. First,
they give rise to the so-called D-term contribution to
the scalar masses when the rank of the gauge group is re-
duced [11].We pointed out in the previous Letter [3) that
they can be generated even at the GUT scale and give
observable consequences on the weak scale scalar mass
spectrum, which are important to distinguish the vari-
ous symmetry-breaking patterns [3,4]. Second, the non-
universal SUSY-breaking terms may ruin the fine-tuning
in SUSY-GUT models such that the Higgs doublet may
acquire a mass of intermediate scale in general. Third,
the nonminimal initial conditions at the GUT scale mod-
ify the phenomenological conclusions made in the litera-
ture, in predictions on neutralino cosmic abundance, the
radiative breaking scenario, and so on.

Note that the difference between the GUT scale 10 GeV
and the gravitational scale 10 GeV is one-seventh that
between the GUT scale and the weak scale if measured in log
scale.
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In this paper, we derive the low-energy efI'ective La-
grangian starting from the grand unified theories with
nonuniversal SUSY-breaking terms. In fact, we find new
contributions to the SUSY-breaking terms at the low en-
ergy, after integrating out the superheavy fields at the
GUT scale. It of course reduces to that obtained in
Ref. [9] in the case with the universal SUSY-breaking
terms. Furthermore, the nonminimality of the SUSY-
breaking terms at the GUT scale can lead to many inter-
esting phenomenological consequences. We point out, for
instance, that the scalar lepton always becomes heavier
than the B-ino due to the radiative correction between
Planck and GUT scales, and the upper bound on the
slepton mass in the no-scale type models [12,13] becomes
invalid. Possible eKects on the radiative breaking sce-
nario are also discussed.

The paper is organized as follows. In Sec. II, we first
review the low-energy Lagrangian with universal SUSY-
breaking terms. Then we point out the importance of
studying the case of the nonuniversal SUSY-breaking
terms and demonstrate its important outcomes in explicit
examples. We give the low-energy effective Lagrangian
with the nonuniversal SUSY-breaking terms in Sec. III.
Here we also give an ansatz of the SUSY-breaking terms
based on the assumption that the hidden sector is hidden;
this ansatz is stable under the renormalization efI'ects,
and we show that the fine-tuning in SUSY-GUT is not
ruined in this ansatz of the SUSY-breaking terms. We
point out phenomenological implications of the nonuni-
versal SUSY-breaking terms in Sec. IV. Section V is
devoted to conclusions.

II. WHY NONUNIVERSAL SOFT
SUSY-BREAKING TERMS?

In this section, we briefIy explain the typical efI'ects of
the nonuniversal soft SUSY-breaking terms, to demon-
strate the potential importance of their low-energy con-
sequences. First we review the basic results by Hall
et al. [9], where the low-energy effective Lagrangian is
derived in the case with the universal SUSY-breaking
terms. We then point out that the universal form of the
SUSY-breaking terms is not preserved by the radiative
corrections. As examples of the potential importance of
the nonuniversal SUSY-breaking terms, we show that the
nonuniversal scalar mass of the superheavy fields gives
rise to D-term contributions to the scalar masses in the
low-energy effective Lagrangian. We also give an example
where the nonuniversal soft SUSY-breaking terms desta-
bilizes the hierarchy between the unification and weak
scales. These observations give us motivation to study
the low-energy consequence of the nonuniversal SUSY-
breaking terms in a more general framework.

A. Minimal supergravity

The low-energy efr'ective Lagrangian of the minimal su-
pergravity was shown to be extremely simple in Ref. [9].
Although the discussion in that paper was based on the

supergravity Lagrangian, we rephrase their result in the
fIat limit, i.e., in the context of the global SUSY La-
grangian with soft SUSY-breaking terms.

The minimal supergravity suggests the following form
of the scalar potential in the observable sector:

V —VsUsY + VsvsÃ )

1 „OW
VSUSY = —F F„*——D D + F" + H.c.

2 Oz"

+g D z„*(T )"„z,
„OWVs~~ = AW+ Bz" + H.c. + ~B~ z„*z",

Oz

(2 1)

(2.2)

(2 3)

where W is the superpotential, and z" and F" are the
scalar component and the F component of a chiral mul-
tiplet, respectively. D is the D component of a gauge
multiplet and T is a gauge generator. VsUs Y stands
for the supersymmetric part, while Vg~p~ contains the
SUSY-breaking terms, in which A and B are soft SUSY-
breaking parameters. This form of the SUSY-breaking
terms is referred to as universal, " because all the scalar
masses are equal.

The main result in Ref. [9] is that the following form of
the SUSY-breaking terms results in the low-energy La-
grangian after integrating out the superheavy fields in
the above Lagrangian:

Vsigs~. = —2AW, g + (A + B)z A, BW,g
t9z

+H.c. +
~

B
~

z„*z", (2.4)

and it still has the same form as the original one by suit-
able redefinition of the A and B parameters except for the
mass-squared terms. Here z" are the light scalar fields
and W g is the superpotential W with the extremum val-
ues for superheavy fields plugged in. Moreover, the scalar
mass terms are still universal with the same mass, B. It
is noteworthy that the authors of Ref. [9] did the anal-
ysis including the hidd. en sector fields, and proved that
they do not shift when the light fields fluctuate at O(ms)
where mg is the SUSY-breaking scale 1 TeV, while the
constant term in the superpotential should be shifted to
cancel the cosmological constant.

The remarkable simplicity of the low-energy La-
grangian led to a number of strong conclusions, like the
natural absence of the Havor-changing neutral currents
[7] or radiative breaking scenario due to the heavy top
quark [14]. Because of these successes, it became like
a dogma in the phenomenological analysis of the SUSY

This treatment can be actually justified from their analysis,
that the fields in the hidden sector do not shift as the light
fields are varied at O(ms).

The definition here is related to that in Ref. [9] by ms = B*
and ms = (A+3B)*. It is noteworthy that they also discussed
a modification of the minimal supergravity based on U(n)
invariance in the kinetic function to ensure the universality of
the scalar masses.
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models. However, it becomes increasingly apparent that
the supergravity Lagrangian may not have the minimal
form, and it may lead to important consequences on the
low-energy effective Lagrangian, as will be discussed in
the next sections.

B. Naturalness of the universal SUSY-breaking
terms

It was pointed out that the higher order corrections in
general destroy the minimal form of the Kahler poten-
tial [15,16]. This poses a question on the naturalness of
the minimal supergravity Lagrangian. However, this dis-
cussion is based on the one-loop corrections with a naive
cut-off set at the Planck scale, and such higher order cor-
rections may be absent in specific dynamics beyond the
Planck scale. Note that even when the Planck scale dy-
namics satisfy certain symmetry to ensure the minimal
form of the SUSY-breaking terms, we still expect that it
will be modified by the radiative corrections below the
Planck scale.

Let us give an example of the minimal SU(5) model
with vanishing scalar masses at the Planck scale [17].
The scalar fields acquire their masses through renormal-
ization group equations, which are different for 5 and
10 representations. Their masses at the SU(5)-breaking
scale 2 x 10 GeV are

m'-, = 0.3OM',

m'„= 0.45M',
(2.5)

(2.6)

B" are holomorphic functions of z independent for each
K, and not the derivative of a single function B.

where M refers to the SU(5) gaugino mass at the su-

pergravity scale Mp&/+8vr. Apparently these contribu-
tions cannot be neglected in the phenomenological anal-
yses and are also nonuniversal. They become even larger
in the nonminimal GUT models because the gauge cou-
pling constant tends to be larger than that in the min-
imal SU(5) model. This demonstrates that the running
between the Planck scale and the SU(5)-breaking scale is
not negligible [18] (a similar point was also made recently
in Ref. [19]).Then the SUSY-breaking terms do not have
a minimal form any more at the GUT scale, where the
superheavy fields should be integrated out.

Instead of the universal SUSY-breaking terms, we will
take the following ansatz for the SUSY-breaking terms:

OTV
Vs+~ = msAW+ msB" (z) + H.c. + O(ms).Oz"

(2.7)

(See Sec. IIIA2 for the notation. ) It will be shown
that this form of the SUSY-breaking terms is stable un-
der renormalization, or in other words, natural in the
weak sense. Since the minimal form is not stable un-
der the renormalization, we believe this is the framework
to work out the low-energy effective Lagrangian. More-

over, from the viewpoint of supergravity, this form is the
most general form of the SUSY-breaking terms induced
by super Higgs mechanism with the assumption that the
hidden sector is "hidden, " i.e. , that the superpotential is
a sum of two independent pieces consisting of observable
and hidden fields, respectively. We leave the detail to
Sec. III A 2.

Recall, also, that the superstring theory suggests non-
minimal forms of the SUSY-breaking terms in general
[20]. This is especially true when the SUSY is broken by
the E component of the moduli fields. The scalar masses
depend on their modular weights. The gaugino masses
are also nonuniversal.

These observations give us strong motivation to study
the low-energy effective Lagrangian from the unified the-
ories with nonuniversal SUSY-breaking terms. In the
next two sections, we will point out potentially impor-
tant effects of the nonuniversality.

One remark on the squark degeneracy is in order. It
has been often stated that one needs high degeneracy of
the scalar masses to ensure the potentially large contri-

p
—0

bution of the squark loop diagrams to the K -K mixing.
However, this does not require the degeneracy of all scalar
masses at the GUT or Planck scale. The only require-
ment is the degeneracy of the first- and second-generation
squarks with the same quantum numbers. Note that nei-
ther the D-term contributions nor the renormalization
group evolution due to the gauge interactions destroy the
degeneracy as long as they do not distinguish the gener-
ations of the light quarks. One may have highly degen-
erate squark masses due to the gluino mass contribution
even with the different masses as the initial conditions at
the Planck scale. Though the absence of flavor-changing
neutral current processes puts a strong constraint on the
nonminimality, it does not diminish our interest to study
its low-energy consequences.

C. Possible D-term contributions

Though the low-energy Lagrangian is surprisingly sim-
ple when it has a universal form at the unification scale,
there arise different contributions to V~g~- when one
integrates out the superheavy fields from the Lagrangian
with a nonuniversal form of the SUSY-breaking terms.
This has an important consequence on the scalar masses
when one probes the symmetry-breaking pattern from
the weak-scale measurements of the masses [3,4] (see
Sec. IV A). In fact, we pointed out that the D-term con-
tribution may arise at the GUT scale [3], and there have
appeared papers which discuss the efFect of the D-term
contributions to the Higgs boson masses in the radiative
breaking scenario [21,22].

In this section, we give a simple example which gen-
erates a D-term contribution to the low-energy scalar
masses. Take a simple superpotential W = h(gi$2-
p )y, with U(1) charges Q = +1 for Pi, Q = —1 for
P2, and Q = 0 for y. We also have light fields z" which
couple to the U(l) gauge fields but do not couple to the
heavy fields Pi, P2, and y in the superpotential. Then
the full potential reads as
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x I

—IE"
I

——D + [Ei~( 2~ + E2~g ig + Ex~(g i&2 —p ) + H.c.]2

+gD I&if' —I&2I'+ ) .&klz" I' + (Ah&i&» —&h&'&+ H.c.)

+m', IP, I'+ m', I+,I'+ m' fyf'+ m'„lz" I', (2.8)

where Ei, E2, Ex, E" are the auxiliary fields of Pi, P2, y, z", respectively, and D is the auxiliary field of the U(1)
gauge field. The SUSY-breaking terms A, C, m„are O(ms), O(ms), O(m&), respectively.

We integrate out the heavy fiejds Pi, P2, and y froin this potential, taking light fiejds z fluctuating at O(ms)
The stationary solutions to the heavy fields are solved by expanding in powers of ms/p, , and one finds

—A2+ C
862@,

—A2+ C2

862@

m', + m', m,' —m,' P„g,fz" I'

46@ 8g p 4gp

+ 2 +

(2.9)

(2.10)

A —C (ms)
2h )

(2.11)

Ex = h(gi$2 —p, )
—A2+ C2

4h

m', + m', (ms' 5+'( „)

and, for the auxiliary fields,

~+O
I

(A —C) (ms~ l
2

&~)

(2.12)

(2.13)

(2.i4)

versal, consistent with the analysis in Ref. [9] that was
reviewed in the previous section.

The D-term contribution exists in general when the
rank of the gauge group is reduced by the symmetry
breaking [11],and the SUSY-breaking terms are nonuni-
versal. They give rise to observable effects at the weak
scale.

D. Instability of the hierarchy

Ilail' —1@21'+).&i fz" I'

o I™II.
2a &u) (2.i5)

+[terms of O(ms, /p)]. (2.16)

The latter terms are the contributions from the nonvan-
ishing value of the D term, giving rise to different masses
for different quantum numbers. One also sees that the
D-term contributions vanish if the scalar masses are uni-

The low-energy effective Lagrangian can be obtained by
plugging these solutions into the original Lagrangian, giv-
ing

V,ir = [z"-independent terms of O(mzp, )]

+m'„lz" I' ——(m', —m', ) ) Qi, fz" I'

The nonuniversal SUSY-breaking terms have a dra-
matic consequence when there is Gne-tuning to keep light
fields at the weak scale. The light fields acquire masses
of the order of the intermediate scale in general. It seems
to us that this problem is not widely recognized in the
literature (see, however, [23,24]).

In the SUSY standard model, we need (at least) two
Higgs doublets with opposite hypercharges, and these
doublet scalars form a SUSY-breaking mixing mass term.
Indeed, the problem we now discuss is related to the Gne-
tuning problem of the Higgs doublet mass (the gauge hi-
erarchy problem), which is inevitable in a wide class of
SUSY-GUT models in order to obtain the light Higgs
doublets of the SUSY standard model. We will explain
the problem in some detail. The discussions given below
are based on the observation in an unpublished work [25].

To exemplify the problem, let us consider the minimal
SUSY SU(5) model [1] whose superpotential is

W = AtrZ + M~trZ + H„(fE+ M~)Hd, (2.17).
One can also study the same potential after integrating

out the auxiliary fields, as one usually does. However, we
keep the auxiliary fields as independent variables for the later
convenience.

Here Z, H, and Hg are the fields of 24, 5, and 5 repre-
sentations of SU(5), respectively. A and f are dimension-
less coupling constants, while Mg, M~ are GUT scale
mass parameters. If we add the SUSY-breaking terms
arbitrarily, the potential reads
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OW OW

OZ
'

OH. +g ) (Zt[T, E]+ HtT H„+ H~t( T—*)Hd)
OW

d

+(AA~trZ + B~MgtrZ + fAHH ZHg + BHM~H„Hg + H.c.), (2.is)

(2
1 2

2
~60 —3

(2.i9)

where Ag, Bg, AH, and B~ are the SUSY-breaking pa-
rameters of order mg and we have omitted the SUSY-
breaking scalar masses which are irrelevant to the follow-
ing discussions. The SU(5) gauge coupling constant is
denoted by g. Taking

III. SCALAR POTENTIAL IN THE EFFECTIVE
THEORY

In the preceding section, we examined some examples
to demonstrate that the nonuniversal SUSY-breaking
terms can lead to important consequences. In this sec-
tion, we will give a more general discussion. We consider
a softly broken supersymmetric unified theory whose
gauge group is broken at an energy scale M~. We will
derive the scalar potential V,g in the low-energy effective
theory by integrating out the heavy sector.

the minimal of the potential is located at oo ——
&& M~

in the SUSY limit, which is shifted by ho = ~s& (A~ —B~)
in the presence of the SUSY-breaking terms. The mixing
mass of the two doublet Higgs bosons mi2H„Hd is given
by

mi2 —— ap(Ag —Bg —A~ + BH) + O(ms), (2.20)
60

where we have used that the supersymmetric mass of the
Higgs doublets is one-tuned to be

3
MH — O.p ——O(mg)

60
(2.21)

OW OW OWAW+ B&Z + B,H„+B,Hd
tC d

(2.22)

which follows &om the ansatz in Sec. II B, the coeKcients
Ag, etc. , in Eq. (2.18) are written as

Ap ——A+ 3Bi,
Bg ——A+ 2Bi)
A~ ——A + Bi + B2 + B3)
BH ——A+ B2+ 83.

(2.23)

(2.24)

(2.25)

(2.26)

at the SUSY limit. Clearly for a class of the SUSY-
breaking parameters where the combination A~ —BL-
AH + BH does not vanish, mi2 lies at an intermediate
scale mpM~ and the gauge hierarchy is destabilized.

A crucial observation is, however, that the mixing mass
m&2 becomes of order m& if we assume the form of the
soft terms as in Eq. (2.7). Indeed for the special form of
the SUSY-breaking terms

A. General discussion

We first list the basic assumptions in the following
discussion: (1) The unified theory is described as a
renormalizable supersymmetric theory with soft SUSY-
breaking terms; (2) the unified gauge symmetry is broken
at a scale M~ which is much higher than the SUSY-
breaking scale mg ( 1 TeV); (3) SUSY is not sponta-
neously broken in the absence of the soft SUSY-breaking
terms in the Lagrangian; (4) all the particles can be clas-
sified as heavy [with mass O(M~)] or light [with mass
O(mg)] in the absence of the SUSY-breaking terms; (5)
the light scalar Gelds have vacuum expectation values
(VEV's) as well as fluctuations only of O(ms).

The assumptions here are basically the same as in
Ref. [9].

We would like to integrate out the heavy particle at
the tree level. For this purpose, we solve the stationary
conditions of the potential of the full theory for the heavy
scalar fields while keeping the light scalar fields arbitrary.
We then "integrate out" the heavy fields by inserting the
solutions of the stationary conditions into the potential.
The potential obtained in this way should be regarded as
the potential of the low-energy efFective theory renormal-
ized at the scale M~. This potential serves a matching
condition when we solve one-loop renormalization group
equations above and below the scale M~. In deriving
the effective scalar potential, we fully utilize the equali-
ties &om the gauge invariance given in the Appendix.

The procedure to obtain the low-energy efFective po-
tential in this paper is quite similar to that of Ref. [9],
though they started &om the (minimal) supergravity La-
grangian whereas our starting point is the softly broken
global SUSY. As for the SUSY breaking, we consider a

Then we 6nd

Ag —Bg —AH + BH ——0, (2.27)

which guarantees the lightness of the Higgs doublets in
the minimal SU(5) model.

The gauge group of the theory is not necessarily grand-
unified into a simple group.



1342 KAWAMURA, MURAYAMA, AND YAMAGUCHI 51

nonuniversal form which is expected to be realized in re-
alistic models as we discussed in the preceding section.

x. SUSY habit

So+ SUSY-br'caking terms

The soft SUSY-breaking terms can be classified by spu-
rion insertions as

First we review the basic properties of the scalar po-
tential in the absence of the SUSY-breaking terms.

The superpotential is a holomorphic function of chiral
superfields 4".

d 0(rns0 )U(C) = msU(z),

d 0(ms0 )B(C, @t) = ms'
Zp

(3 9)

(3.10)

W = W(4").

The supersymmetric scalar potential is given as

(3.1)
d 0( 0 0 )C(4, @t) = C(, *). (3.11)

U(4) is a holomorphic function of the chiral superfields.
B is expressed as

VsusY = ——(D ) —F*F + D (z T z)

, OR'* OR'
(3 2)

where z" are the scalar components of the chiral super-
fields 4". E" is the auxiliary field of 4", T stands for
a gauge generator and D is its D term. ztT z is an
abbreviation of z&(T )"„z".Summation over cr, K, and A

is implied.
The stationary conditions of the potential are simply

F„*= =0,OR'
Oz"

D =ztT z =0 (3 4)

Oz"Oz~ Z:ZQ
(3 5)

Then the scalar fields are classified [9] either as "heavy"
fields z, z, . . ., "light" fields z, z', . . ., or Nambu-
Goldstone fields which will be discussed just below.

The mass matrix of the gauge bosons is

(Mi ) p = zop(T, T )„"zo = 2(zoT )„(T zp)", (3.6)

where we used Eq. (3.4) in the last equality, and it can
be diagonalized so that the gauge generators are classi-
fied into "heavy" (those broken at M~) T,TB, . . . and
"light" (which remain unbroken above m ) T,Ts, . . . .
For the heavy generators, the fields (TAzo)" correspond
to the direction of the Nambu-Goldstone fields in the field
space, which span a vector space with the same dimen-
sion as the number of heavy generators. We can take a
basis of the Nambu-Goldstone multiplets, z, z, . . . so
that

under the condition that SUSY is unbroken. We denote
the solutions to the stationary conditions as z" = zo.

We can always take a basis of z" to diagonalize a part of
the fermion mass matrix corning from the superpotential:

B(4,Ot) = B2i C t 4" (3.12)

for renormalizable theories and thus BB/Oz& is a function
of z, not of z*. A term which depends only on 4t does
not appear in Eq. (3.12), since it can be absorbed into
the superpotential as [26]

d 0(ms0 )II(et) = d 0 sH(C t). (3.13)

C(C', 4t) is a bilinear polynomial of the chiral and an-
tichiral fields.

The nonrenormalization theorem [27] implies that the
form U(z) is preserved from radiative corrections since
Eq. (3.9) is an F term. On the other hand, the functions
B and C are generally renormalized, as they are the D
terms. For example, the minimal supergravity induces
the soft terms such as U = AW(4), B = C t4, and C =
0 in the fiat limit with A being a constant. When we
take radiative corrections into account, U remains the
same, but B and C suffer from the renormalization and
in general become nonuniversal. This observation leads
us to investigate nonuniversal soft terms.

In the rest of this paper, we take the ansatz

U(4) = AW(4) (3.14)

as in the case of the minimal supergravity, while we ad-
mit nonuniversal structure for B and C. We can show
that Eq. (3.14) is derived from nonminimal supergrav-
ity Lagrangian in the fiat limit, provided that the ob-
served sector does not have couplings in the superpoten-
tial to the sector which is responsible for the spontaneous
breaking of the local supersymmetry (the "hidden" sec-
tor) [28,29]. On phenomenological grounds this "hid-
den" assumption is widely accepted, since otherwise the

~g(TA )B MAB (3.7)

A
zo =0. (3.8)

Here the Nambu-Goldstone fields are taken to be orthog-
onal to the heavy and light fields such as (T zo) = 0,
(T zo)" = 0. Also, the vanishing of the D terms Eq. (3.4)
implies

We owe this classification to the discussions with K. Inoue,
Y. Okada, and T. Yanagida.

Our usage of the term "hidden sector" is somewhat different
from that in the second paper of Ref. [28], where the moduli
fields whose I' components break SUSY are not included in
the hidden sector.



51 LOW-ENERGY EFFECTIVE LAGRANGIAN IN UNIFIED. . . 1343

large SUSY-breaking would directly be transmitted to
the observed sector and the SUSY is badly broken in the
low-energy effective theory as a consequence. For exam-
ple, the Yukawa coupling of the "hidden" sector field to
the Higgs doublets induces a large mass term of the Higgs
bosons of order msMpi and destabilizes the weak scale.
Furthermore we believe that the assumption allows us to
integrate the hidden sector first to leave the softly broken
global SUSY theory.

In the preceding section, we demonstrated that the
fine-tuning of the Higgs doublet masses in the SUSY-
GUT is not preserved if the most general soft terms are
switched on, and there arises a large mixing mass term
for the scalars. As will be seen later, our ansatz (3.14)
avoids the emergence of the dangerous terms from the
heavy sector. On the other hand, if we take U g AW
the gauge hierarchy achieved by the fine-tuning will be
generally violated by the soft terms. We will discuss this
in Sec. IIIC.

The scalar potential we consider is summarized as

W = —p„pLz"Lz + —h„g„Lz"Lz Lz".
2T 3T

(3.is)

The functions B"(z), B„*(z*),and C(z, z*) are also ex-
panded as

B"(z) = Bi + B2„Az",
B„*(z*)= Bi„+B2„"b,z„',

C(z, z*) = Ci„Az" + C,"Az„*+Cz„Az„'Az"

+—C2„pLz"Lz + —C2 Lz„Dz~.
2 2

(3.i9)
(3.20)
(3.21)

(3.22)

From Eq. (3.12), it follows that Bi = B"&zz
The variations of the potential (3.15) with respect to

the auxiliary fields F, D, and the scalar fields z are given
as

place of the scalar fields z" themselves. For the renormal-
izable theories, the superpotential can always be written
as

V = BUSY + VSZSSY (3.i5)
V~s~- = (mgAW(z) + msF"B„*(z*)+ H.c.)

+msC(z, z*). (3.16)

Note that the scalar potential (3.15) is rewritten as

BV, BW
F„*+ — + msB„*(z')

= —F„*+ p„pAz + —h„p„Az Az"

+m~(B,*„+B,*„"az„'), (3.23)

„OTV
V = —F„*F"+ F" + H.c.

Bz

1

2
DD +——D (ztT z)

BTV+ mgATV z + mgB" z + H.c.

+msB„*(z*)B"(z) + msC(z, z*) (3.17)

by shifting the auxiliary field F" as F" -+ F"+ms B"(z).
This is the form given in the preceding section.

B. Calculation of the effective potential

In this section we compute the scalar potential of the
effective low-energy theory by substituting the heavy
fields with the solutions to the stationary conditions
of the full potential. With this aim, it is convenient
to write both the superpotential and the soft SUSY-
breaking terms in terms of the variations Az" = zK —zp in

Higher dimensional operators would generate terms of the
type (3.13), which should be renormalized into the renormal-
ization of the superpotential, W(4) —+ W(4') + msH(4).
We can still keep our ansatz by modifying U and C as
U(4) —+ U(4) + msH(4), m C'(4, 4t) —+ I, C(4, 4't)—
rn&AH(4) + H.c. We thank J. Bagger for a discussion on this
point.

= —D +zTz,BV

= D (ztT )„+OzK

(3.24)

8 R'
Oz"Bz~

BW OB, 2 OC
+msA + mg F& + ms

Oz t9z Bz
D (ztT )„+(p„p + h„p„Az")F"
+msA(p„pAz + h„g„Az"Az")
+msBz„Fg + m&(Ci„+ C2„4z& + C2„pAz ).

(3.25)

Once the SUSY-breaking terms are turned on, the
F" or D may be nonvanishing, but should be at most
O(ms') since they have to vanish in the absence of
the SUSY-breaking terms. We expand the F", D, and
z" in powers of mg such as

FK FK + $FK + $2FK

D =D +bD +b D +z:zp + Az: zp + 6z + 8 z +

(3.26)

(3.27)

(3.28)

with 8"F",b"D = O(ms/Mx ), and h "z"
O(ms/Mx. ). Here Fo" and Do are defined as the vac-
uum expectation values (VEV's) in the absence of the
SUSY-breaking terms and are exactly zero as discussed
in Sec. IIA1, and the higher order terms are defined
as the shifts of their VEV's due to the presence of the
SUSY-breaking terms. We assume z" = O(mg) for the
light fields, e.g. , zo ——O(m ) and h2z" = b'sz" = . . = 0.

We can solve the stationary conditions (3.23)—(3.25) by
using the above expansions (3.26)—(3.28) order by order.
Here we list the equations which are to be used to obtain
the scalar potential of the effective theory. For simplicity
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we assume

B"= O(ms) (3.29)

Equation (3.35) gives the solution for b2FK as

for the time being. This is automatically satisfied if
there is no light singlet Geld. The stationary conditions
QV/BFK = 0 and BV/BFA = 0 imply

(F ) = (p— ) (mshLAMBl bz + ms+pLMbz
+msB2LB1A + msClL) . (3.41)

Prom Eq. (3.37),

and

bF~ ——@~I.bz + msBq~ (3.30)
(zoT )A SIlA&KB1 b + mSB2AB1B

+ms Cgg) (3.42)

(3.31)F„* = msBiA

b F~ ———h~),„bz"bz" + msB2~bzq
2

=1= —h/~l, bz bz + h,/~ybz bz + msB2gbzp,K I K k A

2
(3.32)

respectively, lo while BV/ODA = 0 gives

bDA ( tTA) b H+b *(TA )H (3.33)

—P,KLbFL = 0, (3.34)
—pKLb F = hKk„bF"bz" +bD (bz T )K

+ms Ape L, bz + msB2z bF&

+ms&iz, (3.35)

and

bD~(.tT~) = 0, (3.36)

bD (zoT —)A = hA&„bF"bz" + msB2AbF&

+msC (3.37)

respectively.
From Eqs. (3.34) and (3.30), we find the shift of z is

K
(

—1)KLBs

On the other hand, Eqs. (3.33) and (3.36) imply

bz" =0.

(3.38)

(3.39)
I

From the conditions BV/BzK = 0 and BV/Bz = 0, we
find

W(z) = W(z", z = z, + bz, z" = z,"+ bz"),
(3.43)

Bk( ) Bk( l K K+b K A A+b A)

(3.44)

C(z, z*) = C(z", z = z + bz, z = z + bz, . . .).
(3.45)

Note that the above are the functions of only light fields.
In particular, the TV is the superpotential of the efFective
theory. Then we can write down the efFective potential
as

„&aw
V,g = Ek F" + F—" „+msB„*

~
+ H.c.

(Bz

1

2
DD + D (z—tT z)

+msAW(z) + H.c. + msC(z, z*)

+LV,

where the new contribution LV is

(3.46)

where we have used hApk = 0(ms /M~ ), a conse-
quence of the gauge invariance. Note that (zoT )A

(Mv)~A can be inverted to obtain b D . Equa-

tion (3.42) shows that b D is a constant independent
of the light fields. Therefore we will denote it by (D ).

Now it is straightforward to calculate the scalar poten-
tial of the low-energy efFective theory V,g by substituting
the solutions to the stationary conditions for the heavy
fields. The result can be compactly expressed if we define

k(F ) —ms(p ) hLAkBl bz"

+ F —h~~~bz bz + msB2&bz& —ms p hL, &I,By 8z 6~&p6z 8z + msB2~8z& + H.c.K (1 ~ p —lKLAk i kg
P

2

+ msBlA + msB2A bzK + hAKLbz bz + m—sBzAbzk + hAKlbz bz + (D )bz T bz.
2

(3.47)

Gauge invariance implies hAkl = O(ms/Mx); see Appendix. We have also used bz = 0, which will be derived below.



LOW-ENERGY EFFECTIVE LAGRANGIAN IN UNIFIED. . . 1345

Recall that (DA) stands for b2D [see Eq. (3.42)]. The
last term in Eq. (3.47) comes from the D term of the
heavy gauge sector and is referred to as the D-term con-
tribution, while the other contributions are called the
E-term contributions. This new contribution LV should
be included in any analysis of one-loop renormalization
group equations with tree-level matching.

Eliminating the auxiliary fields F and D by using
the equations of motion, we obtain the SUSY-breaking
part of the efFective potential

OTV
Vlr,~~ = msAW(z) + msB" (z) „+.H.c.

t9z

+~s(B~(z*)B"(z) + &(z z*)) + &&.

(3.48)

C. Stability of the weak scale

In this section, we will investigate whether the eKec-
tive potential is of the order of magnitude m&. The
occurrence of the terms of O(ms'. ) or even larger is
very dangerous since it would destabilize the weak scale.
Such dangerous terms may appear for a mixing mass term
(proportional to 6'z"bzl) and for a linear term (propor-
tional to bz"). The latter is related to the notorious
difficulty in the presence of the light singlet [30]. Note
that the linear term cannot exist for a nonsinglet field.
Whether the linear term is actually large or not is highly
model dependent. We will not discuss this problem fur-
ther. In the rest of this section we will concentrate on
the mixing mass term.

From Eqs. (3.48) and (3.47), it follows that the mixing
mass terms are

rnsApal + rnshl l (Bl + B2Mbz ) + ms(Bp&p t + B2l p l ) + sC&l l + (F )hKkl

rrls(P ) hKAkBl hLMl~z ms(P ) hKAlBj hLMlc~»

+ms hKAl, bz B2l + mshKAlbz B2&, (3.49)

which are of order ms. This is due to our assumptions
(1) U = AW and (2) B~ = O(ms). We will show that
larger terms arise when we relax the assumptions.

First consider the case of U g AW. An inspection
similar to the preceding section shows that there exist
terms of order mgM~ for the mixing mass

msBq hI )m (3.52)

ically.
Next consider the effects of Bz of order M~. Obvi-

ously BP is nonzero only for a (light) singlet. Then we
find an additional contribution to the mixing mass term:

ms „, + (F )hKgl + O(ms) ~

K 2

Oz Oz
(3.50)

where

(+ )= — ( ) +O( ). (3.51)

The first term in Eq. (3.50) can be O(ms'), since there
is no a priori reason that the fine-tuning of the Higgs bo-
son mass achieves simultaneously both in R' and U. The
second term remains large if the conditions BW/Bz = 0
and BU/B»K = 0 do not hold simultaneously. Our ansatz
U = AW automatically makes each term of Eq. (3.50)
small. We may fine-tune the soft term U so that two
terms of (3.50) cancel each other. Since U is an I" term
and not renormalized, this fine-tuning will not be vio-
lated by radiative corrections. However, such a fine-
tuning can be done only in a model-independent man-
ner, and is clearly beyond our context of general analysis
of low-energy effective Lagrangian. We take our ansatz,
which guarantees the hierarchy irrespective of the details
of each model, to discuss the general consequence of the
nonminimality. In short, our ansatz is minimal, which
is stable against radiative corrections, but also maximal,
which guarantees the stability of the hierarchy automat-

This again reQects the well-known difBculty related to
the light singlet. Indeed a large B term can appear at
the tree level or may be induced by radiative corrections
[30,31]. To proceed further we need a model-dependent
analysis which is beyond the scope of the paper.

To conclude, the large mixing mass terms do not arise if
(1) one takes the hidden assumption and thus U = AW,
and (2) there is no light singlet.

D. Mass terms

We now discuss a chirahty-conserving mass term,
namely, the coeKcient of bz"bz&*. They are easily ex-
tracted from Eqs. (3.46) and (3.47), given by

Here we disregard the constant terms independent of the
light fields.

For example, in a Sipped SU(5) model [32], it is known that
the light singlet which couples to the Higgs doublets does not
induce the large mixing mass.
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ms(B2I, B2' + C2„) —ms(p, ') hKAI, Bi (y,
*

)Ml, h* 'B,*B

'B,"„B,*„'+h h*" 'b b * + (D")(T")'„. (3.53)

The term ms(B2I, B2' + Cz&) is present before the heavy
sector is integrated out. Therefore it respects the large
gauge symmetry of the unified group. On the other hand,
other terms coming &om AV can pick up effects of the
symmetry breaking.

The last term in Eq. (3.53) is the D-term contribu-
tion. Phenomenologically it is important because it gives
an additional contribution to squarks and sleptons [3,4].
The (D) may not vanish only for broken generators in the
absence of the Fayet-Iliopoulos D term. Furthermore,
they must be singlet under the unbroken gauge group at
low energies. One can choose a basis of the broken gauge
generators such that only diagonal ones have the VEV's.
Thus the nonzero D term can arise when the rank of the
gauge group is reduced by the gauge symmetry breaking.
The D-term contribution is proportional to the charge of
the broken U(1) factor, i.e. , the diagonal generator, and
gives mass splittings within the same multiplet in the full
theory.

We can rewrite b D = (DA) by using the gauge in-
variance of W and B as

We first evaluate AV in Eq. (3.47). Equation (3.38)
now reads

b.K = -m, (&-')K'Bz,*,. (3.59)

The VEV's of the auxiliary fields become

(D ) = 2ms(Mi, ) C(zoT zo) = 0,

(3.60)

(3.61)

hBKlbz (T zo) = SKI,bz —(T ) &
+ O(ms)

= msB(zoT )( + O(ms)
=0, (3.62)

we find LV becomes simply

AV = —(F )hKp„bz"bz".
2

(3.63)

where the last equality is due to Eq. (3.4). Noting that
the gauge invariance of the superpotential shows

(DA) 2m2 (M2 )
—1AB(Be (TB)rcBA Bs (TB)KBL

+Cz„zo&(T zo)" + C2 Azo (T zo)"). (3.54)

We will see in the next section that the VEV of the
D term (3.54) vanishes when the SUSY-breaking terms
are universal and hence the D-term contribution to the
sfermion masses is a characteristic of the nonuniversal
SUSY breaking.

Hence all contributions to the chirality-conseming mass
terms disappear with the universal soft terms. The
SUSY-breaking part of the potential is found to be

I, BR'
V,g~g~ = mgATV + msBz"

|9Z

+—(F ) hKp„bz" bz" + H.c.
2

E. Case of the universal soft SUSY-breaking terms
+ms(B + C)z„*z". (3.64)

B(4,@t) = B@t4
C(@,C't) = C@tC',

(3.55)
(3.56)

with dimensionless constants B and C. Then we find

Let us now discuss the effective potential for the case
of the universal soft terms. In addition to our ansatz
(3.14), we assume that

C=0, (3.65)

as well as pk~ ——0, zp = 0. Then after a little algebra, we
find

An important conclusion is that the scalar mass is com-
mon in this case.

To compare our results with those of Ref. [9], we fur-
ther take

and

Bz ——Bzp ) B2& ——Bb&

C&:Czp~ ) Cy: Czp

(3.57)

(3.58)

LV = ——mgAhK), „bz bz bz
1 K A p.

2

( — „aw&= —msA
I

3W —z
Bz

and the SUSY-breaking part is

(3.66)

C~), ——Cb)"„C2„p ——C2 = 0.

In particular, B& ——Cz ——0 because zp ——0. Fur-
thermore, our assumption Bi ——O(ms) is automatically
satisfied since we postulate zo ——O(ms), which allows us
to use the efFective potential (3.46) and (3.47).

+mgzA, z ) (3.67)

which is in agreement with the result of Ref. [9].

A. OTV
Vea', sos~ = —2msAW+ ms(A+ 1)z"

&
+ H.c.

OZ
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IV. PHENOMENOLOGICAL IMPLICATIONS

In this section, we point out phenomenological implica-
tions of the general discussion in the preceding sections.
The main new feature is that one may have nonuniversal
scalar masses at the GUT scale, both due to the D-term
and F-term contributions. For the first two generation
slepton and/or squark fields, we expect that the super-
potential coupling is weak enough to be neglected, and
the term m&B&&B2& in Eq. (3.53) vanishes under the
assumption of the B-parity conservation. Therefore we
deal with only the D-term contributions. It was pointed
out in our previous paper [3,4] that the scalar masses sat-
isfy "sum rules" corresponding to the symmetry-breaking
pattern of the grand unified theory, which can be tested
at future collider experiments. On the other hand, the
Higgs fields and third generation slepton/squark fields
are likely to acquire both D- and E-term contributions,
which may drastically change the analysis of the radiative
breaking scenario.

A. Squark and slepton masses

malization is taken arbitrarily. These expressions do not
depend on a particular choice of the Higgs representation
which breaks Pati-Salam group, and hence fixed com-
pletely by the symmetry-breaking pattern. Note that
the gauge coupling constants g4, g2& can be determined
f'rom the low-energy gauge coupling constants n;(mz)
(i = 1, 2, 3) as a function of Mps alone. On the other
hand, one can eliminate D, mL, and m& from the above
formulas, to obtain

m-(Mps) m- (Mps) = m;(Mps) —m„-(Mps),

(4.7)

g2~(Mps) (m- —m;) (Mps) = g4 (Mps) (m„- —m„-) (Mps).
(4.8)

Once we measure the gaugino and scalar masses at low
energy, we can calculate the scalar masses at Mps as
a function of Mps alone. Since we have two relations
for one free parameter Mps, one can solve for Mps and
further make a consistency check.

There exist more relations when SO(10) is broken di-
rectly into GSM'.

For the first two generation matter fields, the super-
potential coupling is small and can be neglected. Then
the masses of their scalar components are determined
solely by the initial conditions and their gauge quan-
tum numbers. As a consequence, they have a defi-
nite pattern in the mass spectrum once one has a spe-
cific symmetry-breaking pattern from the grand-unified
group down to the standard model gauge group, GsM ——

SU(3)c x SU(2)L, x U(1)v.
In our previous paper [3], we showed that the squark

and slepton masses satisfy certain "sum rules" for vari-
ous examples of the symmetry-breaking patterns. Let us
briefIy review the results below, as an example where the
D-term contributions to the scalar masses play a major
phenomenological role.

Let us take the following symmetry-breaking pattern,
for instance:

There appear D-term contributions to the scalar masses
when the rank of the gauge group reduces &om 5 to 4
at the intermediate Pati-Salam symmetry-breaking scale
Mps. The matter multiplets belong either to L
(4, 2, 1) or B = (4, 1,2) representations, with masses mL
and m&, respectively, above Mps. When the Pati-Salam
group breaks to GsM, we obtain the masses

2
mq

2
mu

2fA
Q

m2
I,

2
mg

2
fAL +

2
7GR

mg+2

2
mL

2mg

2g4D,

(g4 —2g2R) D
(3g4 2g2a) D
3g4D,

(g4 + 2g'~)»

(4.2)

(4.3)
(4.4)
(4.5)

(4.6)

where D represents the D-term contributions whose nor-

SO(10);SU(4)ps x SU(2)L, x SU(2)z '
', GsM.

(4.i)

2
mq

2
mu
m2

e
m2

l
2

md

2 2
16 + ~10
2 2
16 + ~10D,
2 2
16 + gloD,
2 2

m16 —3g10D,
2 2
16 ~10

(4.9)

(4.10)
(4.11)
(4.i2)

(4.i3)

where the only unknown parameters are m16 and D af-
ter the measurements of the SUSY-breaking masses. We
use one relation to fix D, one for m16, and there remain
three relations for the consistency check. On the other
hand, we have more &ee parameters when the symmetry
is smaller: for instance,

SO(10):SU(3)~ x SU(2)L, x SU(2)~ x U(1)~ L,

GsM- (4.14)

One may anticipate that there are also E-term contribu-
tions since we need a superpotential RRy to generate right-
handed neutrino masses where g transforms as (15, 1,3). In-
deed, a right-handed scalar neutrino may acquire contribu-
tions like FxN N'. However, other squark, slepton fields
cannot acquire E-term contributions because of the GsM
invariance.

In this case we cannot even determine the parameters in
the original model.

On the other hand, let us consider flipped SU(5) model
[33,32] as an example of nonunified model. Its gauge
group is SU(5) x U(1) and is not grand-unified into a sin-
gle group. First of all, we have two independent gaug-
ino masses MSU~5~ and MU~1~ at the GUT scale, which
results in the low-energy gaugino masses which do not
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TABLE I. The "score sheet, " showing how well we can distinguish among various mod-
els. The intermediate groups are defined as Gps = SU(4)ps x SU(2)1. x SU(2)a,
G3221 ——SU(3)c x SU(2)5 x SU(2)z x U(1)~ 5, G3$ii —SU(3)c x SU(2)1 x U(1)ii x U(1)g I
The column n, refers to the unification of the gauge coupling constants, where "natural" means
that the unification is automatic, and "adjustable" employs either particular particle content or
threshold corrections to reproduce the observed gauge coupling constants. The column M, /o, .

refers to the gaugino masses. The column vn, states whether the model predicts a definite pattern
which is testable using the low-energy scalar mass spectrum.

m',

SU(5)—+ GSM
SO(10)—+ GSM
SO(10)-+ Gps -+ GSM
SO(10)m Gsg21 m GsM
SO(10)~ G32ii ~ GsM
SU(5) xU(1) -+ GSM
Superstring with dilaton I' term
Superstring with moduli I' term

Natural
Natural

Adjustable
Adjustable
Adjustable
Adj ust able

Adjustable
Adjustable

Common
Common
Common
Common
Common

Common only for i = 2, 3
Common

Not common

Testable
Testable
Testable

Not testable
Not testable

Testable
Testable

Not testable

necessarily satisfy the GUT relation. However, one can
test the scenario measuring M2 and M3 at the weak scale
and see whether they unify at the same scale where the
gauge coupling constants o.2 and o,z unify. On the scalar
masses, we have three independent masses mzo, m5, and
mz at the GUT scale, and an unknown D term in addi-
tion. There are five observable scalar masses, and we
know the scale where SU(2) and SU(3) coupling con-
stants meet. Therefore, we are left with one additional
relation which can be checked. The scalar masses satisfy
the following relations at M~ where SU(2) and SU(3)
unify to SU(5):

mg(M~)

m;(M~)'

m„-(M~)'

m,-(M~)'

( 2
'rrt10 +

I gsU(5) + gU(1) I » (4 15)
40(3, 3

m5 —
I

—gsU(5) + gU(1) I
» ( 6)(10 40(1, 3

chris +
I

—gsU(5) gU(1) I
I) (4'17)(5 40

rri10 +
I gSU(5) + gU(1) I

D, (4 1S)(10 40

2 2 1 2m;(M~) = mi + —gU(1) D
8

(4.19)

Then the "sum rule" is obtained as

Mg M2 M3
0!3

(4.21)

even when the grand-unified group breaks down to GSM
in several steps. On the other hand, non-GUT models
such as flipped SU(5) do not necessarily have a unified

md(My) —m) (My) = m-(Mg) —m„-(Mg). (4.20)

Though the "sum rules" of the scalar masses are weak
when the symmetry is small, one can acquire useful in-
formation by combining the scalar mass spectrum with
that of the gauginos. We pointed out that the gaugino
masses satisfy the so-called GUT relation

gaugino mass, and hence do not predict GUT relation
of the gaugino masses. Therefore, one can draw useful
information on the GUT models by measuring the scalar
and gaugino masses in future experiments. We present a
"score sheet" of various models in Table I. Here we refer
to the paper [34] on superstring predictions.

B. Radiative breaking scenario

There have been several remarkable results reported,
based on the radiative-breaking scenario [14] and the uni-
versal scalar mass hypothesis at the GUT scale. One of
them is that the lightest supersymmetric particle (LSP)
should be gaugino dominant to correctly reproduce the
weak scale [36], when the top quark is heavy. This gives
a stringent constraint on the cosmic abundance of the
neutralino. The other is that the proton decay in the
minimal SU(5) SUSY-GUT cannot be consistent with the
present bound if one further requires that the LSP does
not overclose the Universe [37]. Since both analyses cru-
cially depend on the universal scalar mass hypothesis,
there may be qualitatively diferent consequences in the
nonminimal case.

The crucial equations to determine mz and tan P in the
minimal SUSY standard model (MSSM) are the following
ones at the tree level:

It is noteworthy that the superstring with a dilaton I" term
also leads to the same relation. This is amusing because one
needs rather big threshold corrections for the gauge coupling
constants to reconcile the difference between the apparent
GUT scale and the string scale [35]. Exactly the same correc-
tion both for the gauge coupling constants and the gaugino
masses appears to give the same relation as in the (field the-
oretical) GUT models.
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m& ——— —(mi+ mz + 2p ),cos 2P
2m3

m, 2) + m, 2
2+ 2@2 'sin 2P =—

(4.22)

(4.23)

where mz, m2 refer to the soft SUSY-breaking part of the
Higgs boson masses, m3 the off-diagonal mass, and p the
Higgsino mass parameter. When one adopts the univer-
sal scalar mass hypothesis, the large top quark Yukawa
coupling drives mz much smaller than m& in general as far
as tan P is not very large. This gives a too-large value of
the first term on the right-hand side (RHS) of Eq. (4.22)
in general, which should be compensated by the negative
contributions of p . Of course, the details depend on the
renormalization group analysis; it can be studied semi-
analytically as far as one can neglect the bottom quark
Yukawa coupling constant [38]. In this case,

2 2m] m )

m~ =m; —3I,
2m3 = Bp.

(4.24)

(4.25)

(4.26)

Here, I is defined by

I = Issm + I~GM + I~~M~A + I~~A, (4.27)

where the coeKcients Iss, I~~, I~g, I~~ are functions of
the top quark Yukawa coupling only, and m, M, A
are the universal scalar mass, universal gaugino mass,
and universal trilinear coupling at the GUT scale, re-
spectively. One can rewrite the Eqs. (4.22) as

where all m M~A~, and A terms vanish. It is not
possible to obtain a Higgsino-like LSP within the no-scale
models. Even with nonvanishing m and A, it was
shown that there are no solutions with a Higgsino-like
LSP [36] after including the one-loop effects on the Higgs
potential.

However, the situation drastically changes when one
incorporates the possible D-term contributions to mz and
mz. Let us imagine the initial condition mz ——m
Lm, m& ——m +Am . This gives an extra contribution
Lp to the p as

1
[2 —(1 —cos 2P) Igs] Am,2

2cos 2P
(4.29)

C. FCNC

which allows a lighter Higgsino compared to the case of
the universal scalar mass.

The fact that the lighter Higgsino is allowed has a
very strong impact in the minimal SU(5) GUT, where
it has been claimed that the nucleon decay via the
dimension-five operators cannot be consistent with the
longevity of the Universe [37]. The nucleon decay rate is
roughly proportional to M /m when M & m [39],
while gaugino-like LSP has an abundance proportional
to m /M . However, the abundance becomes much
smaller once the smaller Higgsino mass parameter is al-
lowed. Therefore, one can take M to be much smaller
than m without worrying about the LSP abundance,
which opens a consistent region between the nucleon de-
cay experiments and the LSP abundance.

p = 3 (Islam + I~~M
tan P 2 2

tanz —1

+I~~M~A~ + IA~A~)
—(m' + 0.52M' ) —m2~/2. (4.28)

The coeKcient I~~ varies &om 0.8 to 1.2 for a top quark
mass m& ) 140 GeV, and hence p is always an increas-
ing function of M . For small tan P, the first term dom-
inates, and one has a large p . For moderately large
tan P, the CERN e+e collider LEP bound on M2 gives
a lower bound on M . Though m and M A terms
may give negative contributions to the above equation,
their coeKcients are in general not large, and one has
to take m or [A [

very large to make Higgsino light.
Since such parameters are not favored from the natural-
ness point of view, one reaches the conclusion that the
Higgsino-like LSP is disfavored in the radiative breaking
scenario. This is especially true in the no-scale case,

The assumption of the universal scalar mass is moti-
vated to explain the smallness of the Havor-changing neu-
tral current (FCNC) due to the loops of SUSY particles
[7]. Since we have relaxed this assumption, the readers
may be worried about FCNC.

There are two classes of nonminimal eÃects, one which
does not break the degeneracy between sfermion masses
with the same quantum numbers, the other which does.
The nonminimality we discussed in Sec. IV A could
have been generated by the renormalization between the
Planck scale and the GUT scale. The implicit assump-
tion here is that the Yukawa interactions are small for
the erst two generations, even to the superheavy fields
which are completely decoupled &om the low-energy ef-
fective action. As long as all of their interactions in the
superpotential are small, the only renormalization eEects

Furthermore, for a larger top quark mz & 160 GeV, the
coeKcient of m is always positive and the contribution from
m cannot cancel that from M . Hence the Higgsino mass
parameter becomes always large and the Higgsino-like LSP
cannot be realized.

The claim by Ref. [37] was criticized by the authors of
Ref. [40], who pointed out the possibility of the strong anni-
hilation of neutralinos due to the 8-channel Higgs pole. Also,
the constraint from the proton decay in Ref. [37] is much
stronger than the conservative estimate in the second paper
in Ref. [39]. However, our point in this section is the strong
inBuence of the nonminimality on the radiative breaking sce-
nario, and we will not go into this issue further.
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arise due to the gauge interactions, and hence univer-
sal for different generations. The degeneracy of sfermion
masses at the initial condition ensures the degeneracy at
the weak scale. In this case, the nonminimal nature of
the radiative corrections does not break the degeneracy.

On the other hand, there are many sources of radia-
tive corrections which could break the degeneracy. For
instance, there are attempts to explain the degeneracy
of sfermion masses based on horizontal symmetries [41].
If the horizontal symmetry is gauged and breaks sponta-
neously, however, there may be D terms in the horizon-
tal gauge group which potentially breaks the degeneracy
again. Another example is when the first two genera-
tions also have 1 Yukawa interactions beyond the GUT
scale. In this case there are two sources of nondegener-
acy: (1) renormalization due to the Yukawa interactions,
and (2) E-term contributions to the scalar masses when
the heavy particles decouple. There are no discussions
on these effects in the literature to our knowledge.

It is noteworthy, however, that FCNC can be sufE-
ciently suppressed even with a nondegenerate initial con-
dition. If the scalar masses turn out to be relatively
smaller than the gaugino masses, radiative corrections
between the Planck or GUT scale and the weak scale
tend to make squark masses universal due to the gluino
contribution. Indeed, SUSY breaking via moduli F-term
condensation in superstring inspired supergravity models
gives nonuniversal scalar masses which depend on mod-
ular weights, and in principle can lead to large FCNC
processes. However, they can be sufIiciently suppressed
due to the renormalization effects at least for some region
of the parameter space [34].

D. Renormalization between GUT and Planck scales

As repeatedly emphasized through the text, one of the
important sources of the nonminimality is the renormal-
ization between the GUT and the Planck scales. Let us
briefly comment when and how these effects can be im-
portant despite the apparent closeness of the two scales.
Indeed, most of the analyses in the literature completely
ignore the difference of these two scales.

One example is when the constraint is marginal. For
instance, it was shown in Refs. [12,13] that one has an
upper bound on the gaugino mass in a restricted class of
minimal supergravity model with m = A = 0 at the
GUT scale. The argument comes &om the fact that the
right-handed slepton acquires a mass only of

m- 0.87M', (4.30)

and hence is smaller than Mi. Then there is a danger
that l~ becomes lighter than the lightest neutralino. One
is forced to use mixing in the neutralino sector to push
the LSP mass down from Mq. (Higgsino LSP does not ex-
ist as a solution in the radiative breaking scenario with
the universal scalar masses. ) However, mixing can be
substantial only when the gaugino mass is close to mz,
and. one obtains an upper bound on the gaugino mass. It
was translated to an upper bound on the slepton mass,

150 GeV [12,13]. The situation completely changes
when one includes the running of the slepton mass be-
tween Planck and GUT scales. Then one obtains

m,'- (4.31)

V. CONCLUSIONS

In this paper, we have derived the low-energy effec-
tive Lagrangian in the scalar sector starting &om a uni-
fied theory with nonuniversal soft SUSY-breaking terms.
Such nonuniversal soft terms arise if we take a flat limit of
the supergravity where the Kahler potential is a nonmin-
imal one. One should note that this is indeed the case in
the string-inspired model where the moduli fields are re-
sponsible for the SUSY breaking. Even if the soft terms
have the universal structure at the gravitational scale,
they get renormalized and as a result become nonuniver-
sal in general when the energy scale goes down to the
GUT scale. Therefore we expect that the soft terms a're
nonuniversal at the GUT scale and it is important to
investigate its consequences at low energies.

We have calculated the scalar potential of the low-
energy theory by explicitly integrating out the heavy sec-
tor. The SUSY-breaking part of the scalar potential is
summarized in Eqs. (3.48) and (3.47). We found some
new contributions to the soft terms which can be nonzero
only when the soft terms of the full theory are nonuniver-
sal. In particular, the sizable D-term contributions gen-
erally exist in the chirality-conserving scalar masses when
the rank of the gauge group is reduced by the gauge sym-
metry breaking. Its phenomenological implications were
discussed in our previous papers [3,4]. Another impor-
tant point is concerned with the gauge hierarchy prob-
lem. Many of the SUSY-GUT models achieve the small
Higgs doublet mass by a fine-tuning of the parameters
in the superpotential. If the soft terms are turned on,
however, a SUSY-breaking Higgs boson mass term can

and one does not need a substantial mixing in the neu-
tralino sector any more. Therefore, the upper bound on
the gaugino mass becomes obsolete due to this effect.

Another example is when there is a relatively large cou-
pling constant. If we require mb-m mass relation, one
generally needs a top quark Yukawa coupling constant of

2.0 at the GUT scale for small tanP, and 0.8 for
large tanP 60. Let us take minimal SU(5) to clarify
our discussions. Then H„has much smaller m at the
GUT scale compared to Hg, even when they start from
the same value at the Planck scale. One has to go through
the following analyses. First one solves the renormaliza-
tion group running of the Higgs masses for 24, 5, 5, and
also other SUSY-breaking parameters. Then one employs
the formulas presented in Sec. III to integrate out the su-
perheavy fields to obtain the low-energy effective action.
Such a nonminimality may change the parameter space
of the radiative breaking scenario substantially, however,
it does not affect FCNC constraint since the effects of hq

do not appear in the first- and second-generation scalar
masses.
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become heavy and the weak scale will be destabilized.
We showed that all mass terms remain at the weak scale
if the soft terms are restricted to those derived from the
supergravity model where the hidden sector decouples
&om the observable sector in the superpotential.

We have also discussed other phenomenological im-
plications. Recall that there are many sources which
give the nonuniversal scalar masses, including the D-
term and/or F-term contributions discussed in this pa-
per. This nonuniversality changes the predictions of the
radiative electroweak symmetry breaking, usually assum-
ing the common mass for the two Higgs doublet bosons.
In particular, the Higgsino can be the dominant compo-
nent of the LSP even when the top quark is heavy: if we
assume the universal scalar mass, the LSP is dominated
by a gaugino component. This cures the apparent con-
flict of the nucleon lifetime and the LSP relic abundance.
In the no-scale model, on the other hand, we pointed
out that the upper bound on the right-handed slepton
mass [12,13] disappears if we properly incorporate the
renormalization group flow between the GUT scale and
the Planck scale. Further study of the radiative break-
ing scenario without the universal scalar mass hypothesis
should be encouraged.
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(Tcx)~ A
O

Oz" (A1)

where summation over repeated indices v and A is under-
stood. If we difFerentiate the above equality with respect
to z", we obtain

0 W
(T )„"z"+ (T )„"= O. (A2)

By further differentiating the above, one finds

~,„~,„~,„(T )~z" + ~,„~,„(T )",

(T )" = O. (A3)
02W

The equalities (A2) and (A3) become

P&I3 = 0& (A4)
h„„„(T )"„zo -i p„„(T )„"~ p„„(T )„" = O(ms), (A5)

respectively, in the case of W of Eq. (3.1S). Equa-
tion (A5) can be written as

hadal, (T zo) + pMx(T )& + pal. (T )P& ——O(ms),
(A6)

(A7)
(AS)

(A9)
(AIo)

hxcL, (T zo) + pMlc (T )c = O(ms),
hg~g(T zp) + pM~(T )&

——O(ms)&

hgI, )(T zp) = O(ms),
hxcI, (T z,)"=O(ms),

in terms of components.

APPENDIX: EQUALITIES FROM GAUGE
INVARIAN CE

We summarize the consequences of the gauge invari-
ance of the superpotential W.

Prom the gauge invariance of W, there is the equality
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